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5.1   Introduction 

  

            In recent years, many theoretical and experimental inventions are made on the 

bearing design systems as well as lubricating substances in order to increase the 

efficiency of the bearing performances. One major revolution in the direction of 

lubricating substances is an invention of Ferrofluids.  Ferrofluids (FFs) or Magnetic 

fluids (MFs) [1] are stable colloidal suspensions containing fine ferromagnetic particles 

dispersing in a liquid, called carrier liquid, in which a surfactant is added to generate a 

coating layer preventing the flocculation of the particles. When an external magnetic field 

H is applied, FFs experience magnetic body force HM )(  which depends upon the 

magnetization vector M of ferromagnetic particles and are oriented along the field lines. 

The main property of FFs is that they can be made to adhere to any preferred place with 

the help of magnets and to move even in zero gravity regions. Due to these features, FFs 

are used in many applications including lubrication of bearing design systems [2,3]. 

Recently, many theoretical investigations are made using FFs as lubricant owing to its 

various advantages such as long life, silent operation and reduction of wear. As the 

present Chapter deals with the study of FF lubricated squeeze-film-bearings with porous-

roughness effect, the following are some references regarding squeeze-film-bearings 

discussed by different authors from different viewpoints. It should be noted that squeeze-

film arise when two lubricated surfaces (discs or plates) approaches each other with a 

normal velocity (known as squeeze velocity). Squeeze-film characteristics plays an 

important role in many applications, namely, lubrication of machine elements, artificial 

joints, etc. 
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            Starting with 1974, Murti [4] discussed porous circular discs squeeze-film-bearing, 

where the porous layer is attached with the upper impermeable disc. Three bearing 

characteristics like pressure distribution, load-carrying capacity and response time are 

discussed in terms of Fourier-Bessel series. It is found that an enhanced value for the 

permeability parameter diminishes the pressure over the entire disc and also evens out the 

pressure distribution; however, there is an adverse effect on the load-carrying capacity and 

response time of approach. The porous effects are shown to predominate at very low 

thickness values. Ting [5] analyzed lubricated clutch engagement behaviour of two 

annular discs with the elastically deformable porous facing attached with the above disc. 

The surface roughness is also introduced at both the discs. The bearing characteristics like 

pressure distribution, load-carrying capacity and film thickness versus time have been 

studied. Prakash and Tonder [6] describe a theoretical analysis of the effects of surface 

roughness on squeeze-film characteristics between two circular plates. It is found that the 

circumferential roughness reduces the sinkage rate of the squeeze plate. If the highest 

asperities are blunt or flat, the theoretical time to reach the rest position may tend to 

infinity. In the case of radial roughness, the sinkage rate is increased. Verma [7] discussed 

squeeze-film between two rectangular plates using MF lubricant. The upper surface is a 

rigid rectangular smooth plate while the lower one is composed of three thin porous layers 

with different porosities. Explicit solutions for the velocity, pressure and the load-carrying 

capacity are obtained. It is found that the time for the upper plate to come down is longer 

than viscous squeeze-film. Thus, better performance of the MF effect is observed. Bhat 

and Deheri [8] theoretical studied the squeeze-film between two circular discs, where the 

porous layer is attached with the upper disc.  It is found that pressure, load capacity and 
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response time are increased with the increasing values of magnetization of MF. The 

effects due to magnetization are found to be independent of the curvature of the upper 

disc. Elsharkawy and Nassar [9] found closed form of analytical solutions for three 

different types (parallel surface bearing of infinite width, journal bearing and parallel 

circular plates) of squeeze-film porous bearings. The results show that as the permeability 

parameter increases, both the pressure profiles and the load-carrying capacity decreases. It 

is also shown that the effect of the porous layer can be neglected when dimensionless 

permeability parameter less than 0.001. Shah et. al. [10] theoretically analyzed squeeze-

film behaviour between rotating annular plates, where the upper exponentially curved 

plate is attached with a porous facing of uniform thickness while the lower one is 

impermeable flat. The lubricant used is MF, which is controlled by oblique magnetic field. 

