CHAPTER 3

OPTIMIZATION USING GRAPH CUTS

In this chapter, we are going to go through few important mathematical models involving graph cuts
applied to computer vision problems. As discussed in chapter 1, the structural constraint plays a
pivotal role in the form of objective function. This chapter outlines few of the important structures and
corresponding objective functions dealt with graph cuts. The structures involve uniformly smooth
structure, segment wise constant structure and segment wise smooth structures. The work presented in
this chapter is inspired by / based on the content of [83], [84] and [86].

3.1 GRAPH CUT MODEL FOR UNIFORMLY SMOOTH STRUCTURE

In this model, the structure constraint is encoded by the sub — function ¥, (x,,x,)as linear
relationship of neighbouring pixels with corresponding weights. It is defined by
WX, x,) =c(v,w) |xv —xw| . Where ¢(v,w) is the constant corresponding to pair of pixels v and w.

With the expression of structural constraint defined as above, the objective function to be minimized
takes the form,

0X)=> o,(x)+ D, cv.wx,—x,| 3.1

velV’ {v.wjeN

The graph cuts can efficiently minimize the objective function (3.1) globally.

3.1.1 CONSTRUCTION OF NETWORK

The graph cuts technique separates a collection of pixels into two subgroups and hence determines
one of the most cost efficient binarization on the given group of pixels in the light of objective

function. Let {vl,vz,....,vn} be set of pixels and {61 N o Y Gp} be set of all possible labels. For the

problem under consideration, we construct a graph G with vertex set V' containing (np — n + 2)
vertices and edge set E. To be more specific,

V = {Vll, V12 seeey Vl(p_l), V21 N V22 seney VZ(p_l) 5 eeeey an N Vn2 geeey Vn(p_l) , S, t} Wlth two teI‘IlllIlal Vel’thCS S
and ¢ called source and sink. Corresponding to each pixelv; (1 <i <n), there are (p — 1) vertices v;,

Vio, e Vit p-1) in the graph. The edge set
E= {e; (1<ig<nl1<j< p),e;k(l <i<nl<j<nl<k< p—l)} consists of two types of edges:
efj called terminal edges and e;k called non-terminal edges. efj (2<j < p—1)is an edge connecting
Vi(j-1yand v; whereas e{,’-k is an edge connecting vy andv; . e}, is an edge connecting s and v,

has a weight c(v;,v;)

is an edge connecting V; sV

i(p-1) and ¢. Every non-terminal edge e;

t
whereas e;, i

and terminal edge eilj carries a weight 4; +(0i(0'j), where 4, is a constant with

34|Page

A4 >(p-1) Z c(v;,v;) | . Figure 3.1 shows a sub-network of G representing the structure of the
v jENv,-

network for two neighbouring pixels v;and v;.

TERMINOLOGY

A cut (considered as collection of edges) on the network (G, V,E) is said to be an F-cut provided it

contains exactly one terminal edge for every pixel v;.

Figure 3.1 Sub-network of G for neighboring pixels v; and v; of pixel the pixel set of image

Every F- cut C on the network G naturally leads to a labeling X' defined as follows:

X'(v)=0y,if e} €eC (3.2)

LEMMA 3.1.1

There is a one to one correspondence between set of all F — cuts on G and set of all possible labeling
onV.

Proof: From (3.2), one part of the result is evident as an arbitrary F — cut C of G naturally defines a
labeling on V. It remains to prove that, given an arbitrary labeling on V, there exists an F —cut on G
corresponding to it. Let’s assume that, we are given a labeling X : /7 — €. This naturally defines a
cut defined as follows:

e, € Cif X(v)) =0,

It is clear from the definition of C that, if X(v;)=0y, ej € C . As X is a labelling and it does not

assign more than one label to any pixel, there does not exist any pixel, corresponding to which more
than one terminal edge is severed in the cut C. This proves that, C is an F — cut. This proves the result.

35|Page

THEOREM 3.1.2

If C is a minimum cut on G, it is an F — cut.

Proof: Let C be a minimum cut on G. To prove that, it is an F — cut, we need to prove that, for every
pixel, C contains exactly one terminal edge. If possible, let us assume that, there is a pixel v;,

corresponding to which there are two terminal edges efr and efq (1<r,q < p)in the cut C. Let us

consideracut C'=qCuU U ei”kq \{el{q}.As (p-1) z c(v;,v;) | < 4;, itis clear that,
vieN(v;) VjENvl-

I<g<p

Costof C'=Costof C+| Y’ Cikg
vieN(v;)

I<g<p

= CostofC+(p—1) Z c(vi,vj) _(Aj+(pi(o-j))

v.eN
VARV
i

< Costof C — ¢;(0;) A >(p-1) z c(v;,v;)

v,EN,,

It immediately follows that the difference of cost of cuts C and C'is ¢,;(o j) , hence is positive. This

deduces that, the cost of C'is less than the cost of C, which contradicts with the hypothesis that C is
a minimum cut. This also proves that, for every pixel, C must cut at most one terminal edge. From the
construction of the graph G, it is clear that, C must contain at least one terminal edge in order to

separate terminals s and ¢. (If it does not contain any terminal edge corresponding to v;, there exists a

path s-s—ei; —el, —....—el-t(p-1y —t connecting s and 7, which prevents C from being a cut) This

proves that, if C is a minimum cut, it must contain exactly one terminal edge corresponding to every
pixel. This proves that, C is an F-cut.

DEFINITION

Every minimum cut C corresponds to a labeling X~ of G defined by, X (v;) = g,if eitq eC.

THEOREM 3.1.3

If Cis a minimum cut on G, the sum of weights of all non-terminal edges of G contained in C is

> Xt - X))

(0)eN

36|Page

Proof: We first prove that, if G | C'leaves v, andv; connected to the same terminal, no non-terminal
edge joining v; andv; will be part of C.

Let us assume that, C contains e’

g and e;q ie. Xe(v)=qand X(v;)=q. We want to prove

n

that, e;k ¢ C for 1 <k < p. If possible, assume that, e € C for some [with 1 </ < p. It can be easily

checked that, C \ {e;,} is also a cut. But, it is contradiction as no proper subset of a cut can be a cut.

Thus, ej; ¢ C for 1 <k<p.

Claim 1 : For v;and v; (i< j)with Xo(v;)=r and X (v;)=¢(r<gq), all non-terminal edges

e eC forl<r<i<g<p.

If possible, assume that, eg-, ¢ C for some fixed [withr <[< g . If we can show that, there exists a

path from s to ¢ via eg,, we are through. For that, consider the path s-—

t) t n t ! ! t n ! ! : :
eil - eiz T oeeee _e[(r_l) —eij(,,_l) —e”(r_l) _ej,,. _ej(r_H) —...—eﬂ _el]l _ell —6[(“_1) _..._t ’ Whlch 1S

in G\ C (Refer to Figure 3.2). This is a contradiction with the fact that, C is a cut. This proves that,

el-';-, ¢ C . As [was arbitrary no. with </ < g, it proves the claim.

Thus, a minimum cut C contains ‘X cv)=Xc(v j)‘ non-terminal edges for every pair of
neighbouring pixels v; andv;. The weight of each of the non-terminal edges ef,’-l contributing in the
total has individual weight of ¢(v;,v;). Note that, the number ‘X cv)=Xc(v j)‘ is zero if the pair

of pixels are connected to the same terminal, as in that case, =X (v;,) =X (v;)=¢g . Thus, the

sum of weights of all the non-terminal edges severed in the minimum cut C is

Y vy Xetn) - Xem)

(v)eN

, which proves the theorem.

iy
€ €i(1-1)

; Yo 1 % Vi1 vy Yiga1) Vi1 E
ey see 1Y el'p
M i
%) & @

Y10 Vi [Yo i Vi

i
e.f" e.f’ (r+1) J!

Figure 3.2 Path connecting s and t via e;'l inG\C

37| Page

THEOREM 3.1.4

If C is a minimum cut on G, the labeling X - corresponding to C minimizes the objective function

O(X) under consideration.

Proof: Let C be a minimum cut on G. To prove the result, we need to show that, the cost of the cut is
O(X) plus a constant, where the constant does not depend on the particular cut. From Lemma

3.1.1, Cis an F — cut. Hence, corresponding to every pixel of V, C contains unique terminal edge.
Thus, the cost of the cut C due to all terminal edges is given by

> (Al. +(ol.(0'j))= D A+ ¢;(c) (3.3)

vl.eV vl.eV vl.eV

For all the non terminal edges contained in C, by Theorem 3.1.3, the contribution in the cost of C
is Z C(Vi,vj)‘XC(Vi) -Xc (vj)‘ . Thus, the total cost of C is

(v,,v,)eN
2 4+ > f"i(Uj)* > c(vi’vj)‘XC(Vi)_XC(Vj)‘ (3.4)
vl.eV vl.eV (v;,v;)eN

Where, the first term is a constant.
This proves the theorem.

Thus, the objective function defined in (3.1) is efficiently optimized by the model of graph cuts. The
structural term best represents the uniformly smooth structure. The model turns out to be unsuitable
for other kinds of structures as it does not favor labeling with neighboring pixels with drastically
different labels even if it is appropriate. The other major limitation is due to specific type of label sets
allowed in the model. The label set must contain integer values. Thus, the model can’t be applied to
motion problem. However, the model works significantly well and determines the global minimum in
case of uniformly smooth structure.

3.2 GRAPH CUT MODELS FOR SEGMENT WISE SMOOTH STRUCTURE

For this model, the function v, ,(x,,x,,) must be a semi metric. That is, it needs to obey following

properties:

1. l//v7w(0', o)=0
2.y, ,(0,0,) =V, ,(0,,01) (3.5)
3.t//v,w(0'1,0'2) >0

If the function y/, , (x,,x,,) satisfies two properties mentioned in (3.6) in addition to those mentioned

in (3.5), it is called metric.

4.y, (0,0,)>0,if oy # 0, } 56

5' l//v,w(o-l s 0-3) < !//v,w(o-l > 0-2) + l//v,w(az s 03)

38| Page

Hence, the model we are about to describe tries to minimize the objective function

OX)=2 p,(x)+ 2 cwlx,—x,|
vel’ {v.wjeN
where ¥, (x,,x,,) is either a semi metric or a metric. Optimizing both kinds of objective functions

are NP complete problems. Numerous kinds of structures can be dealt with , , (x,,x,,) in case it is

semi metric, but in this section, we restrict ourselves to segment wise smooth structure. For segment
wise smooth structure, ¥, ,,(x,,x,) must assign larger penalties to labels x, and x, with larger

value of |xv —xw| . However, the value of ¥, ,,(x,,x,,) should not grow unboundedly. One needs to
formulate the mathematical expression of ¥, ,,(x,,x,,) so that it takes care of this constraint and in

addition, also satisfies (3.5). One way to define ¥, ,,(x,,x,,) taking care of these points is to express

it linearly as,

c(v, w)|xv - X, if|xv —xw| <a

l//v,w(xvﬂxw) ={ (37)

c(v,w)a, if |x, —x,|>a
This function penalizes the assignment of labels x,, and x,, to pair of neighbouring pixels v and w

with some constant (c(v,w), which is dependent on the pair of pixels v and w) times the absolute

difference between the labels if the difference is within the permissible bound (i.e. a) but does not
allow it to grow infinitely making such assignment impossible for the model.

