
Nonlinear Fuzzy Optimization Problems and

their Applications

Thesis Submitted By

Umme salma Pirzada

Towards the Partial Fulfillment for the

Degree of

Doctor of Philosophy

in

Applied Mathematics

Guided By

Prof. S. Rama Mohan

Faculty of Technology and Engineering

The Maharaja Sayajirao University of Baroda

Kalabhavan,Vadodara - 390 001.

India

October, 2011



Dedicated to

My Parents

and

My dear brother...



Declaration

I hereby declare that:

(i) the thesis comprises only my original work towards the Ph.D. except where indicated,

(ii) due acknowledgment has been made in the text to all other materials used,

(iii) this work has not formed the basis for the award of any degree, diploma, fellowship,
associateship or similar title of any University or Institution.

Umme salma M. Pirzada
Department of Applied Mathematics
Faculty of Technology & Engineering
The M. S. University of Baroda
Vadodara - 390 001



Certificate

This is to certify that Ms Umme salma M. Pirzada has worked under my guidance to pre-
pare the thesis entitled “Nonlinear Fuzzy Optimization Problems and their Applications”
which is being submitted herewith towards the requirement for the degree of Doctor of
Philosophy in Applied Mathematics.

Prof. S. Rama Mohan
Department of Applied Mathematics
Faculty of Technology & Engineering
The Maharaja Sayajirao University of Baroda
Vadodara-390 001.

Prof. D. P. Patel Prof. A. N. Misra
Head, Dean,
Dept. of Applied Mathematics Fac. of Technology & Engineering
Fac. of Technology & Engineering The M. S. University of Baroda
The M. S. University of Baroda Vadodara-390 001.
Vadodara-390 001.



Approval Sheet

This thesis entitled “Nonlinear Fuzzy Optimization Problems and their Applications” sub-
mitted by Umme salma M. Pirzada in Applied Mathematics is hereby approved for the
degree of Doctor Of Philosophy.

EXAMINERS

SUPERVISOR

HEAD



Acknowledgments

This thesis is one of the concluding steps in the process of obtaining Ph. D. degree in
“Nonlinear Fuzzy Optimization Problems”. There are many people who made this journey
easier than what It would have been, with their help, support and words of encouragement
during the work. It is my pleasure to convey my gratitude to all of them in this humble
acknowledgment.

When I look back to the year 2006, the year in which my journey for Ph. D. started; I can
see two faces of constant inspiration, Prof. V. D. Pathak and Prof. S. Rama Mohan. They
gave me firstly the confidence to take up this study and then the strength to complete this
journey successfully. I consider myself to be the most fortunate one for, not only getting
an opportunity to work with them and benefit from their mathematical genius but also
receive their fatherly affections. I am extremely grateful to them for putting faith in my
abilities and for taking responsibility of guiding me throughout my Ph. D studies. I was
also fortunate to get an opportunity of working with them in the department. I thank
them from the bottom of my heart for all the support, encouragement and guidance pro-
vided to pursue my research and teaching. I would also like to convey my sincere thanks
to Mrs. Pathak, for her kind hospitality whenever I went to her home for discussing my
doubts related to this work with Pathak Sir.

My other next immediate source of inspiration is ALLAH. Faith in His love for me, makes
me always strong and gives courage to stand against and face odd and difficult moments
of life. I bow to Him from the bottom of my heart, for His unqualified love and care for me.

I deeply thank my loving parents for their blessings, love and care throughout my life. It
would have been really impossible to sail through this journey smoothly without them. My
family deserves special mention for their inseparable support, encouragement and prayers.
I would like to thank my four brothers Jamaluddin, Arslan, Moin, Sadik, my sister Zainab
and my bhabhi Azimunisha, who were important to the successful realization of this thesis.

I am very much thankful to all my teachers in this department, especially, Pragna Madam,
Bankim Sir, Vakaskar Sir, Dhanesh Sir, Trupti Madam and Purnima Madam who sup-
ported and motivated me throughout the research. I would like to give warm thanks to



Prof. R. K George for his support and encouragement.

I express my gratitude to Snehal Sir, for all his help and words of encouragement with
spiritual and friendly caring behavior.

My special thanks to Jignesh Sir for his support, advice and being a source of optimism.
I feel motivated and energized every time, after my discussion with him.

I convey my warm thanks to Jaita Madam, my colleague and my very good all whether
friend. She helped me immensely by giving encouragement and friendly support in diffi-
cult times. She has always been a source of love and energy for me.

I would like to give special thanks to Pankaj Sir for his encouragement and help in all
possible ways.

I would like to thank Rahul, Reshma, Bhavika, Ravi, Varsha and Bharat, my friends in
this department for extending help anytime I needed and making me feel comfortable and
homely at work. I also would like to thank my former colleagues and friends from the
department like Sheetal, Jenita, Mitesh, Nikhil, Ketan, Monika, Ekta, Ashok, Kiran and
Reena, who have always been my well-wishers and helped in all possible ways.

My sincere thanks to our Head of the department, Prof. Dhanesh Patel, for being kind and
generous in extending all the facilities for this research. I would like to extend the sense
of gratitude to the Department of Applied Mathematics and teaching and non teaching
staff of the department.

Last but not the least I would like to thank Faculty of Technology and Engineering and
The M.S. University of Baroda for allowing me to be part of their eminent community. I
also thank all the office staff for being nice and supportive for my work.

Finally I owe gratitude everybody at the department or outside the department who di-
rectly or indirectly supported me in smooth completion of this journey.

Thank you all.

Umme salma Pirzada



Contents

1 Introduction 1

1.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modeling through fuzzy optimization . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Layout of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Basic terminologies 6

2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Fuzzy numbers and their arithmetic . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Fuzzy differential calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Fuzzy Riemann integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Order relations on fuzzy numbers . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Generalized convexity of a fuzzy valued function . . . . . . . . . . . . . . . 28

3 Unconstrained L-fuzzy optimization problems 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Single-variable L-fuzzy optimization problem . . . . . . . . . . . . . . . . . 37

3.3 Multi-variable L-fuzzy optimization problem . . . . . . . . . . . . . . . . . 43

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Fuzzy optimization problems 52

i



4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Pre-requisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Unconstrained fuzzy optimization problem . . . . . . . . . . . . . . . . . . . 57

4.4 Constrained fuzzy optimization problem . . . . . . . . . . . . . . . . . . . . 65

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Fuzzy optimization problem under generalized convexity 74

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Problem and its solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Sufficient optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Nonlinear fuzzy optimization methods 89

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Summary 101

Publications 104

Bibliography 104



Chapter 1

Introduction

Contents

1.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . 1

1.2 Modeling through fuzzy optimization . . . . . . . . . . . . . . . 2

1.3 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Layout of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Introduction and motivation

Soft computing is tolerant of imprecision, uncertainty, partial truth and approximation.

The principal components of soft computing are Fuzzy Systems, Neural Networks, Genetic

Algorithms, Probabilistic Reasoning etc. Fuzzy Systems are based on Fuzzy theory, which

plays a leading role in soft computing. This stems from the fact that human reasoning

is not crisp and admits degrees. Fuzzy theory was introduced by L. A. Zadeh [83] from

university of California, Berkeley , U.S.A. in 1965. He says that fuzzy theory is not a

single theory, but it is a process of “fuzzification” as a methodology to generalize any

specific theory from a crisp to fuzzy form. Fuzzy theory is important in almost all fields

of mathematics. It is studied by many authors over the years.

Crisp optimization techniques have been successfully applied for years to solve problems

with a well-defined structure using precise mathematics. Unfortunately, real world situa-

tions are often not precise. There exist various types of uncertainties in social, industrial

and economic systems, such as randomness of occurrence of events, imprecision and am-

biguity of system data, linguistic vagueness etc; such uncertainties arise due to errors of

measurement, deficiency in history and statistical data, incomplete knowledge expression,

the subjectivity and preferences of human judgment etc (see ref. [63]). As pointed out by
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1.2. MODELING THROUGH FUZZY OPTIMIZATION

Zimmermann [88], these kinds of uncertainties can be categorized as stochastic uncertainty

or fuzziness.

Stochastic uncertainty relates to the uncertainty of occurrence of phenomena or events.

Systems with this type of uncertainty are the so called stochastic systems, for which the

stochastic optimization techniques using probability theory can be applied. In other situ-

ations, when the information is vague or when the information could not be described and

defined well due to limited knowledge and deficiency in its understanding, then stochastic

uncertainties can not be used to model the system and one has to look for techniques

based on fuzzy theory. A system with vague and ambiguous information is a so-called

soft system in which the structure is ill-defined. It can not be formulated and effectively

tackled by traditional mathematics-based optimization techniques nor probability-based

stochastic optimization approaches. Thus , fuzzy optimization techniques provide a useful

and efficient tool for optimizing systems under fuzzy environments.

The studies on the theory and methodology of the fuzzy optimization have been active

since the concept of fuzzy decision and the decision model under fuzzy environments were

proposed by Bellman and Zadeh in 1970’s [4]. After this, various models and approaches

to fuzzy linear programming [21, 20], fuzzy multi-objective programming [59, 60], fuzzy

integer programming [67], fuzzy dynamic programming [34] and fuzzy non-linear program-

ming (see ref. [42], [71],[72] and [73] ) have been developed over the years.

In order to properly formulate the fuzzy optimization problem, it is necessary to define

appropriate mathematical structure on the set of fuzzy numbers which represent imprecise

quantities in the fuzzy systems. We consider algebraic operations and metric structure on

set of fuzzy numbers as given in [39] and [80] respectively. We use concepts of differential

and integral calculus of fuzzy numbers as discussed in [50] and [28]. Further order relations

on fuzzy numbers can be defined in a variety of ways. We use two such order relations as

discussed in [52] and [58]. In the present research work, we have developed necessary and

sufficient optimality conditions of fuzzy valued functions defined on Rn with and without

constraints, with respect to various order relationships. Appropriate illustrations have

been discussed in order to justify our results. Further gradient based numerical methods

for fuzzy optimization problems have been proposed.

1.2 Modeling through fuzzy optimization

Descriptions of the objective function and of the constraints in a optimization problem

usually include some parameters. For example, in problems of resources allocation such

2



1.3. LITERATURE SURVEY

parameters may represent economic parameters like costs of various types of production,

labor costs, shipment costs, etc. The nature of these parameters depends, of course, on

the detailization accepted for the model representation, and their values are considered as

data that should be exogenously used for the analysis.

Clearly, the values of such parameters depend on multiple factors not included into the

formulation of the problem. Trying to make the model more representative, we often

include the corresponding complex relations into it, causing the model to become more

cumbersome and analytically unsolvable. Moreover, it can happen that such attempts to

increase the precision of the model will be of no practical value due to the impossibility

of measuring the parameters accurately. On the other hand, the model with some fixed

values of its parameters may be too crude, since these values are often chosen in a quite

an arbitrary way.

An intermediate approach is based on introduction into the model the means of a more

adequate representation of expert’s understanding of the nature of the parameters in the

form of fuzzy sets of their possible values. The resultant model, although not taking into

account many details of the real system in question could be a more adequate representa-

tion of the reality than that with more or less arbitrarily fixed values of the parameters.

In this way we obtain a new type of optimization problems containing fuzzy parameters.

Treating such problems requires the application of fuzzy-set-theoretic tools in a logically

consistent manner. Such treatment forms an essence of fuzzy optimization problems.

The use of fuzzy optimization models does not only avoid unrealistic modeling, but also

offers a chance for reducing information costs. Fuzzy optimization problems and related

problems have been extensively analyzed and many papers have been published displaying

a variety of formulations and approaches. Most approaches to fuzzy optimization problems

are based on the straightforward use of the intersection of fuzzy sets representing goals and

constraints and on the subsequent maximization of the resultant membership function.

This approach has been mentioned by Bellman and Zadeh already in their paper [4]

published in the early seventies. Later on many papers have been devoted to the problem

of optimization with fuzzy parameters, which we discussed in details in next Section.

1.3 Literature survey

Bellman and Zadeh [4] (1970) inspired the development of fuzzy optimization by providing

the aggregation operators, which combined the fuzzy goals and fuzzy decision space. The

earliest interesting work in this direction was initiated by Rödder and Zimmermann [56]
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1.3. LITERATURE SURVEY

(1977) and Zimmermann [85] (1976) , [86] (1978) , [87] (1985) who applied fuzzy set theory

to the linear programming problems and linear multi-objective programming problems by

using the aspiration level approach. The collection of papers on fuzzy optimization edited

by S lowiński [65] (1998) and Delgado et al. [14](1994) gives the main stream of this topic.

Insightful surveys on the advancement of fuzzy optimization can be found in Kacprzyk

[35](1987) , Luhandjula [46](1989), Fedrizzi [22](1991) and Lai and Hwang ([40] (1992)

and [41] (1994)).

On the other hand, the book edited by S lowiński and Teghem [66](1990) gives the com-

parisons between fuzzy optimization and stochastic optimization for the multiobjective

programming problems. Inuiguchi and Ramı́k [33](2000) also gives a brief review of fuzzy

optimization and a comparison with stochastic optimization in portfolio selection problem.

Fuzzy optimization problems have been studied in a variety of ways which we have dis-

cussed briefly in the first section. For example, Robert Fuller [24] has studied the stabil-

ity of the solution of fuzzy linear programming problems. Stephan Dempe and Tatiana

Starostina [13] have studied linear programming problems with fuzzy coefficients in the

objective functions. The basic introduction to the main models and methods in fuzzy

linear programming is presented by Cadenas J.M. and Verdegay J.L. (2009) in [8].

Our main focus is on nonlinear fuzzy optimization problems. Different aspects of these

problems have been studied by many researchers. We refer here some of the recent work

that has been done in this direction. Fuzzy mathematical programming using unified ap-

proach has been studied by Ramik I. and Vlach M. (2002) in [53]. Lodwick W.A and

Bachman K.A. (2005) have studied large scale fuzzy and possibilistic optimization prob-

lems in [43]. Distinctions and relationships between Fuzzy and Possibilistic Optimization

have been studied by Lodwick W.A. et al (2007), (2009) in [44] and [45] respectively.

Buckley J.J. and Abdalla A. (2009) have considered Monte Carlo methods in fuzzy queu-

ing theory in [7]. The technique for solving fuzzy optimization problems using embedding

theorem was proposed in Wu [77](2004) which also introduced the concept of an (α, β)-

optimal solution. The solution concepts of fuzzy optimization problems based on convex

cones (ordering cone) was also proposed in Wu [75](2003). Hsien-Chung Wu [79] (2007)

has proved the Kuhn-Tucker like sufficient optimality conditions for fuzzy optimization

problems using the concept of generalized convexity. Hsien-Chung Wu [80] (2008) has

proved the Kuhn-Tucker optimality conditions for fuzzy optimization problems using in-

tegral approach. He has also discussed the duality theory in fuzzy optimization problems

[78] and saddle point optimality conditions for fuzzy optimization problems [76]. Fuzzy

nonlinear optimization problem for linear fuzzy real number system has been studied in

[23] (2009) where they have considered fuzzy-valued functions whose domain and range are

fuzzy numbers and solved the unconstrained and constrained fuzzy optimization problems.
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1.4. LAYOUT OF THESIS

Fuzzy quadratic programming has been studied in [49] (2008).

In the current work, taking motivation from two papers of Wu ([80] and [79]), we establish

Kuhn Tucker like optimality conditions for general nonlinear fuzzy optimization problems

with fuzzy-valued functions having real domain.We also propose a gradient based nonlinear

optimization method for the same problem. We use different ranking methods for defining

order relation on the set of fuzzy numbers.

1.4 Layout of thesis

The thesis is organized in the following manner :

The first chapter includes introduction and motivation of our work and the literature

survey. Second chapter contains basic concepts of fuzzy numbers, their arithmetics and

order relation on them. It also includes concepts of fuzzy-valued function, its continuity,

H-differentiability, integrability and convexity that we use in our research work.

Chapter three deals with the optimal solution of nonlinear unconstrained fuzzy optimiza-

tion problem under the concept of parametric total order relation defined on fuzzy numbers

having specific L-shape membership function.

In chapter four, we find the non-dominated solution of nonlinear unconstrained and con-

strained fuzzy optimization problems (FOP) under the concept of partial order relation

defined on the set of fuzzy numbers.

In chapter five, we prove the sufficient optimality conditions for obtaining non-dominated

solution of a constrained fuzzy optimization problem under convexity and weaker convexity-

pseudoconvexity and quasiconvexity of a fuzzy-valued objective function and fuzzy con-

straints.

In chapter six, we establish Newton’s method for solving single-variable and multi-variable

unconstrained fuzzy optimization problem. We use H-differentiability of fuzzy-valued func-

tions to prove the results. We also show the convergence criteria of proposed methods.

Summary following Chapter seven summarises the current research work.

List of publications and references are given at the end.
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2.6.2 Convexity of a fuzzy-valued function . . . . . . . . . . . . . . . . 31

2.6.3 Quasiconvexity and pseudoconvexity of a fuzzy-valued function . 31

2.1 Basic concepts

In this section, we present some basic concepts regarding fuzzy sets which are used in this

research work.

2.1.1 Fuzzy sets and their operations

Sets are one of the most fundamental concepts in mathematics. A set is a collection of well-

defined objects. For instance, if we consider a set containing a group of young people, it is

not cleared whether a person having age above fifty belongs to the set. So this is, actually

example of “not a set” or “not a crisp set”. In a crisp set, there is sharp boundary between

membership and non membership. But many times, there is ambiguity about whether the

element belongs to the set or not. This motivates introduction to fuzzy sets. The concept

of a fuzzy set was introduced by L.A. Zadeh [83] in the 1960’s. The concept of Fuzzy

sets is used to distinguish the elements of the universe of discourse in terms of a property

whose perception is not crisp and hence the members cannot be classified into two crisp

classes one having those members which satisfies the property and the other having those

members which does not satisfy the property. Instead, the distinction is made on the bases

of the degree to which a particular element of the universe possess the property. Thus, a

fuzzy set is characterized by a membership function which is a mapping from the universe

of discourse into the unit interval. Mathematically, it can be defined as follows:

Definition 2.1.1. Ã is a fuzzy subset of a universal set X, defined by its membership

function µÃ : X → [0, 1]. For each x ∈ X, µÃ(x) is interpreted as the degree to which x

is a member of fuzzy set Ã where 1 represents full membership and 0 represents complete

non membership.

Remark 2.1.1. The membership function of the given set is also denoted by the symbol

Ã(x) instead of µÃ(x).

We give here two examples of fuzzy sets.

7



2.1. BASIC CONCEPTS

Example 2.1.1. Let X be a set of real numbers R, and let Ã be a fuzzy set of numbers

which are near to 0. Then one can write the membership function as

Ã(x) =





(x + 1) if − 1 ≤ x < 0

(x− 1) if 0 ≤ x ≤ 1

0 otherwise

Thus membership grades are like µÃ(0) = 1, µÃ(0.1) = 0.9, µÃ(−0.2) = 0.8, µÃ(1) = 0

etc.

The following is another example of a fuzzy set.

Example 2.1.2. Let X be a set of age of the persons from a particular class and let Ã be

fuzzy set defining the concept “ set of young persons” then the grade of membership values

can be µÃ(20) = 1, µÃ(30) = 0.8, µÃ(45) = 0.5, µÃ(60) = 0.1.

Fuzzy sets can be differentiated on the basis of the universal set on which they are defined.

A fuzzy set defined on a continuous universal set is define by continuous membership

function. For the discrete or finite universal set X = {x1, x2, ..., xn}, a fuzzy set Ã defined

on X, can be represented as

Ã = Ã(x1)/x1 + Ã(x2)/x2 + ... + Ã(xn)/xn

Example 2.1.3. Let X = {0, 1, 2, 3, 4} and let Ã be a fuzzy set defining the concept

“numbers much greater than 1” then it can be expressed as

0/0 + 0/1 + 0.2/2 + 0.4/3 + 0.6/4

There is one special type of fuzzy set called normal fuzzy set which is defined as follows.

Definition 2.1.2. A fuzzy set Ã on the universe X, is said to be normal if there exists

x ∈ X such that Ã(x) = 1.

For example, the fuzzy sets defined in Example 2.1.1 and Example 2.1.2 are normal fuzzy

sets while the fuzzy set in Example 2.1.3 is not a normal fuzzy set.

The three basic set theoretic operations on crisp sets, namely, Complement, Intersection

and Union, can be generalized to fuzzy sets in more than one way. Here, we define one of

the generalizations, referred as standard fuzzy set operations, that has a special significance

in fuzzy set theory. (See reference [29]).

8



2.1. BASIC CONCEPTS

Definition 2.1.3. The standard fuzzy complement, ¯̃A, of fuzzy set Ã with respect to the

universal set X is defined by the membership function ,

¯̃A(x) = 1− Ã(x),

for all x ∈ X.

Definition 2.1.4. Given two fuzzy sets, Ã and B̃, their standard fuzzy intersection,

Ã ∩B, and standard fuzzy union, Ã ∪B, are respectively defined by the membership func-

tions

(Ã ∩B)(x) = min[Ã(x), B̃(x)],

(Ã ∪B)(x) = max[Ã(x), B̃(x)],

for all x ∈ X.

Example 2.1.4. Consider universal set X = {a, b, c} and two fuzzy sets Ã and B̃ defined

on X as

Ã = 0.1 / a + 0.6 / b + 1 / c

B̃ = 0.5 / a + 0.9 / b + 0.3 / c,

then their standard fuzzy union, intersection and complements are given as follows.

Ã ∩B = 0.5 / a + 0.9 / b + 1 / c,

Ã ∪B = 0.1 / a + 0.6 / b + 0.3 / c,

¯̃A = 0.9 / a + 0.4 / b + 0 / c,

¯̃B = 0.5 / a + 0.1 / b + 0.7 / c.

2.1.2 α-level sets and their properties

Now we define one of the important concept of fuzzy set theory called α-level sets.

Definition 2.1.5. For a given fuzzy set Ã defined on universal set X and any number

α ∈ [0, 1], the α-level set of Ã, is the crisp set

Ãα = {x/µÃ(x) ≥ α}

Example 2.1.5. For the fuzzy set given in Example 2.1.1, the α-level set of Ã, for α = 0.1

is Ã0.1 = {x/µÃ(x) ≥ 0.1} = [−0.9, 0.9].

Now we define convexity of fuzzy set, which is based on its α-level sets.
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2.1. BASIC CONCEPTS

Definition 2.1.6. A fuzzy set defined on universal set R is said to be convex if all its

α-level sets are convex, for α ∈ (0, 1].

Example 2.1.6. Consider a fuzzy set B̃ defined on R with the following membership

function

B̃(x) =

{
sinx if 0 < x < π

0 otherwise

Its α-level sets are B̃α = [0 + sin−1 α, π − sin−1 α] for α ∈ (0, 1]. Clearly, all the α-level

sets are convex for α ∈ (0, 1]. Therefore, the given fuzzy set B̃ is convex.

A useful Theorem about convexity of fuzzy sets given in [29].

Theorem 2.1.1. A fuzzy set Ã on R is convex if and only if

Ã(λx1 + (1− λ)x2) ≥ min{Ã(x1), Ã(x2)}

for all x1, x2 ∈ R and all λ ∈ [0, 1].

Remark 2.1.2. It can be observed from the above theorem that if the given fuzzy set

is convex, it does not mean that its membership function is also convex. In fact, the

membership function is quasi-concave.

The capability of α-level sets of a fuzzy set is to represent the fuzzy set in terms of its

α-level sets. That is, each fuzzy set can be uniquely represented by the family of all its

α-level sets. These representations allows us to extend various properties of crisp sets and

operations on crisp sets to their fuzzy counterparts. Klir and Yaun [29] have referred this

representation as a decomposition of fuzzy set Ã. We state here, the first decomposition

theorem of it.

Theorem 2.1.2. For every fuzzy set Ã on X,

Ã = ∪α∈[0,1]α · Ãα

where Ãα is α-level set of Ã and ∪ denotes the standard fuzzy union.

2.1.3 Extension principle of Zadeh

Zadeh introduced extension principle for fuzzy sets in his paper [84]. The extension prin-

ciple for fuzzy sets is in essence a basic identity which allows the domain of the definition

of a mapping or a relation to be extended from points in X to fuzzy subsets of X. More

10
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specifically, suppose that f is a mapping from X to Y , and Ã is a fuzzy subset of X, then

the extension principle asserts that f(Ã) is a fuzzy set on Y and

f(Ã) = sup
x/f(x)=y

Ã(x)

Let X,Y, Z ⊆ R and f be a crisp function f : X × Y → Z. Assume Ã and B̃ are two

fuzzy subsets on X and Y respectively. By the extension principle, we can use the crisp

function f to induce a fuzzy function

F : F (X)× F (Y )→ F (Z).

That is to say, F (Ã, B̃) is a fuzzy subset of Z with membership function

F (Ã, B̃)(z) =

{
supf(x,y)=z{min{Ã(x), B̃(y)}}, f−1(z) 6= φ

0 , f−1(z) = φ

where f−1(z) = {(x, y) ∈ X × Y : f(x, y) = z ∈ Z}. Such a function F is called a fuzzy

function induced by the extension principle.

