
24 
 

Chapter 2 
 

                    Physico-Mathematical Background 

Contents 

 

2.1 Basic Definitions  

2.2   Various Types of Flows 

2.3   Magnetic Parameters 

2.4      Fundamental Equations from Fluid Dynamics 

           2.4.1   Equation of Continuity  

           2.4.2   Navier-Stokes Equation (Momentum Equation) 

           2.4.3   No slip Condition of Viscous Fluids 

           2.5      Types of Lubrication 

           2.5.1   Assumptions in Hydrodynamic Lubricated Bearings 

2.6      The Generalized Reynolds Equation 

2.7      Discussion on Different Types of Bearings 

2.8      Concept of Ferrofluid 

            2.8.1   Equation of Motion for a Magnetic Fluid 

            2.8.2   Ferrofluids Lubrication Equations Based on Neuringer-

              Rosensweig Model 

2.9      Surface Roughness 

2.10    References 

    



25 
 

    This chapter discusses in detail concept of the Physico-Mathematical essentials to 

comprehend the subsequent chapters. The concepts pertaining to the subject are taken 

from various sources [1-33]. 

2.1   Basic Definitions  

 In this article various definitions, which are required for the subsequent study, are 

discussed.  

Definition 2.1.1   Fluid  

A fluid is a substance that deforms continuously when subjected to a shear stress, 

no matter how small that shear stress may be. This continuous deformation under the 

action of forces compels the fluid to flow and this tendency of fluid is called fluidity.  

Definition 2.1.2   Surface Tension 

                        It is defined as the tensile force acting on the surface of a liquid in contact with a 

gas or on the surface between two immiscible liquids such that the contact surface 

behaves like a membrane under tension. The unit of surface tension is   Nm-2.  

Definition 2.1.3   Viscosity 

Viscosity is derived from the word viscous, which means sticky, adhesive, or 

tenacious.  Viscosity is the property of a fluid by virtue of which it offers resistance to the 

movement of one layer of fluid over another adjacent layer of the fluid. The unit of 

viscosity is Nsm-2.  

Definition2.1.4   Kinematic Viscosity  

It is defined as the ratio of the dynamic viscosity  to the mass density  of fluid. 

 It is denoted and defined as 

ρ

μ
 . 
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The unit of kinetic viscosity is m2s-1.                      

Definition 2.1.5   Density  

The density of a fluid is the ratio of the mass of fluid in a fluid element to its 

volume. It is generally denoted by . The unit of density is 3mkg  .  

Definition 2.1.6   Compressible Fluid 

Compressible fluid is that type of fluid in which the density of the fluid changes 

from point to point. 

Definition 2.1.7   Incompressible Fluid  

          Incompressible fluid is that type of fluid in which the density of the fluid is 

constant. 

Definition 2.1.8   Ideal Fluid 

          An ideal fluid is one that has no viscosity. Since there is no viscosity, there is no 

shear stress between adjacent fluid layers, and that between the fluid layers and the 

boundary. Only normal stresses can exist in an ideal fluid flow.  

Definition 2.1.9   Real Fluid  

A real fluid is one that possesses viscosity, so shear stress comes into play in real 

fluid flow. Thus, a real fluid is characterized by its frictional resistance when it is in 

motion.  

Definition 2.1.10   Newtonian Fluid 

The Newtonian fluid is the fluid in which the shear stress is directly proportional 

to the rate of shear strain or velocity gradient.  

          For example, Glycerin, light-hydrocarbon oils, silicone oils, air, gases, etc.  
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Definition 2.1.11   Non-Newtonian Fluid 

The Non-Newtonian fluid is the fluid in which the shear stress is not directly 

proportional to the rate of shear strain or velocity gradient.  

          For example, slurries, tooth paste, gel, etc.  

Definition 2.1.12   Porous Medium 

A medium is considered porous when it is made up of loosely arranged solid 

particles with void space between them. A good example is the natural soil or sand.  

 

Definition 2.1.13   Porosity 

Porosity is measure of the void spaces in a material, and is defined as fraction of 

the volume of void spaces over the total volume of the material. 

Definition 2.1.14   Permeability  

Permeability is a measure of the ease with which a fluid can flow through the 

porous material. The SI unit for permeability is m2. A practical unit for permeability is 

the Darcy (D). 

