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3.1 Introduction

Wu [1] in an innovative analysis, dealt with the case of squeeze film behaviour for

porous annular disks in which he showed that owing to the fact that fluid can flow through the

porous material as well as through the space between the bounding surfaces, the performance of

a porous walled squeeze film can differ substantially from that of a solid walled squeeze film.

Later [2] extended the above analysis of [1] by introducing the effect of velocity slip to porous

walled squeeze film with porous matrix attached to the upper plate. They found that the load

carrying capacity decreases due to the effect of porosity and slip. Prakash and Vij [3]

investigated a porous inclined slider bearing without the effect of magnetic fluid (MF) and found

that porosity caused decrease in the load carrying capacity and friction, while it increases the

coefficient of friction. Gupta and Bhat [4] found that the load carrying capacity and friction

could be increased by using a transverse magnetic field using conducting lubricant.

With the advent of ferrofluid (FF), Agrawal [5] studied its effects on a porous inclined

slider bearing and found that the magnetization of the magnetic particles in the lubricant

increases load capacity without affecting the friction on the moving slider. In [6] Verma studied

squeeze film bearing with MF as lubricant using three porous layers attached to the lower plate

and showed that load carrying capacity increases due to the effect of MF lubricant as compared

to conventional viscous fluid as lubricant. Shah et.al. in [7, 8] studied respectively convex pad

porous  surface  slider bearing with slip velocity and axially undefined journal bearing with

anisotropic permeability, slip and squeeze velocity. In both the papers lubricant used was FF and

showed that the performance of the bearing is better. Other references [9 -15] have also analyzed

effects of FFs in their study from different viewpoints.
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In all above investigations, none of the authors in their study considered the effects of

two porous layers attached to the lower plate (slider) for a slider bearing having convex pad

stator with slip and squeeze velocity using FF as a lubricant. The porous layer in the bearing is

considered because of its advantageous property of self-lubrication. With this motivation the

present Chapter proposes the study of performance of a slider bearing having convex pad stator

with two porous layers attached to the lower plate with a FF lubricant under a magnetic field

oblique to the lower surface. Here, the effects of slip velocity at the film and porous interface, as

well as squeeze velocity when the upper plate approaches to lower one are also included for

study.

A mathematical model of the above problem in the form of Reynolds equation is

derived. Fixed size of porous matrix is considered for computation of dimensionless load

carrying capacity for same as well as different values of the permeabilities k1 and k2 of the upper

and lower porous matrixes respectively as shown in Figure 3.1. The results are also obtained

when squeeze velocity 0h  and 0h  .

3.2 Formulation of the Mathematical Model

The configuration of the slider bearing having convex pad stator with squeeze velocity

h is displayed in Figure 3.1. The lower surface (slider) is of having length A in x -direction and

breadth B in y -direction and moving with uniform velocity U in the x -direction. The upper

convex pad surface is a stator with central thickness cH . The film thickness is h and given by

expression (refer [7])
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… (3.1)

where 2h and 1h are maximum and minimum film thicknesses respectively.

The slider has attached with porous matrix of thickness 2d first and then 1d as shown

in   Figure 3.1. The stator moves normally towards the slider with a uniform velocity

/ ,h dh dt

where t is time.

Also,

,u v w  q i j k

… (3.2)

where , ,u v w are components of film fluid velocity in x, y and z -directions respectively.

The magnetic field considered here is oblique to the lower surface and is defined as

2 ( ) ,H K x A x 

… (3.3)

where K is chosen to suit the dimensions of both sides.
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By combining basic flow equations (2.18) to (2.22) and using equation (3.2) under the

usual assumption of lubrication, neglecting inertia terms and that the derivatives of velocities

across the film predominate, equation governing the lubricant flow in the film region in

x -direction yields

2
2

02

1 1
,

2

u
p H

xz
 


       

… (3.4)

where p is the pressure in the film region, 0 is the free space permeability,  is the magnetic

susceptibility and  is the fluid viscosity.

Using slip boundary conditions [16]

1
;

u
u U

s z


 


11 k

s 
 when 0,z 

… (3.5)

and

0u  when z h ,

… (3.6)

equation (3.4) becomes
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where s represents slip parameter, α represents slip coefficient and k1 represents permeability of

the upper porous layer. All are dependent on the structure of the porous material.

Continuity equation for the film region is given by

0.
u w

x z

 
 

 

… (3.8)

Integrating continuity equation (3.8) for the film thickness h; that is, from 0 to h, and

making use of equation (3.7), yields
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… (3.9)

as ,hz h
w w V h

     which represents squeeze velocity in the downward z -direction.