The graph of v, ,,(x,,x,,) defined as a linear function is shown in figure 3.3.

A

WA (Xy, Xy)

r Y
v

Vv

Figure 3.3 Graph of x,, — x,,versus ¥, (X, x,,) for linearly defined v , (x,,x,,

39| Page

There is an alternate way we can defined it. In (3.7) w,, ,(x,,x,,) was a linear function of |xv —xw| .
It is possible to encode more complex type of neighbourhood interrelation by defining

¥, (x,,x,) as a quadratic function of |xv —xw| as defined in (3.8).

2,if|xv—xw|<a

c(v, w)|xv -X,
l//v,w(xvﬁxw) = (38)

c(v,w)a?, if |xv —xw| >a
The graph of ,, ,,(x,,x,,) defined as a quadratic function is shown in figure 3.4.

From the graph it is clear that, this definition of w, ,,(x,,x,,) provide a good scope for assignment of

any pair of labels to neighbouring pixels, whenever such assignment is essential, by not assigning it
infinite cost or penalty. However, it also takes care that such assignments should only be made when
it is essential by discriminating such assignments through assigning them relatively higher value
compared to those which has less absolute difference in labels. The upper bound of the penalty can be
appropriately varied by varying the value of a.

P ——)
W (Xy JC“.-)

&

X=Xy

Figure 3.4 Graph of x,, —x,,versus v, (x,,x,) for v, (X,,X,) defined in quadratic expression

It is easy to observe that, the objective function with , | (x,,x,,) which is a semi-metric can encrypt
vast range of structures which can’t be addressed efficiently by the objective function with

Wy (x,,x,,) expressed as metric. Note that, the quadratic expression (3.8) of (//v,w(xv, x,,)is a semi
— metric but is not a metric as it does not satisfy (3.6). To justify the statement, we can consider

defined for the following vertex set and label set.
Vertex set V= {u, v, w, x, y z}

label set Q2={1,2, 3,4, 5}

40| Page

c(i,j)=2 Vi,jeV and a = 20, Then,

v, (1,4) =20[1- 4] =20(9) =180
W, . (4,5) =204 -5 =20(1) = 20
V,(1,5) = 20[1=5[" =20(16) =320

Clearly, 320 =y, ,(1,5)>200=180+20 =y, , (L,4)+w, (4,5

which is violation of second property of (3.6). Thus, y defined in (3.8) is a semi- metric but not a

metric.

However, for the same vertex set and label set, i defined in (3.7) is a metric because
¥,.,1,5)=80=60+20 = vy, (1,4 +v,,,(4,5)

The famous interchange (or swap move) and growth (or expansion move) models of graph cuts
presented in [139] are discussed briefly in this subsection. Both the algorithms use the same analogy
in different move spaces. The algorithm laying foundation of the models is as below:

Step 1: Begin with arbitrary labelling X
Step 2 : Set s to be zero

Step 3: For every k in the index set, choose refined labelling X’ from all labelling which can

be achieved from X with single k-move, such that, O(X’) - O(X) is maximum. If such
X exists, make updates X = X and s = 1

Step 4: If s = 1, go to step 2.

Step 5: Return X.

Figure 3.5 Optimized labelling algorithm for move space S

The algorithm mentioned in figure 3.5 iteratively leads to labelling which is optimal with respect to
the move space under consideration. The algorithm begins with an arbitrary labelling X and at every
stage it searches for the labelling X~ which can be attained with £ — moves from X in the move space
and has a lowest value/ penalty under the objective function among all the labelling which are & —
move far from X. If at any stage, such labelling is found, it immediately replaces X. The process
continues until no further cost effective labelling exists. The algorithm greedily achieves the locally
optimal labelling.

Due to the gluttonous nature of the algorithm, there are few noteworthy benefits.

1. At every stage, the algorithm searches for the most cost effective labelling that is k —move far
from the existing labelling and the search for the best labelling traverses the entire move
space with rapid speed and these results into fast convergence of the algorithm.

2. In general, to check whether the labelling is local minimum over all possible labelling is
computationally expensive task but it can be easily assured that the labelling returned by the

41| Page

algorithm is really a local minimum. The logical justification behind such assurance is that the
algorithm terminates only if the labelling in the last iteration does not find any cost efficient
replacement in the move space. This proves that, the labelling returned by the algorithm is
local minimum over all the labelling those are kK —move far from the final labelling.

The prime reason for the success of the algorithm lies in its traverse through the entire move space
and best possible moves made during the traverse. In the process of coding of the algorithm, the task
could be accomplished by random order traverse along the entire move space or it could be through
some systematic ordered moves covering the entire move space.

3.2.1 GRAPH CUT MODEL FOR INTERCHANGE MOVES

As discussed in Chapter 2, interchange move space for pair of labels (o, o,) with reference to
initial labelling X consists of all labelling X' those can be achieved by interchanging the labels of
selected pixels of two subsets V| = {v € V| X, = O'l} and V, = {v € V| X, = 0'2} . In this model, in
each cycle, the most cost efficient labelling over the interchange move space specified by pair of
labels (o}, 0,) and initial labelling X is determined. In the next cycle, the interchange move for new

pair of labels are considered with the latest labelling of the last cycle as an initial labelling for the
current cycle and the optimization in the move space is carried out. The algorithm terminates when
there is no pair of labels which gives the cost efficient labelling in the respective interchange move
space. The solution arrived at in this way turns out to be the local minimum over the space of all the
labelling of the move space under the light of objective function.

At every cycle, minimum labelling over current interchange move space is evaluated. That is a crucial
step, which is addressed by graph cuts terminology. During any cycle with pair of labels (o, 0;)

and initial labelling X, the undirected network flow is constructed. The vertex set of the network flow
G consists of two terminals o and o©,along with other non-terminal verticesV '=V, UV,

={veV|X,=cyorX,=0,}, where V{={veV|X, =0, }and V,={veV|X, =o0,}. For
every pixel v of /', there are two terminal edges e,'and e* connecting it (i.e. to v) to o,and
o, respectively. In addition, for every pair of pixels u and v, which are neighbours, there is a non-
terminal edge e, connecting them. Thus, the network G has vertex set V = {oy,0,} UV, UV, and
edge set E = {e)' |velV,ul,tufe) [vel UV, ule,, |ue N(v)}as shown in Fig 3.6. The

assignment of weights to the edges is as per follows:

For terminal edges e, and e;”,

= ¢v (O-l) + Z l//v,w(o-laxw)
{v, W}eN
welV Ul
(3.9)

= ¢v(62) + z l//v,w(o-29xw
{v, w}eN
wel, Ul

42| Page

For the non-terminal edge ¢}, ,

n
eu v

=y,.,(01,0,) (3.10)

Figure 3.6: Network for interchange move with labels ¢ and &, , and neighbouring pixels
{va,v3tand {vy,vs}

Thus, G(V,E,w) is a network. The aim is to maximize the value of the flow in the network. By Ford
Fulkerson theorem, the value of the maximum flow is the same as the cost of the minimum cut.
Hence, the problem reduces to determination of minimum cut on the network G(V,E,w). Alike earlier
model, the new labelling is obtained naturally by the minimum cut C on G. For every vertex v of

Vi UV, , the terminal edge contained in the minimum cut C decides the label of v under the new

labelling. Before relating the minimum cut with new labelling, let’s go through a result.

LEMMA 3.2.1.1

If Cis a cut on the network flow G, it must contain exactly one terminal edge for each vertex v of G.
Proof: To prove the result, we need to prove two parts:

43| Page

1. There does not exist any cut containing no terminal edge corresponding to some vertex v of V.

2. There does not exist any cut containing both the terminal edges corresponding to some vertex v of
V.

First let us prove 1. If possible, assume that, there’s a cut C of G, which contains no terminal edge
corresponding to some vertex v of V. Then, we can prove, by showing the existence of a path
connecting both the terminals in G | C that C is not a cut. Consider the

patho; —(e)') —v—(e)*)—0, . As none of the terminal edges e, and e, are contained in the cut

C, the entire path is in G | C. Thus, G | C does not separate the terminals and hence C can’t be a cut
on G.

To prove the second part, if possible, assume that, there’s a cut C of G, which contains both the
terminal edges corresponding to some vertex v of V. We will prove that C cannot be a cut by showing

that there exists a proper subset C, of C which is a cut.

Now, if there is a path P in G\ C connecting v and &, there must not exist any path connecting v and
o, as Cis a cut. If we add back a terminal edge e'in G | C, it certainly doesn’t give rise to any path

connecting to both the terminals. Thus, C;= C\ {e_'}, which is subset of C, is also be a cut, which

is a contradiction as C is a cut.

In case of existence of path P in G \ C connecting v and o, , we can consider C;= C\ {e_? } and can

yield contradiction.

This proves that, every cut C of the network G must contain exactly one terminal edge corresponding
to every vertex v of V.

Lemma 3.2.1.1 naturally gives rise to new labelling X~ corresponding to cut C given by,

o,if e)' eC
Xc(v)= Vvel ul,
0,,if e eC (3.11)

Xc(W)=XW),VveV\(V;U},)

In simple words, the cut C changes the labels of only those pixels v of ¥ which have existing labels
o,0r 0, (i.e. which belongs to ¥;UV,) by flipping the labels between o, and o, in revised

labelling X if necessary, but doesn’t change the labels of those pixels which have existing labels

other than ojand o, . Thus, the new labelling returned by cut C is only one interchange move far

from the existing labelling as per our requirement. This leads to the next lemma.

LEMMA 3.2.1.2

The labeling X -~ corresponding to cut C of the network flow G is one interchange move far from the

existing labeling.

44| Page

Proof: Note that, the only difference between labeling X and X - is that few pixels with labels o and
0, in labelling X have interchanged their labels in new labelling X and no other pixels have

changed their labels. This proves that, X -is single interchange move away from the labeling X.

LEMMA 3.2.1.3

If vand v, are two pixels belonging to (V, UV,) with X(v) # X (v,), then e:llvz eC.

Proof: To prove the result, assume that, X.(v)=0,#0,=X,(v,) and efl v, & C.

Xc)=0,#0,=Xc(v,)=> e ,e)> €C but e*,e" ¢ C. We will show that, there is a path P
1 2 1 2

from o too, via efl v, in G | C. Consider the path P is o - (efzl)-V,- (e:ll v,)-v - (e:T *) -0, which

entirely lies in G | C (Refer to Fig. 3.7). This implies that, removal of C from G does not separate

terminals ojando,, which is a contradiction with the fact that, C is a cut. Thus, efv eC.
172

Similarly, we can handle the other case, where X.(v,)=0, # 0, =X (v,)and prove that

n

e, € C (Refer to Fig. 3.7). This proves the result.

le)

Figure 3.7: Cut C with reference to pixel v when X -(v;)# X-(v,)

COROLLARY 3.2.1.4

If vy and v, are two pixels belonging to (V; UV,) with X -(v;) = X(v,), then e;’lvz gC.