Definition 2.1.15   Darcy’s Law  

The governing equation for fluid motion in a vertical porous column was first 

introduced by Darcy in 1856. Accordingly, the law is given by  
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,PV 



  

           where V is the space averaged velocity (Darcian velocity),  is the permeability of the 

porous region,  is the coefficient of viscosity and P  is the pressure in the porous region. 

There is a negative sign as the flow is in the direction of decreasing pressure.  

Definition 2.1.16   Random Variable  

Intuitively, by a random variable (r. v.) we mean a real number X  associated with 

the outcomes of a random experiment. It can take any one of the various possible values 

each with a definite probability.  

           For example, in a throw of a die if X denotes the number obtained then X  is a random 

variable which can take anyone of the values 1, 2, 3, 4, 5 or 6, each with equal probability 

1/6. In other words, random variable is a function which takes real values which are 

determined by the outcomes of the random experiments.  

Definition 2.1.17   Probability Density Function 

In case of a continuous random variable, we do not talk of probability at a 

particular point (which is always zero) but we always talk of probability in an interval. If  

dxxp )(  is the probability that the random variable X  takes the value in a small interval 

of magnitude dx , e.g., ),( dxxx   or 









2
,

2
dxxdxx , then )(xp   is called the 

probability density function of the random variable X.   

2.2    Various Types of Flows  

Definition 2.2.1   Laminar Flow  

The laminar flow is also called the streamline or viscous flow. This type of flow is 

characterized by a smooth flow of one lamina of fluid over another. This type of flow 
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occurs, generally, in smooth pipes when the velocity of flow is low and also in liquids 

having a high viscosity.  

Definition 2.2.2   Turbulent Flow  

In turbulent flows, the fluid elements move in erratic and unpredictable paths. The 

random eddying motion is called turbulence. This type of flow generally prevails in 

rivers, canals, and in atmosphere.  

Definition 2.2.3   Rotational Flow  

                            A  flow is said to be rotational,  if the fluid particles while moving in the direction 

of flow rotate about their mass center. 

Definition 2.2.4   Irrotational Flow  

The flow in which the fluid particles do not rotate about its own axis is called 

irrotational flow. Only in the case of ideal fluid flow, irrotational flow exists, whereas, in 

real fluid flow one may assume fluid flow as irrotational, if the viscosity of the fluid has 

little significance.  

Definition 2.2.5   Steady Flow  

It is defined as that type of flow in which the fluid characteristics like pressure, 

velocity, density etc. at a point do not change with respect to time. Thus, for steady flow, 

mathematically, we have 
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   where ),,( 000 zyx is a fixed point in flow field.  
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Definition 2.2.6   Unsteady Flow 

            It is defined as the flow in which the fluid characteristics like pressure, velocity, 

density etc. at a point changes with respect to time. Thus, mathematically, for unsteady 

flow, 

,0
000 ,,














zyxt
q

   ,0
000 ,,














zyxt
p

    ,0
t

000 z,y,x












  

             where ),,( 000 zyx is a fixed point in flow field.  

Definition 2.2.7   Uniform Flow 

Uniform flow is defined as those types of flow in which the flow parameters like 

pressure, velocity, density etc. at given time do not change with respect to space (length 

of direction of flow). Mathematically, 
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            etc.  

Definition 2.2.8    Non-uniform Flow  

Non-uniform flow in which the flow parameters like pressure, velocity, density 

etc. at a given time change with respect to space (length of direction of flow). 

            Mathematically, 
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Definition 2.2.9    Compressible Flow 

          When the density changes are appreciable, the flow is called compressible.  
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Definition 2.2.10   Incompressible Flow 

Flow is incompressible, if the density changes due to pressure and temperature 

variations are insignificant in the flow field.  

Definition 2.2.11   One, Two and Three-dimensional flows  

One dimensional flow is that type of flow in which the flow parameters such as 

pressure, velocity are the function of time and one space coordinate only. 

Two dimensional flow in which the flow parameters are the function of time and 

two space coordinate. 

Three dimensional flows is that type of flow in which the flow parameters vary in 

all the three directions.  