Example 2.1.7. Let X = Y = {1, 2, ..., 10} be universal sets and let “Approximately 2 ”

and “Approximately 6 ” be fuzzy sets defined on X and Y respectively as

Ã = Approximately 2 = 1/2 + 0.6/1 + 0.8/3

B̃ = Approximately 6 = 1/6 + 0.8/5 + 0.7/7

and crisp function f(x, y) be arithmetic product (×) of x and y. Here we apply the exten-

sion principle defined above, to fuzzify the given crisp function.

(Ã× B̃) = (1/2 + 0.6/1 + 0.8/3)× (1/6 + 0.8/5 + 0.7/7)

= 0.6/5 + 0.6/6 + 0.6/7 + 0.8/10 + 1/12 + 0.7/14 + 0.8/15 + 0.8/18

+0.7/21

11
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2.2 Fuzzy numbers and their arithmetic

This section starts with one simple concept of classical calculus called upper semi-continuity

of a real-valued function which we use in the definition of fuzzy numbers.

2.2.1 Upper semi-continuity of a real-valued function

The definition of upper semi-continuity of a real-valued function is given as follows.

Definition 2.2.1. An extended real-valued function f is upper semi-continuous at a point

x0 if, roughly speaking, the function values for arguments near x0 are either close to f(x0)

or less than f(x0). Mathematically, Suppose X is a topological space, x0 is a point in X

and f : X → R ∪ {−∞,+∞} is an extended real-valued function. We say that f is upper

semi-continuous at x0 if for every ǫ > 0 there exists a neighborhood U of x0 such that

f(x) ≤ f(x0) + ǫ for all x ∈ U . Equivalently, this can be expressed as

lim sup
x→x0

f(x) ≤ f(x0)

where lim sup is the limit superior (of the function f at point x0).

Example 2.2.1. Consider the function f , piecewise defined by f(x) = −1 for x < 0 and

f(x) = 1 for x ≥ 0. This function is upper semi-continuous at x0 = 0.

Remark 2.2.1. A function may be upper or lower semi-continuous without being either

left or right continuous. For example, the function

f(x) =





1, x < 1

2, x = 1

1/2, x > 1

is upper semi-continuous at x = 1 although not left or right continuous. The limit from

the left is equal to 1 and the limit from the right is equal to 1/2, both of which are different

from the function value of 2.

2.2.2 Fuzzy numbers and their arithmetic

Classical optimization is influenced by calculus and order structure defined on real num-

bers. To deal with fuzzy optimization problems , we need fuzzy calculus and order struc-
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ture on fuzzy numbers. Here we state basic terminologies about fuzzy numbers and fuzzy-

valued functions.

In many scientific areas, such as systems analysis and operations research, a model has

to be set up using data which is only approximately known. Fuzzy set theory, introduced

by Zadeh in (1965) [83], makes this possible. Fuzzy numerical data can be represented

by means of fuzzy subsets of the real line, known as fuzzy numbers. Dubois and Prade

introduced the notion of fuzzy numbers in their paper [18] (1978) and established some of

their basic properties. Goetschel and Voxman in [32] introduced new equivalent definition

of fuzzy numbers using the parametric representation (α-level set presentation ). Out of

many ways of defining fuzzy numbers, we state the following.

Definition 2.2.2. [28] Let R be the set of real numbers and ã : R→ [0, 1] be a fuzzy set.

We say that ã is a fuzzy number if it satisfies the following properties:

(i) ã is normal;

(ii) ã is fuzzy convex;

(iii) ã(x) is upper semi-continuous on R, that is, for each α ∈ (0, 1], the α-level set of ã

is a closed subset of R;

(iv) The 0-level set of ã, defined as ã0 = cl{x ∈ R/ã(x) > 0} forms a compact set,

where cl denotes closure of a set. The set of all fuzzy numbers on R is denoted by F (R).

Any real number r can be regarded as a fuzzy number, r̃ such that r̃(z) = 1 if z = r and

r̃(z) = 0 if z 6= r. By definition of fuzzy numbers, we can prove that, for any ã ∈ F (R)

and for each α ∈ [0, 1] , ãα is compact convex subset of R, and hence a closed bounded

interval in R. We write ãα = [ãLα, ã
U
α ]. ã ∈ F (R) can be recovered from its α-level sets by

a well-known decomposition theorem (ref. Theorem 2.1.2).

Example 2.2.2. Example 2.1.6 is a fuzzy number.

The following Theorem of Goetschel and Voxman [32], shows the characterization of a

fuzzy number in terms of its α-level sets.

Proposition 2.2.1. ([32], Theorem 1.1) For ã ∈ F (R), define two functions ãLα, ãUα :

[0, 1]→ R given by ãLα = ãL(α) and ãUα = ãU (α). Then

(i) ãLα is bounded left continuous non-decreasing function on (0,1];

(ii) ãUα is bounded left continuous non-increasing function on (0,1];

13
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(iii) ãLα and ãUα are right continuous at α = 0;

(iv) ãLα ≤ ãUα .

Moreover, if the pair of functions ãLα and ãUα satisfy the conditions (i)-(iv), then there

exists a unique ã ∈ F (R) such that ãα = [ãLα, ã
U
α ], for each α ∈ [0, 1].

Definition 2.2.3. [39] Applying the Zadeh’s extension principle, the addition and scalar

multiplication on R are extended to those on F (R) as follows: For ã, b̃ ∈ F (R) and λ ∈ R,

(ã⊕ b̃)(z) = sup
{x,y∈R/z=x+y}

{min{ã(x), b̃(y)}}

(λ⊙ ã)(z) =

{
ã(z/λ) if λ 6= 0

0 if λ = 0

for all z ∈ R. It is clear that for any ã, b̃ ∈ F (R) and λ ∈ R , ã ⊕ b̃ and λ ⊙ ã are fuzzy

numbers and by using interval arithmetic , we can show that

(ã⊕ b̃)α = ãα + b̃α

(λ⊙ ã)α = λ · ãα, for all α ∈ [0, 1].

Example 2.2.3. Let X1 = X2 = {1, 2, ..., 10} be universal sets and let “Approximately 2

” and “Approximately 6 ” be fuzzy numbers defined on X1 and X2 respectively as

Ã1 = Approximately 2 = 1/2 + 0.6/1 + 0.8/3

Ã2 = Approximately 6 = 1/6 + 0.8/5 + 0.7/7

using the extension principle of zadeh, we can obtain addition of Ã1 and Ã2 and scalar

multiplication of Ã1 with a scalar λ ∈ R in the following way.

(Ã1 ⊕ Ã2) = (1/2 + 0.6/1 + 0.8/3)⊕ (1/6 + 0.8/5 + 0.7/7)

= 1/8 + 0.8/7 + 0.7/9 + 0.6/7 + 0.6/6 + 0.6/8 + 0.8/9 + 0.8/8

+0.7/10

= 0.6/6 + 0.8/7 + 1/8 + 0.8/9 + 0.7/10

14
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Take λ = 2,

(λ⊙ Ã1) = 2⊙ (1/2 + 0.6/1 + 0.8/3)

= 1/1 + 0.6/0.5 + 0.8/(1.5)

To get fast computation formulas for the operations of fuzzy numbers, Dubois and Prade

introduced the concept of L-R fuzzy numbers [18] as follows:

Definition 2.2.4. [39] Let L,R : [0,∞)→ [0, 1] be two non increasing and non-constant

(shape) functions with L(0) = R(0) = 1 and L(z0) = R(z0) = 0 for some z0 > 0. A

fuzzy number ã is called a L-R fuzzy number if there exist real numbers m,n(m ≤ n) ,

α, β(α, β > 0) such that

ã(z) =





L(m−z
α ) for z ≤ m

1 for m ≤ z ≤ n

R( z−n
β ) for z > n

where α, β are the left and right spreads, respectively. L-R fuzzy numbers include the

triangular and trapezoidal fuzzy numbers. In particular, the symmetric L-R fuzzy number

is called a L- fuzzy number. The set of L-fuzzy numbers on R is denoted by FL(R).

Definition 2.2.5. For any real number r, a triangular fuzzy number r̃ is defined as

r̃(z) =





(z−rL)
(r−rL)

if rL ≤ z ≤ r
(rU−z)
(rU−r)

if r < z ≤ rU

0 otherwise

which is denoted by ã = (rL, r, rU ). The α-level set of r̃ is

r̃α = [(1− α)rL + αr, (1− α)rU + αr].

Example 2.2.4. A fuzzy number r̃ defining the concept “about 3” can be represented by

following triangular membership function:

r̃(x) =





(x−1)
2 if 1 ≤ x ≤ 3

(6−x)
3 if 3 < x ≤ 6

0 otherwise

It can be denoted as r̃ = (1, 3, 6).

Remark 2.2.2. If we consider a triangular fuzzy number with equal left and right spread

values then it can be an example of L-fuzzy number.
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2.3 Fuzzy differential calculus

Differentiability for fuzzy-valued functions has been studied by several mathematicians

in a variety of ways. For example, Puri and Ralescu [50] have introduced the concept

of Hukuhara differentiability of fuzzy-valued functions in (1983). After that, many re-

searchers have used this derivative as applications to fuzzy differential equations, including

Ding and Kandel [16], Kaleva [36, 37] and Seikklala [62] and fuzzy optimization problems

also. Recently more work has been done regarding new concepts of H-differentiability.

Like, Bede and Gal (2005) have introduced a more general definition of derivative for

fuzzy-valued functions called weakly and strongly generalized differentials in [2]. Bede

et al (2007) have studied first order linear fuzzy differential equations using generalized

differentiability- strongly generalized differentiability in their paper [3]. Chalco-Cano et

al [10] (2008) and [11](2009) have also studied fuzzy differential equations using the con-

cept of generalized H-differentiability. In the current work, we use first order Hukuhara

derivatives of fuzzy-valued functions as given in [50] and further define the second order

Hukuhara differentiability of fuzzy-valued functions. Using these concepts, we establish

the first and second order necessary and sufficient conditions for optimality of nonlinear

fuzzy optimization problems and verify the results with appropriate illustrations.

We discuss here fuzzy differential calculus starting with the definition of a fuzzy-valued

function.

Definition 2.3.1. [77] Let V be a real vector space and F (R) be a set of fuzzy numbers.

Then a function f̃ : V → F (R) is called fuzzy-valued function defined on V .

Corresponding to such a function f̃ and α ∈ [0, 1], we define two real-valued functions f̃L
α

and f̃U
α on V as f̃L

α (x) = (f̃(x))Lα and f̃U
α (x) = (f̃(x))Uα for all x ∈ V .

Example 2.3.1. Let f̃ : R → F (R) be defined by f̃(x) = ã ⊙ x , where ã = (1, 2, 3) is a

triangular fuzzy number, then f̃ is a fuzzy-valued function. The two real valued functions

associate with this functions are f̃L
α (x) = (1 +α)x and f̃U

α (x) = (3−α)x, for all α ∈ [0, 1]

and x ∈ R.

To proceed further we need to define Hausdorff metric on fuzzy numbers.

Definition 2.3.2. [80] Let A,B ⊆ Rn. The Hausdorff metric dH is defined by

dH(A,B) = max{sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖}.

16



2.3. FUZZY DIFFERENTIAL CALCULUS

Then the metric dF on F (R) is defined as

dF (ã, b̃) = sup
0≤α≤1

{dH(ãα, b̃α)},

for all ã, b̃ ∈ F (R). Since ãα and b̃α are closed bounded intervals in R,

dF (ã, b̃) = sup
0≤α≤1

max{|ãLα − b̃Lα|, |ãUα − b̃Uα |}.

2.3.1 Continuity of a fuzzy-valued function

Continuity a of fuzzy-valued function is the basic concept in fuzzy mathematics. Various

authors have studied continuity of fuzzy-valued functions defined through the supremum

metric on fuzzy numbers (for details, see [15], [27], [32] and [69]). We define continuity of

a fuzzy-valued function given in [15].

Definition 2.3.3. Let f̃ : Rn → F (R) be a fuzzy-valued function. We say that f̃ is

continuous at c ∈ Rn if for every ǫ > 0, there exists a δ = δ(c, ǫ) > 0 such that

dF (f̃(x), f̃(c)) < ǫ

for all x ∈ Rn with ‖x− c‖ < δ. That is,

limx→cf̃(x) = f̃(c).

Example 2.3.2. A fuzzy-valued function given in Example 2.3.1 is the continuous fuzzy-

valued function.

We prove the following proposition.

Proposition 2.3.1. [76] Let f̃ : Rn → F (R) be a fuzzy-valued function. If f̃ is continuous

at c ∈ Rn, then functions f̃L
α (x) and f̃U

α (x) are continuous at c for all α ∈ [0, 1].

Proof. The result follows using the definitions of continuity of fuzzy-valued function f̃ and

metric on fuzzy numbers.

2.3.2 Hukuhara differentiability of a fuzzy valued function on R

To define fuzzy differentiability, first we define Hukuhara difference (H-difference) of two

fuzzy numbers.
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Definition 2.3.4. Let ã and b̃ be two fuzzy numbers. If there exists a fuzzy number c̃ such

that c̃⊕ b̃ = ã. Then c̃ is called Hukuhara difference of ã and b̃ and is denoted by ã⊖H b̃.

H-differentiability ( Hukuhara differentiability) of single-variable fuzzy-valued function due

to M.L. Puri and D.A. Ralescu [50] is as follows :

Definition 2.3.5. Let X be a subset of R. A fuzzy-valued function f̃ : X → F (R) is said

to be H-differentiable at x0 ∈ X if there exists a fuzzy number Df̃(x0) such that the limits

(with respect to metric dF )

lim
h→0+

1

h
⊙ [f̃(x0 + h)⊖H f̃(x0)], and lim

h→0+

1

h
⊙ [f̃(x0)⊖H f̃(x0 − h)]

both exist and are equal to Df̃(x0). In this case, Df̃(x0) is called the H-derivative of f̃ at

x0. If f̃ is H-differentiable at all x ∈ X, we call f̃ is H-differentiable over X.

Remark 2.3.1. Above definition implies that if a fuzzy-valued function is H-differentiable

at a point x0 ∈ X, then the Hukuhara differences f̃(x0+h)⊖H f̃(x0) and f̃(x0)⊖H f̃(x0−h)

for any h ∈ (x0 − h, x0 + h) both exist. However, if for some fuzzy-valued functions the

H-differences may not exist for h > 0 or if H-differences exist but limit does not exist then

function is not H-differentiable. The following example illustrates the fact.

Example 2.3.3. (From [15]). Let f̃ : (0, 2π)→ F (R) be defined on level sets by

[f̃(x)]α = (1− α)(2 + sin(x))[−1, 1],

for α ∈ [0, 1]. At x0 = π/2, f̃L
α (π/2 + h) − f̃L

α (π/2) and f̃U
α (π/2 + h) − f̃U

α (π/2) are as

follows.

c̃Lα = f̃L
α (π/2 + h)− f̃L

α (π/2)

= (1 + α)− (1 + α) sin(π/2 + h)

and

c̃Uα = f̃U
α (π/2 + h)− f̃U

α (π/2)

= −(1 + α) + (1 + α) sin(π/2 + h)

It can easily be verified that c̃Lα � c̃Uα , for any h > 0 and α ∈ [0, 1]. That is, there exists

no c̃ such that c̃ ⊕ f̃(π/2) = f̃(π/2 + h). That is, H-difference does not exist. Therefore,

given function is not H-differentiable at x0 = π/2.

We prove following proposition regarding differentiability of f̃L
α and f̃U

α .
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Proposition 2.3.2. Let X be a subset of R. Let f̃ : X → F (R) be a H-differentiable

fuzzy-valued function at x0 with H-derivative Df̃(x0). Denote f̃α(x) = [f̃L
α (x), f̃U

α (x)]

then f̃L
α (x) and f̃U

α (x) are differentiable at x0, for all α ∈ [0, 1]. Moreover, we have

(Df̃)α(x0) = [D(f̃L
α )(x0), D(f̃U

α )(x0)].

Proof. For h > 0, since [f̃(x0 +h)⊖H f̃(x0)]α = [f̃L
α (x0 +h)− f̃L

α (x0), f̃U
α (x0 +h)− f̃U

α (x0)]

and similarly for [f̃(x0)⊖H f̃(x0 − h)]α. Dividing by h and taking limits as h tends to 0+

proves the result.

Second order H-differentiability of a fuzzy-valued function is given as,

Definition 2.3.6. If a fuzzy valued function f̃ : X → F (R), X ⊂ R has a H-derivative

Df̃ on X and if Df̃ is itself H-differentiable, we denote the H-derivative of Df̃ by D2f̃

and call D2f̃ the second H-derivative of f̃ .

Proposition 2.3.3. Let f̃ : X → FL(R) be H-differentiable with H-derivative Df̃ on

X and let Df̃ : X → FL(R) be also H-differentiable at x with H-derivative D2f̃(x).

Then Df̃L
α (x) and Df̃U

α (x) are also differentiable at x, for all α ∈ [0, 1]. Also, we have

(D2f̃)α(x) = [D2(f̃L
α )(x), D2(f̃U

α )(x)].

Similarly, we define Cn([a, b], F (R)), n ≥ 1 as the space of n-times continuously H-

differentiable functions from [a, b] ⊆ R into F (R). In [28], it has been proved that

(f̃ (i)(x))α = [(f̃ (i)(x))Lα, (f̃
(i)(x))Uα ],

for i = 1, 2, ..., n ( i indicates order of derivative) and in particular we have

(f̃ (i)(x))Lα = (f̃L
α (x))(i)

and

(f̃ (i)(x))Uα = (f̃U
α (x))(i)

for f̃ ∈ Cn([a, b], F (R)) and all α ∈ [0, 1].

2.3.3 Hukuhara differentiability of a fuzzy-valued function on Rn

We proceed to state H-differentiability of a multi-variable fuzzy-valued function.

Definition 2.3.7. [80] Let f̃ be a fuzzy-valued function defined on an open subset X of

Rn and let x̄0 = (x01, ..., x
0
n) ∈ X be fixed.
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We say that f̃ has the ith partial H-derivative Dif̃(x̄0) at x̄0 if the fuzzy-valued function

g̃(xi) = f̃(x01, .., x
0
i−1, xi, x

0
i+1, .., x

0
n) is H-differentiable at x0i with H-derivative Dif̃(x0).

We also write Dif̃(x̄0) as (∂f̃/∂xi)(x̄
0).

Definition 2.3.8. We say that f̃ is H-differentiable at x̄0 if one of the partial H-derivatives

∂f̃/∂x1, ..., ∂f̃/∂xn exists at x̄0 and the remaining n-1 partial H-derivatives exist on some

neighborhoods of x̄0 and are continuous at x̄0 (in the sense of continuity of fuzzy-valued

functions).

The gradient of f̃ at x̄0 is denoted by

∇f̃(x̄0) = (D1f̃(x̄0), ..., Dnf̃(x̄0)),

and it defines a fuzzy-valued function from X to Fn(R) = F (R) × .... × F (R) (n times),

where each Dif̃(x̄0) is a fuzzy number for i = 1, ..., n. The α-level set of ∇f̃(x̄0) is defined

and denoted by

(∇f̃(x̄0))α = (D1f̃(x̄0))α × ((D2f̃(x̄0))α × ...× (Dnf̃(x̄0))α,

where

(Dif̃(x̄0))α = [Dif̃
L
α (x̄0), Dif̃

U
α (x̄0)],

i = 1, ..., n.

We say that f̃ is H-differentiable on X if it is H-differentiable at every x̄ ∈ X.

Proposition 2.3.4. Let X be an open subset of Rn. If a fuzzy-valued function f̃ : X →
F (R) is H-differentiable on X. Then f̃L

α (x̄) and f̃U
α (x̄) are also differentiable on X, for

all α ∈ [0, 1]. Moreover, for each x̄ ∈ X, (Dif̃(x̄))α = [Dif̃
L
α (x̄), Dif̃

U
α (x̄)], i = 1, ..., n.

Proof. The result follows from Propositions 2.3.1 and 2.3.2.

Definition 2.3.9. We say that f̃ is continuously H-differentiable at x̄0 if all of the partial

H-derivatives ∂f̃(x̄)/∂xi, i = 1, .., n, exist on some neighborhoods of x̄0 and are continuous

at x̄0 (in the sense of fuzzy-valued function).

We say that f̃ is continuously H-differentiable on X if it is continuously H-differentiable

at every x̄0 ∈ X.

Proposition 2.3.5. Let f̃ : X → F (R) be continuously H-differentiable on X. Then

f̃L
α (x̄) and f̃U

α (x̄) are also continuously differentiable on X, for all α ∈ [0, 1].

Proof. Followed by Propositions 2.3.1 and 2.3.4.
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Definition 2.3.10. Let X be an open set and f̃ : X → F (R), X ⊂ Rn be a fuzzy-valued

function. Suppose now that there is x̄0 ∈ X such that gradient of f̃ , ∇f̃ , is itself H-

differentiable at x̄0, that is, for each i, the function Dif̃ : X → F (R) is H-differentiable

at x̄0. Denote the partial H-derivative of Dif̃ in the direction of ēj at x̄0 by

D2
ij f̃ or

∂2f̃(x̄0)

∂xi∂xj
, if i 6= j,

and

D2
iif̃ or

∂2f̃(x̄0)

∂x2i
, if i = j.

If these n × n H-derivatives [D2
ij f̃ ], i, j = 1, ..., n exist, then we say that f̃ is twice H-

differentiable at x̄0, with the matrix of second H-derivatives ∇2f̃(x̄0) which can be called

as the fuzzy Hessian matrix and is denoted by

∇2f̃(x̄0) =




∂2f̃(x̄0)
∂x2

1
... ∂2f̃(x̄0)

∂x1∂xn

... ... ...
∂2f̃(x̄0)
∂xn∂x1

... ∂2f̃(x̄0)
∂x2

n




where ∂2f̃(x̄0)
∂xi∂xj

∈ F (R), i, j = 1, ..., n.

If f̃ is twice H-differentiable at each x̄ in X, we say that f̃ is twice H-differentiable on X,

and if for each i, j = 1, ..., n, the cross-partial H-derivative ∂2f̃
∂xi∂xj

is continuous function

from X to F (R), we say that f̃ is twice continuously H-differentiable on X.

2.3.4 Definite and semidefinite fuzzy matrix

First we define definiteness and semidefiniteness of a real matrix.

Definition 2.3.11. Let A be any n× n symmetric matrix. Then A is said to be

(i) positive definite if we have xt ·A · x > 0 for all x ∈ Rn,x 6= 0.

(ii) positive semidefinite if we have xt ·A · x ≥ 0 for all x ∈ Rn,x 6= 0.

(iii) negative definite if we have xt ·A · x < 0 for all x ∈ Rn,x 6= 0.

(iv) negative semidefinite if we have xt ·A · x ≤ 0 for all x ∈ Rn,x 6= 0.

Example 2.3.4. (
1 0

0 1

)

This is a positive definite matrix.
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Example 2.3.5. (
1 0

0 0

)

This is a positive semidefinite matrix.

Example 2.3.6. (
0 1

1 0

)

This is an indefinite matrix.

Here we state one important result on the basis of which we can check the definiteness of

a given symmetric matrix.

Theorem 2.3.1. Sylvester Criteria

An n× n symmetric matrix A is

(1) negative definite if and only if (−1)k · |Ak| > 0 for all k ∈ {1, ..., n}

(2) positive definite if and only if |Ak| > 0 for all k ∈ {1, ..., n}.

Now we define definiteness and semidefiniteness of fuzzy matrix.

Definition 2.3.12. Let Ã = (ãij), i, j = 1, ..., n be a fuzzy matrix. That is, all the elements

(ãij) in the fuzzy matrix Ã, are fuzzy numbers defined on R. There are associated two real

matrices called α-level matrices , ÃL
α and ÃU

α , α ∈ [0, 1] which are given as follows:

ÃL
α =




(ã11)
L
α ... (ã1n)Lα

... .... ....

(ãn1)
L
α ... (ãnn)Lα




and

ÃU
α =




(ã11)
U
α ... (ã1n)Uα

... .... ....

(ãn1)
U
α ... (ãnn)Uα




Then Ã is said to be

(i) positive definite fuzzy matrix if the α-level matrices ÃL
α and ÃU

α are positive definite

real matrices, for all α ∈ [0, 1],

(ii) positive semidefinite fuzzy matrix if the α-level matrices ÃL
α and ÃU

α are positive

semidefinite real matrices, for all α ∈ [0, 1].
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Example 2.3.7. Consider the fuzzy matrix

Ã =

(
ã 0̃

0̃ ã

)

where ã = (1, 2, 4) and 0̃ = (0, 0, 0) are fuzzy numbers. Then we obtain two α-level matrices

for Ã.

ÃL
α =

(
(1 + α) 0

0 (1 + α)

)

and

ÃU
α =

(
(4− 2α) 0

0 (4− 2α)

)

for all α ∈ [0, 1]. Clearly these matrices are positive definite for all α. Therefore, the given

fuzzy matrix Ã is positive definite.

