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4.1 Introduction

When two lubricated surfaces approach each other with a normal velocity (known as

squeeze velocity), then squeeze film phenomenon arise [1]. Study of squeeze film behaviour are

observed in many fields of real life such as in machine tools, gears, rolling elements, hydraulic

systems, engines, clutch plates, etc. Also, it is observed in the study of human knee joints and

other skeletal joints as bio-lubrication [2]. Squeeze film with the attachment of porous layer

(region or plate or matrix or surface) are widely used in industry because of its advantageous

property of self-lubrication and no need of exterior lubricant supply.

In recent years, many theoretical and experimental inventions are made on the bearing

design systems as well as on the lubricating substances in order to increase the efficiency of the

bearing performances. One of the major revolutions in the direction of lubricating substances is

an invention of ferrofluids (FFs).  Many researchers have also tried to find its application as

lubricant in squeeze film bearing design systems. Verma [3] studied effects of magnetic fluid

(MF) on squeeze film bearing design system under an externally applied magnetic field oblique

to the lower surface with the lower porous surface composed of three thin layers with different

porosities. Explicit solutions for velocity, pressure, load carrying capacity and response time are

obtained. It is found that upper plate takes longer time to come down in this case as compared to

conventional lubricant based squeeze film. Kumar et. al. [4] studied squeeze film for spherical

and conical bearings using ferrofluid (FF) as lubricant with the effects of rotation of particles and

constant magnetic field in transverse direction, and numerically studied various bearing

characteristics. Bhat and Deheri [5] discussed about curved porous circular discs squeeze film

with the effect of MF and shown that pressure, load carrying capacity and response time

increases with the increase of magnetization. Prajapati [6] discussed various designed squeeze
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films with MF effect and shown the superiority performance of the MF lubricant than

conventional lubricant. Shah et. al. [7] studied squeeze film between porous annular curved

plates with the effects of rotational inertia as well as MF and found that the increase in pressure

and load carrying capacity depended only on the magnetization whereas response time dependent

on magnetization, fluid inertia and speed of rotation of the plates. In [8], Shah and Bhat studied

squeeze film in a long journal bearing using FF as lubricant and found that load carrying capacity

and response time increased with the increasing values of the eccentricity ratio. In [9], Patel and

Deheri discussed about MF based squeeze film between porous conical plates and found that

negative effect induced by the porosity can be neutralized by the positive effect caused by the

magnetization parameter. Andharia and Deheri in [10] studied MF based squeeze film for

truncated conical plates with the effect of longitudinal roughness and found that load carrying

capacity can be increased with magnetization as well as negatively skewed roughness. The

pressure and response time also found to increase with magnetization. Shah and Patel [11]

discussed impact of various porous structures on curved porous circular plates squeeze film

using FF as lubricant and found that globular sphere model have more impact on increase of load

carrying capacity as compare to capillary fissures model. Lin et. al. in [12] studied squeeze film

characteristics for conical plates with the effect of fluid inertia and FF, and shown the better

performance of the system as compared to non-inertia non-magnetic case.  In [13], Lin et. al.

studied squeeze film characteristics of parallel circular discs with the effects of FF and

non-Newtonian couple-stresses using transverse magnetic field. With these effects, it was shown

that higher load carrying capacity and lengthens approaching time obtained.

The purpose of the present Chapter is to study newly designed squeeze film bearing

made up of a sphere and a flat plate using water based FF as lubricant, which is controlled by
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oblique and variable magnetic field, with the effects of porosity, slip velocity and squeeze

velocity. With these effects, the impact of squeeze film height, permeability and width of the

porous layer are studied. Expressions for pressure, load carrying capacity and response time are

obtained from Reynolds equation. The dimensionless pressure distribution, load carrying

capacity and response time are calculated and presented graphically.

4.2    Development of the Mathematical Model

Figure 4.1 shows the schematic representation of the bearing design system under study.

The upper surface is a rigid sphere of radius ,a and lower surface is a flat porous plate which is

formed when a porous layer of thickness
0H is attached to the impermeable flat surface. The

porous layer is considered because of added advantage of self-lubricating property of the system.

The region between the sphere and flat porous plate is known as film region, which is filled with

FF and controlled by variable magnetic field of strength ,H which is oblique to the lower plate.

As far as dynamical part is concern, the upper surface (sphere) approaches to lower flat porous

plate with a uniform velocity, known as squeeze velocity mh , and is defined as

... (4.1)

where mh is minimum film thickness and t is time.