2.3   Magnetic parameters  

The magnetic property of materials depends on the degree of magnetization. The 

parameters such as magnetization, magnetic susceptibility and magnetic permeability are 

used to characterize the magnetic materials. The important magnetic parameters which 

are used to characterize the magnetic materials are as follows.  

Definition 2.3.1   Magnetic Dipole  

The magnetic dipoles, generally known as north and south poles, commonly exist 

in magnetic materials. The magnetic dipoles are not separate poles unlike an electric 

dipole. It is found that magnetic poles always occur in pairs and cannot be isolated. 

Definition 2.3.2   Magnetic Field 

         The space around a magnet where its magnetic influence is experienced is known 

as the magnetic field.  
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Definition 2.3.3    Magnetic Field Strength 

The magnetic field strength H at any point in a magnetic field is the force 

experienced by a unit north pole placed at that point. The unit of magnetic field strength 

is Am-1.  

Definition 2.3.4    Magnetic Dipole Moment 

The magnetic dipole moment is equal to the product of the magnetic pole strength 

and the length of the magnet.  

Definition 2.3.5   Magnetization ( Intensity of Magnetization) 

Magnetization, or intensity of magnetization M  is the measure of magnetism of 

magnetic materials and is defined as the magnetic moment per unit volume. The unit of 

magnetization is Am-1.  

Definition 2.3.6   Magnetic Susceptibility  

Magnetic susceptibility μ  is used to explain the magnetization of material. It is 

defined as the ratio of magnetization M  to the magnetic field strength H   . 

 Magnetic susceptibility   

H
M

  

   It is dimensionless quantity.  

Definition 2.3.7   Magnetic Permeability  

The magnetic permeability   is defined as the ratio of amount of magnetic 

density B to the applied magnetic field intensity H. It is used to measure the magnetic 

lines of forces penetrating through a material. That is,  

 Magnetic permeability    
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H
B

 . 

Definition 2.3.8   Magnetic Induction or Flux Density  

The magnetic induction or flux density B in any material is defined as the number 

of lines of force through a unit area of cross-section perpendicularly. Therefore, magnetic 

induction   

,
A

B 
  

           where A  is the area of cross-section and  , the magnetic force.  

           The unit of Magnetic Induction is Tesla [Tesla= Wbm-2]. 

Definition 2.3.9   Permeability of Free Space      

         The permeability of free space or vacuum is denoted by 0 .  

         The permeability of free space is: 

rhenry/mete10257.1
Hm104

6

7
0







 -1

 

           The constant 0 appears in Maxwell’s equation                                                                                                                         

,
0

MBH 


  

            where  M  is magnetization density. 

In vacuum,  

M = 0, 

                        Mathematically,  

H
B

0  
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           The permeability of free space 0  is defined as the ratio of magnetic induction B to the 

strength of magnetization  H. 

2.4    Fundamental Equations from Fluid Dynamics 

           2.4.1   Equation of Continuity  

            According to the principle of mass conservation ‘matter can be neither created nor 

destroyed’. This principle can be applied to a flowing flow.  

Consider the flow of the fluid through a control volume shown in the Figure 2.1 

having length dx, dy and dz in x, y and z –directions, respectively. A point P in a flowing 

fluid at which fluid velocity is given by  

( , , , )x y z t u v w  q i j k  

            and density of fluid  is  , where i, j, k are unit vectors along the coordinate directions of 

Cartesian axes and  t  is time. 
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Construct a rectangular parallelepiped PQ R S P Q R S    , with edges parallel to 

the coordinate axes and of lengths dx, dy and dz, respectively.  

Mass of the fluid entering through the face PQRS is given by  

density   velocity in x-direction   area of PQRS  = dz.dyu   

Then the mass of the fluid leaving the face P Q R S     is given by  

dxdz)dyu
x

dzdyu 



 (  

Therefore, rate at which fluid accumulates due to flow in x -direction through the faces 

PQRS and P Q R S     is given by 

mass through the face PQRS – mass through the face P Q R S     

             = dxdzdy
x

-dzdydzdy )u(uu 



  

                                               = dxdzdy
x

)u(



  

                                               = dz.dydx
x

)u(



  

Similarly, the net inflow in y -direction is given by  

dz,dydx v
y

)(



  

            and mass gain in z -direction is given by  

dz,dydx w
z

)(



  

Thus, the net gain in the fluid flowing into the parallelepiped through the six faces is 
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Also, rate of increase of the mass within the control volume per unit time is 

dz.dydx
tt 
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 (2.2) 

           According to principle of conservation of mass, equating equation (2.1) and 

equation (2.2), we get 
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            Dividing by dx dy dz , we get the equation of continuity in the Cartesian 

coordinates at the point P as
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            Equation (2.3) is the most general form of Equation of Continuity in Cartesian 

Coordinates which is applicable for steady as well as unsteady flow, uniform as well as 

non-uniform flow, and compressible as well as incompressible fluids. 

