CONTENTS

List of symbols			6
Abstract			
1.	Prelin	minaries	10
	1.1	Outline of the thesis	10
	1.2	Preliminaries	1
		1.2.1 Graph theory	11
		1.2.2 Computer vision	15
2.	Intro	duction to labeling problems of computer vision	21
	2.1	Labeling problems	21
	2.2	Constraints of labeling problems	22
	2.3	Objective function in standard form	23
	2.4	Structural differences	25
		2.4.1 Universally smooth structure	25
		2.4.2 Segment wise constant structure	26
		2.4.3 Segment wise smooth structure	27
	2.5	Prevalent optimization approaches	29
		2.5.1 Global optimization techniques	29
		2.5.2 Local optimization techniques	30
	2.6	Statistical justification of the approach	31
		2.6.1 Markov random field	31
		2.6.2 MAP estimation	32

3.	Optin	nization using graph cuts	34
	3.1	Graph cut model for universally smooth structure	34
	3.2	Graph cut models for segment wise smooth structure	38
		3.2.1 Graph cut model for interchange moves	42
		3.2.2 Graph cut model for growth moves	50
	3.3	Segment wise constant structure	68
		3.3.1 Graph cut model with multiple terminal vertices	69
		3.3.2 Graph cut model with shift move space	72
4.	Textu	al image binarization using graph cuts	90
	4.1	Introduction	90
	4.2	Definition of the problem to be addressed	91
	4.3	Theoretical justification of the model	92
	4.4	Implementation and results	95
5.		acterization of objective functions optimizable gh network flow terminology	111
	5.1	Introduction	111
	5.2	Importance of variables of range of size two	111
	5.3	Graphs representing objective functions	112
		5.3.1 Class of functions involving cliques of size at most two	114
		5.3.2 Class of functions involving cliques of size at most three	118

5.3.3 Summary of network construction for objective functions	137
5.3.4 Example of optimization of R – function of class O^3 using the terminology	139
Conclusion	
List of publications	
References	144