Example 2.3.8. Now consider the fuzzy matrix

B̃ =

(
ã 0̃

0̃ ã

)

where ã = (0, 2, 4) and 0̃ = (0, 0, 0) are fuzzy numbers. Then we obtain two α-level matrices

for B̃.

B̃L
α =

(
(2α) 0

0 (2α)

)

and

B̃U
α =

(
(4− 2α) 0

0 (4− 2α)

)

for all α ∈ [0, 1]. These matrices are positive definite, for all α except α = 0. For α = 0,

the first matrix is positive semidefinite. Therefore, the given fuzzy matrix B̃ is positive

semidefinite.

2.4 Fuzzy Riemann integrability

The concept of fuzzy integral was introduced by Sugeno [68] (1974). After that, many

formulations of fuzzy integrals have been developed. For instance, Dubois and Prade [19]
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(1980) considered a certain type of fuzzy-valued function and defined the integral of such

a function using the extension principle. While, Puri and Ralescu (1986) have defined in-

tegral of fuzzy-valued functions levelwise in their paper [51]. Goetschel and and Voxman

[32] (1986) defined differentiation and integration of fuzzy-valued functions in ways that

parallel closely the corresponding definitions for real differentiation and integration. Sims

and Wang [64] gave a good review of literature in this subject area. In this work, we use

fuzzy Riemann integral of a fuzzy-valued function given in [32].

We cite the definition of fuzzy Riemann integrability from [28].

Definition 2.4.1. [28] Let f̃ : [a, b] → F (R). We say that f̃ is Fuzzy-Riemann (F-R)

integrable to Ĩ ∈ F (R) if for any ǫ > 0 there exists a δ > 0 such that for any division

P = {[u, v] : ξ} of [a, b] with the norm ∆(P ) < δ, we have

dF (
∑

P

∗
(v − u)⊙ f̃(ξ), Ĩ) < ǫ

where
∑∗ denotes the fuzzy summation. We choose to write

Ĩ = (FR)

∫ b

a
f̃(x)dx.

On the basis of Fuzzy Riemann integrability, we state here Fuzzy Taylor’s formula for

single-variable and multi variable fuzzy-valued functions.

Theorem 2.4.1. [28] Let f̃ ∈ Cn([a, b], F (R)), n ≥ 1, [t0, t1] ⊆ R. Then

f̃(t1) = f̃(t0)⊕ (t1 − t0)⊙ f̃ ′(t0)⊕ ...⊕ (t1 − t0)
n−1

(n− 1)!
⊙ f̃ (n−1)(t0)

⊕ 1

(n− 1)!
⊙ (FR)

∫ t1

t0
(t1 − t)⊙ f̃ (n)(t)dt.

The fuzzy integral remainder is a continuous function in t.

Theorem 2.4.2. [28] Let U be an open convex subset of Rn, n ∈ N and f̃ : U → F (R)

be a continuous fuzzy-valued function. Assume that all fuzzy H-partial derivatives of f̃ up

to order m ∈ N exist and are continuous. Let z = (z1, z2, ..., zn), x0 = (x01, ...., x0n) ∈ U

such that zi ≥ x0i, i = 1, ..., n. Let 0 ≤ t ≤ 1, we define xi = x0i + t(zi − x0i), i = 1, ..., n

and g̃z(t) = f̃(x0 + t(z − x0)). (clearly x0 + t(z − x0) ∈ U). Then for N = 1, ...,m, we
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obtain

g̃(N)
z (t) =

[( n∑

i=1

(zi − x0i)⊙
∂

∂xi

)N
f̃
]
(x1, ..., xn).

Furthermore the following fuzzy multivariate Taylor formula holds

f̃(z) = f̃(x0)⊕
m−1∑

N=1

g̃
(N)
z (0)

N !
⊕Rm(0, 1),

where

Rm(0, 1) =
1

(m− 1)!
⊙ (FR)

∫ 1

0
(1− s)m−1 ⊙ g̃(m)

z (s)ds.

2.5 Order relations on fuzzy numbers

Another important concept used in our research work is of order structure on fuzzy num-

bers. Order structures play a very important role in fuzzy optimization problems. Many

methods of ordering fuzzy numbers have been proposed in the literature (see ,e.g, Bortolan

and Degani [5]).

2.5.1 A partial order relation: Fuzzy-max order

Among the various ordering methods for fuzzy numbers the commonly used one is a partial

order relation called the fuzzy-max order, introduced by Ramı́k and Rimanek [52], which

is defined as follows:

Definition 2.5.1. Let ã and b̃ be two fuzzy numbers in F (R) and let ãα = [ãLα, ã
U
α ] and

b̃α = [b̃Lα, b̃
U
α ] be two closed intervals in R, α ∈ [0, 1]. We define ã � b̃ if and only if ãLα ≤ b̃Lα

and ãUα ≤ b̃Uα for all α ∈ [0, 1].

It is well known that the order relation � satisfies the axioms of a partial order relation

on the family F (R). Using a partial order relation on fuzzy numbers, we can define ã ≺ b̃

in different ways:

(i) ã ≺ b̃ if and only if ã � b̃ and there exists an α0 ∈ [0, 1] such that ãLα0
< b̃Lα0

or

ãUα0
< b̃Uα0

(ii) ã ≺ b̃ if and only if



ãLα < b̃Lα

ãUα ≤ b̃Uα

or





ãLα ≤ b̃Lα

ãUα < b̃Uα

or





ãLα < b̃Lα

ãUα < b̃Uα

for all α ∈ [0, 1].
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We use this partial order relation to define an optimal solution for a fuzzy optimization

problem and establish the optimality conditions based on this order relation.

2.5.2 A parametric total order relation

Another order relation is a parametric total order relation defined on L-fuzzy numbers.

This order relation ”�λ” , with parameter λ ∈ [0, 1], on set of L-fuzzy numbers, introduced

by S. Saito and H. Ishii [58] and is defined as follows:

Definition 2.5.2. For any ã, b̃ ∈ FL(R), we say that ã �λ b̃, where ”�λ” is a parametric

order relation on FL(R), for 0 ≤ λ ≤ 1 if only one of the following inequalities hold:

(i) λ[ãL1 − ãL0 ] + ãL1 < λ[b̃L1 − b̃L0 ] + b̃L1 for ãL1 − ãL0 < b̃L1 − b̃L0

(ii) λ[ãL1 − ãL0 ] + ãL1 ≤ λ[b̃L1 − b̃L0 ] + b̃L1 for ãL1 − ãL0 ≥ b̃L1 − b̃L0

It can be easily proved that ”�λ” for any fixed λ ∈ [0, 1] is a total order relation on FL(R).

ã �λ b̃ is defined by b̃ �λ ã.

Proposition 2.5.1. Prove that �λ is a total order relation on FL(R), FL(R) is a set of

L-fuzzy numbers defined on R.

Proof. First we prove that “�λ” is a partial order relation on FL(R).

First property is Reflexivity:

For ãL1 − ãL0 = ãL1 − ãL0 , we have λ[ãL1 − ãL0 ] + ãL1 = λ[ãL1 − ãL0 ] + ãL1 . Therefore, ã �λ ã, for

a fixed λ ∈ [0, 1].

Second property is Anti-symmetry:

If ã �λ b̃ and b̃ �λ ã, then ã = b̃.

Since ã �λ b̃, by definition, only one of the following inequalities holds, for a fixed λ ∈ [0, 1]:

(i) λ[ãL1 − ãL0 ] + ãL1 < λ[b̃L1 − b̃L0 ] + b̃L1 , for ãL1 − ãL0 < b̃L1 − b̃L0

(ii) λ[ãL1 − ãL0 ] + ãL1 ≤ λ[b̃L1 − b̃L0 ] + b̃L1 , for ãL1 − ãL0 ≥ b̃L1 − b̃L0

26



2.5. ORDER RELATIONS ON FUZZY NUMBERS

and b̃ �λ ã, implies only one of the following inequalities holds:

(i’) λ[b̃L1 − b̃L0 ] + b̃L1 < λ[ãL1 − ãL0 ] + ãL1 , for b̃L1 − b̃L0 < ãL1 − ãL0

(ii’) λ[b̃L1 − b̃L0 ] + b̃L1 ≤ λ[ãL1 − ãL0 ] + ãL1 , for b̃L1 − b̃L0 ≥ ãL1 − ãL0

We can see here (i) and (i’) do not hold simultaneously. Similarly, (i) and (ii’) and (ii)

and (i’) also do not hold. Hence the only possible case is:

(ii) and (ii’) hold. In this case, we must have λ[ãL1 − ãL0 ] + ãL1 = λ[b̃L1 − b̃L0 ] + b̃L1 .

Therefore, ã = b̃.

Now we prove third property, Transitivity: If ã �λ b̃ and b̃ �λ c̃, then ã �λ c̃.

Since ã �λ b̃, by definition, only one of the following inequalities hold, for a fixed λ ∈ [0, 1]:

(i) λ[ãL1 − ãL0 ] + ãL1 < λ[b̃L1 − b̃L0 ] + b̃L1 , for ãL1 − ãL0 < b̃L1 − b̃L0

(ii) λ[ãL1 − ãL0 ] + ãL1 ≤ λ[b̃L1 − b̃L0 ] + b̃L1 , for ãL1 − ãL0 ≥ b̃L1 − b̃L0

and b̃ �λ c̃, implies only one of the following inequalities hold:

(i’) λ[b̃L1 − b̃L0 ] + b̃L1 < λ[c̃L1 − c̃L0 ] + c̃L1 , for b̃L1 − b̃L0 < c̃L1 − c̃L0

(ii’) λ[b̃L1 − b̃L0 ] + b̃L1 ≤ λ[c̃L1 − c̃L0 ] + c̃L1 , for b̃L1 − b̃L0 ≥ c̃L1 − c̃L0

Now for the case (i) and (i’) hold, we have

λ[ãL1 − ãL0 ] + ãL1 < λ[c̃L1 − c̃L0 ] + c̃L1 , for ãL1 − ãL0 < c̃L1 − c̃L0 .

For the case (i) and (ii’) hold,that is, for ãL1 − ãL0 < b̃L1 − b̃L0 and b̃L1 − b̃L0 ≥ c̃L1 − c̃L0 ,

ã �λ b̃ implies λ[ãL1 − ãL0 ] + ãL1 < λ[b̃L1 − b̃L0 ] + b̃L1 and

b̃ �λ c̃ implies λ[b̃L1 − b̃L0 ] + b̃L1 ≤ λ[c̃L1 − c̃L0 ] + c̃L1 .

This implies, λ[ãL1 − ãL0 ] + ãL1 < λ[c̃L1 − c̃L0 ] + c̃L1 ,
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either ãL1 − ãL0 < c̃L1 − c̃L0 or ãL1 − ãL0 ≥ c̃L1 − c̃L0 .

Therefore, ã �λ c̃. We can prove the inequality easily, for the case (i) and (i’) hold.

Therefore, “�λ” is a partial order relation on FL(R).

Now we prove that “�λ” is a total order relation on FL(R). That is, if ã �λ b̃ then b̃ �λ ã.

Since ã �λ b̃, by definition

case i: ãL1 − ãL0 < b̃L1 − b̃L0 but λ[ãL1 − ãL0 ] + ãL1 ≥ λ[b̃L1 − b̃L0 ] + b̃L1 .

case ii: Suppose ãL1 − ãL0 ≥ b̃L1 − b̃L0 but λ[b̃L1 − b̃L0 ] + b̃L1 < λ[ãL1 − ãL0 ] + ãL1 .

Then, from case ii,

λ[b̃L1 − b̃L0 ] + b̃L1 < λ[ãL1 − ãL0 ] + ãL1 when b̃L1 − b̃L0 < ãL1 − ãL0 .

And by taking case i and ii together, we have

λ[b̃L1 − b̃L0 ] + b̃L1 ≤ λ[ãL1 − ãL0 ] + ãL1 when b̃L1 − b̃L0 ≥ ãL1 − ãL0 .

Therefore, for both the cases we have b̃ �λ ã, for a fixed λ ∈ [0, 1].

Different values of λ will represent different practical situations for comparison of two

L-fuzzy numbers. Here it can also be noticed that when we define a parametric total

order relation “�λ” on FL(R), shape function L must be fixed for all the L-fuzzy numbers.

Using this order relation , we define an optimal solution of L-fuzzy optimization problems

and prove the necessary and sufficient optimality conditions for the same.

2.6 Generalized convexity of a fuzzy valued function

First we list some of the basic concepts about the convexity of crisp sets and functions.
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2.6.1 Convex sets and functions

Here we begin with the definition of an Affine set.

Definition 2.6.1. A set C ⊆ Rn is affine if the line through any two distinct points in C

lies in C, i.e., if for any x1, x2 ∈ C and θ ∈ R, we have θx1 + (1 − θ)x2 ∈ C. In other

words, C contains the linear combination of any two points in C, provided the coefficients

in the linear combination sum to one.

Example 2.6.1. For example, solution set of linear equations {x|Ax = b}.

Now we define a convex set as follows.

Definition 2.6.2. Any subset C of Rn is convex if the line segment between any two points

in C lies in C, i.e., if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ C.

Example 2.6.2. For example, a solid cube is convex, but anything that is hollow or has

a dent in it, for example, a crescent shape, is not convex.

Figure 2.1: Convex set

Figure 2.2: Non-Convex set

Some important examples are given as follows:

• The empty set φ, any single point (i.e., singleton) {x0}, and the whole space Rn are

affine (hence, convex) subsets of Rn .
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• Any line is affine. If it passes through zero, it is a subspace, hence also a convex

cone.

• A line segment is convex, but not affine (unless it reduces to a point).

• Any subspace is affine, and a convex cone (hence convex).

Now we define convexity of a real-valued function.

Definition 2.6.3. A function f : Rn → R is convex if domain of f is a convex set and if

for all x, y ∈ domain of f , and θ with 0 < θ < 1, we have

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y). (2.6.1)

A function f is strictly convex if strict inequality holds in (2.6.1) whenever x 6= y and

0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is strictly

convex.

We give some examples of convex and concave functions:

• Exponential function. eax is convex on R, for any a ∈ R.

• Powers. xa is convex on R+ when a ≥ 1 or a ≤ 0, and concave for 0 ≤ a ≤ 1.

• Powers of absolute value. |x|p , for p ≥ 1, is convex on R.

• Logarithm. log x is concave on R+ .

Here R+ denotes the set of positive numbers. The following is another example:

Example 2.6.3. Norms. If f : Rn → R is a norm, and 0 ≤ θ ≤ 1, then

f(θx + (1− θ)y) ≤ f(θx) + f((1− θ)y) = θf(x) + (1− θ)f(y)

The inequality follows from the triangle inequality, and the equality follows from homo-

geneity of a norm.

The following theorem states an property of differentiable convex real-valued functions.

Theorem 2.6.1. [47] Let f : T ⊆ Rn → R, T is convex set. If f is differentiable at

x̄0 ∈ T , then f(x) is convex at x̄ = x̄0 if and only if

(∇f(x̄0))t(x̄− x̄0) ≤ f(x̄)− f(x̄0),

for all x̄ ∈ T .
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2.6.2 Convexity of a fuzzy-valued function

Convex analysis is one of the most important areas in fuzzy mathematics. Nanda and

Kar [48] introduced the concept of convexity for fuzzy-valued functions. Yan-Xu [81] has

discussed convexity and quasiconvexity of fuzzy-valued functions. Syau [70] has studied

new concepts of pseudoconvexity, invexity and pseudoinvexity for fuzzy-valued functions of

several variables. Convexity and Lipschitz continuity of fuzzy-valued functions are studied

by Furukawa [27]. Here we consider the convexity of a fuzzy-valued function in terms of

fuzzy-max order.

Convexity of a fuzzy-valued function is defined as follows:

Definition 2.6.4. Let f̃ : T ⊆ Rn → F (R) be a fuzzy-valued function and T be a convex

set. We say that f̃ is convex at x̄0 ∈ T if

f̃(λx̄0 + (1− λ)x̄) � (λ⊙ f̃(x̄0)⊕ ((1− λ)⊙ f̃(x̄)))

for each λ ∈ (0, 1) and each x̄ ∈ T .

The following Proposition holds for convexity of a fuzzy-valued function.

Proposition 2.6.1. [76] Let f̃ : T ⊆ Rn → F (R) be a fuzzy-valued function and T be a

convex set. Then f̃ is convex at x̄0 ∈ T if and only if f̃L
α (x̄) and f̃U

α (x̄) are convex at x̄0

for all α ∈ [0, 1].

Proof. The result can be proved easily using the concepts of arithmetic operations and

partial order relation of fuzzy numbers.

Example 2.6.4. The fuzzy-valued function f̃(x1, x2) = (1, 2, 3)⊙x21⊕ (2, 3, 4)⊙x21, where

(1, 2, 3) and (2, 3, 4) are triangular fuzzy numbers, is a convex fuzzy-valued function, since

its α-level functions f̃L
α (x1, x2) = (1+α)x21+(2+α)x22 and f̃U

α (x1, x2) = (3−α)x21+(4−α)x22
are convex functions, for all α.

2.6.3 Quasiconvexity and pseudoconvexity of a fuzzy-valued function

Convexity carries powerful implications for optimization theory. However, from the point

of view of applications, convexity is quite restrictive as an assumption. For instance, such

a commonly used utility function as the Cobb-Douglus function

u(x1, x2, ..., xn) = xt11 · ...xtnn
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is not concave unless
∑n

i=1 ti ≤ 1. So we define here the less restrictive assumptions of qua-

siconvexity and pseudoconvexity of a real-valued function. First we define quasiconvexity

of a real-valued function.

Definition 2.6.5. A function f : Rn → R is called quasiconvex if its domain (dom(f))

and all its sublevel sets

{x ∈ dom(f)|f(x) ≤ γ},

γ ∈ R, are convex. A function is quasiconcave if its every superlevel set

{x ∈ dom(f)|f(x) ≥ γ}

is convex. A function that is both quasiconvex and quasiconcave is called quasilinear.

Example 2.6.5. (1) log x on R+ is quasiconvex.

(2) f : R2 → R with domain R2
+ and f(x1, x2) = x1 · x2 is quasiconcave function, since

the superlevel sets

{x ∈ R2|x1 · x2 ≥ γ}

are convex sets for γ.

Here we state some of the basic properties of quasiconvex functions.

(1) There exists a strong relationship between the value of a function at two points x and

y, and the value of the function at its convex combination λx + (1− λ)y.

Theorem 2.6.2. [54] A function f : T ⊆ Rn → R, T is a convex set, is quasiconcave

on T if and only if for all x, y ∈ T , and for all λ ∈ (0, 1),

f(λx + (1− λ)y) ≥ min{f(x), f(y)}. (2.6.2)

The function f is quasiconvex on T if and only if for all x, y ∈ T and for all

λ ∈ (0, 1),

f(λx + (1− λ)y) ≤ max{f(x), f(y)}. (2.6.3)

We can define strict quasiconcavity (strict quasiconvexity ) of f by defining strict

inequalities in (2.6.2) and (2.6.3) respectively with x, y ∈ T and x 6= y.

(2) Every concave function is quasiconcave function and every convex function is quasi-

convex function. But converse is not true in general. For instance, f(x) = x3 for all

x ∈ R, is quasiconcave but not concave and quasiconvex but not convex.
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(3) Quasiconvex and quasiconcave functions are not necessarily continuous in the interior

of their domains.

(4) Quasiconcave functions can have local maximum that are not global maximum, and

quasiconvex functions can have local minimum that are not global minimum.

(5) First-order conditions are not sufficient to identify even local optimum under quasi-

convexity.

The following example illustrates the above three points.

Example 2.6.6. [54] Let f : R→ R be defined by

f(x) =





x3, x ∈ [0, 1]

1, x ∈ (1, 2]

x3, x > 2.

It is easily checked that f is both quasiconvex and quasiconcave on R. Clearly, f has

a discontinuity at x = 2. Moreover, f is constant on the open interval (1, 2), so every

point in this interval is a local maximum of f as well as a local minimum of f . However,

no point in (0, 1) is either a global maximum or a global minimum. Finally, f ′(0) = 0,

although 0 is evidently neither a local maximum, nor a local minimum.

In some of the sources, definition of quasiconvexity of a real-valued function is given as

Definition 2.6.6. [1, 47] f : T ⊆ Rn → R is said to be quasiconvex at x̄0 ∈ T , with T an

arbitrary set, if and only if

f(x̄) ≤ f(x̄0) =⇒ f(λx̄ + (1− λ)x̄0) ≤ f(x̄0),

for all x̄ ∈ T and λ ∈ [0, 1].

f(x̄) is said to be quasiconvex on T if and only if it is quasiconvex at each x̄ ∈ T . Fur-

thermore, if f(x̄) is differentiable at x̄0 ∈ T , f(x̄) is quasiconvex at x̄ = x̄0 if and only

if

f(x̄) ≤ f(x̄0) =⇒ (∇f(x̄0))
t(x̄− x̄0) ≤ 0, for all x̄ ∈ T.

A pseudoconvex function is a function that behaves like a convex function with respect

to finding its local minimum, but need not actually be convex. Informally, a differen-
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tiable function is pseudoconvex if it is increasing in any direction where it has a positive

directional derivative. Formally, the definition is given as follows.

Definition 2.6.7. A function f(x̄) defined on an open set T ⊆ Rn, is said to be pseu-

doconvex at x̄0 ∈ T (on T), if and only if it is differentiable at x̄0 (at each point of T)

with

(∇f(x̄0))
t(x̄− x̄0) ≥ 0 =⇒ f(x̄) ≥ f(x̄0);

or equivalently

f(x̄) < f(x̄0) =⇒ (∇f(x̄0))
t(x̄− x̄0) < 0,

for all x̄ ∈ T (for all x̄0 ∈ T ).

Example 2.6.7. f(x) = x3 + x defined on R is pseudoconvex function for all x ∈ R as

Df(x2)(x1 − x2) ≥ 0 =⇒ (3x22 + 1)(x1 − x2) ≥ 0

implies (x1 − x2) ≥ 0 implies f(x1) ≥ f(x2).

Example 2.6.8. f(x) = x3 − x defined on R is pseudoconvex function for all x ∈ R by

similar arguments as in above example.

Example 2.6.9. Consider the function f : S → R, S = {x ∈ R2 : 0 ≤ x1 ≤ 1, 0 ≤
x2 ≤ 1}, unit square in R2 and f(x1, x2) = −x21− x1. Consider arbitrary x = [x1, x2], y =

[y1, y2] ∈ S. If we have

(∇f(x))t(y − x) ≥ 0 =⇒ (−2x1 − 1)(y1 − x1) ≥ 0 =⇒ y1 ≤ x1

This implies f(y) ≥ f(x). Hence f is pseudoconvex function for all x ∈ S.

Definition 2.6.8. [1, 47] A function f(x̄), defined on an open set T (⊆ Rn), is said to be

strictly pseudoconvex at x̄0 ∈ T (on T ) if and only if it is differentiable at x̄0 (at each

point x̄ ∈ T) with

(∇f(x̄0))
t(x̄− x̄0) ≥ 0 =⇒ f(x̄) > f(x̄0);

or equivalently

f(x̄) ≤ f(x̄0) =⇒ (∇f(x̄0))
t(x̄− x̄0) < 0,

for each x̄ ( 6= x̄0) ∈ T (for each x̄ ∈ T ).

Example 2.6.10. f(x) = −x2 − x, 0 ≤ x ≤ 1 is strictly pseudoconvex function as for

each x1, x2 ∈ [0, 1] with x1 6= x2 we have,

Df(x1)(x2 − x1) ≥ 0 =⇒ (−2x1 − 1)(x2 − x1) ≥ 0
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implies x2 < x1. This implies f(x2) > f(x1).

Quasiconvexity and pseudoconvexity of fuzzy-valued functions are define as

Definition 2.6.9. Let f̃ : T → F (R) be a fuzzy-valued function defined on an arbitrary

set T ⊆ Rn. We say that f̃ is qausiconvex at x̄0 if and only if the real-valued functions f̃L
α

and f̃U
α are quasiconvex at x̄0, for all α ∈ [0, 1].

Example 2.6.11. Consider a fuzzy-valued function f̃(x) = (1, 2, 3) ⊙ x3 defined on R.

It can be easily verified that f̃ is the quasiconvex function since f̃L
α (x) = (1 + α)x3 and

f̃U
α (x) = (3− α)x3 are quasiconvex functions, for all α ∈ [0, 1].

Definition 2.6.10. Let f̃ : T → F (R) be a fuzzy-valued function defined on an open set

T ⊆ Rn. We say that f̃ is pseudoconvex (strictly pseudoconvex) at x̄0 if and only if the

real-valued functions f̃L
α and f̃U

α are pseudoconvex (strictly pseudoconvex) at x̄0, for all

α ∈ [0, 1].

Example 2.6.12. Consider a fuzzy-valued function f̃(x) = (1, 2, 3) ⊙ x ⊕ (2, 3, 4) ⊙ x3

defined on R. It can be easily verified that f̃ is the pseudoconvex function since f̃L
α (x) =

(1 + α)x + (2 + α)x3 and f̃U
α (x) = (3 − α)x + (4 − α)x3 are pseudoconvex functions, for

all α ∈ [0, 1].