 For the steady fluid flow  

 

 

 

Hence the equation (2.3) of continuity becomes 
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 If the fluid is incompressible, so that the mass density , does not changes with x, y,   

  z and t . Therefore, the equation (2.3) of continuity becomes 

0.u v w
x y z
  

  
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 (2.5) 

 Vector form of Continuity Equation  

            The vector form of equation (2.3) can be written as   

0.)( 
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 (2.6) 

 

 Cylindrical form of Continuity Equation  

 The equation of continuity for an incompressible steady flow (2.5) presented in 

cylindrical form as 
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(2.7) 

Where r, , z  are cylindrical polar coordinates.  
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           2.4.2   Navier-Stokes Equation (Momentum Equation) 

It is based on the principle of conservation of momentum. Considering an 

infinitely small mass of the fluid enclosed in an elementary parallelepiped shown in the 

Figure 2.2 of the sides dx, dy and dz.  

 

                          Figure 2.2 

 The motion of the fluid element is influenced by the following forces:  

(i) Normal forces due to pressure :  

                    The net pressure force in the x -direction is given by  
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ppdydz p dx dydz
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(ii) Body or gravity force  

          Let xg , yg and zg  are components of gravitational force or body force g  in the x, y 

and z-directions, respectively. Then body force per unit mass of the fluid in the x -

direction is     

  .x xm g g dxdydz   
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(iii) Inertia forces : 

         Inertia force on the fluid mass along x -direction is given by      

mass×acceleration  

                                                   
ρ  .

dudxdydz
dt

  

(iv) Shear forces : 

           The components of shear force per unit mass by the viscous forces be xS , yS and zS   

in the x, y and z -directions, respectively. 

          Thus, shear force acting on the parallelepiped along x -direction is given by      

.xS dxdydz  

As per Newton’s second law of the motion, the sum of all forces acting in the 

fluid element in any direction equals the resulting inertia forces in that direction, 

therefore along x -direction  

ρ  + ρ ρ  x x
p dudxdydz g dxdydz S dxdydz dxdydz
x dt


  


  

1   .
ρ

x x
p dug S
x dt
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  
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 (2.8) 

Similarly,                  
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y y
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 (2.9) 

and  
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  1  .
ρ
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Now, we find the values of  ,  x yS S and  zS : 

The shear force acting on the face ADHE  is given by   
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x
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The shear force acting on the face BCGF  is given by  
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The resultant force acting along the x -direction is given by  
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 (2.11) 

Similarly, the x-component of resultant shear force acting on the faces DCGH and ABFE 

  is equal to 

2
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(2.12) 
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and, the x-component of resultant shear force acting on the faces EFGH and ABCD  is 

given by 
  

2

2η  
u dx dydz

z



 

  (2.13) 

            Total force, parallel to x-axis, on all the six faces of the parallelepiped is given by 

the sum of forces defined in equations (2.11), (2.12) and (2.13) and is given by  
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           The shear (resistance) per unit mass is obtained by dividing above quantity by  dxdydz,  

we get 
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            Putting these values of   ,xS yS and  zS  in equations (2.8), (2.9) and (2.10), we get  
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 (2.14) 
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           These equations (2.14), (2.15) and (2.16) are called Navier-Stokes Equations for viscous 

flow. 

 Vector form of the Navier-Stokes Equations: 

2ρ ρ η
D p ,
Dt
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q g q  

 (2.17) 

where 
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2.4.3   No Slip Condition of Viscous Fluids 

When a viscous fluid flows over a solid surface, the fluid elements adjacent to the 

surface attain the velocity of the surface. In other words, the relative velocity between the 

solid surface and adjacent fluid particles is zero. This phenomenon is known as the no-

slip conditions.  