45| Page

Proof: Without loss of generality, let’s assume that, X-(v,)=X(v,) =0, (Refer to Fig. 3.8(a)).

This implies that, e“:‘ ,e\i‘ € C . Now, if possible, assume that, e";'l v, € C. Then, C will have a subset
C,=C\ {e(f1 v, }. We want to show that, C|is a cut. For that, if possible, assume that, it is not. Then,
there exists a path P from o, to o, via e",ll v, in G\ C,. Let us construct a new path £ from P by
replacing the sub-path of P joining v, and o, via efl v, with a new path v, - (ezz) -0, . Thus, A is
a new path joining o, and o, , which entirely lies in G\ C (as C;=C\ {e"fl v, }). This contradicts with
the fact that, C is a cut. This proves that, C, is a subset of C and is also a cut. This proves that our
assumption that, e:ll v, € C is false. Thus, efl v, gC.

The other case, X (v,) = X (v,) = 0, can be analogously proved (Refer to Fig. 3.8(b)).

This proves the result.

Figure 3.8: Cut C with reference to pixel v when X-(v))=X-(v,)

LEMMA 3.2.1.5

For any non — terminal link efl v, Jjoining vyand v, and cut C, the weight of the set of all edges

common in efl v, and Cis y,, , (Xc(v), Xc(v,)).

46 | Page

n
e,, NC

Proof: We want to prove that, v,

is v, ., (XcO), Xc(v,)

There are four possible cases:

If Xe(v)=Xc(vy)=0y then,e:‘,e:’;‘ € C, and by corollary 3.2.1.4, e‘rflvz ¢ C . Thus, the set of

edges common to both ez " and C is an empty set. Thus, the weight of set of all the edges common to

n

e mC‘ =(0. Also,

WV,

both e:fl v, and C is simply weight of an empty set, which is zero. Thus,

Wy, XeO), Xc (1)) =v, , (61,01) =0y, , is a semi-metric).

Thus,

el N C‘ =0=y, . (Xc(1), Xc(m)) .

ele)
The second case : X~(v;) = X~(v,) = 0, can be handled analogously. In this case too,

n

e mC‘:O: ‘[/VI,VE(XC(VI)ﬂXC(VZ))'

WV,

Let’s consider the third case: X-(v|)=0,# 0, =X(v,). Then, e: ‘,e‘? € C,and by Lemma

3.2.1.3, egl v € C . Thus, the intersection of efl v and C is e"fl vy

Thus, eﬁm N C‘z e’;lvz =y, ,,(01,0,) (" Using (3.10))
=V (X, X)) XeW) =0y, X)) =03)
Thus, eﬁlvz N C‘ =, (Xc(1), Xc(n)) -

The forth case X-(v|) =0, # 0; = X (v,) can be handled similar to the third case. In this case also,

| n
e mC"— €,

=l//v|,v2(o-190-2) (" Using (3.10))
=¥, (02,07) (" v, is a semi-metric)

= Wy, (X)), X (1) (5 Xe() =0y, Xe(v) =07).
Thus, in all the cases,

n

e, NC ‘ =¥, . (Xc(1), X(v,)) . This proves the result.

le)

Note that, the proof of the result uses the fact that ,, , is a semi — metric.

47 |Page

THEOREM 3.2.1.6

The set of all cuts C on G and the set of all labeling which are single interchange move (involving

labels oand o,) away from the labeling X are in one to one correspondence.

Proof: Lemma 3.2.1.1 implies that, every cut C of G leads to a labeling X - defined by (3.11) which

is one interchange move with respect to labels o and o, away from X.

It remains to prove that, every labeling X -, which is one interchange move with respect to labels
o,and o, away from X corresponds to a cut on G. Let X~ be a labeling that is single interchange

move away from X with respect to labels ojand o,. We define cut C corresponding to X as

follows:

c= | Mo U teriu U el 1 Xe@ = Xe)
vel’ velV {u,v}eN
Xc(v)=0 Xc(v)=0,

It is easy to observe that, C is a cut on G as it does not leave any path joining the terminals in G | C.
Thus, every labelling X~ that is single interchange move away from X with respect to labels o and

0, leads to a cut C.
This proves the theorem.

THEOREM 3.2.1.7

The value of labeling X . (corresponding to the cut C) under the objective function and the cost of cut
C differ by some constant independent of cut C.

Proof: We are to prove that, O(X, C) - |C | is a constant independent of the cut C. i.e. for every cut C
C | is

of G, the value of the difference is a fixed constant. To prove the result, we will prove that,

O(X () plus some constant, where the constant is independent of cut C.

Note that, |C | is the sum of weight of all the edges contained in the cut C. C has two types of edges:

terminal edges and non — terminal edges. To be more specific,

C= U {eforeiu U el | Xe) % X () (3.12)
vel Ul {u,vieN
u,vel b,

The first term in (3.12) contains exactly one terminal edge for every vertex v of G as proved in
Lemma 3.2.1.1. The second term in (3.12) contains non — terminal edges for only those pair of
neighbouring vertices u# and v of G, for which C contains terminal edges corresponding to u and v
associated with different terminals.

Thus,

48 |Page

cl= X |erore+ X e (3.13)
vel Ul {u,vteN
u,vel| UV,

Xo(u)# X (v)

Note that, the term|e]' or) |refers to the weight of the terminal edge corresponding to v contained

in the cut C.

By (3.9), we have,

e? ::Qi00+ 2: V@M‘UDXXW»
{v, w}eN
we VUV,
) o =0, (XcON+ Y W (X (), X (W)
e’ = ¢,(0y)+ Z W, (02, X (w)) {v, wleN
v, wieN we,uY,
wel Ul
Thus,
e orel = XN+ D v, (Xc(),X(w)). Thus,
{v, wleN
we VUl
Yletore = Y (XcO)+ X D v, (XM X (W) (14
velV ver,uv, vel UV, {v, wjeN
welub,
Also, ef} vy, M C ‘ =V, (Xc(v), X(v,y)) by Lemma 3.2.1. 5. Therefore, the second term of (3.13)
becomes,
DI S EEEED D G GICYP. GICY) (3.15)
., JeN ., JeN
v,V UV, v, v, eV UV,
Xc(v) = X (vy) Xc(v) = Xo(vy)

Now, (3.13) to (3.15) together imply that,

= 2 eoN + 2 X v, (Xe().Xe(n)
vel, UV, vel Uy, {v,v,}eN
v, €V V7,

> v (X)), X (1)
{v, »,}eN
v, eV UV,
X)) # Xc(vy)

= Z P, (Xc(v) + z W (X)), X (1))
vel, UV, {v, v,}eN
v, orv,el| UV,

(- Xo(w)= X(w)forallw ¢ ¥, UV,)

49 |Page

But, O(X() = z P (Xc()+ Z Wy v, (X)), X (vy))
velV {v,vleN
v, v,V U,

Thus,

ICl=| o, (XcON+ Y v, (Xc@)Xcm) [+ = X o, (XON- X v, (X)), X(»))

veV {v,n}eN vel Uy, {v, n}eN
Vi, veh Ul Vi, gV OV,
Thus, |C|=0(X()+k (3.16)
where
k=|- Z o, (X(v)— z Yy, (X (), X (v,)) |is a constant independent of the cut C.
vel b, {vl, vz}eN
Vi, LEV OV

This proves the result.

COROLLARY 3.2.1.7

A minimum cut C on graph G leads to a labeling X that optimizes the objective function on the

space of all labeling those are one interchange move (involving labels oand ©,) away from the

given labeling.

Proof: Using the fact that, C is a minimum cut, we know that, the value of |C| is minimum over all

the labeling those are one interchange move far from the given labeling. Thus, by (3.16), the value of
O(X)+k is minimum for minimum cut C. As k is a constant independent of the cut C, it proves

that, O(X)is minimum for minimum cut C. Thus, the value of the objective function is minimum

for the labeling X ~(where, C is minimum cut on G) on the space of all labeling those are one

interchange move away from the given labeling.

3.2.2 GRAPH CUT MODEL FOR GROWTH MOVES

In this sub-section, one of the most popular graph cut model is presented. The model deals with
optimization of labeling over growth or expansion move space. The growth move space involving
label o allows the pixels (with labels other than ¢) to switch their labels too .

Given a labeling X, we implement graph cut to find the labeling which is single growth move (with
reference to label o) away from X and it is the best labeling among all labeling those are single o -
growth move far from the labeling X. The term best is used with reference to the value of the labeling
under objective function. i.e. We want to find a labeling that is single o -growth move far from the
given labeling and has minimum value under objective function among all candidate labeling (i.e.
among all labeling which are one o -growth move far from the given labeling). Paraphrasing the
objective, the goal is to minimize the objective function over the o - growth space of labeling X.

50| Page

The network has a vertex set V' consisting vertex v, corresponding to every pixel v;of pixel set,
terminals oand ¢, and in addition, reserve vertices a;; for every pair of vertices (vi,vj) with

X(v;) = X(v j)as shown in Figure 3.9. For every vertex v, corresponding to pixelv;, there are two

!

terminal edges ef_ and ef . For every pair of neighboring vertices (v;,v j) with same label under
labeling X (ie. X(v;)=X(v j)), there is a non-terminal edge eﬁ_ - For every pair of neighboring
i’

vertices (v;,v;) with X(v;) # X(v;)and corresponding reserve vertex @;;, there are pair of non-

7

terminal edges e:’ . and eZ » and a terminal edge e;’ . Thus, the network G(V,E,w) corresponding
iy i i

to o - growth move of given labelling X will have vertex and edge sets ,

v=Ut U {a)Ulee),

v,eV v,V €V
(V[,Vj)EN
X(v)=X(v))

!
n n o

l | e 5 e
{ via; a0 a,

v,eV v,,v,eV v,,v,eV
(v,.,v,:)eN (v,.,v,:)eN
X)X (v)) X(v)=X(v,)

The weights of edges of E is defined as,

ey |=9, (o). forall v; €V

eg’ =00, forall v; €V with X(v;) =0

e | =, (X(v,)). forall v; €V with X (v;) # &

€, | =¥y 0 (X(),0)

eZy_vj =V, (0, X (V) (forall (v;,v;) € N with X (v,) # X (v))
e |=w,., (X)), X))

e:-v,» =V (0, X(v;)) forall pixels (v;,v;) € N with X (v;) = X (v;)

First of all, it should be observed that, every cut C on G leads to a labeling that is one o - growth
move far from the labeling X in natural way. More precisely,

51| Page

LEMMA 3.2.2.1

Every cut C on G must contain exactly one terminal edge corresponding to each vertex v; from V.
Lemma 3.2.2.1can be proved with the argument similar to that of Lemma 3.2.1.1.

Thus, every cut C on G gives rise to labeling X - given by,

o, ifel eC
Xc(v)= o (3.17)
X(v,),ife] eC

This implies the next result.

Figure 3.9: Graph for o - growth move for labeling X for V = {Vl,..,VS } with X (vy) # X (v3)

LEMMA 3.2.2.2

Every cut C on the network G leads to a labeling X - that is single o - growth move far from the
initial labeling X.