The results show that the increase in pressure and load-carrying capacity depended only 

on the magnetization while increase in response time depended on magnetization, fluid 

inertia and speed of rotation of the plates. Usha and Vimala [11] theoretically predicted 

the squeeze-film force in a circular Newtonian squeeze-film using the elliptical velocity 

profile assumption by three different approximation methods – momentum integral 

method, successive approximation method and energy integral method.  The results show 

good agreement with the experimental test. Shah and Bhat [12] analyzed FF squeeze-film 

in an axially undefined porous journal bearing considering anisotropic permeability of the 

porous facing and slip velocity at the film-porous interface. The results show that load-

carrying capacity and response time increases with the increasing values of eccentricity 

ratio and anisotropic parameter, while they decreased with the increasing values of slip 

parameter or material parameter. Jaffar [13] studied squeeze-films between a rigid 
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cylinder and an elastic layer bonded to a rigid foundation. Influences of the layer 

thickness, the layer compressibility and the central squeeze-film velocity on the results are 

investigated. Bujurke et. al. [14] studied surface roughness effects on the squeeze-film 

between circular upper porous-rough surface and lower solid rough surface using couple 

stress fluid. The results show that effects of couple stress fluid and surface roughness is 

more pronounced compared to classical case. Rajashekar and Kashinath [15] analyzed 

combined effects of couple stress and surface roughness on MHD squeeze-film lubrication 

between a sphere and a porous-rough plane. The results show that the couple stress fluid 

enhances the mean pressure, load-carrying capacity and squeeze-film time. Also, the 

effects of roughness parameter increase (decrease) the load-carrying capacity and lengthen 

the response time for azimuthal (radial) roughness patterns as compared to the smooth 

case. The effect of porous parameter decrease the load-carrying capacity and increase the 

squeeze-film time as compared to the solid case. Kesavan et. al. [16] analyzed the surface 

roughness effect on the squeeze-film characteristics between finite porous parallel 

rectangular plates lubricated with an electrically conducting fluid in the presence of a 

transverse magnetic field. It is found that load-carrying capacity and response time 

increases with the increase of magnetic field effect. Walicka et. al. [17] discussed effects 

of bearing surfaces and porosity of one bearing surface on pressure distribution and load-

carrying capacity using bingham fluid. The general formulae for pressure and load-

carrying capacity are derived. Fathima et. al. [18] studied performance of hydromagnetic 

squeeze-film between anisotropic porous rectangular plates with couple stress fluids. 

Here, the magnetic field considered is transverse. The results show the increase in load-

carrying capacity and lengthen the squeeze time as compared to nonmagnetic case. Lin et. 
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al. [19] investigated effects of circumferential and radial rough surfaces in a non-

Newtonian MF lubricated circular squeeze-film. Here, both the discs are solid 

impermeable. The results show that the circumferential roughness effect increases the 

mean load capacity and lengthen the mean approaching time as compared to those of 

smooth discs. However, the radial roughness patterns yield a reverse trend. Shah et. al. 

[20-22] studied FF based squeeze-films between sphere and flat porous plate, rotating 

sphere and radially rough plate and some reviews on squeeze-films, respectively. 

Everywhere better performances of the squeeze-film characteristics are indicated.   

                       The aim of the present Chapter is to study the circular squeeze-film-bearing 

phenomenon formed between upper solid impermeable disc and lower porous-rough disc 

with the effects of two roughness patterns (radial and circumferential) on the porous 

surface using FF lubricant. Here, the FF is controlled by oblique radially variable 

magnetic field (VMF) because of obtaining advantage of generating maximum field at the 

required active contact zone. Moreover, the VMF is considered because uniform magnetic 

field does not enhance bearing performances. The porous-rough surface is considered 

because of obtaining advantage of self-lubricating property. Using FF flow model by     R. 

E. Rosensweig and roughness effect by Christensen’s stochastic theory modified Reynolds 

equation is derived, which is solved for load-carrying capacity for different shapes 

(exponential, secant, mirror image of secant and parallel) of the upper disc. The results are 

compared among different shapes and the impacts of permeability and roughness patterns 

are studied. The purpose of considering the present problem is lies in the observation that 

the studies of most of different designs squeeze-films (sphere-plate, cylindrical-disc, two-
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parallel plates, etc.) reduce to the present case or present case is the limiting case of 

different designs squeeze-films. 