The shape of the film thickness h is defined as

2
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... (4.2)

where r is the radial coordinate.

Also,

( , , ) ( , , ),r r z u rv w q  

... (4.3)

where ( , , )r z are cylindrical coordinates and dot (.) represents derivative with respect to t.

As mentioned above, the variable magnetic field of strength H considered here is of the

form [14]

2
2 ( )

,
K r a r

H
a




... (4.4)

where K is chosen to suit the dimensions of both sides.

By combining equations (2.18) to (2.22) and using equation (4.3) under usual

assumptions of lubrication, neglecting inertia terms, and that the derivatives of fluid velocities

across the film predominate, the equation governing the lubricant flow in the film region in

cylindrical coordinates yields

2
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1 1
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... (4.5)
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where p is the pressure in the film region, 0 is the free space permeability,  is the magnetic

susceptibility and  is the fluid viscosity.

As porous layer is attached to the lower impermeable surface, solving equation (4.5)

using slip boundary condition at the lower porous surface (that is, at 0z  ) as (refer [15, 16])

1 1
; ,

5

r ru
u

s z s

 
 


and condition at the upper spherical surface as

0 when ,u z h 

yields velocity profile in the film region as

  2
0

(1 ) ( ) 1
,

2 (1 ) 2

h z sh z h d
u p H

sh dr
 


        

... (4.6)

where s is a slip parameter and ,r r  are the permeability and porosity of the porous region in

the radial direction respectively.

The continuity equation for the film region in cylindrical coordinates is given by

1
( ) 0,

w
ru

r r z

 
 

 

... (4.7)
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which on integrating over the film thickness h; that is, over the interval (0, h) and making use of

equation (4.6) with the insertion of squeeze velocity effect h mz h
w w h


   , yields

3
2

0 0

1 (4 ) 1
,

12 (1 ) 2 m

rh sh d
p H h w

r r sh dr
 


            

 where 0 0
.

z
w w




... (4.8)

Assuming the validity of the Darcy’s law in the porous region, the radial and axial

velocity components of the fluid in the porous region are given by

2
0

1

2
ru P H

r


 


         

,

... (4.9)

2
0

1

2
zw P H

z


 


          

,

... (4.10)

where z is the permeability of the fluid in the porous region in axial direction, and P is the

pressure there.

The continuity equation for the FF flow in the porous region is given by

1
( ) 0

w
r u

r r z

 
 

 
.

... (4.11)
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Substituting equations (4.9) and (4.10) in equation (4.11), and integrating over the

thickness of the porous matrix
0 ;H that is, over the interval

0( , 0)H yields

2 2
0 0 0

0

1 1 1
.

2 2r z

z

H r P H P H
r r r z

     


                    

... (4.12)

Using Morgan-Cameron approximation [17] that the pressure P in the porous region can

be replaced by the average pressure p with respect to the bearing wall thickness as

2 2
0 0

1 1

2 2
P H p H

r r
   

             
,

equation (4.12) becomes
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... (4.13)

Assuming that the normal (axial) component of velocity across the film-porous interface

at the lower plate are equal, therefore

0 0
.

z z
w w

 


... (4.14)
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Using equations (4.8), (4.10), (4.13) and (4.14), one yields

3
2

0

1 (4 ) 1
12 12 ,
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

... (4.15)

which is known as Reynolds type  equation of the considered phenomenon.

Introducing dimensionless quantities
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... (4.16)

Equation (4.15) becomes

21
* (1 ) 12 ,

2
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GR p R R R

dR dR
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where
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... (4.18)
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4.3    Solution

Solving equation (4.17) under the boundary conditions for the pressure field as

0p  when 1R  and 0
d p

dR
 when 0,R 

... (4.19)

yields

1
2 61

* (1 ) .
2 R

R
p R R dR

G
   

... (4.20)

The load carrying capacity W can be obtained by using the definition

0

2 .
a

W pr dr 

... (4.21)

Using dimensionless quantities defined in equation (4.16), equation (4.21) implies

dimensionless load carrying capacity as

3

42
m

m

W h
W

a h
  

1 3

0

*
3 ,

40

R
dR

G


  

... (4.22)

where G is defined in equation (4.18).
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Again, introducing dimensionless quantities for calculating response time t as

4 2
* * * *0
1 03 4
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h H t s sh
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     

... (4.23)

where ih is the initial film thickness.