52| Page

Proof: From (3.17), it is clear that, the only difference between X and X is that, few pixels which
were assigned labels other than o in labeling X are assigned with label o in X and no pixel with

label o in labeling X has changed its label in X -, which proves that, X is single o - growth move
far from the initial labeling X.

LEMMA 3.2.2.3

Let C be a cut on the network G. For each pair of neighboring pixels (v, v) withX(v)) = X(v)), if
terminal edges corresponding to same terminals are included in C, the corresponding non-terminal

edge ef’v_ must not be part of cut C.
i’j

Proof: There are two cases: (i) ef_ ,ef e C (ii) ef ,ef_ eC
i J 1 J

Let’s first consider the first case. Without loss of generality, let’s assume that,

X(v;)=X(v;)=0. Now, if possible, assume that, e,, €C. We will prove that,

rJ

¢, =C \{efv_}is also a cut. If possible, assume that, there is a path P in G \ C|via

e\’}v. connecting both the terminals. As ef_ and ef does not belong to G\ C}, P must have a sub-
ivj i J

path B joining & and V; which does not involve e‘?_ and ef_ (Refer to Fig 3. 10(a)).

Figure 3.10: (a) path Pin G\ Cl (b) Path Pl U e‘?_-in G\C

As ef and ef are in Cl’ ef and ef are not part of C] as per Lemma 3.2.2.1. Thus, ef and
i J i J ‘

ef_ are in G\ Cl . Hence, we can create a new path Pl U ef_ connecting 0 and 0" in G\ Cl . Note

J

53| Page

that, this path does not involve efi v, and hence it also lies in G | C (Refer to Fig 3. 10(b)), which
contradicts with the fact that, C is a cut. Thus, there does not exist any path in G \ Cl joining the
terminals. This proves that, C; is a cut. As C| is a subset of C and no proper subset of a cut is a cut,
this proves that, C does not contain ef_ » - The second part can be addressed with similar argument.

J

(Refer figure 3.11)

Figure 3.11: (a) Cut C with €, ., <C (b) Cut Cwithe,, ,e, <C.

COROLLARY 3.2.2.4

Let C be a cut on the network G. For each pair of neighboring pixels (v,,v) withX(v,)=X(), if
terminal edges corresponding to different terminals are in C, the corresponding non-terminal edge

n
eV,-V,,- must belong to cut C.

Proof: There are two cases: (i) ef ,ef_ e C (ii) ef,ef_ eC
i J I J
Let’s consider Case (i). If possible, assume that, ef_ » doesn’t belong to C. Then, it can be observed
i’

’

that, there is a path connecting both the terminals (O -ef_ -ef.v, -ef -0') in G | C, which is a
i L J

54| Page

’

contradiction with the fact that, C is cut on G. Thus, every cut containing ef and e‘j‘ must contain
i j

e\}j,»vj . Refer to Figure 3.12 (a).

The case (ii) can be proved by similar argument. Refer to Figure 3.12 (b).

Thus, every cut containing terminal edges corresponding to same terminals for neighboring vertices
(with same initial labeling) must not contain the corresponding non-terminal edge (joining the both
neighboring vertices), whereas every cut containing terminal edges corresponding to different
terminals for neighboring vertices (with same initial labeling) must contain the corresponding non-
terminal edge

O_/

Figure 3.12: (a) Cut C with €, €, <C (b) Cut Cwithe, e, <C.
i J i J

LEMMA 3.2.2.5
Let C be a cut on the network G. For each pair of neighboring pixels (v,,v)withX(v,) = X(v,), the

total weight of edges common to non-terminal edge ef_v_ and Cisy,, , (Xc(v), Xc(v))).
L) LA

Proof: We want to prove that, for (vl.,vj)erithX(vi)zX(vj), the weight of efv_ NC is
iV

l//v, 2V, (XC (Vi)a XC (Vj)) .

There are four cases:

55| Page

Case (i): ef_,ef_ e C. Then, by Lemma 3.2.2.3, ef,’_v' ¢ C , Thus, there is no edge common to e;'_v_
i J i i

]

and C. Thus,

el NCl=[{ }|=o0.
AlSO, l//v’. Y, (XC (vi)> XC (V])) = Wvl.,vj (O-a O-) = O

Thus,

e, NC-p,,, Xe (). X ().

Case (ii): ef_ ,ef_ e C Then, by Lemma 3.2.2.3, ef_ v & C, Thus, there is no edge common to e:'_v_
i J i i

]

and C. Thus,

el nc‘:|{ i|=0.
Also, lr//vi v, (XC (Vi)’ XC (Vj)) = (//vl. v (OJ’ OJ) = 0

Thus,

@y, C‘ Yy, X)X ().

Case (iii): 63 ,ef e C. Then, by Corollary 3.2.2.4, ef , E C . Thus, the edge ef_v_ is common to
i J i L)

both e, and C.

J

efivj n C‘ =

n
e
ViV

=y, (6. X))
Also, ¥, (Xc(v), Xc(v;) = Yo, (X(Vi)ao')('-' Xe(v)= X(Vi))

Thus,

efivj N C‘ =Yy, X)) Xc(v;)). (X(v)=X(v,)and y is metric)

Case (iv): ef ,eo—

y, € C . Then, by Corollary 3.2.2.4, ef/vj € C . Thus, the edge e:ll_ . 1 common to

J

both ef_v_ and C.

J

el NCl=

n
eVV
iV

=y, (@.X())).
Atso, ¥, , XX) =y, (0, XO) X (v) =X(v)))

Thus,

e, NCl-w, , X Xc()).

56 | Page

This proves the Lemma.

For pair of neighboring pixels (v;,v;) with X(v;) # X(v;) , there is a reserve vertex a;; and a triplet

n

’

. n o .

of non-terminal edges{ev’ a.€4v +€4 } . There are numerous ways that a cut can conain these non-
iy > AV 7y

terminal edges with a fixed pair of terminal edges corresponding to (v;,v) . But, for minimum cut C,

Z’]

if a particular pair of terminal edges corresponding to (v;,v;) is known to be included in C, one can

l’]
be assured that, a particular combination of edges from the triplet of non-terminal edges

{en e e }would be contained in C. The Lemma 3.2.2.6 and Corollary 3.2.2.7 precisely

via; a0 a,

characterizes the combination of edges of the triplet:

LEMMA 3.2.2.6

For pair of neighboring pixels (vl-,vj)withX(vl-):tX(vj), if both the terminal edges

corresponding to terminal O are in minimum cut C, no edge from the triplet of edges

n n o'
{ev,.a,./’ea v, ,ea }can be in C. If both the terminal edges corresponding to terminal o' are in

n
eav’ a,

minimum cut C, only single edge e from the triplet of edges { } will be in C.

va’

Proof: First, let’s consider the case wherein both terminal edges corresponding to terminal O are in

n

C ie. ef,e e C. To prove that, { e } N Cis an empty set. Refer to the figure 3.13

va’av’a

(a). If possible, assume that, C contains at least one edge from{ev a, e ef; } say €, a, . Then,

av’

we will prove that, Cl C\ {e va, } 1s also a cut. For that, if possible, assume that, there is a path P

connecting both the terminals via ef. @
i

in G\ Cl . Then, P must contain a sub-path P from o toV;,
not containingeg_ «. - We can create a new path Pl Uef connecting both the terminals, which
iij i

entirely lies in G | C, (as C and Cl differs only by an edge e via) which is a contradiction with the
fact that, C is a cut. Thus, Cl is a subset of cut C and it is also a cut. This contradicts with the fact

that, C is a cut. Thus, C can not contain any edge from the triplet of edges{ €, a,> eZ__v_ R eg } .
yJ

ij

’

Now, let’s assume that, ef_ ,ef e C. Our aim is to prove that, the cut will only contain e; from the
i Jj y

n /

triplet of edges{ e, a ,ea v € } As shown in Figure 3.13 (b), C must contain e in order to
J

a 9

separate both the terminals, if { €, e v_} nc =¢. For if C doesn’t containeg , both the
] J g

’

terminals stay connected by a path 0 — e -V, = e —aq; - e:; —o'inG\C.
Vil ij

57| Page

In order to prove that, none of the remaining two edges can be part of the cut C, we should note that,

C is a minimum cut and by triangular inequality, the weight of eg is lesser than the sum of weights
ij

of other two edges as shown below:

= l//vl.,vj (X(Vi)o X(VJ)) < I//V[,Vj (X(vj)7 G) + l//vi,vj (0-9 X(V])) (.‘. l//v‘. WV iS a metriC)

Thus, if ef_ ,ev e C, C only contains edge e from the triplet of edges { el e’ }

va’av’a

Figure 3.13 (a) { e" }ﬂCfore e

a’av’a

LEMMA 3.2.2.7
For pair of neighboring pixels v, v withX(v) # X(v)), if terminal edges corresponding to terminal

oand ©' corresponding to vertices v and v, respectively are in minimum cut C, only edge

n n

ea v, ,eal }wzll be in C. If terminal edges corresponding to

n .
ea!-,.v‘,- from the triplet of edges {e

v,.a,.j >

terminal O and O corresponding to vertices v,and v, respectively are in minimum cut C, only

n

edge eZ.‘v. from the triplet of edges {e” e } will be in C.

Vi 2 a2 a‘

58| Page

’

Proof: Consider the first part: 63 ,ef_ e C, where C is a minimum cut on G. To prove that,
i J

n .
{eviai , a v, ,e } NC-= a v we observe that, C cannot be a cut if none of the three edges are
part of C, because in that case, there exists a path O — ef -V, e —a; — eg —-o'inG\C.
J a;V; ij

Thus, C must contain at least one of the three edges. Refer to Figure 3.14 (). It is clear that,

Fzgure314(a){va ,eav,a}ﬂCfore e eC(b){va,av,a}ﬂCfor eC
if Cis a cut it must contain the edge e"f «. - It remains to prove that, no edge other than eﬁ o from the
i i

triplet should be contained in C. For that, note that,

=V Xv,),0) < Y, (X)), X(v !)+ Wy, X(v f),o) (. WV, isa metric)
=V, (X(v), X(v !)+ W, (o, X(v ! NC.: W, isa metric)

As Cis a minimum cut, it will contain edge with minimum weight. Thus, it only contains ef_ a
itij

!
With the similar argument, we can prove the second case: ife,, ,e, e C, where C is a minimum cut on
1 J

n

G, {ew ,ea v, a }ﬂC e . Refer to Figure 3.14 (a).

59| Page

COROLLARY 3.2.2.8

If Cis a minimum cut and v,v,) with X (v,) # X(v,)are neighboring vertices, the total weight of

n

edges common to {e:’_a__,ea s a }andCzsy/V v, X)X (v))).