Using H-differentiability of a fuzzy-valued function and a parametric total order relation

on set of fuzzy numbers, we prove the necessary and sufficient optimality conditions for

unconstrained single and multi variable fuzzy optimization problems, in chapter three. In

chapter four, we solve the unconstrained and constrained fuzzy optimization problems us-

ing partial order relation-fuzzy max order on the set of fuzzy numbers. Under the concepts

of convexity and generalized convexity of fuzzy-valued functions, we derive sufficient opti-

mality conditions for constrained fuzzy optimization problems, in chapter five. In chapter

six, we propose the Newton’s method for solving unconstrained single and multi variable

fuzzy optimization problems.
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Unconstrained L-fuzzy

optimization problems
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3.1. INTRODUCTION

3.1 Introduction

Many authors have extensively studied the problem of ranking of fuzzy numbers in ref-

erence to the optimization problems, e.g. [5], [9], [17], [31], [38], [82]. In general, fuzzy

numbers are not comparable in a natural way. However, some authors have defined dif-

ferent ranking methods in terms of the parametric total order relations. For instance,

Furukawa [25] introduced a parametric total order relation on the class of symmetric

fuzzy numbers generated by a shape function. He applied it as a criterion of minimization

to solve a fuzzy shortest route problem. Furukawa defined two types of parametric order

relations on the class of symmetric fuzzy numbers generated by a shape function in his

paper [26](1997) and used it to find the solution of a fuzzy optimization problem.

S. Saito and H. Ishii have introduced a parametric total order relation “�λ”, λ ∈ [0, 1] in

their paper [58] (2001). They have solved fuzzy optimization problems having fuzzy-valued

functions which have both domain and range as L-fuzzy numbers. In the current work,

we use the same parametric total order relation, “�λ”, λ ∈ [0, 1], to obtain an optimum

solution for nonlinear unconstrained single and multi-variable L-fuzzy optimization prob-

lems. We obtain the necessary and sufficient optimality conditions using the concept of

Hukuhara differentiability of a fuzzy-valued function. Appropriate examples are provided

to illustrate the results.

3.2 Single-variable L-fuzzy optimization problem

In this section, we consider a fuzzy-valued function defined on real domain whose values

are L-fuzzy numbers and obtain the necessary and sufficient conditions for optimality for

the same.

3.2.1 Problem definition

Let X be an open subset of R, FL(R) be the set of all L-fuzzy numbers and f̃ : X →
FL(R) be any function. We consider a following unconstrained single-variable L-fuzzy

optimization problem (USFOP):

Minimize f̃(x),

Subject to x ∈ X
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We define the local and global optimum solution of (USFOP) using the parametric total

order relation “�λ”, λ ∈ [0, 1] is fixed. Here we recall the definition of “�λ”, λ ∈ [0, 1].

Definition 3.2.1. For any ã, b̃ ∈ FL(R), we say that ã �λ b̃, where “�λ” is a parametric

order relation on FL(R), for 0 ≤ λ ≤ 1, if only one of the following inequalities hold:

(i) λ[ãL1 − ãL0 ] + ãL1 < λ[b̃L1 − b̃L0 ] + b̃L1 for ãL1 − ãL0 < b̃L1 − b̃L0

(ii) λ[ãL1 − ãL0 ] + ãL1 ≤ λ[b̃L1 − b̃L0 ] + b̃L1 for ãL1 − ãL0 ≥ b̃L1 − b̃L0

ã �λ b̃ is defined by b̃ �λ ã.

Definition 3.2.2. Let X be an open subset of R, and f̃ be a fuzzy-valued function defined

on X, x∗ ∈ X is said to be

(i) A local minimizer (maximizer) of f̃ if there exists a δ > 0 such that f̃(x∗) �λ

f̃(x) (f̃(x) �λ f̃(x∗)) for all x ∈ (x∗ − δ, x∗ + δ).

(ii) A global minimizer (maximizer) of f̃ if f̃(x∗) �λ f̃(x) (f̃(x) �λ f̃(x∗)) for all x ∈ X.

(iii) An extremizer if it is either a minimizer or a maximizer.

3.2.2 Necessary condition for optimality

Here we present the necessary condition for optimality for the (USFOP).

Theorem 3.2.1. Let X be an open subset of R and x∗ ∈ X be a local extremizer of

f̃ : X → FL(R). If f̃ is H-differentiable at x∗. Then λ[Df̃L
1 (x∗)−Df̃L

0 (x∗)]+Df̃L
1 (x∗) = 0

, Df̃L
α (x) is derivative of f̃L

α (x) for each α ∈ [0, 1].

Proof. Since x∗ a local minimum of f̃ , by definition, there exists a δ > 0 such that

(x∗ − δ, x∗ + δ) ⊂ X and f̃(x∗) �λ f̃(x), for all x ∈ (x∗ − δ, x∗ + δ).

By definition of total order relation “�λ”, only one of the following inequalities hold for

each x ∈ (x∗ − δ, x∗ + δ).

(i) λ[f̃L
1 (x∗)− f̃L

0 (x∗)] + f̃L
1 (x∗) < λ[f̃L

1 (x)− f̃L
0 (x)] + f̃L

1 (x)

for f̃L
1 (x∗)− f̃L

0 (x∗) < f̃L
1 (x)− f̃L

0 (x),
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(ii) λ[f̃L
1 (x∗)− f̃L

0 (x∗)] + f̃L
1 (x∗) ≤ λ[f̃L

1 (x)− f̃L
0 (x)] + f̃L

1 (x)

for f̃L
1 (x∗)− f̃L

0 (x∗) ≥ f̃L
1 (x)− f̃L

0 (x).

Now, for each x ∈ (x∗ − δ, x∗ + δ), either f̃L
1 (x∗)− f̃L

0 (x∗) < f̃L
1 (x)− f̃L

0 (x) or

f̃L
1 (x∗)− f̃L

0 (x∗) ≥ f̃L
1 (x)− f̃L

0 (x).

Therefore, for all x ∈ (x∗ − δ, x∗ + δ),

either λ[f̃L
1 (x∗)− f̃L

0 (x∗)] + f̃L
1 (x∗) < λ[f̃L

1 (x)− f̃L
0 (x)] + f̃L

1 (x)

or λ[f̃L
1 (x∗)− f̃L

0 (x∗)] + f̃L
1 (x∗) ≤ λ[f̃L

1 (x)− f̃L
0 (x)] + f̃L

1 (x).

Therefore, for all h ∈ [0, δ),

λ[f̃L
1 (x∗)− f̃L

0 (x∗)] + f̃L
1 (x∗) < or ≤ λ[f̃L

1 (x∗ + h)− f̃L
0 (x∗ + h)] + f̃L

1 (x∗ + h),

That is, λ(f̃L
1 (x∗ +h)− f̃L

1 (x∗))−λ(f̃L
0 (x∗ +h)− f̃L

0 (x∗))+ f̃L
1 (x∗ +h)− f̃L

1 (x∗) > or ≥ 0.

Since f̃ is H-differentiable at x∗, by Proposition 2.3.2, f̃L
α is also differentiable at x∗ for

each α ∈ [0, 1].

Dividing above inequality by h > 0 and taking limit as h→ 0+, we get

λ[D(f̃L
1 )(x∗)−D(f̃L

0 )(x∗)] + D(f̃L
1 )(x∗) ≥ 0 (3.2.1)

Similarly, we can prove that for all h ∈ [0, δ),

λ(f̃L
1 (x∗ − h)− f̃L

1 (x∗))− λ(f̃L
0 (x∗ − h)− f̃L

0 (x∗)) + f̃L
1 (x∗ − h)− f̃L

1 (x∗) > or ≥ 0.

Dividing this inequality by -h and taking limit as h→ 0+, we get,

λ[Df̃L
1 (x∗)−Df̃L

0 (x∗)] + Df̃L
1 (x∗) ≤ 0 (3.2.2)
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Therefore, by (3.2.1) and (3.2.2) the result holds.

3.2.3 Sufficient condition for optimality

Now we present the sufficient condition for optimality for the (USFOP).

Theorem 3.2.2. Let X be an open subset of R and f̃ : X → FL(R) be twice continuously

H-differentiable fuzzy-valued function. If x∗ in X is such that

(1) λ[Df̃L
1 (x∗)−Df̃L

0 (x∗)] + Df̃L
1 (x∗) = 0 and

(2) λ[D2f̃L
1 (x)−D2f̃L

0 (x)] + D2f̃L
1 (x) > 0 , for all x ∈ X .

Then x∗ is a global minimizer of f̃ .

Proof. To prove that x∗ is a global minimizer of f̃ , we must prove that f̃(x∗) �λ f̃(x) for

all x ∈ X. That is, for all x ∈ X, we have to prove that, if f̃L
1 (x∗)−f̃L

0 (x∗) ≥ f̃L
1 (x)−f̃L

0 (x)

then

λ[f̃L
1 (x∗)− f̃L

0 (x∗)] + f̃L
1 (x∗) ≤ λ[f̃L

1 (x)− f̃L
0 (x)] + f̃L

1 (x) else the later inequality is strict.

Since, f̃ is twice continuously H-differentiable function, by Proposition 2.3.3, f̃L
α is twice

continuously differentiable real-valued function, for each α ∈ [0, 1].

Therefore, by Taylor’s Theorem, for x 6= x∗ and 0 < τ < 1,

f̃L
α (x) = f̃L

α (x∗) + Df̃L
α (x∗)(x− x∗) +

1

2
D2f̃L

α (z)(x− x∗)2,

where z = x∗ + τ(x− x∗) for all α ∈ [0, 1].

Therefore, by using this equation for α = 0, α = 1 and using hypothesis (1), we have,

λ[f̃L
1 (x)− f̃L

0 (x)] + f̃L
1 (x) = λ[f̃L

1 (x∗)− f̃L
0 (x∗)] + f̃L

1 (x∗)

+{λ[D2f̃L
1 (z)−D2f̃L

0 (z)] + D2f̃L
1 (z)}1

2
(x− x∗)2 (3.2.3)
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Now, by using hypothesis (2) from (3.2.3),

[λ(f̃L
1 (x)− f̃L

0 (x)) + f̃L
1 (x)] > [λ(f̃L

1 (x∗)− f̃L
0 (x∗)) + f̃L

1 (x∗)].

Therefore f̃(x∗) �λ f̃(x) for all x ∈ X. That is, x∗ is a global minimizer of f̃ on X.

3.2.4 Illustration

Example 3.2.1.

Minimize f̃(x) = ã⊙ x⊕ b̃⊙ x2

Subject to x ∈ R.

where ã and b̃ are triangular fuzzy numbers denoted by ã = (1, 2, 3) and b̃ = (0, 1, 2) which

are defined on R as

ã(r) =





(r − 1), if 1 ≤ r ≤ 2,

(3− r), if 2 < r ≤ 3,

0 otherwise

b̃(r) =





r, if 0 ≤ r ≤ 1,

2− r, if 1 < r ≤ 2,

0 otherwise

The α-level set of f̃(x) is then f̃α(x) = [(1 + α)x + αx2, (3− α)x + (2− α)x2] and

the α-level set of Df̃(x) is Df̃α(x) = [(1 + α) + 2αx, (3− α) + 2(2− α)x].

By applying Necessary condition: λ[Df̃L
1 (x∗)−Df̃L

0 (x∗)] + Df̃L
1 (x∗) = 0,

we get x∗ = −(λ + 2)/2(λ + 1).

Now by verifying Sufficient condition:

λ[D2f̃L
1 (x)−D2f̃L

0 (x)] + D2f̃L
1 (x) = 2λ + 2 > 0

where D2f̃α(x) = [2α, 2(2− α)] and λ ∈ [0, 1].

Therefore, we say that x∗ = −(λ + 2)/2(λ + 1) is global minimum of the given fuzzy-

41



3.2. SINGLE-VARIABLE L-FUZZY OPTIMIZATION PROBLEM

valued function for a fixed value of λ ∈ [0, 1]. The following table shows that if we take

different values λ from 0 to 1, we get different minimum point for a given function. Here

this parameter λ works like a weight, we can adjust its value according to the practical

situation arise in the problem.

λ x∗ f̃(x∗)

0 −1 (−3,−1, 1)

0.2 −0.9167 (−2.7500,−0.9931, 0.7639)

0.6 −0.8125 (−2.4375,−0.9648, 0.5078)

1.0 −0.75 (−2.3824,−0.9576, 0.4671)

Now we give one more example as a case study to illustrate the results.

Example 3.2.2. [55] The horsepower generated by a pelton wheel is proportional to u(V −
u), where u is the velocity of the wheel, which is a variable, and V is the velocity of the jet,

which is fixed. It is desired to find the velocity of the pelton wheel at which its efficiency

is maximum.

Here, if we take the velocity V of the jet as a fixed real constant. Then the problem is

modeled into a crisp optimization problem. However, the velocity of the jet may be about

V units and more realistic model would treat this velocity as fuzzy number, say Ṽ .

To be more precise, we take Ṽ as a triangular fuzzy number (V − 1, V, V + 1). Then, new

fuzzy optimization problem is to maximize f̃(u) = u⊙ Ṽ − u2 where f̃ is a function from

R to FL(R).

By applying the necessary condition: λ[Df̃L
1 (u)−Df̃L

0 (u)] + Df̃L
1 (u) = 0, where f̃L

α (u) =

u(V − 1 + α) − u2 and Df̃L
α (u) = (V − 1 + α) − 2u, for α ∈ [0, 1]. We get parametric a

stationary value u = λ+V
2 .

Now by verifying the sufficient condition: we find λ[D2f̃L
1 (u) − D2f̃L

0 (u)] + D2f̃L
1 (u) =

−2 < 0, therefore, u = λ+V
2 is a parametric global maximizer of f̃ with respect to the

total-order “�λ” on FL(R).
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3.3 Multi-variable L-fuzzy optimization problem

This section considers an unconstrained multi-variable L-fuzzy optimization problem. We

define an optimum solution for the problem using the parametric total order relation “�λ”,

for λ ∈ [0, 1]. We establish the first and second order necessary and sufficient optimality

conditions for a L-fuzzy optimization problem. We use the Hukuhara differentiability of a

fuzzy-valued function to prove the results. We provide suitable examples to illustrate the

results.

3.3.1 Problem definition

Here we consider an unconstrained multi-variable L-fuzzy optimization problem (UM-

FOP).

Minimize f̃(x̄),

Subject to x̄ ∈ X

where X ⊆ Rn is an open set and f̃ : X → FL(R) is a fuzzy-valued function. We define

a local optimum solution of the (UMFOP) using the parametric total order relation “ �λ

”, λ ∈ [0, 1].

Definition 3.3.1. Let f̃ : X ⊆ Rn → FL(R) and λ ∈ [0, 1] be fixed. Then

(1) a point x̄∗ ∈ X is called a local minimum (maximum) of f̃ with respect to parametric

total order relation “�λ” , if there exists r > 0 such that f̃(x̄∗) �λ f̃(x̄) (f̃(x̄∗) �λ

f̃(x̄)), for all x̄ ∈ X ∩B(x̄∗; r).

(2) a point x̄∗ ∈ X is called a strict local minimum (maximum) of f̃ with respect to

parametric total order relation “�λ”, if there exists r > 0 such that f̃(x̄∗) ≺λ f̃(x̄)

(f̃(x̄∗) ≻λ f̃(x̄)), for all x̄ ∈ X ∩B(x̄∗; r).

3.3.2 First-order condition

Now we present first-order necessary condition (FONC) for optimality of (UMFOP).

Theorem 3.3.1. (FONC) Suppose x̄∗ ∈ intX = {x̄ ∈ X / there exists r > 0 such that

B(x̄∗; r) ⊂ X} ⊆ Rn be a local minimizer of f̃ : X → FL(R) with respect to parametric

total order relation “�λ”. Suppose also that f̃ is H-differentiable at x̄∗. Then λ[∇f̃L
1 (x̄∗)−

∇f̃L
0 (x̄∗)] +∇f̃L

1 (x̄∗) = 0.
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Proof. Since x̄∗ ∈ intX a local minimum of f̃ on X, by definition, we have f̃(x̄∗) �λ f̃(x̄)

for all x̄ ∈ X ∩B(x̄∗; r).

That is, only one of the following inequalities hold:

(i) λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) < λ[f̃L

1 (x̄)− f̃L
0 (x̄)] + f̃L

1 (x̄)

for f̃L
1 (x̄∗)− f̃L

0 (x̄∗) < f̃L
1 (x̄)− f̃L

0 (x̄)

(ii) λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) ≤ λ[f̃L

1 (x̄)− f̃L
0 (x̄)] + f̃L

1 (x̄)

for f̃L
1 (x∗)− f̃L

0 (x∗) ≥ f̃L
1 (x̄)− f̃L

0 (x̄).

Therefore, for any x̄ ∈ X ∩B(x̄∗; r) we have either

λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) < λ[f̃L

1 (x̄)− f̃L
0 (x̄)] + f̃L

1 (x̄),

or

λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) ≤ λ[f̃L

1 (x̄)− f̃L
0 (x̄)] + f̃L

1 (x̄).

Let ēi = [0, ..., 1, ...0]T be a unit vector 1 in the ith location. Then (x̄∗ + hēi) with h > 0

will represent a perturbation of magnitude h in x̄∗ in the direction ēi.

Let x̄ = x̄∗ + hēi , where h < r, then we have

λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) < or ≤ λ[f̃L

1 (x̄∗ + h)− f̃L
0 (x̄∗ + h)] + f̃L

1 (x̄∗ + h)

Similarly, for x̄ = x̄∗ − hēi , we have

λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) < or ≤ λ[f̃L

1 (x̄∗ − h)− f̃L
0 (x̄∗ − h)] + f̃L

1 (x̄∗ − h)

for sufficiently small h. That is,

λ
(
f̃L
1 (x̄∗+h)−f̃L

1 (x̄∗)
)
−λ
(
f̃L
0 (x̄∗+h)−f̃L

0 (x̄∗)
)

+f̃L
1 (x̄∗+h)−f̃L

1 (x̄∗) > or ≥ 0, (3.3.1)

λ
(
f̃L
1 (x̄∗−h)−f̃L

1 (x̄∗)
)
−λ
(
f̃L
0 (x̄∗−h)−f̃L

0 (x̄∗)
)

+f̃L
1 (x̄∗−h)−f̃L

1 (x̄∗) > or ≥ 0. (3.3.2)

Since f̃ is H-differentiable at x̄∗, by Proposition 2.3.2, f̃L
α is also differentiable at x̄∗ for

all α ∈ [0, 1]. Dividing the inequalities (3.3.1) and (3.3.2) by h and −h respectively and

taking limit as h→ 0, we get
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λ[Dif̃
L
1 (x̄∗)−Dif̃

L
0 (x̄∗)] + Dif̃

L
1 (x̄∗) ≥ 0,

for all i = 1, ..., n. Therefore,

λ[∇f̃L
1 (x̄∗)−∇f̃L

0 (x̄∗)] +∇f̃L
1 (x̄∗) ≥ 0

λ[∇f̃L
1 (x̄∗)−∇f̃L

0 (x̄∗)] +∇f̃L
1 (x̄∗) ≤ 0

which gives

λ[∇f̃L
1 (x̄∗)−∇f̃L

0 (x̄∗)] +∇f̃L
1 (x̄∗) = 0.

3.3.3 Second-order conditions

We start by discussing the second-order necessary conditions (SONC) for optimality of a

fuzzy-valued function defined on Rn.

Theorem 3.3.2. (SONC) Suppose f̃ : X ⊆ Rn → FL(R) be a continuously H-differentiable

fuzzy-valued function, and x̄∗ in X is a point in the interior of X.

(i) If f̃ has a local minimum at x̄∗, then λ[∇2f̃L
1 (x̄∗)−∇2f̃L

0 (x̄∗)] +∇2f̃L
1 (x̄∗) is positive

semidefinite.

(ii) If f̃ has a local maximum at x̄∗, then λ[∇2f̃L
1 (x̄∗)−∇2f̃L

0 (x̄∗)]+∇2f̃L
1 (x̄∗) is negative

semidefinite.

We adopt a two step procedure to prove this theorem. We first prove this result for the

case where n = 1 i.e., (X ⊆ R) and then we use this result to prove the general case.

Proof. Case 1: n = 1

When n = 1, f̃ : X ⊆ R→ FL(R) and λ[∇2f̃L
1 (x̄∗)−∇2f̃L

0 (x̄∗)]+∇2f̃L
1 (x̄∗) is real number.

We have to prove that

λ[∇2f̃L
1 (x̄∗)−∇2f̃L

0 (x̄∗)] +∇2f̃L
1 (x̄∗) ≥ 0.
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Since f̃ has a local minimum at x̄∗, by definition, we have f̃(x̄∗) �λ f̃(x̄) for all x̄ ∈
X ∩B(x̄∗; r) and r > 0. That is, only one of the following inequalities hold:

(i) λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) < λ[f̃L

1 (x̄)− f̃L
0 (x̄)] + f̃L

1 (x̄)

for f̃L
1 (x̄∗)− f̃L

0 (x̄∗) < f̃L
1 (x̄)− f̃L

0 (x̄)

(ii) λ[f̃L
1 (x̄∗)− f̃L

0 (x̄∗)] + f̃L
1 (x̄∗) ≤ λ[f̃L

1 (x̄)− f̃L
0 (x̄)] + f̃L

1 (x̄)

for f̃L
1 (x̄∗)− f̃L

0 (x̄∗) ≥ f̃L
1 (x̄)− f̃L

0 (x̄)

for all x̄ ∈ X ∩B(x̄∗; r) and 0 ≤ λ ≤ 1.

Consider Taylor’s series expansion of f̃L
α at x̄∗ for sufficiently small h such that x̄∗ + h ∈

B(x̄∗; r) and

f̃L
α (x̄∗ + h) = f̃L

α (x̄∗) + hDf̃L
α (x̄∗) +

1

2
h2D2f̃L

α (x̄∗) + O(h3)

Using this,

0 ≤
{
λ[f̃L

1 (x̄∗ + h)− f̃L
0 (x̄∗ + h)] + f̃L

1 (x̄∗ + h)
}

=
{
λ[f̃L

1 (x̄∗)− f̃L
0 (x̄∗)] + f̃L

1 (x̄∗)
}

+

+h
{
λ[Df̃L

1 (x̄∗)−Df̃L
0 (x̄∗)] +

Df̃L
1 (x̄∗)

}
+

h2

2

{
λ[D2f̃L

1 (x̄∗)−D2f̃L
0 (x̄∗)] +

D2f̃L
1 (x̄∗)

}

+O(h3)

At local minimum, λ[Df̃L
1 (x̄∗)−Df̃L

0 (x̄∗)] + Df̃L
1 (x̄∗) = 0. Thus ,

{
λ[f̃L

1 (x̄∗ + h)− f̃L
0 (x̄∗ + h)] + f̃L

1 (x̄∗ + h)
}
−

{
λ[f̃L

1 (x̄∗)− f̃L
0 (x̄∗)] + f̃L

1 (x̄∗)
}

=
h2

2

{
λ[D2f̃L

1 (x̄∗)−D2f̃L
0 (x̄∗)] +

D2f̃L
1 (x̄∗)

}

+O(h3)

Upon choosing h sufficiently small, we can ensure that the term

h2

2

{
λ[D2f̃L

1 (x̄∗)−D2f̃L
0 (x̄∗)] + D2f̃L

1 (x̄∗)
}

dominates the remainder term O(h3). Thus at a local minimum, we have
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λ[D2f̃L
1 (x̄∗)−D2f̃L

0 (x̄∗)] + D2f̃L
1 (x̄∗) ≥ 0.

Case 2 : n > 1

We prove part 1. Let x̄∗ be a local minimum of f̃ on X. We have to show that for any

z ∈ Rn , z 6= 0, we have z
′

Az ≥ 0, where

A = λ[∇2f̃L
1 (x̄∗)−∇2f̃L

0 (x̄∗)] +∇2f̃L
1 (x̄∗).

Pick any z ∈ Rn, define the fuzzy-valued function g̃ : R→ F (R) by g̃(t) = f̃(x̄∗ + tz).

Note that g̃(0) = f̃(x̄∗). For |t| sufficiently small, f̃(x̄∗) �λ f̃(x̄∗ + tz), since f̃(x̄) has a

local minimum at x̄∗.

It follows that there exists a ǫ > 0 such that g̃(0) �λ g̃(t) for all t ∈ (−ǫ, ǫ). That is, 0 is

a local minimum of g̃.

By case 1, therefore we must have

λ[D2g̃L1 (0)−D2g̃L0 (0)] + D2g̃L1 (0) ≥ 0.