Also,
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.

z
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




61

The velocity components in the porous region are given by
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… (3.10)
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where 1,2i  represents index of velocity components in the porous matrix of thickness d1 and

d2 respectively; 1 2,P P are the pressures in the porous layers and 1 2,k k are permeabilities there

(Refer Figure 3.1).

Considering continuity of the flow between two porous layers 1d and 2d with respect to

z, one obtains
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… (3.12)

Also, at the surface of the impermeable lower plate
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Using equations (3.10) and (3.11) in the continuity equation for porous region
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 
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where 1,2i  .

Integrating equation (3.14) with respect to z over the porous layer of the thickness
1d ,

yields
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Again, integrating equation (3.14) with respect to z over the porous layer of the

thickness
2d , yields
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Using condition (3.12), equation (3.15) becomes
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Using equations (3.13) and (3.16), equation (3.17) becomes
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using Morgan-Cameron approximation [16].

As the normal component of velocity across the film-porous interface are continuous,

therefore

0 0
.

z z
w w
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

… (3.19)

Using equation (3.11) at z = 0, equations (3.18), (3.19) and the fact that 2 / 0H z   ,

equation (3.9) becomes
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which is known as Reynolds equation of the considered phenomena.

Defining dimensionless quantities
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the magnetic field H defined in equation (3.3) becomes

2 2 (1 ),H K A X X 

… (3.22)

and the equation (3.20) becomes

1
* (1 ) ,

2

d d dE
G p X X

dX dX dX


        

… (3.23)

where
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Equation (3.23) is known as Reynolds equation in dimensionless form.



65

3.3 Solution

Solving equation (3.23) under the boundary conditions

0p when 0, 1,X 

… (3.25)

yields
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The load carrying capacity W of the bearing can be expressed in dimensionless form as
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Using equation (3.26),
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3.4 Results and Discussion

The values of the dimensionless load carrying capacity W has been calculated for the

following value of the parameters using Simpson’s 1/3 rule with step size 0.1.

1 0.05( ),h m 2 0.10( ),h m 0.05,  1 ( / ),U m s

0.15 ( ),A m 20.012 ( / ),N s m  7 2
0 4 10 ( / ),N A    0.3( ),cH m

0.005 ( / ),h m s 1 0.01( ),d m 2 0.01( ),d m 0.1,  910 .K 

The FF used here is water based. The magnetic field considered here is oblique to the

lower plate and its strength is in between O(102) – O(103) in order to get maximum magnetic

field at x = A / 2.

The calculation of magnetic field strength is shown below [8]:

From equation (3.3),

2 ( ) ,H K x A x 

2 4Max.. 10 ,H K

For H =O(103), K =O(1010).

According to [17] the maximum magnetic field strength one can take is of O(105) .
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The calculated values of W presented by Tables 3.1 and 3.2.

Table 3.1 presents the values of W by interchanging the values of 1k and 2k for two

different cases of 0h  and 0h  . It is observed from the table that when 1 2k k ,

dimensionless load carrying capacity increases about 6.35 % in both the cases; that is, for 0h 

and 0h  as compared to 1 2k k .

Table 3.2 presents the values of W by considering two same values of 1k and 2k for

two different cases of 0h  and 0h  . It is observed from the table that the dimensionless load

carrying capacity increases about 113% for 1 2 0.0001k k  in both the cases; that is, for 0h 

and 0h  as compared to 1 2 0.01k k  .

3.5    Conclusions

The problem on slider bearing having convex pad stator with two porous layers attached

to the lower plate is discussed here for it optimum performance with a FF lubricant under a

magnetic field oblique to the lower surface. The effects of slip velocity at the film and porous

interface, as well as squeeze velocity when the upper plate approaches to lower one, is also

considered for study. The FF flow model considered here is due to R. E. Rosensweig and the FF

is considered to be of water based with magnetic field strength considered of order between

102 – 103 in order to get maximum magnetic field at x = A / 2. From the results and discussion it

is concluded that better dimensionless load carrying capacity can be obtained for smaller values

of 1k and 2k and for 1 2k k .
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Also, it should be noted from equation (3.4) that, a constant magnetic field does not

enhance load carrying capacity in Rosensweig’s FF flow model.
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3.6    Figure

Figure 3.1 Convex pad surface slider bearing.
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3.7 Tables

W

1k 2k 0h  0h 

0.1 0.0001 0.1620510 0.1621569

0.0001 0.1 0.1523362 0.1524624

% increase in W 6.38 6.35

Table 3.1 Values of W for interchanging values of 1k and 2k considering 0h  and 0.h 

W

1k 2k 0h  0h 

0.0001 0.0001 0.3386675 0.3385819

0.01 0.01 0.1588051 0.1592045

% increase in W 113.26 112.67

Table 3.2 Values of W for same values of 1k and 2k considering 0h  and 0.h 
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