Proof: To prove tha, |{ef, €l , ﬂc‘ Vo, Xe (). X)),

There are four cases:

Case (i): eg,eg e C. Then, by Lemma 3.2.2.6, there is no edge common to {ef,.a,-,. ’eZ,»,-V,- ,egj } and

C. Thus,
‘{e"zaé/ ’e”;@/"j ’eg,-'} N C‘ = |{ } =

Also, Yy, (XC (vi)’XC (Vj)) =¥y v (O-a O-) =0as Vv is a metric

Thus, (el €l €5 | NClw, (X X)),
Case (ii): ef',ef' e C Then, by Lemma 3.2.2.6, the only edge common to {eza” ,eZ v, a } and C
is eg_’ . Thus,
ij
e, < e}l =fes | =w, (X0 X)),

Also, ¥, , (Xc().Xc () =w, , (X().X(v)) (2 ¢ €C= X o(v)=X(V)

Thus,

(€l et €7 JNC =y, (XOLX)) v, (XD, X)),
Case (iii): 63 ’,ef_ e C. Then, by Lemma 3.2.2.7, the only edge common to both

va, av; > a;

g l/

{e” e’ e }andCISe

o] =¥ (XG0

va’av’a

He" e’ N C‘

Also, ¥, , (Xc(), Xc (V) =w, , (X(1),0)(Xc () =X (V)

60| Page

Thus,

(el et ed Ny, Ket). X)),

Case (iv): ef ,ef_ eC. Then, by Lemma 3.2.2.7, the only edge common to both
i j

{e"_) e" €y }andCIS e

U]

=¥, . (0,X(v))).

Also, ¥, | (X (), X)) =W, , (0, X))~ Xe(v)) = X(v)

Thus,

{e‘zazy ’e‘r‘lz‘j"/ ’ e‘z‘,} N C‘:l//v,-,\{,- (XC (Vi)a XC (Vj)) .

This proves the corollary.

DEFINITION

A cut C on the network G is said to be a basic cut (or b — cut), if it satisfies the following properties:

(1) For every pair of vertices v,.v,) withX(v,) = X ™)

{}1fev, feC

{ } 1fev ,ev eC
e, NC=5 (3.18)
! 1fe e eC

VV’

if e7.e”

VV’ V’V

eC

(ii) For every pair of vertices (v,, V) with X (v,) # X ™)

{}1fe GEC

O' . O' O'
o €, Jif e, e, C
{eviai]. ’eaijvj ’ea,v' } ﬂ C=1 (3.19)
: 1fe e eC

Va’

1fea o' eC

(1\/’

NOTE

Note that, every minimum cut must is b — cut, but not every b — cut is a minimum cut. For example,
consider G with V= {vl,vz,avlv2 ywith {v,v,} € Nsatistying X(v)) = X(v,),

6l|Page

’

e’ o n n o ol _ ol _
E={ey e, ey e, €y, vy Criayy, *Cayy, }. where, e, =2 |e,|=50,
o' n
=2, le =50 = =2 .Consider ,e, § an
e, 2, 7 , N 50, s Consider cuts C = {e” e, Vlav } and

C'= {eﬁl’ , eff ,ef } . These cuts have weights or costs given by,
Vv 2

IC|= eyy =2+50+50=102
C=[e |+ |eq =2+2+2=6.

It can be easily checked that, no cut on G can have cost less than 6. Thus, C' is a minimum cut on G.

The cut C = {e

. Vla 832} is a b — cut as it satisfies both (3.18) and (3.19). But, it is not a

minimum cut. On the contrary, C "is a minimum cut and also satisfies both (3.18) and (3.19) and
hence, is a b — cut.

THEOREM 3.2.2.9

There is a one to one correspondence between the set of all b — cuts C on G and the set of all labeling
those are single O -growth move away from the labeling X.

Proof: First, we attempt to show that, every labeling uniquely corresponds to a b — cut. For that,
consider a labeling X that is single O - growth move far from X.

We define cut C as follows:

o o’ . _
e, €C and evj gC,ifXv)=0O

o o' .
e, «C and evj eC,ifX(v) #0O

For non-terminal edges, we follow (3.18) and (3.19).
C defined in this way is obviously a b — cut as it satisfies both (3.18) and (3.19).

Now, we have to prove that, each b — cut leads to a labeling that is single O - growth move far from
X. For that,let Cbeab - cut.

Then, we can define a labeling XC as follows:

o, ifefeCande‘?- ¢ C
Xc(v)= o o
Xc(v), ife, eCande) ¢C

This proves the one to one correspondence between set of all b — cuts C on G and the set of all
labeling those are single O -growth move away from the labeling X.

62| Page

THEOREM 3.2.2.10

Let C be an b — cut. Then, the value of labeling X - corresponding to a C and the cost of C are equal.

Proof: We are asked to prove that, O(X C) and |C | are equal, for every b — cut C.

Note that, |C | is the sum of weight of all the edges contained in the cut C. C has two types of edges:

terminal edges and non — terminal edges. To be more specific, terminal edges and two types of non-
terminal edges as shown below:

C=Jteforeltu | e/ Xcw=Xc0+] {eh, orel orel } (3.20)

vel’ {u,v}eN {u,y}eN
uyveVlV uyveV
X(w)=X() X)X (v)

The first term in (3.20) contains exactly one terminal link for every vertex v of G as proved in Lemma
3.2.2.1. The second term in (3.20) contains non — terminal links for only those pair of neighbouring
vertices u and v of G, for which C contains terminal edges corresponding to u and v associated with
different terminals.

Thus,
ICl= D le7 or e |+ > He{}v} ﬂC‘+ > ‘{e{ja el el }HC‘ (3.21)
velV {u,yteN {u,v}eN
u,vel UV u,yvelV
Xw)=X(©) X(u)=X(v)
Note that, |e;' or e;?| refers to the weight of the terminal edge corresponding to v contained in the
cut C. But,
/| = ¢,(0)
B =0, (Xc ()
7] = 0,(X ()
Thus,
e ore| = 9, (Xc()
Dletorell = > o (Xc() (3.22)
vel vel

Also, eZv M C‘ =y, (Xc(u), Xc(v)) by Lemma 3.2.2. 5. Thus, the second term of (3.21)
becomes,
n
> lnnd= Y v (e, X)) (3.23)
{u,v}eN {u,v}eN
u,velV’ u,veV
Xw)=X(v) X(u)=X(v)

63| Page

From corollary 3.2.2.8,

He" e ej}}ﬂC‘=l//u’v(Xc(u),XC(v)),whichimpliesthat,

> e e 0= Y v K@ Xe) 024
{u,v}eN {u,vteN
u,yveV u,vev
Xu)2X(v) X(u)=X(v)

Now, (3.21) to (3.24) together imply that,

1= 0,(Xc)) + Y w (X, XcoON+ D v, Xew), Xc ()

veV {u,v}eN {u,y}eN
u,veV uyveV
Xu)=X() X(u)=X(v)
= z @v(XC(V)) + z l//u,v(XC(u)’XC(v))
vel {u,v}eN
u,velV
= 0(X¢)

This proves the theorem.

COROLLARY 3.2.2.11
The labeling X - corresponding to minimum cut C on G minimizes the objective function.

Proof: As minimum cut C is a b — cut, it satisfies Theorem 3.2.2.10. Thus, for minimum cut C,

|C | = O(X() . As Cis aminimum cut on G, its cost is the least among all possible cuts on G.

Thus, X ~minimizes the objective function.

Till now, the focus of the discussion was on to justify the usage of the algorithm with different move
spaces (in particular, interchange and growth moves) and to show that, at the end of each iteration, the
labeling returned by the minimum cut on the network flow is local minimum of objective function on
the space of all the labeling those are single move far from the initial labeling. Now, shifting the focus
towards the performance of the algorithm, we move towards the discussion of running time of the
algorithm and how far is the solution produced by the algorithm from the global minimum solution.

THOREM 3.2.2.12

The cost of the labeling X - corresponding to minimum cut C on G (which is O - growth move far

from the initial labeling) is less than some constant times the cost of the labeling X that is global

optimum solution of the objective function. The value of the constant depends on the form of y/,, ..

Proof: Let 0 € () be an arbitrary label. Define V. = {v 34 X v)= O'} . We can define a

labeling X' that is one O - growth move far from the labeling X c as follows:

64| Page

X' o, ifvel,
V) =
Xc),VvelV\V,

As X - is a local minimum over O - growth move space, O (X c) <0 (X ') (3.25)

Note that, there are two mutually exclusive and exhaustive subsets V_and V' —V_of V', on which

we can define restriction of the objective function as follows:

OVLT (X): Z gov(xv)-'- Z l//v,w (xv’xw) and

vel, {v,wjeN
v,wel,_
Oy (X)= z o,(x,)+ z ¥, (%,,X,,) where X is any labeling.
’ velV\V, {v.wleN
v,we V\V_

We define a set B, of neighboring pixels as, B, = {(v, wyeN|veV andwel \ VG} and

define the restriction of objective function on B as

OB,,(X) = Z t//v,w (xv’xw)

(v,wleB,

Clearly,

O(Xc) =0y (Xo)+0py (X)+0p (Xc) (3.26)
O(X) =0, (X)+0y (X)+0; (X) (3.27)
O(X") =0y, (X)+0p, (X)+0, (X)) (3.28)

For pair of neighbouring pixels (v,w), we can define

l,,, =miny, (c,0) and h,,, =maxy, ,(c,0") (3.29)

5 Nea
Let = min Py (3.30)

VW v,w

h

Then, O (X')< max O, (X)< h, < —= |l

B"() XV 50 Bf’() (V’WZ);BU W (V’WZ);‘BU L,)™

< > i, < D oty (0,0) =10 (f()
(v.w)eB, (v.w)eB,

65| Page

Thus, O (X') <10, (X) (331)
Now, it is easy to observe that,

0y (X')=0, (X) (3.32)

OV\VG (X'):OV\VJ (Xc) (3.33)
Equations (3.26) and (3.28) together with (3.25) implies that,

OVU (Xo)+ OV\VG (Xeo)+ OBU (Xp)< OVG (X"+ OV\VU (X"+ OBG (X"

Equation (3.32) implies that,

Oy (Xc)+0p (Xo) <Oy (X)+ 05 (X)

Equations (3.32) and (3.33) imply that,

Oy, (X)+0p5 (Xo) <Oy (X)+105 (X) (3.34)
> (0, (X)) +05 (X)) < 3 (0, (X)+10, (X)) (3.35)
[2=9) oe)

DefineB= U B,_. . For every pair of neighbor (v,w) e B and every pair of labels (G ,O ') , the term
oeQ)

v, W(O', 0')0f Op (X)is counted twice in the LHS of (3.34), as ¥/, W(XC(V) =0, G') and
Vo (O' "X cv)= O') for B and B, respectively. In similar manner, the term y/,, (O' ,O ’) of

Oy (AN’) appears 2t times on the R.H.S. of (3.34). Hence, (3.35) becomes,
O(X) +03(X) <O(X)+ (2t —1)Op (X) <210, (X) .
This proves that, O(X)+ Oy (X) < 20 (X) and thus, O(X) <20, (5() .

Where, 2¢ is a constant dependant on the form of ¥, ,,. This proves the result.

THOREM 3.2.2.13

The algorithm 3.5 has a linear running time.