Using (4.23), the dimensionless response time t to reach a film thickness mh starting

with an initial film thickness ih is given by

1 3
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which implies
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where
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4.4 Results and Discussion

The values of the dimensionless pressure distribution ( p ), load carrying capacity (W )

and response time ( t ) have been calculated for the representative values of different parameters

given in section 4.4.4 using Simpson’s 1/3-rule with step size 0.1.

The FF used here is water based. The variable magnetic field considered is oblique to

the lower plate and its strength is of O(102) in order to get maximum magnetic field strength at

2 / 3r a . The calculation of magnetic field strength is shown in section 4.4.4. The other order

of magnetic field strength with different K is shown in Figure 4.2.

When FF is used as lubricant, then the variation in p is due to the first term of the

equation (4.20). The same conclusion happens for W in equation (4.22).  Also, it is clear from

equation (4.24) that, the variation in t is due to the term *
1 / 40 , when FF is used as lubricant.

4.4.1 Discussion on Squeeze Film Pressure

Figure 4.3 shows the variation in dimensionless pressure distribution p as a function of

dimensionless radial coordinate R for different values of dimensionless minimum film

thickness mh . It is observed that p increases as mh increases, but the increase rate is more

when 0 0.5R  . When 0.5R  , then p remains almost same for all mh . That is, in general, as

R increases, p decreases. Hence, p is maximum nearer to origin of radial axis. The variation
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in p as a function of dimensionless radial permeability parameter of the porous region r is

shown in Figure 4.4.  It is observed that when 6 32.92 10 2.92 10r     , p is constant, and

then it starts decreasing when 32.92 10r   . Figure 4.5 shows the variation in p as a function

of dimensionless thickness of the porous matrix 0H . It is observed that for 00 0.01,H  p

remains constant. When 0 0.01H  , p starts decreasing.  It should be noted here that 0 0H 

indicates solid case; that is, the bearing design system without porous surface at bottom.

It is a general observation (refer [16, 18]) that, the insertion of porous surface decreases

load carrying capacity and ultimately pressure. Moreover, porous surface is inserted because of

advantageous property of self-lubrication. Thus, it is interesting to note from Figure 4.5 that

when 00 0.01,H  p remains constant. It means that, p attains the same value as that of solid

case 0( 0)H  even if 00 0.01H  . This is the added advantage of obtaining p as that of solid

case as well as maintaining self-lubricating property of bearing design system. From Figures 4.4

and 4.5, p attains its maximum value, when 6 32.92 10 2.92 10r     and 00 0.01H  .

4.4.2 Discussion on Load Carrying Capacity

Figure 4.6 shows the variation in dimensionless load carrying capacity W as a function

of dimensionless thickness of the porous matrix 0H for different values of dimensionless

minimum film thickness mh . It is observed that W increases as mh increases. When

0.005 0.009mh  and 00.00001 0.01H  , W attains almost constant value.

For 0.001 0.004mh  , W starts decreasing after 0 0.0001H  whereas before that it takes

constant value. After 0.01mh  , W decreases for all mh . The variation in W as a function of
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dimensionless radial permeability parameter of the porous region r for 0.007mh  is shown in

Figure 4.7. It is observed that r has no effect on W , when 6 32.92 10 2.92 10r     .

After 32.92 10r   , W decreases. Thus, from Figures 4.6 and 4.7, it is observed that better load

carrying capacity can be obtained for thin layer of FF, where 0.005 0.009mh  ,

00.00001 0.01H  and 6 32.92 10 2.92 10r     . Figure 4.8 shows that W attains the

same value when 0 0H  (solid case) and 0 0.0001H  . Thus, again as discussed in squeeze film

pressure, added advantage of obtaining W as that of solid case with self-lubricating property of

bearing design system is observed.

4.4.3 Discussion on Squeeze Film Time

Solving equation (4.25) numerically using double integration procedure considering

Simpson’s 1/3-rule with step size 0.1 for inner integral and step size given by following

calculation for outer integral.

m
i

i

h
h A

h
  (Say), then 1

10

A
 step size

Figure 4.9 shows the variation in dimensionless response time t as a function of

dimensionless thickness of the porous matrix 0H for different values of dimensionless

minimum film thickness mh . It is observed that, t decreases steeply when upper surface

squeezing the FF film in the film region from height 0.1ih  to minimum film

thickness 0.001mh  . When 0.002mh  , then decrease rate of t becomes low. For all other

values of mh , t almost takes constant value. It is to be noted here from Figure 4.9 that t is more
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when mh takes values from 0.009 to 0.001. The variation in t as a function of dimensionless

radial permeability parameter of porous region *
r for 0.007mh  is shown in Figure 4.10 where

t start decreases after * 310r  .