The physical reason for the non-slip condition is that the fluid molecules hitting 

the solid wall collide so frequently with the solid wall molecules that they have no 
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average motion that is different from the wall molecules. The non-slip boundary 

condition applies to the three components of the fluid velocity q everywhere along the 

surface of a solid boundary

2.5   Types of Lubrication 

 The following are the classification of different types of lubrication. 

1.  Hydrodynamic (or Fluid Film) Lubrication 

If two mating surfaces during operating conditions are completely separated by 

lubricant film, such a type of lubrication is called fluid film lubrication. Bearings 

operating under this kind of lubrication are fluid film bearings. As metal to metal contact 

is completely avoided by this system of lubrication, it is sometimes known as perfect 

lubrication. 

2.  Boundary Lubrication 

              When the lubricating oil film becomes so thin that it cannot prevent the bearing 

surfaces asperities from striking each other and establishing occasional contact, it is 

called boundary lubrication. It takes place in a bearing when either the speed of the 

moving surfaces is too low, the load acting on the bearing is too high, or there is an 

insufficient supply of oil. In other words, it exists when the operating conditions make it 

impossible for a hydrodynamic oil film to be developed in the bearing. 

3.  Elasto-Hydrodynamic Lubrication 

    The process of hydrodynamic lubrication may be modified under conditions of 

extremely high contact pressures, e.g. between cams and followers, gear teeth and 

rolling bearings. Under such operating conditions the viscosity of the lubricant increases 

considerably and an elasto-hydrodynamic oil film may be generated between the 
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interacting surfaces, as a result of their deforming elastically against the built up of oil 

pressure.     

4.  Hydrostatic Lubrication 

                     A condition of hydrostatic lubrication, termed a squeeze oil film, can exist in a 

bearing if the load reverses in direction and the speed of the moving surface is very low. 

Under these circumstances, the load-carrying surfaces of the bearing are initially 

separated by a relatively thick film of oil, which momentarily resists being 

instantaneously squeezed out from between the approaching surfaces, due to the viscous 

nature of the lubricant. Thus an oil film can be maintained between the bearing surfaces 

during the short interval of time till the load reverses its direction. The oil film may then 

be restored again to sufficient thickness, by forced oil feed system, before the next load 

reversal occurs. Thus, in bearings subjected to high reciprocating loads, the process of 

hydrostatic lubrication provides the cushioning effect, which is very necessary in efficient 

engine operation.  

5. Solid Film Lubrication 

This type of lubrication is used in a situation where a fluid lubrication is not 

desirable because there are certain industries like food and pharma where the risk of 

contamination of product by fluid lubrication is catastrophic. In such situation, solid or 

powder form of lubrication such as graphite, Teflon etc. are being used as lubricant.  

2.5.1    Assumptions in Hydrodynamic Lubricated Bearings 

The following are the basic assumptions used in the theory of hydrodynamic 

lubricated  bearings in our present research work.  

1. The lubricant obeys Newton’s law of viscous flow. 
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2. The lubricant is assumed to be incompressible.  

3. The fluid flow is laminar and viscous.  

4. The gravity and inertia forces acting on the fluid are negligible    

compared with the viscous and pressure force.  

5. The film thickness is very small compared with the bearing geometry.  

6. The viscosity of the lubricant is assumed to be constant  

             throughout the film.  

7. The bearing surfaces are assumed to be perfectly rigid so that 

elastic deformations of the bearing surfaces may be disregarded.   

8. Porous matrix of the bearing surface is assumed to be homogeneous. 

9. Flow in the porous region follows Darcy’s law. 

10. Temperature changes in the lubricant are neglected.      

11.  There is no slip in the fluid-solid boundaries. 

2.6   The Generalized Reynolds Equation 

The generalized Reynolds equation, a differential equation in pressure, which is 

used frequently in the hydrodynamic theory of lubrication can be deduced from the 

Navier-Stokes equations along with the continuity equation under certain assumptions. 

The parameters involved in the Reynolds equation are viscosity, density and film 

thickness of lubricant. It was first derived by Osborne Reynolds in 1886. 