On the other hand, it follows from the definition of g̃, that g̃ is twice continuously H-

differentiable, as g̃(t) = f̃(x∗ + tz). Therefore, g̃Lα(t) = f̃L
α (x∗ + tz) and D2g̃Lα(t) =

z
′∇2f̃L

α (x∗ + tz)z. That is, D2g̃Lα(0) = z
′∇2f̃L

α (x∗)z . Therefore,

λ[D2g̃L1 (0)−D2g̃L0 (0)] + D2g̃L1 (0) = z
′

Az

where A = λ[∇2f̃L
1 (x̄∗)−∇2f̃L

0 (x̄∗)] +∇2f̃L
1 (x̄∗) , so that

z
′

Az = λ[D2g̃L1 (0)−D2g̃L0 (0)] + D2g̃L1 (0) ≥ 0,

as desired. This completes the proof of Part 1. Part 2 is proved similarly.

Now we prove the second-order sufficient conditions (SOSC) for x̄∗ to be a strict local

minimizer (maximizer) of (UMFOP). To prove the theorem, we need the following result

from calculus called, Rayleigh’s Inequality (Ref. [12], pp. 34).
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Theorem 3.3.3. If an n× n matrix P is real symmetric positive definite, then

λmin(P )‖x‖2 ≤ xTPx ≤ λmax(P )‖x‖2,

where λmin(P ) denotes the smallest eigenvalue of P , and λmax(P ) denotes the largest

eigenvalue of P .

Theorem 3.3.4. (SOSC) Suppose f̃ : X ⊆ Rn → FL(R) is a twice continuously H-

differentiable function.

1. If λ[∇f̃L
1 (x̄∗)−∇f̃L

0 (x̄∗)] +∇f̃L
1 (x̄∗) = 0 and λ[∇2f̃L

1 (x̄∗)−∇2f̃L
0 (x̄∗)] +∇2f̃L

1 (x̄∗)

is positive definite, then x̄∗ is a strict local minimum of f̃ on X.

2. If λ[∇f̃L
1 (x̄∗)−∇f̃L

0 (x̄∗)] +∇f̃L
1 (x̄∗) = 0 and λ[∇2f̃L

1 (x̄∗)−∇2f̃L
0 (x̄∗)] +∇2f̃L

1 (x̄∗)

is negative definite, then x̄∗ is a strict local maximum of f̃ on X.

Proof. We prove Part 1, Part 2 is proved similarly. Here we have to prove that x̄∗ is a

strict local minimum of f̃ on X. By definition, we have to show

f̃(x̄∗) ≺λ f̃(x̄)

for all x̄ ∈ X ∩B(x̄∗; r) and for fixed λ ∈ [0, 1]. That is,

f̃(x̄) �λ f̃(x̄∗)

That means, we have to show that the following inequalities fail simultaneously.

(i) λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄) < λ[f̃L

1 (x̄∗)− f̃L
0 (x̄∗)] + f̃L

1 (x̄∗)

for f̃L
1 (x̄)− f̃L

0 (x̄) < f̃L
1 (x̄∗)− f̃L

0 (x̄∗)

(ii) λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄) ≤ λ[f̃L

1 (x̄∗)− f̃L
0 (x̄∗)] + f̃L

1 (x̄∗)

for f̃L
1 (x̄)− f̃L

0 (x̄) ≥ f̃L
1 (x̄∗)− f̃L

0 (x̄∗)

for all x̄ ∈ X ∩B(x̄∗; r) and for fixed λ ∈ [0, 1].

Let H̃L(x̄∗) = λ[∇2f̃L
1 (x̄∗)−∇2f̃L

0 (x̄∗)] +∇2f̃L
1 (x̄∗). Using assumption 2, and Rayleigh’s

inequality (Theorem 3.3.3 of this Section), it follows that if d̄ 6= 0 then

λmin(H̃L(x̄∗))‖d̄‖2 ≤ d̄T H̃L(x̄∗)d̄

48



3.3. MULTI-VARIABLE L-FUZZY OPTIMIZATION PROBLEM

where λmin(H̃L(x̄∗)) is the smallest eigen value of H̃L(x̄∗). By Taylor’s theorem and

assumption 1,

{
λ[f̃L

1 (x̄∗ + d)− f̃L
0 (x̄∗ + d)] + f̃L

1 (x̄∗ + d)
}
−

{
λ[f̃L

1 (x̄∗)− f̃L
0 (x̄∗)] + f̃L

1 (x̄∗)
}

=
1

2
d̄T H̃L(x̄∗)d̄ + O(‖d̄‖2)

≥ λmin(H̃L(x̄∗))

2
‖d̄‖2 + O(‖d̄‖2)

Hence for all d̄ such that ‖d̄‖ is sufficiently small,

{λ[f̃L
1 (x̄∗ + d)− f̃L

0 (x̄∗ + d)] + f̃L
1 (x̄∗ + d)} > {λ[f̃L

1 (x̄∗)− f̃L
0 (x̄∗)] + f̃L

1 (x̄∗)}.

This inequality fails the above two inequalities (i) and (ii) simultaneously. Therefore we

say that f̃ has a strict local minimizer at x̄∗ with respect to the total order relation

“�λ”.

3.3.4 Illustrations

Example 3.3.1.

Minimize f̃(x1, x2) = (1̃⊙ x21)⊕ (0̃.5⊙ x22)⊕ (3̃⊙ x2)⊕ 4̃.5, x1, x2 ∈ R

where 1̃ = (0, 1, 2), 0̃.5 = (0.4, 0.5, 0.6), 3̃ = (2, 3, 4) and 4̃.5 = (3.5, 4.5, 5.5) are triangular

fuzzy numbers defined on R and with respect to the total order relation “�λ” for some

fixed λ ∈ [0, 1].

Here f̃L
α (x1, x2) = αx21 + (0.4 + α0.1)x22 + (2 + α)x2 + (3.5 + α),

∇f̃L
α =

(
2αx1

2(0.4 + 0.1α)x2 + (2 + α)

)
.

By first order necessary condition λ[∇f̃L
1 (x̄)−∇f̃L

0 (x̄)] +∇f̃L
1 (x̄) = 0.

That is

λ2x1 + 2x1 = 0

λ(0.2x2 + 1) + x2 + 3 = 0
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Solving these equations, we get parametric solution

x̄∗ =
(

0,− (λ + 3)

0.2λ + 1

)

Now

λ[∇2f̃L
1 (x̄)−∇2f̃L

0 (x̄)] +∇2f̃L
1 (x̄) =

(
2λ + 2 0

0 0.2λ + 1

)

where

∇2f̃L
α (x̄) =

(
2α 0

0 2(0.4 + 0.1α)

)
.

Since this matrix is positive definite for each λ ∈ [0, 1], the point x̄∗ =
(

0,− (λ+3)
0.2λ+1

)

satisfies the SOSC (Note that FONC and SONC are also satisfied). So it is a strict

local minimizer of given fuzzy-valued function.

Example 3.3.2.

Minimize f̃(x1, x2) = (1̃⊙ x21)⊕ ((−̃1)⊙ x22), x1, x2 ∈ R

where 1̃ = (0, 1, 2) and (−̃1) = (−2,−1, 0) are triangular fuzzy numbers defined on R and

with respect to total order relation “�λ” for some fixed λ ∈ [0, 1].

Here f̃L
α (x1, x2) = αx21 + (−2 + α)x22,

∇f̃L
α =

(
2αx1

2(−2 + α)x2

)
.

By first order necessary condition λ[∇f̃L
1 (x̄)−∇f̃L

0 (x̄)] +∇f̃L
1 (x̄) = 0.

That is

λ2x1 + 2x1 = 0

λ2x2 − 2x2 = 0.

Solving these equations, we get the solution

x̄∗ = (0, 0).

50



3.4. CONCLUSIONS

We evaluate

λ[∇2f̃L
1 (x̄)−∇2f̃L

0 (x̄)] +∇2f̃L
1 (x̄) =

(
2λ + 2 0

0 2λ− 2

)

where

∇2f̃L
α (x̄) =

(
2α 0

0 2(−2 + α)

)
.

The point x̄∗ = (0, 0) satisfies the FONC but SONC is not satisfied, since 2λ+ 2 > 0 but

(2λ+2)(2λ−2) ≤ 0, for all λ ∈ [0, 1]. Moreover, SOSC is not satisfied as (2λ+2)(2λ−2) ≤
0, for all λ ∈ [0, 1]. Therefore, x̄∗ = (0, 0) is not optimum point for given fuzzy-valued

function, if λ ∈ [0, 1).

3.4 Conclusions

In this chapter, we have developed the first and second order, necessary and sufficient

optimality conditions for unconstrained fuzzy optimization problems. We have defined

a parametric total order relation “�λ” for λ ∈ [0, 1], on set of fuzzy numbers having

particular L-shape membership function. Though this order relation is restricted to a

sub-set of fuzzy numbers and also depends upon the parameter value λ, it is still useful

for comparing fuzzy numbers in a natural way which is not possible for the set of all fuzzy

numbers. Further, the value of λ can be altered according to the particular situation

arising in the modelling of a problem and thus it gives flexibility in comparison of L-fuzzy

numbers. It is interesting to note that if instead of fuzzy-valued functions we restrict

our attention to real-valued functions, then the total order relation “�λ” for λ ∈ [0, 1] ,

reduces to the usual total order relation ”�” on R and the optimality conditions reduce

to the usual optimality conditions for real-valued functions defined on Rn.
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4.1 Introduction

The non-dominated solution of a nonlinear constrained fuzzy optimization problem having

real constraints has been proposed by Wu [76], who also derived the sufficient optimality

conditions for it. We generalize the results of Wu for fuzzy optimization problems having

fuzzy-valued constraints.
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Before considering constrained fuzzy optimization problems, we establish the first and

second order necessary and sufficient optimality conditions for unconstrained fuzzy op-

timization problems under the partial order relation on the set of fuzzy numbers. We

give appropriate illustrations to explain the proposed results, for both unconstrained and

constrained fuzzy optimization problems.

4.2 Pre-requisites

In order to define the Kuhn-Tucker like optimality conditions for nonlinear fuzzy optimiza-

tion problems, we need to provide some properties of fuzzy-valued functions. We start by

stating the following two Propositions from Real Analysis.

Proposition 4.2.1. [57] Let φ be a real-valued function of two variables defined on I ×
[a, b], where I is an interval in R. Suppose that the following conditions are satisfied:

(i) For every x ∈ I, the real-valued function h(y) = φ(x, y) is Riemann integrable on

[a, b]. In this case, we write f(x) =

∫ b

a
φ(x, y) dy;

(ii) Let x0 ∈ int(I), the interior of I then for every ǫ > 0, there exists a δ > 0 such that

∣∣∣∣
∂φ

∂x
(x, y)− ∂φ

∂x
(x0, y)

∣∣∣∣ < ǫ

for all y ∈ [a, b] and all x ∈ (x0 − δ, x0 + δ).

Then ∂φ
∂x (x0, y) is Riemann integrable on [a, b], f ′(x0) exists, and

f ′(x0) =

∫ b

a

∂φ

∂x
(x0, y) dy.

Proposition 4.2.2. [6] Every function monotonic on an interval is Riemann integrable

there.

Let f̃ : X → F (R) be a fuzzy-valued function defined on subset X of Rn. Then for each

α ∈ [0, 1], f̃L
α and f̃U

α are real-valued functions defined on X. For any fixed x̄0 ∈ X,

we have the corresponding real-valued functions f̃L
α (x̄0) and f̃U

α (x̄0) defined on [0, 1] can

be regarded as functions of variable α ∈ [0, 1]. By Proposition 2.2.1, these functions are

monotonic on [0, 1] and hence, are Riemann integrable by Proposition 4.2.2. So, we define
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new functions FL and FU as follows

FL(x̄) =

∫ 1

0
f̃L
α (x̄)dα and FU (x̄) =

∫ 1

0
f̃U
α (x̄)dα (4.2.1)

for every x̄ ∈ X. Then we have following useful proposition.

Proposition 4.2.3. [76] Let f̃ be a fuzzy-valued function defined on an open subset X

of Rn. If f̃ is continuously H-differentiable on some neighborhood of x̄0 = (x̄01, x̄
0
2, ..., x̄

0
n).

Then the real-valued functions FL and FU defined in (4.2.1) are continuously differentiable

at x̄0 and

∂FL

∂xi
(x̄0) =

∫ 1

0

∂f̃L
α

∂xi
(x̄0) dα and

∂FU

∂xi
(x̄0) =

∫ 1

0

∂f̃U
α

∂xi
(x̄0) dα

for all i = 1, .., n.

Proof. We need to show that the partial derivatives ∂FL

∂xi
and ∂FU

∂xi
exist on some neighbor-

hood of x̄0 and are continuous at x̄0, for all i = 1, .., n. From (4.2.1), we say that condition

(1) in Proposition 4.2.1 is satisfied.

Since f̃ is continuously H-differentiable on some neighborhood of x̄0. By definition, all the

partial H-derivatives ∂f̃
∂xi

, i = 1, ..., n exists on some neighborhood of x̄0, and are continu-

ous at x̄0. Therefore, by definition of continuity of a fuzzy-valued function, we have

for every ǫ > 0, there exists a δ > 0 such that ‖x̄− x̄0‖ < δ implies

dF

(∂f̃(x̄)

∂xi
,
∂f̃(x̄0)

∂xi

)
< ǫ, (4.2.2)

for each i = 1, ..., n. Now by applying the definition of metric dF ,

dF

(∂f̃(x̄)

∂xi
,
∂f̃(x̄0)

∂xi

)
= sup

α∈[0,1]

{
dH

((∂f̃(x̄)

∂xi

)
α
, (
∂f̃
(
x̄0)

∂xi

)
α

)}

= sup
α∈[0,1]

{
max

{∣∣∣
(∂f̃(x̄)

∂xi

)L
α
−
(∂f̃(x̄0)

∂xi

)L
α

∣∣∣,

∣∣∣
(∂f̃(x̄)

∂xi

)U
α
−
(∂f̃(x̄0)

∂xi

)U
α

∣∣∣
}}
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Therefore, by (4.2.2), we have

∣∣∣
(∂f̃(x̄)

∂xi

)L
α
−
(∂f̃(x̄0)

∂xi

)L
α

∣∣∣ < ǫ

and ∣∣∣
(∂f̃(x̄)

∂xi

)U
α
−
(∂f̃(x̄0)

∂xi

)U
α

∣∣∣ < ǫ,

for all α ∈ [0, 1] and i = 1, ..., n. Since

(∂f̃(x̄)

∂xi

)L
α

=
∂f̃L

α

∂xi
(x̄) and

(∂f̃(x̄)

∂xi

)U
α

=
∂f̃U

α

∂xi
(x̄),

for every ǫ > 0, there exists a δ > 0 such that

‖x̄− x̄0‖ < δ implies

∣∣∣∣∣
∂f̃L

α

∂xi
(x̄)− ∂f̃L

α

∂xi
(x̄0)

∣∣∣∣∣ < ǫ,

for all α ∈ [0, 1] and i = 1, ..., n. That is, condition (2) of Proposition 4.2.1 is also satisfied.

Therefore, by Proposition 4.2.1

∂FL

∂xi
(x̄0) =

∫ 1

0

∂f̃L
α

∂xi
(x̄0) dα and

∂FU

∂xi
(x̄0) =

∫ 1

0

∂f̃U
α

∂xi
(x̄0) dα (4.2.3)

for all i = 1, .., n.

So if ‖x̄− x̄0‖ < δ then using (4.2.3), we have

∣∣∣∣
∂FL

∂xi
(x̄)− ∂FL

∂xi
(x̄0)

∣∣∣∣ =

∣∣∣∣∣

∫ 1

0

[∂f̃L
α

∂xi
(x̄)− ∂f̃L

α

∂xi
(x̄0)

]
dα

∣∣∣∣∣

≤
∫ 1

0

∣∣∣∣∣
∂f̃L

α

∂xi
(x̄)− ∂f̃L

α

∂xi
(x̄0)

∣∣∣∣∣ dα < ǫ,

for all i = 1, ..., n. Therefore, ∂FL

∂xi
is continuous, for all i = 1, ..., n. Similarly, we can prove

continuity of ∂FU

∂xi
. Hence complete the proof.

Notations:

(1) We write gradient of f̃ : X ⊂ Rn → F (R) using its α-level sets as follows:

∇f̃L
α (x̄) =

(∂f̃L
α

∂x1
(x̄), ...,

∂f̃L
α

∂xn
(x̄)
)t
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and

∇f̃U
α (x̄) =

(∂f̃U
α

∂x1
(x̄), ...,

∂f̃U
α

∂xn
(x̄)
)t
.

Moreover, ∫ 1

0
∇f̃L

α (x̄)dα =
(∫ 1

0

∂f̃L
α

∂x1
(x̄)dα, ...,

∫ 1

0

∂f̃L
α

∂xn
(x̄)dα

)t

and ∫ 1

0
∇f̃U

α (x̄)dα =
(∫ 1

0

∂f̃U
α

∂x1
(x̄)dα, ...,

∫ 1

0

∂f̃U
α

∂xn
(x̄)dα

)t
.

(2) The fuzzy matrix of second order partial derivatives of f̃ is given as follows:

∇2f̃(x̄0) =




∂2f̃(x̄0)
∂x2

1
... ∂2f̃(x̄0)

∂x1∂xn

... ... ...
∂2f̃(x̄0)
∂xn∂x1

... ∂2f̃(x̄0)
∂x2

n




where ∂2f̃(x̄0)
∂xi∂xj

∈ F (R), i, j = 1, ..., n. Then α-level matrices of above matrix are

∇2f̃L
α (x̄0) =




∂2f̃L
α (x̄0)
∂x2

1
... ∂2f̃L

α (x̄0)
∂x1∂xn

... ... ...
∂2f̃L

α (x̄0)
∂xn∂x1

... ∂2f̃L
α (x̄0)
∂x2

n




and

∇2f̃U
α (x̄0) =




∂2f̃U
α (x̄0)
∂x2

1
... ∂2f̃U

α (x̄0)
∂x1∂xn

... ... ...
∂2f̃U

α (x̄0)
∂xn∂x1

... ∂2f̃U
α (x̄0)
∂x2

n




We would like to discuss one important point here as a remark.

Remark 4.2.1. Optimization problems mainly depend upon order relations. In crisp

optimization problems, we deal with real numbers which are linearly ordered and there is

no problem regarding order relation. But while dealing with fuzzy optimization problems,

the main issue is the definition of a order relation on the set of fuzzy numbers. There are

many different ways to define order relations on fuzzy numbers. Some of them are partial

orders and some are total order relations. In the current section, we consider the fuzzy

optimization problem with partial order relation of so called “fuzzy max-order”, which has

been defined in Chapter 2. In this order relation, we have defined the strict inequality

between two fuzzy numbers in two different ways. For unconstrained and constrained fuzzy

optimization problems, we use different strict inequalities.
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4.3 Unconstrained fuzzy optimization problem

Here we consider the unconstrained fuzzy optimization problem and prove the first and

second order necessary and sufficient optimality conditions for the same.

First we formulate the problem definition and its solution.

Let T ⊆ Rn be an open subset of Rn and f̃ be fuzzy-valued function defined on T . Consider

the following nonlinear unconstrained fuzzy optimization problem (FOP1).

Minimize f̃(x) = f̃(x1, .., xn)

Subject to x̄ ∈ T

We recall the definition of partial order relation on fuzzy numbers from Preliminaries.

Definition 4.3.1. For ã , b̃ in F (R), we say that ã � b̃ if and only if ãLα ≤ b̃Lα and ãUα ≤ b̃Uα

for all α ∈ [0, 1],

where ãα = [ãLα, ã
U
α ] and b̃α = [b̃Lα, b̃

U
α ] are α-level sets of given fuzzy numbers. Moreover,

we define the strict inequality between two fuzzy numbers as

ã ≺ b̃ if and only if ã � b̃ and there exists an α0 ∈ [0, 1] such that ãLα0
< b̃Lα0

or ãUα0
< b̃Uα0

.

Now we define comparable fuzzy numbers as follows.

Definition 4.3.2. For ã , b̃ in F (R), we say that ã and b̃ are comparable if either ã � b̃

or b̃ � ã.

A locally non-dominated solution of (FOP1) is given as follows.

Definition 4.3.3. Let T be an open subset of Rn. A point x̄0 ∈ T is a locally non-

dominated solution of (FOP1) if there exists no x̄1( 6= x̄0) ∈ Nǫ(x̄
0) ∩ T such that f̃(x̄1) �

f̃(x̄0), where Nǫ(x̄
0) is a ǫ-neighborhood of x̄0.

4.3.1 Necessary and sufficient optimality conditions

The first and second order necessary and sufficient optimality conditions for real uncon-

strained optimization problem, given in [12], are as follows.
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Theorem 4.3.1. Let T be an open subset of Rn.

(i) (FONC) Let f continuously differentiable function on T . If x∗ is a local minimizer

of f over T , then ∇f(x∗) = 0.

(ii) (SONC) Let f twice continuously differentiable function on T . If x∗ is a local

minimizer of f over T , then ∇2f(x∗) is positive semidefinite.

(iii) (SOSC) Let f twice continuously differentiable function on T . Suppose that

1. ∇f(x∗) = 0 and

2. ∇2f(x∗) is positive definite.

Then x∗ is a strict local minimizer of f .

We prove here necessary and sufficient optimality conditions for obtaining the locally non-

dominated solution of (FOP1). We need the following Theorem of classical optimization

theory given in [1].

Theorem 4.3.2. [1] Suppose that f̃ : Rn → R is differentiable at x̄. If there is a vector d̄

such that ∇f(x̄)T · d̄ < 0, then there exists a δ > 0 such that f(x̄ + λd̄) < f(x̄) for each

λ ∈ (0, δ), so that d̄ is a descent direction of f at x̄.

The first order necessary condition is as follows.

Theorem 4.3.3. Suppose f̃ : T → F (R) is continuously H-differentiable fuzzy-valued

function, T is an open subset of Rn. If x̄0 ∈ T is a locally non-dominated solution of

(FOP1) and for any direction d̄ and for any δ > 0 there exists λ ∈ (0, δ) such that

f̃(x̄0 + λ · d̄) and f̃(x̄0) are comparable, then ∇f̃(x̄0) = 0̃.

Proof. Suppose that

∇f̃(x̄0) 6= 0̃,

then there exists α0 ∈ [0, 1] such that

∇f̃L
α0

(x̄0) 6= 0

or

∇f̃U
α0

(x̄0) 6= 0.
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Without loss of generality suppose that

∇f̃L
α0

(x̄0) 6= 0.

Let d̄ = −∇f̃L
α0

(x̄0). Then we get

∇f̃L
α0

(x̄0) · d̄ = −‖∇f̃L
α0

(x̄0)‖2 < 0.

By Theorem 4.3.2, there is a δ > 0 such that

f̃L
α0

(x̄0 + λd̄) < f̃L
α0

(x̄0) (4.3.1)

for λ ∈ (0, δ). Now by assumption of the theorem,

for any direction d̄ and for any δ > 0 there exists λ ∈ (0, δ) such that f̃(x̄0 + λ · d̄) and

f̃(x̄0) are comparable.

Thus, either f̃(x̄0 +λ · d̄) � f̃(x̄0) or f̃(x̄0) � f̃(x̄0 +λ · d̄). But from (4.3.1), we must have

f̃(x̄0 + λ · d̄) ≺ f̃(x̄0).

Which contradicts to our assumption that x̄0 is a non-dominated solution. Therefore,

∇f̃(x̄0) = 0̃.

Remark 4.3.1.

∇f̃(x̄0) = 0̃

implies

∇f̃L
α (x̄0) = 0 and ∇f̃U

α (x̄0) = 0

for all α ∈ [0, 1]. This implies
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∫ 1

0
∇f̃L

α (x̄0) · dα = 0 and

∫ 1

0
∇f̃U

α (x̄0) · dα = 0

That is

∫ 1

0
{∇f̃L

α (x̄0) +∇f̃U
α (x̄0)} · dα = 0

Next, we prove second order necessary condition.

Theorem 4.3.4. Let f̃ be a twice continuously H-differentiable fuzzy-valued function de-

fined on T ⊆ Rn. If x̄0 is a locally non-dominated solution of (FOP1) and for any direction

d̄ and for any δ > 0 there exists λ ∈ (0, δ) such that f̃(x̄0 +λ · d̄) and f̃(x̄0) are comparable

then ∇2f̃(x̄0) is positive semidefinite fuzzy matrix.

Proof. We prove the result by contradiction. Suppose ∇2f̃(x̄0) is not a positive semidefi-

nite fuzzy matrix. Then by definition, there exists some α0 ∈ [0, 1], such that either

d̄t0 · ∇2f̃L
α0

(x̄) · d̄0 < 0

or

d̄t0 · ∇2f̃U
α0

(x̄) · d̄0 < 0,

for some direction d̄0. Without loss of generality, we assume that

d̄t0 · ∇2f̃L
α0

(x̄) · d̄0 < 0 (4.3.2)

Now let x̄(β) = x̄0 + βd̄ and define the composite function

φα(β) = f̃L
α (x̄0 + βd̄),

for all α ∈ [0, 1].

