LIST OF SYMBOLS

- c(u, v) Capacity of edge (u, v)
- Value of flow f from vertex u to vertex v or in other words, flow through edge (u,v)
- s Source of the network flow
- t Sink of the network flow
- $\{S,T\}$ Partition of the set V of vertices of network flow in to two disjoint sets S and T, where S contains source and T contains sink and $S \cup T = V$
- |f| Value of the flow f, which is defined as $|f| = \sum_{v \in V} f(s, v)$, i.e. sum of flows of all edges connected with the source
- |e| Cost associated with the edge e.
- G_f The residual network of G=(V,E) induced by the flow f, i.e, $G_f=(V,E_f)$
- V 1. The set of all vertices in a graph G.
 - 2. The set of all pixels of given image
- E The set of all edges of graph G
- Ω The set of all possible labels $\{\sigma_1, \sigma_2,, \sigma_p\}$ of image pixels
- X A labeling of the image is a function $X: V \to \Omega$
- x_v , X(v) The label assigned to pixel v by the labeling $X:V \to \Omega$
- Value assigned to a labeling X by objective function O, where objective function O is defined as $O(X) = \sum_{v \in V} \varphi_v(x_v) + \sum_{\{v,w\} \in N} \psi_{v,w}(x_v, x_w)$
- $O_{data}(X)$ Data component of objective function O, typically defined as $O_{data}(X) = \sum_{v \in V} \varphi_v(x_v)$
- φ_v Function from $X(v) = \{x_v \mid x_v \in \Omega\}$ to the set of real numbers which measures how unsuitable is label x_v for pixel v with reference to data constraint
- $\psi_{v,w}$ Neighbor relation function $\psi_{v,w}(x_v, x_w)$ allot penalty to assignment of pair of pixels x_v and x_w to the pair of neighboring pixels v and w. It fosters the neighboring pixels v and w to have same or similar labels. $\psi_{v,w}(x_v, x_w)$ can be defined in numerous

different ways. One way to define it is $|x_v - x_w|$

 N_{v} The set of all neighbors of pixel v

N The set of all neighboring vertices/pixels of the graph/image.

P(X/X') Conditional probability of X given X'

 $e_v^{\sigma_1}$ Terminal edge connecting vertex v to σ_1

 $e_{v_1v_2}^n$ Non-terminal edge connecting pair of vertices v_1 and v_2

 X_C Labeling corresponding to cut C

arg max $X \in F$ Value of $X \in F$, for which the value of the function under consideration is maximized.

 $\{\}$ Empty set (also denoted by ϕ)

 $I(x_v, x_w)$ A component function of $\psi_{v,w}(x_v, x_w)$ (in case of segment-wise constant structure)

which is defined as $I(x_v, x_w) = \begin{cases} 0, & \text{if } |x_v - x_w| = 0 \\ 1, & \text{otherwise} \end{cases}$, where

 $\psi_{v,w}(x_v, x_w) = c_{vw} I(x_v, x_w)$

 p_{uv} penalty imposed by the objective function O to X for assigning different binary values X_u and X_v to the neighboring pixels u and v. It is defined by

 $p_{uv} = |X_u - X_v|$

 g_{v} Grey value of pixel $v \in V$

t' Binary label representing text

b Binary label representing background.

 O^2 The class of all objective functions that can be represented as sum of terms involving clique of size at most two. Objective function members O of this class are expressed

as
$$O(y_1, y_2,, y_n) = \sum_{i=1}^{n} O_i(y_i) + \sum_{1 \le i \le j \le n} O_{ij}(y_i, y_j)$$

 O^3 The class of all objective functions that can be represented as sum of terms involving clique of size at most three. Objective function members O of this class are expressed as

$$O(y_1, y_2,, y_n) = \sum_{i=1}^{n} O_i(y_i) + \sum_{1 \le i \le j \le n} O_{ij}(y_i, y_j) + \sum_{1 \le i \le j \le k \le n} O_{ijk}(y_i, y_j, y_k)$$

- O_i Component objective function assigning value $O_i(y_i)$ to y_i ,
- \hat{O} The set of all objective functions of variables $y_1, ..., y_n$ of range of size two
- Real-valued function defined on \widehat{O} , defined as $\theta(O) = \sum_{\substack{y_1' \in \{\alpha, \beta\} \\ 1 \le i \le n}} \gamma(y_1', y_2',, y_n') O(y_1', y_2',, y_n'), \forall O \in \widehat{O}$
- Real valued function defined on the set of all possible configurations of n variables and is defined as

$$\gamma(y_1', y_2', \dots, y_n') = \begin{cases} -1, & \text{if } (n_2, 2) = 1 \\ 1, & \text{otherwise} \end{cases}$$
 for configuration y_1', y_2', \dots, y_n' with
$$\sum_{i=1}^n y_i' = n_1 \alpha + n_2 \beta \left(n_1, n_2 \in \mathbb{Z}^+ \right)$$

(n,m) Greatest common divisor of n and m. If (n,m) = 1, then n and m are called relatively prime.

$$\begin{aligned} proj[O(y_1 = y_1',....,y_k = y_k')] \text{ Projection of O on } y_1 = y_1',y_2 = y_2'....,y_k = y_k', \text{ defined} \\ \text{as, } proj[O(y_1 = y_1',y_2 = y_2'....,y_k = y_k')] &= O\Big(y_1',....,y_k',y_{n-k+1},...y_n\Big), \\ \text{where } y_1',....,y_k' &\in \{\alpha,\beta\} \text{ are some fixed values.} \end{aligned}$$