The generalized Reynolds equation is [11] 

t
hhww

z
huu

xz
ph

zx
ph

x
baba












 












 













































 )(
2

)(
2

)(
1212

33

 

                                                                                                                          (2.18) 



46 
 

The velocity components aa vu , and aw  refer to the velocities of upper surface in 

x, y and z directions, and bb vu , and bw  refer to the velocities of the lower surface in x, y 

and z directions and p is the pressure in the fluid film. 

            The two terms in the left hand side of equation (2.18) describe the net flow rates 

due to pressure gradients, the first two terms of the right hand side of equation (2.18) 

describe the flow rate due to surface velocities. These are known as Poiseuille and 

Couette terms, respectively. 

In practice all the velocity components are not present. In most of the cases we 

will be concerned with the following boundary velocities. 
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Using equation (2.19) in equation (2.18), one obtains for constant velocities 
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where       

2
ba uuU 

  

For steady–state conditions, the generalized Reynolds Equation (2.20) becomes  
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If the fluid property  does not vary, as in the case of incompressible lubricant, 

equation (2.21) can be written as  
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If one assumes the bearing to be infinitely long in the z-direction, there will be no 

variation of pressure in the z-direction or .0




z
p  Equation (2.21) then becomes  
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Equation (2.23) when integrated with respect to x yields 
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where subscript m refers to the condition at point where 0
dx
dp

. 

The Reynolds equation is solved with appropriate boundary conditions to get the 

expression for lubricant film pressure. From this film pressure, the load-carrying capacity 

of the bearing may be derived by integrating it over the entire surface. 

 2.7    Discussion on Different Types of Bearings 

A  Bearing is a system of machine elements whose function is to support an 

applied load by reducing friction between the relatively moving surfaces. 

The bearings may be classified in many ways as follows. 
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           Depending upon the direction of load to be supported, the bearings under this 

group are classified as   

(a) Radial bearings  

(b) Thrust bearings  

(c) Conical bearings 

            In radial bearings, the load acts perpendicular to the direction of motion of the 

moving element. In thrust bearings, the load acts along the axis of rotation whereas 

conical bearings support both radial and axial load. 

Depending upon the nature of contact, the bearings under this group are classified as 

            (a) Sliding contact bearings 

                              (b) Rolling contact bearings 

In sliding contact bearings, the sliding takes place along the surfaces of contact 

between the moving element and the fixed element. The sliding contact bearings are also 

known as plain bearings. In rolling contact bearings, the steel balls or rollers, are 

interposed between the moving and fixed elements. The balls offer rolling friction at two 

points for each ball or roller. Rolling element bearings have much wider use in industries 

since rolling friction is lower than the sliding friction.  

2.8   Concept of Ferrofluid 

             A ferrofluid is composed of three components: magnetic nano particles, dispersion 

medium (also called carrier liquid) and a dispersant or surface active agent. A typical 

ferrofluid is comprised, by volume, of about 5% solid component, 85% liquid and 10% 

surface active agent. Ferrofluids are recognized as nano materials. Ferrofluids are man-

made materials in which magnetism is found in a liquid state with a high magnetic 
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susceptibility. When there is no magnet nearby, the magnetite particles in ferrofluid act 

like normal metal particles in suspension. But in the presence of a magnet,the particles 

are temporarily magnetized. Ferrofluid responds to an applied magnetic field as one 

homogeneous system. This enables the fluids location to be controlled through the 

application of a magnetic field. The particles are so small in ferrofluids that they will not 

settle over time, but remain in place as long as a magnetic field is present. Treatment of 

particles with surfactants prevents them from clumping up, causing the material to remain 

stable and act predictably. They act more like a solid. When the magnetic field is 

removed, the particles are demagnetized and ferrofluid acts like a liquid again. Thus, in 

summary, Ferrofluids [17] are stable colloidal suspensions containing fine ferromagnetic 

particles (~0.05-15 nm) dispersing in a liquid, called carrier liquid, in which a surfactant 

is added to generate a coating layer preventing the flocculation of the particles. When an 

external magnetic field H  is applied, a ferrofluid experiences magnetic body force 

HM )(  which depends upon the magnetization vector M  of ferromagnetic particles.  

2.8.1   Equation of Motion for a Magnetic Fluid 

  In classical fluid dynamics there are only three forces viz.  

