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6.1 Introduction

As discussed earlier in Chapter 5, the fluid film between two surfaces with a relative

normal velocity is important in many frictional devices in industry as well as in human body.

This Chapter studied squeeze film geometry of truncated cone. Prakash and Vij [1] analyzed

lower porous plate squeeze film bearing of different shapes (annular, circular, elliptic,

rectangular and cone) using Morgan-Cameron approximation. The effects of the shape of plate

and porosity on the bearing performance are calculated. Kumar et. al. [2] studied ferrofluid based

squeeze film for spherical and conical bearings. The magnetic field considered was in the

transverse direction of the fluid flow. Here, they have considered Shliomis model to solve the

problem because it taken care of rotation of the fluid particles as well as liquid. The resulting

governing equations are nonlinear coupled equations and are solved using perturbation method in

terms of dimensionless Brownian relaxation time parameter. The effect of magnetic fluid

parameters on various bearing characteristics is studied numerically. Prajapati [3] analyzed

various designed bearings like circular, annular, elliptic, conical, etc. It is shown that with the

increase of magnetization parameter * , the load carrying capacity increases.  Thus, concluded

the superiority performance of the bearings with MF as lubricant. It is also concluded that the

bearing with MF can support a load even when there is no flow. Patel and Deheri [4] studied

squeeze film based on magnetic fluid for conical plates. There they found that the performance

of the bearing with this lubricant is relatively better than the conventional lubricant. Also, it is

found that the negative effect induced buy the porosity can be neutralize by the positive effect

caused by the magnetization parameter. Further, the paper suggests about the choosing of

suitable combination of the magnetization parameter and semi-vertical angle for enhancing

bearing performances. Vadher et. al. [5] analyzed performance of hydromagnetic squeeze film
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between two conducting truncated conical plates. The plates are considered electrically

conducting and the clearance space between them is filled by an electrically conducting

lubricant. A uniform transverse magnetic field is applied between the plates. The resulting

Reynolds equation is solved for pressure, load carrying capacity and response time. The results

suggest better performances for the bearing as compared to conventional lubricant. Andharia and

Deheri [6] studied longitudinal roughness effect on MF based squeeze film between conical

plates. It is shown that the performance of the bearing gets enhanced due to negative skewed

roughness. Also, it is shown that the standard deviation increases the load carrying capacity

which is unlike the case of transverse surface roughness. Recently, Lin et. al. [7] studied effects

of fluid inertia forces on the squeeze film characteristics of conical plates using ferrofluid

lubricant. By applying the averaged momentum principle, a lubrication equation governing the

film pressure is derived. Comparing with the non-inertia non-magnetic case, better squeeze

performances are predicted when operating with large value of the inertial parameter of fluid

inertia forces.

This Chapter studied porous truncated cone squeeze film-bearing model considering the

effects of porosity, permeability, squeeze velocity and oblique variable magnetic field. Effects of

two permeability models-globular sphere and capillary fissures are also discussed. Expressions

for pressure and load carrying capacity are obtained. The results for dimensionless load carrying

capacity are computed.

6.2 Mathematical Formulation of Globular Sphere - Permeability Model

Figure 6.1 shows  schematic diagram of  porous truncated cone squezee film-bearing.

The lower surface is attached with a porous matrix of thickness *H .
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By the usual assumptions of lubrication theory, neglecting inertia terms, derivatives of

fluid velocity across the film predominate and combining equations (2.18) to (2.22), the equation

governing the pressure distribution p in the film region using ferrofluid (FF) as lubricant

satisfies the modified equation [8, 9]
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where x, y, z are the Cartesian coordinates, h is the film thickness, H is strength of variable

magnetic field, dtdhh / is the squeeze velocity of the upper bearing surface, w0 is the

z-component of the fluid velocity at z = 0,  is fluid viscosity, 0 is the free space permeability,

 is  magnetic susceptibility and P is pressure in the porous region.

Integrating equation (6.2) with respect to z over the porous matrix thickness ( *, 0)H

yields
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Since
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as *z H  is a solid surface, that is the porous matrix is press-fitted with a solid housing as

shown in Figure 6.1.

Using equations (6.3) and (6.4)
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using Morgan-Cameron approximation [8].

Using Darcy’s law, the z -component of velocity in the porous region is given by
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where Dc is a mean particle size,  is the  porosity of  the  porous matrix (refer Figure 6.2).