Proof: We need to prove that, if there are n pixels, the algorithm will take no more than some constant
times n seconds to return the labeling X . For that, an assumption is made to facilitate the reasoning
for the bound of running time: ¢, and ¥, , are independent of n, the total number of pixels the

image is composed of.

66| Page

As the algorithm is to be provided with the initial labeling, we choose the initial labeling X as,
X @)= {0' |¢,(0) =ming, (o")})
o'eQ
We may assume that, ¢, (o) =ming,(c')=0,VvelV
o'eQ)

We want to minimize the objective function O defined as,

OX)=Y 0,(x)+ D ¥, (x,.x,). (3.25)

velV’ {v.wleN

But, the initial labeling X is chosen so that, the first term of O(X) is zero, for the initial labeling, O(X)
is simply

0X)= D v,.(x,.x,). (3.26)
{v.wjeN

Note that, our special construction of initial labeling doesn’t give rise to any ambiguity as minimizing
(3.26) is equivalent to minimizing the objective function

000 =3[x)~(ming, @) + 3 wirx,)

velV {v.wjeN

[+ 0.0)(ming, (@) =, v as ming, (o) =0

Let t = max ¥, (0,0 and [= minV ¥,.(01,02)— 9, (03)|,

v,we u,v,we
0,0'eQ 0,,0,,0,€Q)

Then, both 7 and / are independent of ».

Thus, from 3.26,

OX)= > v, (x,x)< > ¢

{v.wleN {v.wleN

If there are p labels, or in other words, if |Q| = p, then there will be p and p” iterations in one cycle of

the algorithm if it involves growth and interchange move space respectively. Algorithm with growth
move takes p iterations as corresponding to every label o , the algorithm has to check for possible cost
efficient labelling corresponding to & growth move. Similarly, for every pair of labelling (o, 0"), the

algorithm has to perform iteration for possible cost efficient labelling corresponding to interchange
move involving these two labels (and there are such p’ pairs of labels).

At the end of every cycle, the revised labelling improves in terms of penalty assigned by objective
function at least by L. i.e. If at the end of cycle 1 and 2, the labelling gets updated by X and X

respectively, O(XC')SO(XC)—I . Thus, maximum no. of cycles needed by the algorithm to

67| Page

t
converge is Z Wow(X,,x,) = Z (—J, which is a degree 1 polynomial in n. Thus, the
{v.wjeN {v.wleN

algorithm takes O (1) time and hence the running time of the algorithm is linear.

3.3 SEGMENT WISE CONSTANT STRUCTURE

In this sub-section, we attempt to study some models which are appropriate for segment wise smooth
structure. Segment wise constant structure, being a special case of segment wise smooth structure, can
be addressed by expansion and growth move models presented in the earlier sub-section. In this sub-
section, we begin with a model that deals with multiple terminals. In earlier sub section we considered
network flow with two terminals, called source and sink. That’s why, only two labels at a time can be
dealt with in the single iteration. In this model, we will consider a graph with multiple terminals. The
graph will have a terminal corresponding to each label.

It should be noted that, segment wise constant structure preserves the discontinuity whenever it is
essential and it is the simplest structure with this property. One possible way of defining

Wv,w (xv’ xw) is as follows:
l//V,W(xV’ xw) = va](xvaxw)
where,

0, if|x, —x,|=0

1, otherwise

I(x,,x,) ={

The value of /(x,,x,,) is independent of the labels in case if the labels under consideration are not the
same. i.e., even if the labels differ drastically, the penalty incurred on assignment of such labels to
neighbouring pixels v and w is constant (i.e., ¢,).

Thus, the objective to be optimized takes the form,

0X) = p,(x)+ D ¢, 1(x,,x,) (327)

velV {v,w}eN

3.3.1 GRAPH CUT MODEL WITH MULTIPLE TERMINAL VERTICES

The graph G will have p terminals {01,02,...,6p} and n non-terminal Vertices{vl,vz,...,vn} . For

. . . o, O (<
every non-terminal vertexv;(1<i<n), there are p terminal edges{e S AN V”}, one

corresponding to each terminal. For every pair of neighboring vertex (vl-,v. j) , graph G has a non-

terminal edge ef_ , - The weights to these edges are assigned as follows:

g,
evi

=k, —9,(c)) (3.28)

68| Page

=c (3.29)

Terminals

Figure 3.15 Graph for multiple terminal vertices

Any cut on G must separate all the terminals. In other words, If C is a cut on G, there should be no
path connecting any two terminals in G \ C. It can be easily proved that, if C is a cut, it must leave
every vertex (non-terminal) connected to unique terminal. Thus, the cut naturally gives rise to labeling

X ¢ defined as follows:

Xc(v)=o,if € «c (3.30)

Note that, the cut cannot contain all terminal edges corresponding to some non-terminal vertex v, as in
that case removing one of the terminal edges from the cut C will lead to a subset of C which is a cut
and thus leads to a contradiction. On the contrary, the cut cannot leave more than one terminal edges
corresponding to some vertex v in G | C, because in that case, there will be a direct path connecting
both the terminals via vertex v, which contradicts with the fact that C is a cut. (Refer to Figure 3.16)
This leads to

69| Page

LEMMA 3.3.1.1

If Cis a cut on the graph G with multiple terminals, it must contain all terminal edges except one
corresponding to each non-terminal vertex.

It can be observed that, if neighboring vertices v and w are connected to different terminals in G | C, C

n

o » because if C does not contain the edge, there will be a direct

must contain the non-terminal edge e
path joining vertices v and w in G | C . Similarly, if neighboring vertices v and w are connected to

because if C contain the edge,

same terminal in G | C, C must not contain the non-terminal edge e, ,

C\ {e],} will also be a cut. This proves the following result:

Figure 3.16 Graph G\ C for cut C, which leaves each vertex connected to only single terminal

LEMMA 3.3.1.2

For neighboring non-terminal vertices v and w,
) FXc()=Xc(w), e, 2C.

(i) [Xc(v) = Xc(w), e, €C.

70| Page

THEOREM 3.3.3

If C is a cut on graph G with multiple terminals, then the cost of the labeling X and O(X)
(mentioned in (3.27)) differ by a constant.

Proof: As C contains non-terminal and terminal edges, the cost of C is sum of cost of both types of
edges present in C.

The sum of cost of all terminal edges of C will be, Z Z el | = Z z (kv -, (O'))
vel oeQ vel oeQ)
el eC eleC

5535 T{ES 30 3 3 WACe
vel oeQ) vel oed velV oeQd
e’ eC el eC e’ eC
=(E-DD k=2, > #,(0)+ D0, (Xc()
vel vel oeQ) velV

Thus, the sum of all terminal edges of cut C'is,

S S eel=0-DD k-3 > 0,(0)+ D p (X () (331

vel oeQd velV vel oed velV
e eC

By lemma 3.3.1.2, only those non-terminal edges e:’w will be contained in C, which are connected to

different terminal vertices in G \ C. Thus, the sum of all non-terminal edges of C is,

2

e = X e XL X IX M), X () =0, i Xe () =X (w)

{v.wjeN {v.wleN

X (V)#EX (W) v,wel

Thus,
> en, \: > e I(Xe(), Xe(w)) (3.32)
{v.wjeN {v.wleN

X (W)#X (w) v,wel

Summing up (3.31) and (3.32), we get the sum of weights of all edges of C, which is,

ICl=-DD k=2 D 00+ 2 0,(XcON+ D ¢ I(X (), Xc(w)
velV vel e velV’ {v.wleN
v,welV

=[(p—1)ZkV—Z Zma)} DX+ D e I(X (), Xc(W)
velV vel oeQ) velV {v,w}eN
v,welV

71| Page

=[<p— DOWEDID ¢V(G>J+0(Xc) (3.33)

vel vel oed
This proves the result as the term in the first bracket is a constant independent of the cut C.

The theorem lays a foundation for corollary 3.3.1.4 presented below.

COROLLARY 3.3.1.4

If Cis a minimum cut on graph G with multiple terminals, then objective function (3.27) has a local

minimum at X .
Proof: By theorem 3.3.1.3,

O(X C) = |C |+c0nstant, which is minimum when |C | is minimum. It is obvious that, |C | is
minimum when C is minimum cut.

The problem can be solved efficiently, when the total no. of terminals are two. When number of
terminals is higher than two, the problem is NP — complete. Thus, the exact minimum cannot be

targeted. However, approximate solution can be evaluated efficiently. One way to approach the
problem, when terminals are more than two, is to find a cut C(o), which separates terminal o from

remaining all terminals. Define C= U C(0), where 0,,,, =10'€Q /C(c')= max C (G)} .

o oceQ
O'#O'mﬂx

The algorithm working on this approach produces a solution that is within factor of 2(1—1).
p

However, this algorithm has two major limitations: (1) there might be some of the vertices of V,
which are assigned no label by C. The algorithm assigns the label &, to such vertices (2) If the cut

C is near to the exact minimum, it does not guarantee that, the labeling X - is also close to exact

minimum due to the constant term in (3.33).

3.3.2 GRAPH CUT MODEL WITH SHIFT MOVE SPACE

Any labelling partitions the image and is defined by V ={V_|o €} where,

V. ={veV|X, =0o}. As labelling and partitions are in one to one correspondence, both notions

can be used interchangeably.

Consider a one to one function s : 2 —> {O,l,....,n - 1} , where L denotes set of labels and n is total

no. of labels. Shifts are denoted by an integer k€ {0, L,....,n— 1} . A k-shift move changes a labelling
Xto X' if there exists a set S < V such that,

S(X() +k, ifvesS

X () = { S(X(),ifves (3.34)

72| Page

In short, k-shift increases a label of some pixels v by k. Without loss of generality, we may take s to
be an identity map.

For given labeling X and value of %, the aim is to find a labeling which is one £ — shift move away
from X and has the minimum value of objective function among all moves satisfying this property.
The crucial step of the model is to find the cut of graph G constructed with the . For this, we will find
minimum cut on graph G =(V, E) . The structure of G is as follows: The graph has terminals /, j and all

vertices belonging to V. Apart from this, for every pair of neighboring pixels {u,v}

satisfying|x, — X | = |k| , a supplementary vertex a,,is created. Hence, the graph contains three types

of vertices i.e. terminal vertices (i and j), set of all non-terminal vertices (Vv € V') and supplementary

vertices (of the forma,).

Now, we construct sets S;and S;such that Q= (S, —a)U(S . —a) and both (S, —«a)and

(§; —) gives partition of). Note that, ¢ is a dummy label.

For given label o and integer &, by Unique Factorization Theorem, there exists integers p and » such
that, o = kp + r with r < k.

Define binary variable f/* 2 — {i, j} by,

i, if pisodd
f(o) ={ (3.35)

J,otherwise

Now, let us define S, and Sj as follows:
{o/f(o)=i}U{a}
S, =10/ f(o)=j}U{a}

Si

If vertex v is separated from terminal i, v is assigned label X l.'(xv) and if it is separated from j, the

label to be assigned is X' j' (x,) where, X/(x,)and X j' (x,)are given by,

x,,ifx, eS8,
X(x)=<x,+k,ifx +keS, (3.36)

o, otherwise
and

x,,1fx, €S,
Xi(x,)=qx, +k, ifx,+keS§, (3.37)

a, otherwise

73| Page

LEMMA 3.3.2.1

Functions X i' and XJ' are well defined.