5.2   Formulation of the Mathematical Model  

 

            Figure 5.1 shows the configuration of the present circular squeeze-film-bearing 

design, where the upper disc is solid impermeable while the lower one is porous-rough. 

Both the discs are having radius a. The porous-rough disc is made by attaching a porous 

facing (region or matrix) of thickness (or width) H* with the solid impermeable disc. 

Practically the porous facing is rough, so two roughness patterns (radial and 

circumferential) are considered for the study. The gap between two discs (known as film 

region) is filled with FF, which leads FF film and may be of different shapes due to the 

different designs (exponential, secant, mirror image of secant and parallel) of the upper 

disc. The upper disc rotate with an angular (or rotational) velocity u  while the lower 

with l . The upper disc moves normally towards lower one with a normal velocity 

(known as squeeze velocity) 

dt
dhh 0

0 
 , 

(5.1) 

where  h0 is the central film thickness at time t = 0. 

Also, 

 
.)(),( wrv,u,zr,r  q  

(5.2) 

Here, ),,( zr   are cylindrical polar co-ordinates and dot )(  represents derivative w.r.t. t. 
            In the present case, the strength of the oblique radially VMF, which controls FF in 

the film region, can be considered as 
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a
raKrH )(2

2 
 , 

                                                                                                 (5.3) 
           in order to get maximum field strength at r = 2a / 3. This strength can be considered 

because, in the present case, neighbourhood of r = 2a / 3 is active contact zone. For other 

active contact zones, different forms of magnetic field should be chosen. Here, r is the 

radial co-ordinate and K being a quantity chosen to suit the dimensions of both sides of 

equation (5.3). 

            For an incompressible, steady, axisymmetric flow, equations (2.25) to (2.29) in 

cylindrical polar  co-ordinates in r (radial)-direction (referring [21]) becomes 
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           under the usual assumptions of lubrication, neglecting inertia terms and that the 

derivatives of fluid velocities across the film predominate. Here, z is axial co-ordinate. 

            By considering tangential component v of velocity vector q of both the discs 

[10,21], equation (5.4) becomes 
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(5.5) 
             where h is the film thickness made up of two parts  

 
);,,()(  rhrhh sn   

(5.6) 
 

            hn  denotes the nominal smooth part of the film geometry and  hs  is the part due to the 

surface asperities measured from nominal level and is a randomly varying quantity with 

zero mean,    being an index determining a definite roughness arrangement. 



135 
 

 Using boundary conditions [20] 
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5s

1 rr
  (Slip condition) 

 
            and 

hzu  when0  (No slip condition), 
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(5.7) 
           where s is a slip parameter, r being the permeability of FF in the porous matrix in the 

radial direction and r  being the porosity in the same direction.  

            Substituting u from equation (5.7) in the cylindrical polar form of continuity 

equation (2.26) for film region, and integrating it over the film thickness (0, h), the 

transverse velocity component w at 0z  emerges in the form  
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where 0hwh
 , squeeze velocity. 
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           Assuming the validity of the Darcy’s law and considering the contributions from 

magnetic pressure and rotation, the radial and axial components of the fluid velocity in 

the porous matrix are given by [23] 
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            where z  is the permeability of FF in the porous matrix in the axial direction and P is the 

fluid pressure there. 

             Substituting these u and w in the cylindrical polar form of continuity equation 

(2.26) for the porous matrix and integrating it over the width of the porous matrix             

(H*, 0), yields 
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           using Morgan-Cameron approximation [24] and the fact that the surface *Hz   is 

impermeable. 

                     By assuming the continuity of the normal (axial) component of the fluid velocity 

at the film-porous interface at the lower disc; that is,  

00 ww   
 

            yields  
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(5.12) 
using equations (5.8)-(5.11). 
 
5.2.1  Distribution of Roughness Heights 

 

             With film thickness being regarded as a random quantity because of roughness 

effect, a height distribution function must be associated. Therefore, a polynomial form, 

approximating the Gaussian is chosen. Such a probability density function of the 

stochastic film thickness, sh , is taken as [6,25]   

,
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(5.13) 

     where 3c , and   is the standard deviation. 

In the context of stochastic theory [6,25], the analysis is usually done for two 

types of one-dimensional roughness patterns (viz. radial and circumferential) as follows. 