Since f̃ is twice continuously H-differentiable fuzzy-valued function on T . By Proposition

2.3.1 and 2.3.3, f̃L
α and f̃U

α are also twice continuously differentiable functions on T , for

all α ∈ [0, 1]. Then by Taylor’s theorem,

φα(β) = φα(0) + φ′
α(0) · β + φ′′

α(0) · β
2

2
+ O(β2),
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for all α ∈ [0, 1]. Now since x̄0 is a locally non-dominated solution of (FOP1) then by

Theorem 4.3.3,

φ′
α(0) = d̄ · ∇f̃L

α (x̄0) = 0,

for all α ∈ [0, 1]. Therefore,

φα(β)− φα(0) = φ′′
α(0) · β

2

2
+ O(β2).

Since φ′′
α(0) = d̄t · ∇2f̃L

α (x̄0) · d̄,

φα(β)− φα(0) = (d̄t · ∇2f̃L
α (x̄0) · d̄)

β2

2
+ O(β2).

Taking α = α0 and d̄ = d̄0, from (4.3.2) and for sufficiently small β,

φα0(β)− φα0(0) < 0.

That is,

f̃L
α0

(x̄0 + βd̄0) < f̃L
α0

(x̄0) (4.3.3)

Now β is chosen in such a way that f̃(x̄0 + βd̄0) and f̃(x̄0) are comparable. That is either

f̃(x̄0+βd̄0) � f̃(x̄0) or f̃(x̄0+βd̄0) � f̃(x̄0). But f̃(x̄0+βd̄0) � f̃(x̄0) not possible because

of (4.3.3). Therefore,

f̃(x̄0 + βd̄0) � f̃(x̄0)

which contradicts the assumption that , x̄0 is a locally non-dominated solution. Therefore,

∇2f̃(x̄0) is a positive semidefinite fuzzy matrix.

Now, we prove second-order sufficient condition.

Theorem 4.3.5. Let f̃ be a twice continuously H-differentiable function on T ⊆ Rn.

Suppose that

1. ∇f̃(x̄0) = 0̃

2. ∇2f̃(x̄0) is positive definite fuzzy matrix.

Then, x̄0 is locally non-dominated solution of (FOP1).
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Proof. We prove this result by contradiction. Suppose x̄0 ∈ T is not a locally non-

dominated solution of (FOP1). Then, for any ǫ > 0 there exists x̄1( 6= x̄0) ∈ Nǫ(x̄
0) ∩ T

such that f̃(x̄1) � f̃(x̄0). That is., there exists x̄1 ∈ Nǫ(x̄
0) ∩ T such that

f̃(x̄1)Lα ≤ f̃(x̄0)Lα and f̃(x̄1)Uα ≤ f̃(x̄0)Uα (4.3.4)

for all α ∈ [0, 1]. Now since f̃ is the twice continuously H-differentiable function, f̃L
α and

f̃U
α are also twice continuously differentiable functions, for all α ∈ [0.1]. Using assumption

2 and Rayleigh’s inequality (refer Theorem 3.3.3 of Chapter 3),

it follows that if d̄ 6= 0, then

0 < λmin(∇2f̃L
α (x̄0))‖d̄‖2 ≤ d̄t · ∇2f̃L

α (x̄0) · d̄.

By Taylor’s theorem and assumption 1,

f̃L
α (x̄0 + d̄)− f̃L

α (x̄0) =
1

2
d̄t · ∇2f̃L

α (x̄0) · d̄ + O(‖d̄‖2)

≥ λmin(∇2f̃L
α (x̄0))

2
‖d̄‖2 + O(‖d̄‖2)

> 0,

for all d̄ such that ‖d̄‖ is sufficiently small. Now choose x̄1 so close to x̄0 so that d̄ = x̄1−x̄0
is sufficiently small and hence,

f̃L
α (x̄1)− f̃L

α (x̄0) = f̃L
α (x̄0 + d̄)− f̃L

α (x̄0) > 0

That is,

f̃L
α (x̄1) > f̃L

α (x̄0)

This gives contradiction to inequality (4.3.4). Hence proved the result.

We consider two examples to illustrate the above results.

Example 4.3.1.

Minimize f̃(x1, x2)

Subject to x̄ = (x1, x2) ∈ R2,

where f̃ : R2 → F (R) be defined by f̃(x1, x2) = (1, 2, 4) ⊙ x21 ⊕ (1, 2, 4) ⊙ x22 ⊕ (1, 3, 5),

(1, 2, 4) and (1, 3, 5) are triangular fuzzy numbers.
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By the first order necessary condition, we have

∫ 1

0
{∇f̃L

α (x̄0) +∇f̃U
α (x̄0)} · dα = 0

Here, f̃L
α (x1, x2) = (1 + α)x21 + (1 + α)x22 + (1 + 2α) and

f̃U
α (x1, x2) = (4− 2α)x21 + (4− 2α)x22 + (5− 2α). Therefore,

∇fL
α (x1, x2) =

(
2(1 + α)x1

2(1 + α)x2

)

and

∇fU
α (x1, x2) =

(
2(4− 2α)x1

2(4− 2α)x2

)

Therefore, ∫ 1

0
{∇f̃L

α (x̄0) +∇f̃U
α (x̄0)} · dα =

(
9x1

9x2

)
= 0

That is , x0 = (x1, x2) = (0, 0).

Now to verify second order necessary and sufficient conditions, we find fuzzy Hessian

matrix of f̃(x). The α-level matrices of fuzzy Hessian matrix are:

∇2f̃L
α (x) =

(
2(1 + α) 0

0 2(1 + α)

)

and

∇2f̃U
α (x) =

(
2(4− 2α) 0

0 2(4− 2α)

)

Since both the α-level matrices ∇2f̃L
α (x) and ∇2f̃U

α (x) are positive definite matrices for all

α ∈ [0, 1]. Therefore, x0 = (0, 0) satisfies the second order necessary and sufficient condi-

tion for a locally non-dominated solution. Hence, x0 = (0, 0) is a locally non-dominated

solution of given problem.

Now we consider another example.

Example 4.3.2.

Minimize f̃(x1, x2)

Subject to x̄ = (x1, x2) ∈ R2,
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where f̃ : R2 → F (R) be defined by f̃(x1, x2) = (1, 2, 4) ⊙ x31 ⊕ (1, 2, 4) ⊙ x32 ⊕ (1, 3, 5),

(1, 2, 4) and (1, 3, 5) are triangular fuzzy numbers.

By the first order necessary condition, we have

∫ 1

0
{∇f̃L

α (x̄0) +∇f̃U
α (x̄0)} · dα = 0

Here, f̃L
α (x1, x2) = (1 + α)x31 + (1 + α)x32 + (1 + 2α) and

f̃U
α (x1, x2) = (4− 2α)x31 + (4− 2α)x32 + (5− 2α). Therefore,

∇fL
α (x1, x2) =

(
3(1 + α)x21
3(1 + α)x22

)

and

∇fU
α (x1, x2) =

(
3(4− 2α)x21
3(4− 2α)x22

)

Therefore, ∫ 1

0
{∇f̃L

α (x̄0) +∇f̃U
α (x̄0)} · dα =

(
13.5x21
13.5x22

)
= 0

That is , x0 = (x1, x2) = (0, 0).

Now to verify second order necessary and sufficient conditions, we find fuzzy Hessian

matrix of f̃(x). The α-level matrices of fuzzy Hessian matrix are:

∇2f̃L
α (x) =

(
6(1 + α)x1 0

0 6(1 + α)x2

)

and

∇2f̃U
α (x) =

(
6(4− 2α)x1 0

0 6(4− 2α)x2

)

Since both the α-level matrices ∇2f̃L
α (x) and ∇2f̃U

α (x) are positive semidefinite matrices

for all α ∈ [0, 1] at point x0 = (0, 0). Therefore, x0 = (0, 0) satisfies the second order

necessary condition but not the sufficient condition for a locally non-dominated solution,

as none of the α-level matrices is positive definite at x0 = (0, 0). Hence, x0 = (0, 0) is not

a locally non-dominated solution of given problem.
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4.4 Constrained fuzzy optimization problem

Now we prove the necessary and sufficient Kuhn-Tucker like optimality conditions for

obtaining a non-dominated solution of a nonlinear constrained fuzzy optimization problem.

4.4.1 Problem definition

Let X ⊆ Rn be an open subset of Rn and f̃ , g̃j , for j = 1, ...,m be fuzzy-valued functions

defined on X. Consider the following nonlinear constrained fuzzy optimization problem

(NCFOP)

Minimize f̃(x̄) = f̃(x1, .., xn)

Subject to g̃j(x̄) � 0̃, j = 1, ..,m,

where 0̃ is a fuzzy number defined as 0̃(r) = 1 if r = 0 and 0̃(r) = 0 if r 6= 0 and its level

set is 0̃α = {0} for α ∈ [0, 1]. For (NCFOP), the solution is defined in terms of a (weak)

non-dominated solution in the following sense.

Definition 4.4.1. Let x̄0 ∈ X1 = {x̄ ∈ X : g̃j(x̄) � 0̃, j = 1, ..,m}. We say that an

x̄0 is a non-dominated solution of (NCFOP) if there exists no x̄1( 6= x̄0) ∈ X1 such that

f̃(x̄1) � f̃(x̄0). It is said to be a weak non-dominated solution if there exists no x̄1 ∈ X1

such that f̃(x̄1) ≺ f̃(x̄0). That is, x̄0 is a weak non-dominated solution if there exists no

x̄1 ∈ X1 such that





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) ≤ f̃U

α (x̄0)
or





f̃L
α (x̄1) ≤ f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)
or





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)

for all α ∈ [0, 1].

4.4.2 Necessary and sufficient optimality conditions

Let f and gj , j = 1, ..,m, be real-valued functions defined on T ⊂ Rn. Then we consider

the following optimization problem

65



4.4. CONSTRAINED FUZZY OPTIMIZATION PROBLEM

(P ) Minimize f(x̄) = f(x1, .., xn)

Subject to gj(x̄) ≤ 0, j = 1, ..,m.

The well-known Kuhn-Tucker optimality conditions for problem (P) by S. Rangarajan in

[52] is stated as follows:

Theorem 4.4.1. Let f be a convex, continuously differentiable function mapping T into

R, where T ⊂ Rn is open and convex. For j = 1, ...,m, the constraint functions gj : T → R

are convex, continuously differentiable functions. Suppose there is some x̄ ∈ T such that

gj(x̄) < 0, j = 1, ...,m.

Then x̄0 is an optimal solution of problem (P) over the feasible set {x̄ ∈ T : gj(x̄) ≤
0, j = 1, ..,m} if and only if there exist multipliers 0 ≤ µj ∈ R, j = 1, ..,m, such that the

Kuhn-Tucker first order conditions hold:

(KT-1) ∇f(x̄0) +
∑m

j=1 µj∇gj(x̄0) = 0;

(KT-2) µj · gj(x̄0) = 0 for all j = 1, ..,m.

Now we present the Kuhn-Tucker like optimality conditions for (NCFOP).

Theorem 4.4.2. Let a fuzzy-valued objective function f̃ : X → F (R) be convex and con-

tinuously H-differentiable, where X ⊂ Rn is open and convex. For j = 1, ..,m, the fuzzy-

valued constraint functions g̃j : X → F (R) are convex and continuously H-differentiable.

Let X1 = {x̄ ∈ T ⊂ Rn : g̃j(x̄) � 0̃, j = 1, ..,m} be a feasible set of problem (NCFOP) and

let x̄0 ∈ X1. Suppose there is some x̄ ∈ X such that g̃Uj0(x̄) < 0, j = 1, ..,m.

Then x̄0 is a weak non-dominated solution of problem (NCFOP) if and only if there exist

multipliers 0 ≤ µj ∈ R, j = 1, ..,m, such that the Kuhn-Tucker first order conditions hold:

(FKT-1)

∫ 1

0
∇f̃L

α (x̄0) dα +

∫ 1

0
∇f̃U

α (x̄0) dα +
m∑

j=1

µj∇g̃Uj0(x̄0) = 0;

(FKT-2) µj · g̃Uj0(x̄0) = 0 for all j = 1, ..,m.

Proof. Necessary. Define a new function,

F (x̄) =

∫ 1

0
f̃L
α (x̄)dα +

∫ 1

0
f̃U
α (x̄)dα. (4.4.1)

Since f̃ is convex and continuously H-differentiable function, by Propositions 2.3.5 and

2.6.1, we say that F (x̄) is convex and continuously differentiable real-valued function on
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X.

Since x̄0 is a weak non-dominated solution of (NCFOP). Then there exists no x̄1 ∈ X1

such that





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) ≤ f̃U

α (x̄0)
or





f̃L
α (x̄1) ≤ f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)
or





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)

for all α ∈ [0, 1]. Therefore, there exists no x̄1 ∈ X1 such that

f̃L
α (x̄1) + f̃U

α (x̄1) < f̃L
α (x̄0) + f̃U

α (x̄0),

for all α ∈ [0, 1]. That is, there exists no x̄1 ∈ X1 such that

∫ 1

0
f̃L
α (x̄1)dα +

∫ 1

0
f̃U
α (x̄1)dα <

∫ 1

0
f̃L
α (x̄0)dα +

∫ 1

0
f̃U
α (x̄0)dα

That is, there exists no x̄1 ∈ X1 such that

F (x̄1) < F (x̄0)

Therefore,

F (x̄0) ≤ F (x̄1)

for all x̄1 ∈ X1. Since g̃j are convex and continuously H-differentiable functions for

j = 1, ..,m, implies g̃Ljα and g̃Ujα are real-valued convex and continuously differentiable

functions for all α ∈ [0, 1] and j = 1, ..,m.

By definition of partial ordering , we have

X1 = {x̄ ∈ X ⊂ Rn : g̃j(x̄) � 0̃, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Ljα(x̄) ≤ 0 and g̃Ujα(x̄) ≤ 0, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Ujα(x̄) ≤ 0, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Uj0(x̄) ≤ 0, j = 1, ...,m}

Therefore, x̄0 ∈ X1 = {x̄ ∈ X ⊂ Rn : g̃Uj0(x̄) ≤ 0, j = 1, ..,m} and there is some x̄ ∈ X

such that g̃Uj0(x̄) < 0, j = 1, ..,m. So our problem becomes an optimization problem with

real objective function F (x̄) subject to real constraints.

Therefore, by Theorem 4.4.1, there exist multipliers 0 ≤ µj ∈ R, j = 1, ..,m, such that

the following kuhn-Tucker first order conditions hold:
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(KT-1) ∇F (x̄0) +
∑m

j=1 µj∇g̃Uj0(x̄0) = 0;

(KT-2) µj · g̃Uj0(x̄0) = 0 for all j = 1, ..,m.

But F (x̄) =

∫ 1

0
f̃L
α (x̄)dα +

∫ 1

0
f̃U
α (x̄)dα. We obtain the kuhn-Tucker conditions for prob-

lem (NCFOP) as follows

(FKT-1)

∫ 1

0
∇f̃L

α (x̄0) dα +

∫ 1

0
∇f̃U

α (x̄0) dα +
m∑

j=1

µj∇g̃Uj0(x̄0) = 0;

(FKT-2) µj · g̃Uj0(x̄0) = 0 for all j = 1, ..,m.

Sufficient. We are going to prove this part by contradiction. Suppose that x̄0 not a weak

non-dominated solution. Then there exists a x̄1 ∈ X1 such that f̃(x̄1) ≺ f̃(x̄0). Therefore,

we have

f̃L
α (x̄1) + f̃U

α (x̄1) < f̃L
α (x̄0) + f̃U

α (x̄0)

for all α ∈ [0, 1]. From (4.4.1), we obtain

F (x̄1) < F (x̄0) (4.4.2)

Since F is convex and continuously differentiable function. Furthermore, x̄0 ∈ X1 = {x̄ ∈
X ⊂ Rn : g̃Uj0(x̄) ≤ 0, j = 1, ..,m} , by conditions (FKT-1) and (FKT-2) of this theorem,

we obtain the following new conditions:

(KT-1) ∇F (x̄0) +
∑m

j=1 µj∇g̃Uj0(x̄0) = 0;

(KT-2) µj · g̃Uj0(x̄0) = 0 for all j = 1, ..,m.

Using Theorem 4.4.1, we say that x̄0 is an optimal solution of real objective function F

with real constraints g̃Uj0(x̄) ≤ 0, for j = 1, ..,m. i.e., F (x̄0) ≤ F (x̄1), which contradicts to

(4.4.2). Hence the proof.
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4.4.3 Illustrations

First we consider a fuzzy optimization problem having a fuzzy-valued objective function

and real constraints.

Example 4.4.1.

Minimize f̃(x1, x2) = (ã⊙ x21)⊕ (b̃⊙ x22)

subject to g(x1, x2) = (x1 − 2)2 + (x2 − 2)2 ≤ 1,

where ã = (1, 2, 3) and b̃ = (0, 1, 2) are triangular fuzzy numbers defined on R as

ã(r) =





(r − 1), if 1 ≤ r ≤ 2,

(3− r), if 2 < r ≤ 3,

0 otherwise

b̃(r) =





r, if 0 ≤ r ≤ 1,

2− r, if 1 < r ≤ 2,

0 otherwise

Using Definition 2.3.1, we get

f̃L
α (x1, x2) = (1 + α)x21 + αx22 and f̃U

α (x1, x2) = (3− α)x21 + (2− α)x22, for α ∈ [0, 1].

We obtain

∇f̃L
α (x1, x2) =

(
2x1(α + 1)

2x2α

)
,

∇f̃U
α (x1, x2) =

(
2x1(3− α)

2x2(2− α)

)
and

∇g(x1, x2) =

(
2(x1 − 2)

2(x2 − 2)

)

Therefore, we have ∫ 1

0
∇f̃L

α (x1, x2) dα =

(
3x1

x2

)
,

∫ 1

0
∇f̃U

α (x1, x2) dα =

(
5x1

3x2

)
.

From Theorem 4.4.2, we have the following Kuhn-Tucker conditions
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(FKT-1) 8x1 + 2µ(x1 − 2) = 0, 4x2 + 2µ(x2 − 2) = 0,

(FKT-2) µ((x1 − 2)2 + (x2 − 2)2 − 1) = 0.

Solving these equations, we get the solution (x1, x2) = (6/5, 3/2) and µ = 6. By Theorem

4.4.2, we say that (x∗1, x
∗
2) = (6/5, 3/2) is a weak non-dominated solution for given problem

. Also the minimum value of objective function is f̃min = (1.44, 5.13, 8.82) and we can find

its defuzzified value 5.13 by using center of area method (ref. [29]).

Now we solve the same fuzzy optimization problem having fuzzy-valued objective function

with fuzzy constraints.

Example 4.4.2.

Minimize f̃(x1, x2) = (ã⊙ x21)⊕ (b̃⊙ x22)

subject to g̃(x1, x2) = (b̃⊙ (x1 − 2)2)⊕ (b̃⊙ (x2 − 2)2) � c̃,

where ã = (1, 2, 3), b̃ = (0, 1, 2) and c̃ = (0, 2, 4) are triangular fuzzy numbers defined on

R as

ã(r) =





(r − 1), if 1 ≤ r ≤ 2,

(3− r), if 2 < r ≤ 3,

0 otherwise

b̃(r) =





r, if 0 ≤ r ≤ 1,

2− r, if 1 < r ≤ 2,

0 otherwise

c̃(r) =





r/2, if 0 ≤ r ≤ 2,

(4− r)/2, if 2 < r ≤ 4,

0 otherwise

Using Definition 2.3.1, we get

f̃L
α (x1, x2) = (1 + α)x21 + αx22 and f̃U

α (x1, x2) = (3− α)x21 + (2− α)x22 for α ∈ [0, 1].

Moreover, g̃Uα (x1, x2) = (2− α)(x1 − 2)2 + (2− α)(x2 − 2)2 ≤ (4− 2α)

for α ∈ [0, 1].

Therefore, g̃U0 (x1, x2) = (x1 − 2)2 + (x2 − 2)2 ≤ 2.
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Now we obtain

∇f̃L
α (x1, x2) =

(
2x1(α + 1)

2x2α

)
,

∇f̃U
α (x1, x2) =

(
2x1(3− α)

2x2(2− α)

)
and

∇g(x1, x2) =

(
2(x1 − 2)

2(x2 − 2)

)

Therefore, we have ∫ 1

0
∇f̃L

α (x1, x2) dα =

(
3x1

x2

)
,

∫ 1

0
∇f̃U

α (x1, x2) dα =

(
5x1

3x2

)
.

From Theorem 4.4.2, we have the following Kuhn-Tucker conditions

(FKT-1) 8x1 + 2µ(x1 − 2) = 0, 4x2 + 2µ(x2 − 2) = 0,

(FKT-2) µ((x1 − 2)2 + (x2 − 2)2 − 2) = 0.

Solving these equations, we get the solution (x1, x2) = ((−6 + 2
√

41)/(1 +
√

41), (−6 +

2
√

41)/(−1 +
√

41)) and µ = −3 +
√

41. By Theorem 4.4.2, we say that (x∗1, x
∗
2) = ((−6 +

2
√

41)/(1 +
√

41), (−6 + 2
√

41)/(−1 +
√

41)) is a weak non-dominated solution for given

problem . Also the minimum value of objective function is f̃min = (0.8453, 3.2773, 5.7094)

and we can find its defuzzified value 3.2773 by using center of area method.

Remark 4.4.1. By comparing the defuzzified value of minimum objective functions in

Example 4.4.1 and 4.4.2, we observe that there is significant effect on minimum value of

the fuzzy-valued objective function if consider fuzzy optimization problem with fuzzy con-

straints. Moreover, if we consider the fuzzy optimization problem having fuzzy constraints

then we can not apply Theorem 6.2 from [76] to find the non-dominated solution. In that

case, our result is quite useful to get the solution.
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4.4.4 Case study

Here we set out a nonlinear fuzzy optimization problem as case study which describes a

possible situation in an exporting company. The problem is the following:

Two products A and B are to be produced using two different processes (p1 and p2) for

the purpose of export. The production of one unit of product A ( B ) requires about 10

( about 6 ) minutes of processing time for p1 process, and about 5 ( about 10 ) minutes

for the p2 process. The total time available for process p1 is at least 2000 minutes and

can be extended up to 2064 minutes with linearly reducing possibility and time available

on process p2 can be at least 2050 minutes and can be extended up to 2124 minutes with

linearly decreasing possibility. When sold abroad, product A ( B ) yields a profit of around

20 ( around 32 ) per unit. A discount of around 4 percent ( around 3 percent) of total

quantity purchased of product A ( B ) is given on unit selling price per unit of product

A ( B ). The managers want to maximize the benefit. Here we take, the parameters in

terms of processing times in the different departments as well as profits for the products

are approximately only rather than the exact value.

The fuzzy problem can be formulated as follows:

Maximize 2̃0⊙ x1 ⊕ 3̃2⊙ x2 ⊖ 0̃.04⊙ x21 ⊖ 0̃.03⊙ x22

subject to the constraints:

1̃0⊙ x1 ⊕ 6̃⊙ x2 � 2̃000

5̃⊙ x1 ⊕ 1̃0⊙ x2 � 2̃050

x1, x2 ≥ 0,

where 2̃0 = (18, 20, 21), 3̃2 = (31, 32, 34), 0̃.04 = (0.03, 0.04, 0.05), 0̃.03 = (0.02, 0.03, 0.05),

1̃0 = (9, 10, 11), 5̃ = (4, 5, 6) and 6̃ = (5, 6, 7) are triangular fuzzy numbers while 2̃000 and

2̃050 are fuzzy numbers having following membership functions:

µ2̃000(r) =





1, if 0 ≤ r ≤ 2000,

(2064−r)
64 if 2000 < r ≤ 2064,

0 otherwise

72



4.5. CONCLUSIONS

and

µ2̃050(r) =





1, if 0 ≤ r ≤ 2050,

(2124−r)
74 if 2050 < r ≤ 2124,

0 otherwise

We get the weak non-dominated solution x1 = 246.875 and x2 = 496.15 of given fuzzy

optimization problem by applying the above necessary and sufficient Kuhn-Tucker like

conditions.

4.5 Conclusions

The main concept pursued in this chapter is the generalization of the optimality condi-

tions for a nonlinear constrained fuzzy optimization problem which are well-established in

classical optimization. We have defined a non-dominated solution for a fuzzy optimization

problem using a partial order relation- fuzzy max order on fuzzy numbers. Using the

concept of Hukuhara differentiability of a fuzzy-valued function, we proved the required

results. Here we observed that the solution of fuzzy formulation of an optimization prob-

lem differs from its crisp analog. Therefore, we conclude that considering uncertainties

inherent in nature while formulating an optimization problem, makes our deduction more

realistic.
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5.1 Introduction

A. A. K. Majumdar has proved the sufficient optimality conditions for multi objective

optimization problems using the concept of convexity and generalized convexity in his

paper [47]. Wu has proved the sufficient optimality conditions for an optimization problem

with fuzzy-valued objective function and real constraints in [80] using pseudoconvexity of

objective function. Using the approach of [47], in this chapter, we prove the sufficient

optimality conditions for a non-dominated solution of a fuzzy optimization problem with

fuzzy-valued objective function and fuzzy constraints, under the concept of convexity and

generalized convexity of fuzzy-valued functions.
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5.2 Problem and its solution

We consider the (NCFOP) defined in Chapter 4.