Proof: In order to prove that, functions X and X]' are well defined, we need to prove that both x
and x, + k cannot belong to S , wherem € {i, j} . Hence, it is sufficient to prove that, for given o,
(where 0 + k is in permissible range)

o) #f(0+k).

For given 1, by Unique Factorization Theorem, there exists integers p and r such that, c +k =kp +r
with 7 <k. This implies that, o+k=kp+r+k= k(p+ 1) +7 is unique factorization

corresponding to, o + k. Trivially, one of p and p+ 0 will be odd and the other will be even. This
proves that, f(0) £f(0 + k).

Figure 3.17: Network flow G for graph cut model based on k — shift move

Now, we describe edges of graph G = (V, E) (Refer Figure 3.17). For each pixel v, we add two

terminal edges ei and evj which connects p with i and j resp. For every pair of neighboring non-

74| Page

terminal vertices u and v with X (1) = X(v), we add an edge €/ joining u and v. For every pair of

neighboring vertices u and v satisfying X (#) # X(v), but | X (u)—X(V)|=|k|, we have a

supplementary vertex a, and three edges e;’a e’ and e; . The edge e;’a connects u with a

s s
w7 AV uv

connects @, with either i or j as per criteria

uv

n . t
the edge e, ,connects with v, whereas €,

mentioned in (3.38). For every pair of neighboring vertices u and v with X(u)# X (v)and
| X (u) - X(v)| = |k

, there is no non-terminal edge.

If x, =x,+k and f(x,)=], efzw connects @, withi.
_ et P

If x, =X, + k and f(xu) =1, e, connects a,, with j.

If x, =x, + k and f(xv) =7, e; ~connects d, with 7. (3.38)

If x, =X, +kand f(x)=1, e; connects @, with ;.)

The set {u |0<x,+k<n-— 1} gives set of all non-terminal vertices which can be shifted by &

units and still the labels are in permissible range. In order to avoid the assignment of dummy label
& to any pixel, we define ¢, (o) =00.

Equation (3.39) gives edge weights of all the edges part of the graph.

The weights corresponding to edges are defined as follows:

el|=o,(x)(x,), YvelV
el=p,(x(x,), YveV
(3.39)
el |=les |=|e. |=c,,. V neighboring pixels {u,v} with| X (u) - X (v)| = |k|
el | =c,,, Yneighboring pixels {u, v} with X (u) = X (v)
LEMMA 3.3.2.2

For any non-terminal vertex v €V and any cut C on G, exactly one terminal edge would be part of
C.

Proof: 1f cut C includes both terminal edges, then removal of any of the terminal edges from C would
be a new cut, which violates the condition of minimality of cut.

If none of the terminal edges is severed by C, both the terminal vertices are connected via path formed
by these terminal edges. Thus, exactly one terminal edge corresponding to any non-terminal vertex
should be contained in the cut.

This gives rise to a natural labeling corresponding to minimum cut C, defined by,

75| Page

'(x),ife’ e C
x¢ {x’(xv) & YveV (3.40)

- xXi(x,),ife] eC

LEMMA 3.3.2.3
Labeling X ¢ corresponding to cut C is one k-shift away from the initial labeling.

Proof: From the definition of x/(x,) and x; (x,), it is clear that, possible labels are X, x, 4+ k and
u. Since weight corresponding to u is infinity, a cut C would never contain edge with weight u.
Possible new labels are only x, and x, + k , which proves that, the new labeling X “is one k-shift

away from the initial labeling.

This proves the result.

LEMMA 3.3.2.4

Let u and v be neighbors in V with X (u) = X (V). For any cut C and for any non-terminal edge €, ,

If cut C contains terminal edges corresponding to i for both u and v (i.e. ei,ei eC) or

corresponding to j for both u and v (i.e. e,f ,ej' eC), e,:'v would not be part of C.

Proof: Let C be a cut with X (1) = X (v)and € e, € C. To prove that, e does not belong to C, if
possible, assume that, € is in C. Then, there exists a subset C, = C'\ {€ } of C. We will prove that,

C, is a cut. If possible, assume that, there is a path P connecting both the terminals via eZv inG\ C,.

Then, P must have sub-paths B in G \ C, joining terminal j and non-terminal vertex u. Note that,
B entirely lies in G \ C. Thus, there exists a path efl U Bin G \ C connecting both the terminals,

which is a contradiction with the fact that, C is a cut. Thus, Cl is a cut. This proves that, e:fv can not
belong to C. (Refer to Figure 3.18(a))

Similarly, it can be proved that, if C is a cut with X () = X(v)and e/ .e/ € C, " does not belong
to C. (Refer to Figure 3.18(b))

This proves the result.

76 |Page

Figure 3.18: For neighboring vertices u and v with X (u) = X (v) (a) Cut C with e;,ei eC (b) Cut

Cwithe! e/ € C.

COROLLARY 3.3.2.5

Let u and v be neighbors in V with X (u) = X (V). For any cut C and for any non-terminal edge €, ,

if the cut C contains t-links corresponding to i for u and corresponding to j for v (i.e. ei,ej eC) or

corresponding to j for u and corresponding to i for v (i.e. eif , eé eC), e,:'v must be part of C.

Proof: Let C be a cut with X(u)=X(v)and € .e/ € C. To prove that, €’ belongs to C, if
possible, let’s assume that, €/ does not belong to C. We will show that, C is not a cut. Consider a
path i—(e;)-u —(eZV)—V— (ev’) — J connecting i and j. This path lies in G | C. This contradicts
with the fact that, C'is a cut. Thus, eZv must belong to C.(Refer to Figure 3.19 (b)).

Similarly, we can prove the other case: if C is a cut with X(u)= X(v) and e/, € € C, then ¢,
must belong to C. (Refer to Figure 3.19 (a))

77| Page

Figure 3.19: For neighboring vertices u and v with X () = X (v) (a) Cut C with elf,ei eC (b) Cut

Cwithe. e eC.

THEOREM 3.3.2.6

Let u and v be neighbors in V with X (u) = X (v). The weight of the edges common to both cut C and

non-terminal edge e, is ¥, ,(Xcu),Xc(v)).
Proof: We want to prove that, the weight of e;lv NC is Yo Xe@), Xc(v).
There are four cases:

Case (i): el’;,eé € C . Then, by Lemma 3.3.2.4, e;lv ¢ C, Thus, there is no edge common to e;'v and
C. Thus,

e, Nel={ |=0.
Also, l//u,v (XC (u)’XC (V)) = l//u,v ('x; (‘xu)’ x;(xv)) (" Using (3.40))
=W (5 (0), X1 (x,)) (7 X () = X ()

=Cu I(le (xv)’x; (XV))
-0 (o I(a’a) = OVCZ)

78| Page

Thus,

ez’:v ﬂ C‘ = ‘//u,v (XC (u)’ XC (V)) .

Case (ii): ej ,ej € C Then, by Lemma 3.2.2.4, eZv ¢ C', Thus, there is no edge common to eSv and
C. Thus,

e{fvﬂC‘=|{ H|=0.

Also, 7, ,(Xc(u),Xc(V) =y, ,(x;(x,),x7(x,)) (* Using (3.40))
= W, (0 (x,),X(x,) (7 X(w)=X ()
= ¢, 1(x;(x,), X3 (x,))
=0(I(a,a)=0Va)

Thus,

e Ny, (X (), X ().

Case (iii): elf ,ei € C'. Then, by Corollary 3.2.2.5, egv € C . Thus, the edge e::v is common to both

n
e,, and C.
n _|n|_
euv ﬂ C‘ - euv - cuv‘
Also,

Vi X 0. X () =, (5535, 3 (6,) (- X o () = ¥ (%,)and X - (v) = %/(,)
=, (5 (2, X (6,)) (X () = X ()
= €, 10 (x,), %/(x,)
=€ (108 (), 2(x,)) = a5 (x,) # X (x,)

Thus,

ez’:v ﬂ C‘ = ‘//u,v (XC (u)’ XC (V)) .

Case (iv): e;,e{ € C . Then, by Corollary 3.2.2.5, e;:v € C . Thus, the edge esv is common to both

n
e,, and C.
n _|n|_
euv ﬂ C‘ - euv - Cuv'

79| Page

Also,
l//u,v (XC (u)’ XC (V)) = l//u,v (‘xl' (xu)’ X} (xv)) (XC (u) = X; (xu) and XC (V) = X;- (xv))

=, (57 (x,), (6,) (- X (1) = X ()
=, 1(xj(x,),x(x,))
=y (103 (%), X(x,)) =l as xi(x,) # x7(x,))

Thus,

eZv n C‘ =‘//u,v (XC (u)’ XC (V)) .

This proves the Lemma.

LEMMA 3.3.2.7

Let u and v be neighbors in V with| X (u)— X (v)| =|]|.

t
If e, connects supplementary vertex a,, with terminal i, there are three edges associated with u, v

anda,,, ie.e. e ande, . Then minimum cut C on G satisfies the following:

, e ,
uy uau\' al uv

. i i .
(@) If C contains bothe, and e, then, there is only one edge common to both C

n n 1 .. t
and{euaw,e e } and it is e, -

b
AV ay uv

(b) If C contains bothe; and e'vi , then, there is only one edge common to both C

n n t o, . n
and {euaw e e } and it is A

au\' v > allV

(c) If C contains bothel{ and ei, then, there is only one edge common to both C

and {e:aw’e” e } and it is eswv.

>
4V Ay

(d) If C contains both el{ and ei , then, there is no edge common to both C and {e:aw ,e;'wv,e;w }

Proof: First, let’s consider (a). If C is any cut, not necessarily minimum cut and if ef{, ei eC, we

want to prove that, e; € C, if it does not contain edges el'; ‘and e; . (Refer Fig. 3.20 (a)) For that,

if possible, assume that, efl ¢ C. In this case, C does not contain any edge from {e" e’ e } .

ll(l“v’ am,v’ a
It is easy to see that, there exists a path connecting both the terminals via efl , which contradicts with

the fact that, C is a cut. Thus, C must contain e; if it does not contain remaining two edges

of {e” e e } It is clear that, there can exist cuts , which contain an edge other than e; - from

uaMV > a!("v > aMl uy

80|Page

{e” e e } . But in case of such cuts, it must contain at least two edges from {e" e e }

ual—l\' 2 alAVv 4 al—l uaMV 2 aMVV 2 aMV
in order to separate both the terminals in the induced graph. It should be noted that, the edge e; has

weight lesser than sum of other two edges of {e:a , el e } . Hence, if C is a minimum cut, it must

AV ? Ay

. 13
contain e, .

v

Figure 3.20: For Cut C with with| X (u)- X(v)| =|k| and €. _connects supplementary vertex d,, with

terminal i, @) if €., €. € C () ife! e/ eC

Let’s consider (b). If ei, evj € C, we want to prove that, if C does not contain any other edges from

{en e e ,}’ e) eC. (Refer Fig. 3.21 (a)). If possible, assume that, e ¢ C. Then, there

uaMV 2 all\/v ’ am ual¢
exists a path i — (e;)-a,-(e. J)—u—{(e’) — j connecting terminals i and j. , which contradicts

with the fact that, C is a cut. Thus, C must contain e::a , if it doesn’t contain any other edge from

n 2

{esaw,eawv,eaw}. If C contain any edge other than e:aw, it must contain two edges from
{e;'aw,e;'my,e;v} in order to separate terminals in the induced graph. But cost of sum of such two

edges (which is equal to 2.¢,,,) is obviously more than that of cutting only e/ (which is equal to

n B " .
€,). As Cis a minimum cut, it must contain only €, - This proves (b).