            Radial Roughness Pattern 

 

            In this model, the roughness is assumed to have the form of long, narrow ridges 

and valleys running in r-direction (that is, they are straight ridges and valleys passing 

through z = 0, r = 0 to form a star pattern). The film thickness in this case assumes the 

form 
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),(  sn hhh . 

(5.14) 
 Taking expected values of both sides of equation (5.12), yields (referring [26])  
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  where )(E  is the expectancy operator defined by 
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)( shf  is defined in equation (5.13). 

  
  Using equation (5.16) stochastic Reynolds equation in this case can be obtained as   
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 Circumferential Roughness Pattern 

 

             In this model, the roughness is assumed to have the form of long, narrow ridges 

and valleys running in -direction. The film thickness in this case assumes the form 

),(  rhhh sn . 

(5.18) 
 

            Taking expected values of both sides of equation (5.12), yields (referring [26]) 
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where )(E  is the expectancy operator defined by equation (5.16). 

Using equation (5.16) stochastic Reynolds equation in this case can be obtained as      
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(5.20) 
 

            In order to form a single equation for both the roughness patterns, substituting 
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(5.21) 
              which is the required Reynolds equation of the present study. 

   Introducing dimensionless quantities as follows. 
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Equation (5.21) becomes 
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(5.23) 
where  
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5.3   Solution 

 

              Solving equation (5.23) for the following relevant boundary conditions [21] 

0p   when R=1  ,  0




R
p

  when R=0, 

            the dimensionless film pressure can be obtained as 
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(5.26) 
            From the definition of the mean load-carrying capacity  
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            the dimensionless load-carrying capacity can be obtained as  
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(5.27) 
           where F and  G  are given by equations (5.24) and (5.25), respectively.  
 

5.4   Results and Discussion 

 

             The results of dimensionless load-carrying capacity W  for different bearing 

designs (exponential, secant, mirror image of secant and parallel) are calculated from 

equation (5.27) for the following values of the different parameters using Simpson’s rule 

with step size 0.1. Here, the values of the different parameters remains fixed during 

calculations unless and until the study is made w.r.t. the variation of the particular 

parameter.  
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The shapes of the different bearing designs due to the variation in shape of the 

upper disc are given by the following dimensionless forms. It should be noted here that 

due to different bearing designs the film thickness h also takes different forms.  

            (1) For exponentially curved upper disc  

10ββ; 22

  Raeh R
n   

           (2) For secant curved upper disc 
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10ββ;)β(sec 22  RaRhn  

           (3) For mirror image of secant curved upper disc 

10ββ);(sec2 22  Ra Rhn  

           (4) For parallel upper disc 

10;1  Rhn  

           where   is the curvature of the upper discs.  

            The strength of the magnetic field considered throughout the study is of order 3; 

that is, O(H)  3. 

 Figures 5.2-5.4 shows the graphical presentation of the calculated results of W .  

Figure 5.2 shows the variation in W for all designs (exponential, secant, mirror 

image of secant and parallel (flat)) squeeze-film-bearings as a function of dimensionless 

circumferential roughness parameter C considering dimensionless radial permeability 

parameter 00002.0r . It is observed that W  increases moderately with the increase 

of C. Moreover, W  is more in the case of exponential shape. The following inequality of 

W  is obtained for all designs. 

spise WWWW  , 

            where eW , isW , pW , sW   are respectively dimensionless load-carrying capacity for 

exponential, mirror image of secant, parallel and secant squeeze-film-bearings. 

            Figure 5.3 shows the variation in W  as a function of dimensionless radial 

permeability parameter r  considering dimensionless circumferential roughness 
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parameter 0.04C  . The case of exponential squeeze-film-bearing is studied. It is 

observed that W  decreases with the increase of r .  This happens because due to higher 

permeability, the more readily does fluid flow out through the porous material. This 

reason can also be justified by the following references. 

According to Sparrow et. al. [27], when porous matrix is attached with the solid 

disc, the pressure in the porous medium provides a path for the fluid to come out to the 

environment from the bearing, which leads to decrease in resistance of flow in r – 

direction and as a consequence the W  is reduced. This behaviour of decreasing W with 

the insertion of porous matrix also agrees with the conclusions of Prakash and Tiwari 

[28] while discussing the problem of squeeze-film of rough porous rectangular discs 

theoretically (which was studied experimentally by Wu [29]).  