(a) the pressure gradient  

(b) gravity force  

(c) the viscous force  

           which have been taken into account and accordingly the equation of motion is stated as 

the sum of the gradients of all those forces remains equal to rate of change of velocity 

multiplied by the density. If comparison is made between Momentum equation of 

classical fluid dynamics and ferrohydrodynamics the obvious difference between the two 
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is the use of fourth force i.e. magnetic body force which has been used in 

ferrohydrodynamics. The momentum equation of ferrohydrodynamics takes the form  

HMqqqq )(p)(
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Magnetic Body Force 

                       In the presence of an external magnetic field, the ferromagnetic colloidal particles 

suspended in the carrier liquid of a ferrofluid become magnetized and produce attractive 

forces on each particle that produce a body force on the liquid. The magnetic (Kelvin) 

force F on ferrofluid per unit volume is given by 0μ ( ) F M H , where 0  is magnetic 

permeability of free space, M is magnetization, H is magnetic field strength of the 

external magnetic field.  

2.8.2   Ferrofluids Lubrication Equations Based on Neuringer-  Rosensweig  

            Model 

 
The system of equations proposed by Neuringer and Rosensweig for governing 

the FFs are as follows. 
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                                                                                                         (2.27) 
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 (2.28) 

,0 M)(H   

(2.29) 

where  ,,,,,,p, 0 HMq ,t are density of fluid, film pressure, fluid viscosity, fluid 

velocity, free space of permeability, the magnetization vector, magnetic field vector and 

magnetic susceptibility, time, respectively.  

Using equation (2.27) 
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Using the vector identity 
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            and assuming the fluid is electrically non-conducting and that the displacement current is 

negligible so that 0 H ,we obtain  
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2.9   Surface Roughness 

No solid surface is perfectly smooth on atomic scale. In other words, all solid 

surfaces are rough to some extent. Roughness can be defined as a measure of random 

distribution of surface height about a carrier profile in the surfaces. 
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Previously rough surfaces were assumed to be represented by a single sine 

(cosine) wave or a series of sine (cosine) waves, which influences on the film thickness in 

the usual study of bearing characteristics. It has been pointed out that the load capacity, 

frictional forces etc. can differ from their values for a smooth surface and this difference 

depends mainly on the amplitudes and the wave lengths of the waves representing the 

roughness surface. This procedure is known as the deterministic approach.  

      In another method, called the stochastic approach, the surface roughness is 

assumed to be represented by a stochastic process and the usual procedure is followed by 

taking the statistical mean or the average of the basic governing equation. In fact, it has 

been demonstrated that the density distribution of roughness peaks in normal machined 

surfaces follows a nearly Gaussian distribution and the gap between two rough surfaces 

can be represented by a stochastic process [21]. 

           The hydrodynamic lubrication of rough surfaces has been studied by many 

workers using both deterministic and stochastic approach [22-29]. A consistent 

hydrodynamic theory of lubrication of rough surfaces has been presented by Christensen 

and Tonder [30-31] and Christensen [26] by considering the film thickness as a stochastic 

process. With the aid of stochastic theory, a Reynolds-type equation in the mean pressure 

was developed. The above mentioned investigations are valid when the mean height of 

the surface asperities is much smaller than the minimum film thickness. 

 Distribution of Roughness Heights 

             With film thickness being regarded as a random quantity because of roughness 

effect, a height distribution function must be associated. Therefore, a polynomial form, 
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approximating the Gaussian is chosen. Such a probability density function of the 

stochastic film thickness, sh , is taken as [26,32]   
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where 3c , and   is the standard deviation. 

In the context of stochastic theory [26, 32], the analysis is usually done for two 

types of one-dimensional roughness patterns (viz. radial and circumferential) as follows. 

Radial Roughness Pattern 

              In this model, the roughness is assumed to have the form of long, narrow ridges 

and valleys running in r-direction (that  is, they are straight  ridges and  valleys passing  

through z = 0, r = 0 to form a star pattern). The film thickness in this case assumes the 

form                        

),(  sn hhh . 

 

Circumferential Roughness Pattern 

             In this model, the roughness is assumed to have the form of long, narrow ridges 

and valleys running in -direction. The film thickness in this case assumes the form 

),( rhhh sn  . 
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