4.4.4 Representative Values and Calculation of K

The following representative values are taken in computations.

0.0001( ),ih m 0.05,  20.012 ( / ),Ns m  0.25,r  7 2
0 4 10 ( / ),N A   

9 2 410 /1.48 ( / ),K A m 25.0 ( ),W N 0.04 ( / ) ,mh m s

11 210 ( )r m  (fixed for Figures 4.3, 4.5, 4.6, 4.8, 4.9),

0 0.0001( )H m (fixed for Figures 4.3, 4.4, 4.7, 4.10),

0.001( )a m (fixed for Figure 4.3), 0.01 ( ),a m (fixed for Figures 4.4 - 4.10),

0.0001( )r m (fixed for Figures 4.4 – 4.10), 0.00007( )mh m (fixed for Figures 4.4, 4.5).

From equation (4.4),

2
2 ( )

,
K r a r

H
a




2 5Max.. 1.48 10 forH K  0.01,a 

For 910 /1.48 ,K  H= O(102)  or  O(H) = 2,

where  O indicates order.
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4.5    Conclusions

On the basis of the ferrohydrodynamics theory, a FF lubricated squeeze film bearing

design system formed by a sphere and a flat porous plate considering variable magnetic field,

which is oblique to the lower plate, is theoretically analysed. It is noted here that porous plate is

considered because of its advantageous property of self-lubrication and no need of exterior

lubricant supply. The analytical model, known as Reynolds equation, is derived using equation

of continuity in film as well as porous region and equations from ferrohydrodynamics theory.

The above model also considers the validity of Darcy’s law in the porous region.

The following conclusions can be made from results and discussion.

(1) p is maximum nearer to 0.1R 

(2) p is maximum and constant, when 6 32.92 10 2.92 10r    

(3) p is maximum and constant, when 00 0.01H 

(4) Better load carrying capacity can be obtained, when 0.005 0.009mh  ,

00.00001 0.01H  and 6 32.92 10 2.92 10r    

(5) t is maximum for 0.001mh  , 0 0.00001H  and * 6 310 10r   

(6) t has almost constant behaviour for 0.003 0.009.mh 

It should be noted here that, according to [16], when porous layer is inserted then the

pressure of the porous medium provides a path for the fluid to come out easily from the bearing

to the environment, which varies with permeability. Thus, the presence of the porous material
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decreases the resistance to flow in r -direction and as a consequence the load carrying capacity is

reduced. The same behaviour also agrees with the conclusion of the Prakash and Tiwari [18]

theoretically and experimentally by Wu [1]. In our case, the loss in W due to effect of porosity is

almost zero because of using FF as lubricant (which is controlled by oblique and variable

magnetic field) for smaller values of 0H and r . Moreover, because of porosity effect,

self-lubrication property is an added advantage. The present case reduces to the case of

conventional lubricant when * 0  and *
1 0. 

It is to be noted here that variable magnetic field is used because uniform magnetic field

does not enhance bearing performances as can be seen from equation (4.5).
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4.6 Figures

Figure 4.1 Squeeze film geometry between a sphere and a flat porous plate

with oblique and variable magnetic field.
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Figure 4.2 Order of magnetic field strength with different values of .K
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Figure 4.3 Variation in dimensionless pressure distribution p for different values of R and .mh
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Figure 4.4 Variation in dimensionless pressure distribution p for different values of .r
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Figure 4.5 Variation in dimensionless pressure distribution p for different values of 0 .H
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Figure 4.6 Variation in dimensionless load carrying capacity W for different values of

0H and .mh
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Figure 4.7 Variation in dimensionless load carrying capacity W for different values of .r
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Figure 4.8 Variation in dimensionless load carrying capacity W for different values of

mh and 0 .H
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Figure 4.9 Variation in dimensionless response time t for different values of 0H and mh when

squeezing takes place from height 0.1..ih 
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Figure 4.10 Variation in dimensionless response time t for different values of *
r when

squeezing takes place from height 0.1.ih 
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