Assuming the normal components of velocity across the film-porous interface is

continuous, therefore
00 


zz

ww , which yields, using equations (6.1), (6.5) and (6.6) as
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implies
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or
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Using equation (6.9) and referring literature [1, 4], the Reynolds-type equation for the

film pressure can be obtained as
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where  is the semi-vertical angle of the truncated cone.
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Using equation (6.10) and choosing oblique and variable magnetic field [6]
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… (6.11)

where K is chosen to suit the dimension of both sides, a is upper radius of the truncated cone

and b is the lower radius of the truncated cone, the concerned Reynolds-type equation for the

film pressure can be obtained as
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Using boundary conditions
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equation (6.12) becomes
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which can be written in dimensionless form as
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6.3 Calculation of Load Carrying Capacity

The definition of load carrying capacity
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implies
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which can be written in dimensionless form as
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where * and  are defined as  in equation (6.16).

6.4 Mathematical Formulation of Capillary Fissures - Permeability Model

When the porous matrix is designed with capillary fissures composed of three sets of

mutually orthogonal fissures as suggested by Irmay [6], then equation (6.9) becomes
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where Ds is a mean solid size and
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(refer Figure 6.3).
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The load carrying capacity in dimensionless form can be obtained as
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6.5 Results and Discussion

Table 6.1 shows the results of W for porous truncated cone squeeze film-bearing

considering 3 2 2 2 2 4/ ( ) cosecW Wh h a b     .

It is observed from the table that porous truncated cone does not support load when

dimensionless magnetization parameter * 0  and dimensionless permeability parameter

0.0001  , that is when there is no use of FF as lubricant. But when FF is used as lubricant,

then it supports load and this effect is more evident as * increases. Moreover, the reverse

trend of W is observed with respect to  , that is as compared to other previous bearing designs

here W increases with the increase of  .
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6.5.1 Comparison between globular sphere and capillary fissures models of
truncated cone with other bearing designs

When the porous matrix is designed with globular spheres suggested by Kozeny-

Carman [10], then the permeability of the porous matrix attached at the lower plate or disk is

defined by

3 2

2
,

180 (1 )
cD


where Dc is a mean particle size,  is the porosity of the porous matrix.

When the porous matrix designed with capillary fissures composed of three sets of

mutually orthogonal fissures as suggested by Irmay [10], then the permeability of the porous

matrix attached at the lower plate is defined by
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
. The impact of these two porous

structures on W is shown in Table 6.2 [11] for the following value of different parameters.

0.2  , 0.00001(m),c sD D  * 0.0001(m),H 

0.000005(m),h  / 6  (rad.).

From the Table 6.2, it is observed that better load carrying capacity can be obtained

when the porous matrix is designed with globular porous structures except for truncated cone

bearing design system. For truncated cone bearing design system capillary fissures structures have

better effect on W .
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6.6 Conclusions

Reynolds-type equation for squeeze film-bearing truncated cone design system is

theoretically derived by considering equations from ferrohydrodynamic theory by R.E.

Rosensweig and equation of continuity in film as well as porous region. The validity of the

Darcy’s law is assumed in the porous region. The effects of porosity, permeability, squeeze

velocity and variable magnetic field are considered. The variable magnetic field considered here

is oblique to the lower disk or plate. Moreover, the porous surface is considered because of its

advantageous property of self-lubrication and no need of exterior lubricant supply.

It is concluded that the porous truncated cone bearing does not support load in the case

of conventional lubricant, whereas it does in the case of FF as lubricant for smaller values of  .

Moreover, the reverse trend of W can be observed with respect to  as compared to other

bearing design systems. Moreover, the better performance (in the sense of W increases) of the

bearings are observed in the case of globular sphere model suggested by Kozeny-Carman for

permeability in the porous region except in the case of truncated cone bearing design, where

better load carrying capacity can be obtained in the case of capillary fissures model.
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6.7 Figures

Figure 6.1 Schematic diagram of porous truncated cone squeeze film geometry.
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Figure 6.2 Globular sphere model of porous matrix suggested by Kozeny-Carman.

Figure 6.3 Capillary fissures model of porous matrix suggested by Irmay.
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6.8 Tables

Dimensionless
permeability
parameter

W

* 0  * 0.2  * 0.3 

0.0001  0.00000 0.01745 0.02618

0.01  0.00003 0.01749 0.02622

1.0  0.19970 0.21716 0.22588

Table 6.1 Comparison of dimensionless load carrying capacity W

for / 6. 

Bearing
geometry

W

Annular Circular Infinitely long
rectangular
( )a b

Complete
cone

Truncated
cone

Globular
sphere
model

9.1364 4.4628 1.9241 12.2885 0.0262

Capillary
fissures
model

0.8765 0.3650 0.1849 0.1984 0.2469

Table 6.2 Comparison between globular sphere model and capillary fissures model.
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