                       Figure 5.4 shows the variation in W  as a function of dimensionless roughness 

parameter C, which includes case of radial and circumferential roughness patterns, 

considering 00002.0r . The case of exponential squeeze-film-bearing is studied. It is 

observed that with the increase of circumferential roughness pattern,  W  increases 

significantly whereas with the increase of radial roughness pattern, W  decreases. This 

opposite nature of W  w.r.t. both the roughness patterns may be because of the following 

reason. 

           In the present case porous matrix is attached with the lower disc and in addition 

to above three references [27-29], circumferential and radial roughness patterns of the 

porous matrix is also considered. Therefore, roughness patterns also effect on W . For 
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circumferential roughness pattern, structure of surface having deviation (from nominal 

level) w.r.t. r, which leads the possibility of the retention of the fluid in the gaps and so 

some resistance of flow in r – direction appears. Due to this reason, the fluid come out to 

the environment becomes comparatively less and which results in the increase of W  as 

compared to radial pattern. In radial pattern, the situation is different because the 

structure of surface having deviation w.r.t.  which does not lead the retention of the 

fluid in r –direction. 

 Figure 5.5 shows the variation in W  as a function of dimensionless radial 

permeability parameter r  considering case of radial and circumferential roughness 

patterns for 0.04C  . The case of exponential squeeze-film-bearing is studied. It is 

again observed that W  is more in the case of circumferential roughness pattern. 

5.5   Conclusions 

 

Based on FF flow model by R.E. Rosensweig, equation of continuity for film as 

well as porous region and roughness effect by Christensen’s stochastic theory, modified 

Reynolds equation for circular squeeze-film-bearing, formed between upper solid 

impermeable disc and lower porous-rough disc, is derived. Two roughness patterns, 

radial and circumferential, on the porous surface are also included in the study. 

Moreover, the porous-rough surface is considered because of obtaining advantage of 

self-lubricating property of the bearing design system. Here, the FF is controlled by 

radially VMF because of obtaining advantage of generating maximum field at the 

required active contact zone. Moreover, for this FF flow model uniform magnetic field 
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does not have any effect on the performance of the bearing characteristics. In the porous 

region validity of the Darcy’s is assumed. The effects of permeability and surface 

roughness on dimensionless load-carrying capacity are studied and compared for 

different bearing design systems (exponential, secant, mirror image of secant and 

parallel (flat)).  The purpose of considering the present problem is lies in the observation 

that most of studies on different designs of squeeze-films (sphere-plate, cylindrical-disc, 

two-parallel plates, etc.) reduce to the present case. The following conclusions can be 

made from results and discussion. 

(1) W is significantly more for exponential squeeze-film-bearing as compared to other 

shapes. The following comparison of load-carrying capacity is obtained for all 

designs. 

spise WWWW  . 

        For exponential squeeze-film-bearing design 

(2)  W decreases with the increase of r . 

(3) W  increases significantly with the increase of circumferential roughness  pattern, 

whereas decreases with the increase of radial roughness pattern. 

The study indicates the favour of designing circumferentially rough, porous 

exponential shape squeeze-film bearing with smaller values of radial permeability 

parameter.  
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5.6   Figures 

 

 

 

 
 

 
 

Figure 5.1  
 

Squeeze-film geometry between upper solid impermeable disc and  

lower porous-rough disc. 
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Figure 5.2 
 

Variation in dimensionless load-carrying capacity W  for different values 

of dimensionless circumferential roughness parameter C considering 

00002.0r  
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Figure 5.3 
 

Variation in dimensionless load-carrying capacity W  for different  values of 

dimensionless  radial permeability parameter r  considering dimensionless 

circumferential roughness   parameter 0.04C   
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Figure 5.4 

 

Variation in dimensionless load-carrying capacity W  for different 

values    of dimensionless roughness parameter C considering  00002.0r  
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Figure 5.5 
 

Variation in dimensionless load-carrying capacity W  for different  

values    of  dimensionless radial permeability parameter r  considering 

0.04C   
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