Minimize f̃(x̄) = f̃(x1, .., xn)

Subject to g̃j(x̄) � 0̃, j = 1, ..,m,

x̄ ∈ X ⊆ Rn.

where X is an open set and f̃ and g̃j , j = 1, ...,m, are fuzzy-valued functions defined on

X. Here we recall the definition of a (weak) non-dominated solution from Chapter 4.

Definition 5.2.1. Let x̄0 ∈ X1 = {x̄ ∈ X : g̃j(x̄) � 0̃, j = 1, ..,m}. We say that an

x̄0 is a non-dominated solution of (NCFOP) if there exists no x̄1( 6= x̄0) ∈ X1 such that

f̃(x̄1) � f̃(x̄0). It is said to be a weak non-dominated solution if there exists no x̄1 ∈ X1

such that f̃(x̄1) ≺ f̃(x̄0).

To establish the sufficient optimality conditions for (NCFOP), we need the following the-

orem of alternatives.

Theorem 5.2.1. [74] (Tucker’s theorem of alternatives) Let A and B be matrices of

dimension n by m and n by p respectively, and let x, y, u be column vectors of dimensions

m, p, n respectively. Then exactly one of the following system has a solution:

System 1: Atu ≤ 0, Atu 6= 0 , Btu ≤ 0 for some u

System 2: Ax + By = 0 for some x > 0, y ≥ 0.

5.3 Sufficient optimality conditions

Using the concept of convexity and generalized convexity of a fuzzy-valued function defined

in Chapter 2, we prove the sufficient optimality conditions for x̄0 to be a (weak) non-

dominated solution of (NCFOP).

Theorem 5.3.1. (Sufficiency condition 1 for a weak non-dominated solution). Assume

that an x̄0 ∈ X1 satisfies the following conditions (i)-(iii):

(i) f̃(x̄), g̃j(x̄), j = 1, ...,m, are H-differentiable at x̄ = x̄0 ∈ X1;
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(ii) f̃(x̄), g̃j(x̄), j = 1, ...,m, are convex at x̄ = x̄0 ∈ X1;

(iii) there exist 0 ≤ µj ∈ R, j = 1, ...,m, such that

(a) ∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
∑m

j=1∇g̃Uj0(x̄0) · µj = 0, for all α ∈ [0, 1];

(b) µj · g̃Uj0(x̄0) = 0, for all j = 1, ..,m.

Then, x̄0 is a weak non-dominated solution of (NCFOP).

Proof. Suppose that x̄0 ∈ X1 is not weak non-dominated solution. Then there exists

x̄1 ∈ X1 such that f(x̄1) ≺ f(x̄0). That is, there exists x̄1 ∈ X1 such that





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) ≤ f̃U

α (x̄0)
or





f̃L
α (x̄1) ≤ f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)
or





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)

for all α ∈ [0, 1]. Therefore

f̃L
α (x̄1) + f̃U

α (x̄1) < f̃L
α (x̄0) + f̃U

α (x̄0),

for all α ∈ [0, 1]. That is,

Fα(x̄1)− Fα(x̄0) < 0, (5.3.1)

where Fα(x̄) = f̃L
α (x̄) + f̃U

α (x̄), for all α ∈ [0, 1]. By definition of partial ordering, we have

X1 = {x̄ ∈ X ⊂ Rn : g̃j(x̄) � 0̃, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Ljα(x̄) ≤ 0 and g̃Ujα(x̄) ≤ 0, j = 1, ...,m and α ∈ [0, 1]}
= {x̄ ∈ X ⊂ Rn : g̃Ujα(x̄) ≤ 0, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Uj0(x̄) ≤ 0, j = 1, ...,m}

Let J = {j : g̃Uj0(x̄0) = 0} is an index set of active constraints at x̄ = x̄0. Since x̄0, x̄1 ∈ X1,

for j ∈ J , we have

g̃Uj0(x̄1)− g̃Uj0(x̄0) ≤ 0. (5.3.2)

Now using hypothesis (ii) of the Theorem and Theorem 2.6.1 from Preliminaries for (5.3.1)

and (5.3.2), we have
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∇Fα(x̄0)(x̄1 − x̄0) < 0, ∇g̃Uj0(x̄0)(x̄1 − x̄0) ≤ 0, j ∈ J and for all α ∈ [0, 1].

Thus, the following system of inequalities

∇Fα(x̄0)z̄ < 0, for all α ∈ [0, 1], ∇g̃Uj0(x̄0)z̄ ≤ 0 possess a solution z̄ = x̄1 − x̄0.

Therefore, by Tucker’s theorem of alternatives (refer Theorem 5.2.1), there exist no λ > 0

and µ
′

j ≥ 0 such that

∇Fα(x̄0)λ +
∑

j∈J

∇g̃Uj0(x̄0) · µ
′

j = 0,

for all α ∈ [0, 1]. That is,

∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
∑

j∈J

∇g̃Uj0(x̄0) · µj = 0,

where µj = µ
′

j/λ and Fα(x̄0) = f̃L
α (x̄0) + f̃U

α (x̄0), for all α ∈ [0, 1].

Taking µj = 0 for j = {1, ...,m} − J , we can still say that there exist no µj ≥ 0 for all

j ∈ J such that

∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
m∑

j=1

∇g̃Uj0(x̄0) · µj = 0,

for all α ∈ [0, 1]. Therefore, we can say that there exist no µj ≥ 0, j = 1, ...,m such that

∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
m∑

j=1

∇g̃Uj0(x̄0) · µj = 0,

for all α ∈ [0, 1], and µj · g̃Uj0(x0) = 0 for j =1,...,m. This contradicts to hypothesis (iii) of

the Theorem. Hence, x̄0 is a weak non-dominated solution of (NCFOP).

Theorem 5.3.2. (Sufficiency condition for a non-dominated solution). Assume that an

x̄0 ∈ X1 satisfies the following conditions (i)-(iii):

(i) f̃(x̄), g̃j(x̄), j =1,..,m, are strictly pseudoconvex at x̄ = x̄0 ∈ X1;

(ii) there exist 0 ≤ µj ∈ R, j = 1,...,m, such that
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(a) ∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
∑m

j=1∇g̃Uj0(x̄0) · µj = 0, for all α ∈ [0, 1];

(b) µj · g̃Uj0(x̄0) = 0, for all j = 1,..,m.

Then, x̄0 is a non-dominated solution of (NCFOP).

Proof. Suppose x̄0 is not non-dominated solution, then there exists an x̄1( 6= x̄0) ∈ X1 such

that f̃(x̄1) � f̃(x̄0).

i.e., f̃L
α (x̄1) ≤ f̃L

α (x̄0) and f̃U
α (x̄1) ≤ f̃U

α (x̄0), for all α ∈ [0, 1].

By assumption of strictly pseudoconvexity of the function f̃(x̄) at x̄ = x̄0, we have f̃L
α (x̄)

and f̃L
α (x̄) are also strictly pseudoconvex functions. Using the above inequalities , we

obtain

∇f̃L
α (x̄0)

t(x̄1 − x̄0) < 0 and ∇f̃U
α (x̄0)

t(x̄1 − x̄0) < 0, for all α ∈ [0, 1].

Furthermore, we have

g̃Uj0(x̄1)− g̃Uj0(x̄0) ≤ 0

where j ∈ J = {j : g̃Uj0(x0) = 0} is an index set of active constraints at x̄ = x̄0. Therefore,

we have

∇Fα(x̄0)
t(x̄1 − x̄0) < 0

and

∇g̃Uj0(x̄0)t(x̄1 − x̄0) < 0

where Fα(x̄0) = f̃L
α (x̄0) + f̃U

α (x̄0) , for all α ∈ [0, 1]. Thus, the following system of

inequalities

∇Fα(x̄0)
tz̄ < 0, for α ∈ [0, 1] ∇g̃Uj0(x̄0)tz̄ < 0 possess a solution z̄ = x̄1 − x̄0.

Therefore, by the Tucker’s theorem of alternatives (refer Theorem 5.2.1), there exist no

λ > 0 and 0 ≤ µ
′

j ∈ R, j ∈ J , such that

∇Fα(x̄0)λ +
∑

j∈J

∇g̃Uj0(x̄0) · µ
′

j = 0,

for all α ∈ [0, 1]. Using the similar arguments in the proof of Theorem 5.3.1, there exist
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no 0 ≤ µj ∈ R, j = 1, ...,m such that

∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
m∑

j=1

∇g̃Uj0(x̄0) · µj = 0,

for all α ∈ [0, 1] and µj · g̃Uj0(x0) = 0 for j =1,...,m, violating hypothesis (ii) of the theorem.

Hence, x̄0 is a non-dominated solution of (NCFOP).

Theorem 5.3.3. (Sufficiency condition 2 for a weak non-dominated solution). Assume

that an x̄0 ∈ X1 satisfies the following conditions (i)-(iii):

(i) f̃(x̄) is pseudoconvex at x̄ = x̄0 ∈ X1;

(ii) g̃j(x̄) are quasiconvex and H-differentiable at x̄0, for j = 1, ...,m;

(iii) there exist 0 ≤ µj ∈ R, j = 1, ...,m, such that

(a) ∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
∑m

j=1∇g̃Uj0(x̄0) · µj = 0, for all α ∈ [0, 1];

(b) µj · g̃U0j(x̄0) = 0, j = 1, ..,m.

Then, x̄0 is a weak non-dominated solution of (NCFOP).

Proof. Suppose that x̄0 ∈ X1 is not weak non-dominated solution. Then there exists

x̄1 ∈ X1 such that f(x̄1) ≺ f(x̄0). That is, there exists x̄1 ∈ X1 such that





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) ≤ f̃U

α (x̄0)
or





f̃L
α (x̄1) ≤ f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)
or





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)

for all α ∈ [0, 1]. Therefore

f̃L
α (x̄1) + f̃U

α (x̄1) < f̃L
α (x̄0) + f̃U

α (x̄0),

for all α ∈ [0, 1]. That is,

Fα(x̄1)− Fα(x̄0) < 0, (5.3.3)
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where Fα(x̄) = f̃L
α (x̄) + f̃U

α (x̄), for all α ∈ [0, 1]. By definition of partial ordering, we have

X1 = {x̄ ∈ X ⊂ Rn : g̃j(x̄) � 0̃, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Ljα(x̄) ≤ 0 and g̃Ujα(x̄) ≤ 0, j = 1, ...,m and α ∈ [0, 1]}
= {x̄ ∈ X ⊂ Rn : g̃Ujα(x̄) ≤ 0, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Uj0(x̄) ≤ 0, j = 1, ...,m}

Let J = {j : g̃Uj0(x̄0) = 0} is an index set of active constraints at x̄ = x̄0. Since x̄0, x̄1 ∈ X1,

for j ∈ J , we have

g̃Uj0(x̄1)− g̃Uj0(x̄0) ≤ 0. (5.3.4)

Now using hypothesis (i) and (ii) of the Theorem, from (5.3.3) and (5.3.4),

∇Fα(x̄0)(x̄1 − x̄0) < 0, ∇g̃Uj0(x̄0)(x̄1 − x̄0) ≤ 0, j ∈ J and for all α ∈ [0, 1].

Thus, the following system of inequalities

∇Fα(x̄0)z̄ < 0, for all α ∈ [0, 1], ∇g̃Uj0(x̄0)z̄ ≤ 0 possess a solution z̄ = x̄1 − x̄0.

Therefore, by Tucker’s theorem of alternatives (refer Theorem 5.2.1), there exist no λ > 0

and µ
′

j ≥ 0 such that

∇Fα(x̄0)λ +
∑

j∈J

∇g̃Uj0(x̄0) · µ
′

j = 0,

for all α ∈ [0, 1]. Using the similar arguments in the proof of Theorem 5.3.1, there exist

no 0 ≤ µj ∈ R, j = 1, ...,m such that

∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
m∑

j=1

∇g̃Uj0(x̄0) · µj = 0,

for all α ∈ [0, 1] and µj ·g̃Uj0(x0) = 0 for j =1,...,m, violating hypothesis (iii) of the theorem.

Hence, x̄0 is a weak non-dominated solution of (NCFOP).

Now we prove sufficient optimality condition for (NCFOP) under quasiconvexity of a fuzzy-
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valued objective function. We quote the following Theorem of quasiconvex functions from

[30].

Theorem 5.3.4. [30] Let X0 ⊆ Rn be open. If a differentiable function f : X0 → R is

quasiconvex at a point x̄ ∈ X0, where ∇f(x̄) 6= 0, then it is pseudoconvex at x̄.

Theorem 5.3.5. (Sufficiency condition 3 for a weak non-dominated solution). Assume

that, for x̄0 ∈ X1 = {x̄ ∈ X : g̃j(x̄) � 0̃, j = 1, ...,m}

(i) f̃ , g̃j , j = 1, ...,m are H-differentiable at x̄0 and ∇f̃L
α (x̄0) 6= 0 and ∇f̃U

α (x̄0) 6= 0, for

all α ∈ [0, 1].

(ii) f̃ and g̃j , j = 1, ...,m are quasiconvex functions at x̄0.

(iii) Let 0 ≤ µj ∈ R, j = 1, ...,m and x̄0 ∈ X1 satisfies the following conditions:

(a) ∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
∑m

j=1∇g̃Uj0(x̄0) · µj = 0, for all α ∈ [0, 1];

(b) µj · g̃U0j(x̄0) = 0, j = 1, ..,m.

Then, x̄0 is a weak non-dominated solution of (NCFOP).

Proof. Suppose that x̄0 ∈ X1 is not weak non-dominated solution. Then there exists

x̄1 ∈ X1 such that f(x̄1) ≺ f(x̄0). That is, there exists x̄1 ∈ X1 such that





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) ≤ f̃U

α (x̄0)
or





f̃L
α (x̄1) ≤ f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)
or





f̃L
α (x̄1) < f̃L

α (x̄0)

f̃U
α (x̄1) < f̃U

α (x̄0)

for all α ∈ [0, 1]. Therefore

f̃L
α (x̄1) + f̃U

α (x̄1) < f̃L
α (x̄0) + f̃U

α (x̄0),

for all α ∈ [0, 1]. That is,

Fα(x̄1)− Fα(x̄0) < 0, (5.3.5)

where Fα(x̄) = f̃L
α (x̄) + f̃U

α (x̄), for all α ∈ [0, 1]. By definition of partial ordering, we have

X1 = {x̄ ∈ X ⊂ Rn : g̃j(x̄) � 0̃, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Ljα(x̄) ≤ 0 and g̃Ujα(x̄) ≤ 0, j = 1, ...,m and α ∈ [0, 1]}
= {x̄ ∈ X ⊂ Rn : g̃Ujα(x̄) ≤ 0, j = 1, ...,m}
= {x̄ ∈ X ⊂ Rn : g̃Uj0(x̄) ≤ 0, j = 1, ...,m}
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Let J = {j : g̃Uj0(x̄0) = 0} is an index set of active constraints at x̄ = x̄0. Since x̄0, x̄1 ∈ X1,

for j ∈ J , we have

g̃Uj0(x̄1)− g̃Uj0(x̄0) ≤ 0. (5.3.6)

Now using hypothesis (i) and (ii) of the Theorem, f̃L
α (x̄) and f̃U

α (x̄) are pseudoconvex

functions at x̄0 (ref. Theorem 5.3.4), for all α ∈ [0, 1]. Therefore, from (5.3.5) and (5.3.6),

∇Fα(x̄0)(x̄1 − x̄0) < 0, ∇g̃Uj0(x̄0)(x̄1 − x̄0) ≤ 0, j ∈ J and for all α ∈ [0, 1].

Thus, the following system of inequalities

∇Fα(x̄0)z̄ < 0, for all α ∈ [0, 1], ∇g̃Uj0(x̄0)z̄ ≤ 0 possess a solution z̄ = x̄1 − x̄0.

Therefore, by Tucker’s theorem of alternatives (refer Theorem 5.2.1), there exist no λ > 0

and µ
′

j ≥ 0 such that

∇Fα(x̄0)λ +
∑

j∈J

∇g̃Uj0(x̄0) · µ
′

j = 0,

for all α ∈ [0, 1]. Using the similar arguments in the proof of Theorem 5.3.1, there exist

no 0 ≤ µj ∈ R, j = 1, ...,m such that

∇f̃L
α (x̄0) +∇f̃U

α (x̄0) +
m∑

j=1

∇g̃Uj0(x̄0) · µj = 0,

for all α ∈ [0, 1] and µj · g̃Uj0(x0) = 0 for j =1,...,m, violating assumption (iii) of the

theorem. Hence, x̄0 is a weak non-dominated solution of (NCFOP).

5.4 Illustrations

Here we provide two examples to show the effect of fuzzy modeling of the following crisp

type optimization problem.

Example 5.4.1.

Minimize f(x1, x2) = 2 · x21 + 2 · x22
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Subject to : g(x1, x2) = (x1 − 2)2 + (x2 − 2)2 ≤ 3

has the minimum point (x∗1, x
∗
2) = (2 −

√
3/
√

2, 2 −
√

3/
√

2) and minimum value is

f(x∗1, x
∗
2) = 6.419.

Now we consider a fuzzy optimization problem having fuzzy coefficients and find the non-

dominated solution using the optimality conditions.

Example 5.4.2. We consider the following fuzzy optimization problem

Minimize f̃(x1, x2) = (2̃⊙ x21)⊕ (2̃⊙ x22)

Subject to : g̃(x1, x2) = (1̃⊙ (x1 − 2)2)⊕ (1̃⊙ (x2 − 2)2) � 3̃

where 2̃ = (0, 2, 3), 1̃ = (−1, 1, 2) and 3̃ = (2, 3, 4) are triangular fuzzy numbers as shown

in Figure 5.1.

−2 −1 0 1 2 3 4
0

0.5

1

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

Figure 5.1: Membership functions of triangular fuzzy numbers 1̃ = (−1, 1, 2) , 2̃ = (0, 2, 3)
and 3̃ = (2, 3, 4)

By arithmetics of fuzzy numbers, we obtain

f̃L
α (x1, x2) = 2αx21 + 2αx22 ,

f̃U
α (x1, x2) = (3− α)x21 + (3− α)x22 and

g̃Uα (x1, x2) = (2− α)(x1 − 2)2 + (2− α)(x2 − 2)2 ≤ (4− α).
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We also obtain

∇f̃L
α (x1, x2) =

(
4αx1

4αx2

)
,

∇f̃U
α (x1, x2) =

(
2(3− α)x1

2(3− α)x2

)
and

∇g̃U0 (x1, x2) =

(
2(x1 − 2)

2(x2 − 2)

)
.

For checking the conditions (a) and (b) in Theorem 5.3.1., we need to solve

the following system of equations:

αx1 + 3x1 + 2µx1 − 4µ = 0

αx2 + 3x2 + 2µx2 − 4µ = 0

µ · ((x1 − 2)2 + (x2 − 2)2 − 2) = 0.

Then we get (x1, x2) = (1, 1) and µ = (α + 3)/2.

We see that (x1, x2) = (1, 1) is the feasible solution to the given (NCFOP).

For any fixed α ∈ [0, 1], we see that f̃L
α (x̄), f̃U

α (x̄) and g̃Uα (x̄) are strictly convex functions

at x̄ = (1, 1), therefore from Theorem 5.3.1, we say that (x∗1, x
∗
2) = (1, 1) is a weak non-

dominated solution to the given (NCFOP) and minimum value of the fuzzy-valued objective

function is 4̃ = (0, 4, 6) having 4̃α = [4α, 6 − 2α]. We defuzzify the minimum value using

the center of area method given in [29] as 3.3333. If we compare with this solution with

a solution to crisp type of optimization problem in Example 5.4.1 which is 6.419. We

observe that by approximating coefficients as fuzzy numbers we get better minimum value.

Remark 5.4.1. In the above example, we have solved fuzzy optimization problem having

fuzzy coefficients are non symmetric left spread triangular fuzzy numbers. If we spread

non symmetric triangular fuzzy numbers on right side as shown in the following Figure
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5.2, then weak non-dominated solution of the same fuzzy optimization problem is given

by (x∗1, x
∗
2) = (2− 2/

√
6, 2− 2/

√
6) and minimum value is f̃(x∗1, x

∗
2) = (2.8, 5.6, 11.2). Its

defuzzified value is 6.533.
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Figure 5.2: Membership functions of triangular fuzzy numbers 1̃ = (0, 1, 3) and 2̃ = (1, 2, 4)

If we consider fuzzy coefficients are symmetric triangular fuzzy numbers as shown in Figure

5.3, then the non-dominated solution will be (x∗1, x
∗
2) = (1, 1) and µ = 4. In this case,

minimum value is 4̃ = (2, 4, 6) and its defuzzified value is 4.
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Figure 5.3: Membership functions of triangular fuzzy numbers 1̃ = (0, 1, 2) and 2̃ = (1, 2, 3)

Thus fuzzification of the parameters representing coefficients of the x21 and x22 in f and

coefficients of (x1−2)2, (x2−2)2 in g has a significant effect on the non-dominated solution

and the defuzzified value of the objective function.

Example 5.4.3. Consider the fuzzy optimization problem
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Minimize f̃(x1, x2) = (1̃⊙ x21)⊕ (2̃⊙ x22)⊕ ((̃−3)⊙ x1)⊕ ((̃−3)⊙ x2)

Subject to constraint : g̃(x1, x2) = (3̃⊙ x1)⊕ (5̃⊙ x2)⊕ (−̃7) � 0̃

where 0̃ = (0, 0, 0) and 1̃ = (0, 1, 2), (̃−3) = (−4,−3,−2) , 3̃ = (2, 3, 4) , 5̃ = (4, 5, 6) and

(̃−7) = (−8,−7,−6) are triangular fuzzy numbers.

Using arithmetics of fuzzy numbers, we obtain

f̃L
α (x1, x2) = αx21 + (1 + α)x22 + (−4 + α)x1 + (−4 + α)x2 and

f̃U
α (x1, x2) = (2− α)x21 + (3− α)x22 + (−2− α)x1 + (−2− α)x2.

And

g̃Lα(x1, x2) = (2 + α)x1 + (4 + α)x2 + (−8 + α) and

g̃Uα (x1, x2) = (4− α)x1 + (6− α)x2 + (−6− α).

Now we have

∇f̃L
α (x1, x2) =

(
2αx1 + (−4 + α)

2(1 + α)x2 + (−4 + α)

)
,

∇f̃U
α (x1, x2) =

(
2(2− α)x1 − 2− α)

2(3− α)x2 − 2− α)

)
,

∇g̃U0 (x1, x2) =

(
4

6

)
.

For checking the conditions (a) and (b) in Theorem 5.3.1, we solve the following system

of equations:

4x1 − 6 + 4µ = 0

8x2 − 6 + 6µ = 0

µ · (4x1 + 6x2 − 6) = 0.

Then, we get (x1, x2) = (3334 ,
6
17) and µ = 9

17 which is feasible solution to the given (NC-
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FOP).

For any fixed α ∈ [0, 1], we see that f̃L
α (x̄), f̃U

α (x̄) are strictly convex, and g̃Uα (x̄) are convex

functions at (x̄) = (3334 ,
6
17).

Therefore, by Theorem 5.3.1 we say that (x1, x2) = (3334 ,
6
17) is a weak non-dominated

solution.

Now we consider one more example which illustrate the Theorem 5.3.3.

Example 5.4.4. Consider the fuzzy optimization problem

Minimize f̃(x) = 2̃⊙ x3 ⊕ (̃−2)⊙ x

subject to constraint : g̃(x) = 2̃⊙ x3 ⊕ (̃−2) � 0̃

where 2̃ = (1, 2, 3), (̃−2) = (−3,−2,−1) and 0̃ = (0, 0, 0) are triangular fuzzy numbers.

Using arithmetics of fuzzy numbers, we obtain

f̃L
α (x) = (1 + α)x3 + (−3 + α)x,

f̃U
α (x) = (3− α)x3 + (−1− α)x.

And

g̃Uα (x) = (3− α)x3 + (−1− α).

Now we have

Df̃L
α (x) = 3(1 + α)x2 + (−3 + α) ,

Df̃U
α (x) = 3(3− α)x2 − (−1− α) ,

Dg̃U0 (x) = 9x2.
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By the conditions (a) and (b) in Theorem 5.3.3, we have the following system of equations:

3x2 − 3 + 9x2 − 1 + µ9x2 = 0

µ · (3x3 − 1) = 0.

Solving the system, we get x0 = −1/
√

3 and µ = 0 feasible solution to the given (NCFOP).

For any fixed α ∈ [0, 1], we see that f̃L
α (x) = (1 + α)x3 + (−3 + α)x, f̃U

α (x) = (3− α)x3 +

(−1 − α)x are pseudoconvex functions at x0 (refer Example 2.6.8 in Preliminaries), and

g̃U0 = 3x3 − 1 is quasiconvex at x0 (refer Property 2.6.3 in Preliminaries).

Therefore, by Theorem 5.3.3 we say that −1/
√

3 is a weak non-dominated solution.