8l|Page

Case (c) is similar to case (b). The proof can be produced with similar argument. (Refer to Figure
3.21(a))

n

. . J J n t
Consider case (d). Given that, e/, e/ € C. To prove that, no edge from {e €, v } belong to

b
ua,y,

n

C. We need to prove that, C with {e" e e } NC = ¢ is a cut. For that, observe that, there is no

ua,, = a,v’ - a,,
path connecting terminals in G \ C because both the vertices u and v are disconnected from the
terminal j (Refer to Figure 3.20 (b)). No other cut will have cost lesser than C. Thus, if C is a

minimum cut, it must not contain any edge from the set {e" e e } . This proves the result.

ua,, ’ = a,v>’ - a,,

Figure 3.21: For Cut C with with| X (u)— X (v)| =|k| and e; _connects supplementary vertex d,, with

terminal i, (a) ife,';,evj e C m)if ej,ei eC

LEMMA 3.3.2.8

Let u and v be neighbors in V with| X (u)— X (v)| =|k| .

t
If e, connects supplementary vertex a,, with terminal j, there are three edges associated with u, v

n n

. t - . .
anda,,, i.e. €y, »Ca v and e, - Then minimum cut C on G satisfies the following:

(a) If C contains both e; and ei, then, there is no edge common to both C and {e” e e } .

uau\' > auvv’ al '

82|Page

(b) If C contains bothe; and e'vj , then, there is only one edge common to both C

and{e" e' e },anditis e .

uallV > au‘,v > allV

(¢c) If C contains bothelf and ei, then, there is only one edge common to both C

n n ! ., . n
and {euaw ,e e } and it is euaw.

auv v > auv

. J J . n n t
(d) If C contains both e, ande; , then, there is no edge common to both C and {euaw 1€, 1€, }

a,v°’ > a,,

Proof: The result can be proved by arguments similar to that of Lemma 3.3.2.7. (Refer to Figure 3.22
and 3.23)

Figure 3.22: For Cut C with with| X (u)— X (v)| =|k| and e; _connects supplementary vertex a,, with
terminal j, (a) if e,i, ei eC @)if el{,evj eC

Figure 3.22 presents the case when both the terminal edges corresponding to the same terminal vertex
are part of the cut.

Figure 3.23 presents the case when terminal edges corresponding to different terminal vertices are part
of the cut.

The detailed proof of the result can be easily generated following the proof of Lemma 3.3.2.7 with the
help of figures 3.22 and 3.23.

83|Page

Figure 3.23: For Cut C with with| X (u)— X (v)| =|k| and e; _connects supplementary vertex @, with

terminalj, (@) if €., &' € C) ife’ e eC

THEOREM 3.3.2.9

Let u and v be neighbors in V with|X(u)—X ()| =|k|. If C is minimum cut on G, the total weight of

edges common to both { e’ e;) } and Cwill bey/,, ,, (XC (u),XC).

Proof: We want to prove that, the weight of { €ua, ,ea € } NC is Vo Xe), Xc(v).

Without loss of generality, we assume that, the terminal edge e; connects the dummy vertex

a,,,, with terminal i.

There are four cases:

Case (i): e e € C . Then, by Lemma 3.3.2.7, { e’

LIV’

}ﬂ C-= e Thus,

ua’

n
Heuaw ’ea v’ ﬂ C‘

Also, ¥, (X (u), X (V) =y, ,(x{(x,),x](x,)) (" Using (3.40))
=c,, (“Xw=#X©W)

uv

84|Page

Thus,

ez’:v ﬂ C‘ = ‘//u,v (XC (u)’ XC (V)) .

Case (ii): ei,ejec Then, by Lemma 3.3.2.7, {en e” }nC elm. Thus,

ua,,>va,v’ a

n
{el, €l vocl, €| =elu, | =€

ua uv -

Also, ¥, , (X (), Xc () =y, (xi(x,),x;(x,)) (" Using (3.40))
=c,, (v X@w)#XW)

uyv

Thus,

e:tlv ﬂ C‘ =l//u,v (XC (u)9 XC (V)) .

Case (iii): ejf,eéeC. Then, by Lemma 3.3.2.7, {en ea € }ﬂC e . Thus,

uauv 2
n _|n
euv ﬂ C‘ - euv

uv -

Also,
l//u,v (XC (U), XC (V)) = l//u,v (X'] (xu)3 xz((xv)) (XC (u) = x; (xu) and>(C (V) = x;(xv))

= Gy 1 (), % (x,))
=€y (10X (x,), x;(x,) =T as xj(x,,) # x;(x,)

Thus,

e:tlv n C‘ =l//u,v (XC (u)> XC (V)) .

Case (iv): e e € C. Then by Lemma 3.3.2.7, { e’ } NC= @. Thus, there is no edge

ua’av’

common to both { e’ e } and C.

ua’av’a

e, NC| =gl =

Also,
Vi X @), X () =, (6 (5,), % (x,)) (X (@) = 5j(x,)and X o (v) = ¥ (x,))

= € 103 (5,0, (x,)
=0 (13 (x,),) (x,)) = 0 asx)(x,) = ' (x,)

Thus,

e Ny, (X), X ().

8 |Page

This proves the Theorem.

Note that, minimum cut C on G satisfies both Lemma 3.3.2.7 and Lemma 3.3.2.8. However, there are
cuts, which satisfy both the results without being minimum cut.

DEFINITION

A cut C on graph G corresponding to k& — shift move is said to be a basic cut (or b — cut), if it satisfies
Lemma 3.3.2.7 and Lemma 3.3.2.8.

THEOREM 3.3.2.10

The set of all b — cuts on the network flow G (corresponding to k — shift move) and the set of all
labeling those are one k — shift move far from initial labeling X are in one to one correspondence.

Proof: From Lemma 3.3.2.3, it follows that, if XC is a labeling corresponding to b — cut C, then it is

one k — shift move away from X.

To prove the other part, let’s consider a labeling X', which is one k — shift move far from the initial

labeling X. We want to prove that, there is a b —cut C, which corresponds to labeling X -, which is

same as X . As X is single k — shift move far from the initial labeling X, it will be of the form,
XW)=XWV)or X'(V)=X(W)+k.

Define C as follows:

e eCif X'(v)=X(v)+kand X(v)+keS,

e] <Cif X'(v)=X()+kand X(v)+keS;

e cCif X'(v)=X(v)and X(v) €S,

e Cif X'(v)=X(v)and X(v) €S,

e! < C,if X(u)=X(v)andeither € .e/ €Cor e e €C

uv

If |X(u)-X()|=|k| and e;w connects ,,,, with the terminal 7, then

t PPN i
e, «C,ife,, e ecC

uv

n o 0
e, <C.ife e €C

uv

n e
e, ,C.ifel e C

B
uv u

86|Page

If |X(u)—X(v)|=|k| and e; connects @,,,, with the terminal /, then

t e Vi
e, <C.ife/, ¢/ eC
n o o
e, <C.ifel e C

uv

n o 0
e, ,«C,ife el eC

uy

If is clear from the construction of C, that it is a b — cut and XC is same as X' .

This proves the theorem.

THEOREM 3.3.2.11

If Cis a b — cut on graph G corresponding to k — shift move, the difference between cost of C and
O(X c) is constant.

Proof: Basic cut contains three types of links namely (i) terminal edges (i.e ei and e-vf), (ii) non-
terminal edges for neighboring pixels u and v with X(u)=X(v) (.. e;’V) (ii1) edges

from{e” e e }

uauv > alll’v ? aMV

Hence, [C|=Y [CNHele}[+ > |cNell+ X |cNe|. (3.41)
velV’ {uvleN {uvleN
X(u)=X(v) | X (u)-X (v)|=K|
“ eZallV ’eZuvv ’eéuv

Forv €V, the first term |C N {ei ,e{ }|takes care of weights of terminal edges. There are two cases:

If C contains ei , the first term would be ei , which would be @, (x;(xv)N =¢,(X.(v).

, which would be 2, (x' (¥,)) = @, (X (V))

If C contains evj , the first term would be |e‘{

Hence, in both the cases,

[CNel.eli|=p.(X,)
Hence, Z|Cﬂ {e el = Z(DV(XC) (3.42)
velV’ veV

The second term of (3.41) involves weights of all non-terminal edges for neighboring pixels u and v
with X (1) = X (V) contained in the cut. From Theorem 3.3.2.6,

87|Page

e NCl =1, (X @), X ()

and= Y lehnd
e A

= Y W, Xe@), Xe(v) (3.43)
{u.v}eN
X (u)=X (v)

n t

The third term of (3.41) involves weights of all edges e of {e” e, .., }related to neighbor u and v

s >
uaUV alﬂ v aU

with|X(u) - X(v)| = |k| .But, from lemma 4.6,

|C ﬂ €| = l//u,v(XC (u)9 XC (V))

Thus, > ICNe|l= ZN v, (Xcw), X (v) (3.44)
e (e b | P

Using (3.42) to (3.44) in (3.41), the total cost of a cut C will be,

=D p.X)+ Y v, X XN+ D, K@), X))

velV u,vteN {u,v}eN
X(u)=X(v) | X (u)-X (v)|=«|

= [z @,(X0)+ Z v, (X @), X, (V))j - z ¥, Xc@),X(v)

velV {u,v}eN {u,v}eN
| X ()X (v)|K]

=(0(X))+H - D v, K@) X ()

u,vteN
| X (u)=X (v)|[K]

=(0(X)+ - Y e v (@P=c, itazp)

{uvleN
| X (u)—-X (v)|K|

88|Page

where, K =| — Z c | is a constant.

uyv
{u,vjeN
| X ()= X (v)[[k|

C | - (O(X c)) = K , which proves the result.

This means,

COROLLARY 3.3.2.12

Let C be a minimum cut on graph G corresponding to k — shift move. Then, X o minimizes the

objective function (3.27) over the space of all labeling those are single k — shift move away from the
initial labeling.

Proof: By Theorem 33.2.11, |C] - (O(X)) =K .

ie.(O(X,))=|C|+K. (3.44)

By Theorem 3.3.2.10, the set of all b — cuts on G are in one to one correspondence with set of all
labeling those are single k — shift move far from the initial labeling. Hence, it is enough to prove that,

XC minimizes the objective functions over all possible labeling corresponding to b — cut on G.

As |C | is minimum for minimum cut C over all cuts C on G, the result follows from (3.44).

89|Page