5.5 Conclusions

In the current chapter, we have proposed the sufficient optimality conditions for obtain-

ing a non-dominated solution of a constrained fuzzy optimization problem. The opti-

mality conditions have been proved based on the assumptions of convexity and gener-

alized convexity- pseudoconvexity and quasiconvexity of fuzzy-valued objective function

and fuzzy constraints. We have worked out some examples of fuzzy optimization problems

using these optimality conditions which shows the effect of fuzzy modeling also.
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6.1 Introduction

Numerical optimization techniques play a significant role in solving nonlinear crisp op-

timization problems. In this Chapter, we attempt to develop a method analogous to

Newton’s method for solving fuzzy optimization problems defined in the context of fuzzy-

max order. Using the first order necessary condition for obtaining non-dominated solution

of the unconstrained fuzzy optimization problem, we propose the Newton’s method. We

also give convergence criteria and algorithms for proposed method for both single variable

and multi variable problems. We illustrate the methods by giving concrete examples.
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6.2 Newton’s method

In this section, we propose the Newton’s method for single and multi variable uncon-

strained fuzzy optimization problems.

6.2.1 Single variable fuzzy optimization problem

We consider an unconstrained single variable fuzzy optimization problem (USFOP):

Minimize f̃(x), x ∈ X

where X ⊆ R is an open set and f̃ : X → F (R) is a fuzzy-valued function.

Using partial order relation defined in Chapter 2, we recall here a locally non-dominated

solution of the (USFOP) from Chapter 4.

Definition 6.2.1. Let X ⊆ R be an open set and Let f̃ : X → F (R) be a fuzzy-valued

function. A point x0 ∈ X is said to be a locally non-dominated solution, if there exists no

x1 ∈ Nǫ(x
0) ∩X such that f̃(x1) � f̃(x0), where Nǫ(x

0) is ǫ-neighborhood of x0.

To propose the Newton’s method to find the non-dominated solution of unconstrained

single variable fuzzy optimization, we need the first order necessary condition for a locally

non-dominated solution of (USFOP). This optimality condition, we have already estab-

lished in Chapter 4 for unconstrained multi variable fuzzy optimization problem (refer

Theorem 4.3.3). For one dimensional minimization, the first order necessary condition is

as follows:

Theorem 6.2.1. Suppose f̃ : X → F (R) is continuously H-differentiable fuzzy-valued

function, X is an open subset of R. If x0 ∈ X is a locally non-dominated solution of

(USFOP) and for any direction d and for any δ > 0 there exists λ ∈ (0, δ) such that

f̃(x0 + λ · d) and f̃(x0) are comparable, then Df̃(x0) = 0̃ (f̃ ′(x0) = 0̃).

Now we propose the Newton’s method to find the non-dominated solution of unconstrained

single variable fuzzy-valued function. We assume that at each measurement point x(k) we

can calculate f̃(x(k)), f̃ ′(x(k)) and f̃ ′′(x(k)). We can approximate f̃ by a quadratic fuzzy-

valued function q̃ so that its value, first and second derivatives matches at x = x(k) of the

function f̃ . Theorem 2.4.1 of [29] suggests that

q̃(x) = f̃(x(k))⊕ f̃ ′(x(k))⊙ (x− x(k))⊕ f̃ ′′(x(k))⊙ (x− x(k))2

2!
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Note that q̃(x(k)) = f̃(x(k)), q̃′(x(k)) = f̃ ′(x(k)) and q̃′′(x(k)) = f̃ ′′(x(k)). Given x(k) we

try to approximate minimizer of f̃ by finding minimizer of q̃. The first order necessary

condition for q̃(x) to have a locally non-dominated solution at x is

q̃′(x) = 0̃.

That is

(q̃Lα(x))′ = 0 = (f̃L
α (x(k)))′ + (f̃L

α (x(k)))′′ · (x− x(k))

and

(q̃Uα (x))′ = 0 = (f̃U
α (x(k)))′ + (f̃U

α (x(k)))′′ · (x− x(k)),

for all α ∈ [0, 1]. We can write

∫ 1

0
(q̃Lα(x))′dα = 0 =

∫ 1

0
(q̃Uα (x))′dα

implies ∫ 1

0
(f̃L

α (x(k)))′dα +

∫ 1

0
(f̃L

α (x(k)))′′dα · (x− x(k)) = 0 (6.2.1)

and ∫ 1

0
(f̃U

α (x(k)))′dα +

∫ 1

0
(f̃U

α (x(k)))′′dα · (x− x(k)) = 0 (6.2.2)

By adding (6.2.1) and (6.2.2), we have

∫ 1

0
{(f̃L

α (x(k)))′ + (f̃U
α (x(k)))′}dα +

∫ 1

0
{(f̃L

α (x(k)))′′ + (f̃U
α (x(k)))′′}dα ·

(x− x(k)) = 0.

Now we define a real-valued function F in following way.

F (x) =

∫ 1

0
{f̃L

α (x) + f̃L
α (x)}dα

Therefore, we can write the above equation as

F ′(x(k)) + F ′′(x(k))(x− x(k)) = 0 (6.2.3)

where

F ′(x(k)) =

∫ 1

0
{(f̃L

α (x(k)))′ + (f̃U
α (x(k)))′}dα

and

F ′′(x(k)) =

∫ 1

0
{(f̃L

α (x(k)))′′ + (f̃U
α (x(k)))′′}dα,
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this we can write using Proposition 4.2.3 in Chapter 4. By putting x = x(k+1) in (6.2.3),

we get

x(k+1) = x(k) − F ′(x(k))

F ′′(x(k))
(6.2.4)

Thus starting with an initial approximation to minimizer of f̃ , we can generate a sequence

of approximations to the minimizer of f̃ using the formula (6.2.4). The procedure is

terminated when |x(k+1) − x(k)| < ǫ, ǫ is prespecified positive real number.

Remark 6.2.1. The method is well-defined only when F ′′(x(k)) 6= 0 for each k.

Convergence

To prove the convergence of Newton’s method, we need following Theorem from Numerical

analysis.

Theorem 6.2.2. [61] Let x = x∗ be a root of f(x) = 0 and let I be an interval containing

the point x = x∗. Let φ(x) and φ′(x) be continuous on I, where φ(x) is defined by the

equation x = φ(x) which is equivalent to f(x) = 0. Then if |φ′(x)| < 1 for all x ∈ I, the

sequence of approximations x0, x1, ..., xn defined by

xn+1 = φ(xn)

converges to the root x∗, provided that the initial approximation x0 is chosen in I.

Now we show the convergence of Newton’s method.

Theorem 6.2.3. Suppose that f̃ is three times continuously H-differentiable fuzzy-valued

function defined on R and x∗ ∈ R a point such that

(1) F ′(x∗) = 0

(2) F ′′(x∗) 6= 0.

Then for all x0 sufficiently close to x∗, Newton’s method is well-defined for all x and

converges to x∗ with order of convergence at least 2.

Proof. Since f̃ is three times continuously H-differentiable, F ′′(x) is continuous function.

We have,

|F ′′(x)| ≥ ǫ, (6.2.5)
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for some ǫ > 0 in a suitable neighborhood of x∗. Within this neighborhood we can select

an interval I such that, for all x ∈ I

|F ′(x)F ′′′(x)| < ǫ2, (6.2.6)

this is possible since F ′(x∗) = 0 and F (x) is also three times continuously differentiable

function. Now taking

φ(x) = x− F ′(x)

F ′′(x)

We observe that

φ′(x) =
F ′(x)F ′′′(x)

(F ′′(x))2
,

for all x ∈ I. Hence, from (6.2.5) and (6.2.6), we get

|φ′(x)| < 1.

Thus, φ(x) satisfying all the hypothesis of Theorem 6.2.2, by taking an initial approxi-

mation x(0) ∈ I, we get the sequence of approximations x(0), x(1), ..., x(n) satisfying (6.2.4)

converge to non-dominated solution x = x∗.

Now to obtain the rate of convergence of Newton’s method, we note that F ′(x∗) = 0 so

that Taylor’s expansion gives

F ′(x(k)) + F ′′(x(k))(x∗ − x(k)) + F ′′′(x(k))
(x∗ − x(k))2

2!
+ ... = 0,

where

F ′(x(k)) =

∫ 1

0
{(f̃L

α (x(k)))′ + (f̃U
α (x(k)))′}dα,

F ′′(x(k)) =

∫ 1

0
{(f̃L

α (x(k)))′′ + (f̃U
α (x(k)))′′}dα

and

F ′′′(x(k)) =

∫ 1

0
{(f̃L

α (x(k)))′′′ + (f̃U
α (x(k)))′′′}dα.

From which we obtain

− F ′(x(k))

F ′′(x(k))
= (x∗ − x(k)) +

1

2
(x∗ − x(k))2

F ′′′(x(k))

F ′′(x(k))
(6.2.7)
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From (6.2.4) and (6.2.7), we have

x(k+1) − x∗ =
1

2
(x(k) − x∗)2

F ′′′(x(k))

F ′′(x(k))
(6.2.8)

Setting

ǫk = x(k) − x∗,

Equation (6.2.8) gives

ǫk+1 ∝
−F ′′′(x∗)

2F ′′(x∗)
· (ǫ(k))2,

so that the Newton’s method has quadratic convergence.

Algorithm and illustration

Now we present the algorithm of proposed Newton’s method.

Algorithm 1 Newton’s method

1: Input x0, ǫ
2: Calculate F ′(x) and F ′′(x)
3: k ← 0
4: repeat

5: x(k+1) = x(k) − F ′(x(k))

F ′′(x(k))

6: k ← k + 1
7: until
8: |x(k+1) − x(k)| < ǫ
9: Optimal solution x∗ ← x(k)

Example 6.2.1.

Maximize f̃(x) = (1̃⊙ x3)⊕ (−̃12⊙ x2), x ∈ R

where 1̃ = (−1, 1, 3) and −̃12 = (−13,−12,−11) are triangular fuzzy numbers and initial

approximation for minimizer is x0 = 1.

Here f̃L
α (x) = (−1 + 2α)x3 + (−13 + α)x2 and f̃U

α (x) = (3− 2α)x3 + (−11− α)x2.

We obtain

F ′(x)) =

∫ 1

0
{(f̃L

α (x))′ + (f̃U
α (x))′}dα
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and

F ′′(x) =

∫ 1

0
{(f̃L

α (x))′′ + (f̃U
α (x))′′}dα.

Therefore

F ′(x) = 6x2 − 48x

and

F ′′(x) = 12x− 48

Using (6.2.4),

x(k+1) = x(k) − F ′(x(k))

F ′′(x(k))

we find sequence of non-dominated solutions given in following table:

k x(k) x(k+1) f̃(x(k))

0 1 −0.1667 (−14,−11,−8)

1 −0.1667 −0.0033 (−0.3566232,−0.3380991,−0.319570)

2 −0.0033 −1.3877e− 006 (−0.000145,−0.0001307,−0.0001199)

3 −1.3877e− 006 0 (0, 0, 0)

Therefore, the non-dominated solution of given problem is x(3) = x∗ = 0.

6.2.2 Multi variable fuzzy optimization problem

We consider following unconstrained multi variable fuzzy optimization problem (UMFOP).

Minimize f̃(x̄), x̄ ∈ X

where X ⊆ Rn is an open set and f̃ : X → F (R) is a fuzzy-valued function.

Using partial order relation defined in Chapter 2, we recall here a locally non-dominated

solution of the (UMFOP) from Chapter 4.

Definition 6.2.2. Let X ⊆ Rn be an open set and Let f̃ : X → F (R) be a fuzzy-valued

function. A point x̄0 ∈ X is said to be a locally non-dominated solution, if there exists no

x̄1 ∈ Nǫ(x̄
0) ∩X such that f̃(x̄1) � f̃(x̄0), where Nǫ(x̄

0) is ǫ-neighborhood of x̄0.

We propose the Newton’s method to find the non-dominated solution of (UMFOP). We

assume that at each measurement point x̄(k), we can calculate f̃(x̄(k)), ∇f̃(x̄(k)) and
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∇2f̃(x̄(k)). We can approximate f̃ by a quadratic fuzzy-valued function h̃ so that its

value, first and second derivatives matches at x̄ = x̄(k) of the function f̃ . Theorem 2.4.2

of [28] suggests that

h̃(x̄) = f̃(x̄(k))⊕
{

(x̄− x̄(k))T ⊙∇f̃(x̄(k))
}
⊕
{1

2
(x̄− x̄(k))T ⊙∇2f̃(x̄(k))⊙ (x̄− x̄(k))

}

Note that h̃(x̄(k)) = f̃(x̄(k)), ∇h̃(x̄(k)) = ∇f̃(x̄(k)) and ∇2h̃(x̄(k)) = ∇2f̃(x̄(k)). Given x̄(k)

we try to approximate minimizer of f̃ by finding minimizer of h̃. The first order necessary

condition for h̃(x̄) (refer Theorem 4.3.3) to have a locally non-dominated solution at x̄ is

∇h̃(x̄) = 0̃.

Therefore, we have

∫ 1

0
{∇f̃L

α (x̄(k)) +∇f̃U
α (x̄(k))}dα +

∫ 1

0
{∇2f̃L

α (x̄(k)) +∇2f̃U
α (x̄(k))}dα ·

(x̄− x̄(k)) = 0.

That is

∇F (x̄(k)) +∇2F (x̄(k))(x̄− x̄(k)) = 0 (6.2.9)

where

∇F (x̄(k)) =

∫ 1

0
{∇f̃L

α (x̄(k)) +∇f̃U
α (x̄(k))}dα

and

∇2F (x̄(k)) =

∫ 1

0
{∇2f̃L

α (x̄(k)) +∇2f̃U
α (x̄(k))}dα.

By putting x̄ = x̄(k+1) in (6.2.9), we have

x̄(k+1) = x̄(k) −∇F (x̄(k)) · [∇2F (x̄(k))]−1 (6.2.10)

where [∇2F (x̄(k))]−1 is inverse of matrix [∇2F (x̄(k))]. Thus starting with an initial approx-

imation to minimizer of f̃ , we can generate a sequence of approximations to the minimizer

of f̃ using the formula (6.2.10). The procedure is terminated when ‖x̄(k+1) − x̄(k)‖ < ǫ, ǫ

is prespecified positive real number.

Remark 6.2.2. The method is well-defined only when ∇2F (x̄(k)) is nonsingular for each

k.
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Convergence

Now we show the convergence of Newton’s method.

Theorem 6.2.4. Suppose that f̃ is three times continuously H-differentiable fuzzy-valued

function defined on Rn and x̄∗ ∈ Rn is a point such that

(1) ∇F (x̄∗) = 0

(2) ∇2F (x̄∗) is invertible

Then for all x̄(0) is sufficiently to close to x̄∗, Newton’s method is well-defined for all k

and converges to x̄∗ with order of converges at least 2.

Here

F (x̄) =

∫ 1

0
f̃L
α (x̄)dα +

∫ 1

0
f̃U
α (x̄)dα

Proof. By Fuzzy Taylor’s formula of ∇f̃(x̄) around x̄(0), we get

∇f̃(x̄) = ∇f̃(x̄(0))⊕∇2f̃(x̄(0))⊙ (x̄− x̄(0))⊕ o(‖x̄− x̄(0)‖2).

That is

∫ 1

0
∇f̃L

α (x̄)dα =

∫ 1

0
∇f̃L

α (x̄(0))dα +

∫ 1

0
∇2f̃L

α (x̄(0))dα · (x̄− x̄(0)) +

∫ 1

0
oLα(‖x̄− x̄(0)‖2)dα

and

∫ 1

0
∇f̃U

α (x̄)dα =

∫ 1

0
∇f̃U

α (x̄(0))dα +

∫ 1

0
∇2f̃U

α (x̄(0))dα · (x̄− x̄(0)) +

∫ 1

0
oUα (‖x̄− x̄(0)‖2)dα

Therefore,

∇F (x̄) = ∇F (x̄(0)) +∇2F (x̄(0))(x̄− x̄(0)) + O(‖x̄− x̄(0)‖2)

where

∇F (x̄) =

∫ 1

0
∇f̃L

α (x̄)dα +

∫ 1

0
∇f̃U

α (x̄)dα,

∇F (x̄(0)) =

∫ 1

0
∇f̃L

α (x̄(0))dα +

∫ 1

0
∇f̃U

α (x̄(0))dα,

∇2F (x̄(0)) =

∫ 1

0
∇2f̃L

α (x̄(0))dα +

∫ 1

0
∇2f̃U

α (x̄(0))dα
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and

O(‖x̄− x̄(0)‖2) =

∫ 1

0
oLα(‖x̄− x̄(0)‖2)dα +

∫ 1

0
oUα (‖x̄− x̄(0)‖2)dα.

This implies that given a constant c1, there exists ǫ > 0 such that

‖∇F (x̄)−∇F (x̄(0))−∇2F (x̄(0)) · (x̄− x̄(0))‖ ≤ c1‖x̄− x̄(0)‖2 (6.2.11)

for all x̄ ∈ Bǫ(x̄
∗) = {x̄ : ‖x̄− x̄∗‖ < ǫ}. Also f̃ is three times continuously H-differentiable

fuzzy-valued function implies F is also. Since

∇2F (x̄(∗)) =

∫ 1

0
∇2f̃L

α (x̄(∗))dα +

∫ 1

0
∇2f̃U

α (x̄(∗))dα

is invertible, [∇2F (x̄∗)]−1 is continuous at x̄∗ and hence there exists c2 > 0

‖∇2F (x̄∗)‖ ≤ c2 (6.2.12)

for all x̄ ∈ Bǫ(x̄
∗). As ∇F (x̄∗) = 0, equation (6.2.11) gives

‖∇2F (x̄(0)) · (x̄(0) − x̄∗)−∇F (x̄(0))‖ ≤ c1‖x̄(0) − x̄∗‖2 (6.2.13)

Also by Newton’s algorithm

x̄(1) = x̄(0) − [∇2F (x̄(0))]−1 · ∇F (x̄(0))

This gives

‖x̄(1) − x̄∗‖ = ‖x̄(0) − x̄∗ − [∇2F (x̄(0))]−1 · ∇F (x̄(0))‖
≤ ‖[∇2F (x̄(0))]−1‖ · ‖∇2F (x̄(0))(x̄(0) − x̄∗)−∇F (x̄(0))‖
≤ c1c2‖x̄(0) − x̄∗‖2

by inequalities (6.2.12) and (6.2.13). Choose x̄(0) sufficiently close to x̄∗ in such a way that

‖x̄(0) − x̄∗‖ ≤ β

c1c2

β ∈ (0, 1). Therefore

‖x̄(1) − x̄∗‖ ≤ β‖x̄(0) − x̄∗‖

Proceeding inductively we obtain

‖x̄(k+1) − x̄∗‖ ≤ c1c2‖x̄(k) − x̄∗‖2 (6.2.14)
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and also

‖x̄(k+1) − x̄∗‖ ≤ β‖x̄(k) − x̄∗‖

This implies that x̄(k) → x̄∗ and equation (6.2.14) gives the quadratic convergence of x̄(k)

to x̄∗.

Algorithm and illustration

Now we present the algorithm of proposed Newton’s method.

Algorithm 2 Newton’s method

1: Input x̄0, ǫ
2: Calculate ∇F (x) and ∇2F (x)
3: k ← 0
4: repeat
5: x̄(k+1) = x̄(k) − (∇F (x̄(k) · ∇2F (x̄(k))−1)
6: k ← k + 1
7: until
8: ‖x̄(k+1) − x̄(k)‖ < ǫ
9: Optimal solution x̄∗ ← x̄(k)

Example 6.2.2.

Minimize f̃(x1, x2) = (1̃⊙ x31)⊕ (2̃⊙ x32)⊕ (1̃⊙ x1 · x2), x1, x2 ∈ R

where 1̃ = (−1, 1, 3) and 2̃ = (1, 2, 3) are triangular fuzzy numbers and initial approxima-

tion for minimizer is x̄0 = (1, 1).

Here f̃L
α (x1, x2) = (−1 + 2α)x31 + (1 + α)x32 + (−1 + 2α)(x1 · x2) and

f̃U
α (x1, x2) = (3− 2α)x31 + (3− α)x32 + (3− 2α)(x1 · x2)

Now we have

∇F (x̄)) =

∫ 1

0
{∇f̃L

α (x̄) +∇f̃U
α (x̄)}dα

and

∇2F (x̄) =

∫ 1

0
{∇2f̃L

α (x) +∇2f̃U
α (x)}dα.
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Therefore

∇F (x̄) =

(
6x21 + 2x2

12x22 + 2x1

)

and

∇2F (x̄) =

(
12x1 2

2 24x2

)

Using following equation (6.2.10)

x̄(k) = x̄(k+1) −∇F (x̄(k)) · ∇2F (x̄(k))

We get the nondominated solution of given problem as x̄∗ = (0, 0)T . The iterations of x(k)

are given in the following table:

k x
(k)
1 x

(k)
2 f̃(x

(k)
1 , x

(k)
2 )

0 1 1 (−1, 4, 9)

1 0.422535 0.464789 (−0.1714194, 0.4726429, 1.1167052)

2 0.128703 0.209319 (−0.0199007, 0.0474143, 0.1147292)

3 −0.146928 0.163154 (0.0314868,−0.0184577,−0.0684021)

4 0.012076 0.075409 (−0.0004836,−0.00177, 0.0040236)

5 0.036090 −0.002177 (0.0000316,−0.0000316,−0.0000997)

6 0.000130 0.003879 (−0.0000004, 0.0000006, 0.0000017)

7 0 0 0

6.3 Conclusions

In this chapter, we have proposed a generalization of Newton’s method for single-variable

and multi-variable unconstrained fuzzy optimization problems. Using the concept of a

H-differentiability of a fuzzy-valued function, we showed the convergence of the Newton’s

methods for both single and multi variable problems. Moreover, numerical results pre-

sented indicate that the methods work well.
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Summary

In the current work, we have dealt with nonlinear fuzzy optimization problems with and

without constraints. We have studied the nonlinear optimization problems using various

approaches and concepts. To study the fuzzy optimization problems, two concepts play

very important role- one is the ranking method of fuzzy numbers or order relation. Ranking

of fuzzy numbers have been extensively studied by researchers over the years. A lot of

articles have been published regarding this. In general fuzzy numbers are not comparable

in a natural way like the real numbers. There are many different partial order relations of

fuzzy numbers are defined in the literature. One of them called fuzzy-max order, which

is the most used partial order relation in many applications of fuzzy number theory. It is

very convenient extension of order relation from real numbers to fuzzy numbers. In this

work, we have mainly used this partial order relation of fuzzy numbers to establish the

necessary and sufficient optimality conditions for fuzzy optimization problems.

A parametric total order relation is another order relation by which we can compare two

fuzzy numbers in natural way. This order relation depends upon a fixed parameter value

and can be defined on a particular class of fuzzy numbers called L-fuzzy numbers. In

spite of these limitations, it is significant to develop some systematic theory in terms of

optimality conditions for fuzzy optimization problems. In some problems, we have used

this order relation and proved the results to find optimal solution of the fuzzy optimization

problems.
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Summary

Another very important concept which is used in fuzzy optimization theory is of differential

calculus of fuzzy-valued functions. Differentiability of fuzzy-valued functions have also

been studied and applied by many authors in a variety of ways. This we have already

discussed in the second chapter. We have used Hukuhara differentiability of fuzzy-valued

functions in our research work.

We have used the concepts of L-fuzzy numbers and a parametric total order relation ”�λ”

on space of L-fuzzy numbers as introduced in [58]. We have proved a necessary and

sufficient condition for optimality of a fuzzy-valued function defined on R using Hukuhara

differentiability of fuzzy-valued functions. It is interesting to note that if instead of fuzzy-

valued functions we restrict our attention to real-valued functions, then the total order

relation ”�λ” for all λ ∈ [0, 1] , reduces to the usual total order relation ”�” on R and

the optimality conditions reduce to usual optimality conditions for real-valued functions

defined on R. Under these settings, we have derived the first and second order necessary

conditions as well as second order sufficient conditions for optimality of a fuzzy-valued

function defined on Rn. At the end, We have given illustrations to verify the proposed

results.

Using partial order relation on fuzzy number space, the necessary and sufficient Kuhn-

Tucker like optimality conditions for nonlinear fuzzy optimization problem have been

derived in this problem. We have used Hukuhara differentiability and convexity of fuzzy-

valued functions for proving the same.

The concept of generalized convexity of fuzzy-valued functions has been defined in this

problem. We have applied two weaker forms of convexity of fuzzy-valued functions called

quasiconvexity and pseudoconvexity to establish the necessary results. We have proved

the sufficient optimality conditions for x to be the non-dominated solution of a fuzzy

optimization problem. We have also provided some examples to illustrate the application

of the theorems and have shown then the fuzzification of a crisp optimization problem

does have significant effect on the solution.
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Summary

In the last two problems, we have established generalization of a well-known Newton’s

method for single-variable as well as multi variable fuzzy optimization problems. In this

process, we have used fuzzy-max order relation on set of fuzzy numbers and the concept of

Hukuhara differentiability of a fuzzy-valued function. We have given convergence criteria

and algorithm for both the methods.
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