
3. PARALLEL PROCESSING ISSUES

3.1 GENERAL

The art of parallel programming lies in being able to decompose a given problem,

functionally and according to the data distribution, across processors. Over the

years, work in parallel processing architectures have focused on a number of

different issues and resulted in different approaches for solving them. The

resulting architectures have been fundamentally so disparate that the

programming issues vary significantly across them. An algorithm that gives a

very high speedup on one processors architecture can give a very poor

performance on another. Even for the MIMD class of parallel machines, difference

between the shared memory and distributed memory machines force developers

to adopt different data function decomposition strategies for the same problem

on these classes' machines.

The fundamental concept behind high performance computing is to use more

number of resources to solve a given problem. But using more resources cannot

speedup every task. There are restrictions and dependencies to be considered.

Based on such issues, computations may be of one of the following

characteristics [2].

Embarrassingly Parallel Computations: An ideal parallel computation that

can be divided into a number of completely independent parts each of which can

be executed by a separate processor without any communication between them,

is known as embarrassingly parallel computation or pleasantly parallel

computation. Parallelizing these problems should be obvious and requires no

special techniques to obtain working solution. Each process requires different

data and produces results from its input without any need for results from other

processors. This situation will give the maximum possible speedup if all the

available processors can be assigned processes for the total duration of the

computation. Example of such process can be given as follows:

a = b + c d = e + f

Chapter 3 Parallel Processing Issues

As the variables used in both the processes are altogether independent of each

other, both the processes can run in parallel without having any effect on the

final result. So such processes are called embarrassingly parallel computations.

Nearly Embarrassingly Parallel Computations: The computations that

require results to be distributed and collected and combined in some way are

known as nearly embarrassingly parallel computations. So in such computations,

initially and finally a single process must be operating alone. If dynamic process

creation is used, a common approach is the master-slave organization. First, a

master approach will be started that will initiate appropriate slave processes.

Inherently Sequential Computations: The computations, in which the

parallelism of processes is not at all possible, are known as inherent sequential

computations. Consider the following example consisting two processes of single

computation task:

a=b+c d = a * a

As in the above processes the value of variable "d" is dependent on the value of

variable "a", it is necessary to modify the value of "a" before using it to calculate

the value of "d". So these two processes cannot run in parallel and must be run

sequentially. This computation is an example of inherent sequential computing.

For better computational efficiency embarrassingly parallel problems and nearly

embarrassingly parallel problems can be implemented on multi processor or

multi computer systems. Multi processing system consisting of number of

processors connected together and utilizing common or different memory module

is known as tightly coupled multiprocessing systems. This is also considered as

dedicated hardware for parallel processing. Alternative system consisting of

network of personal computers is known as loosely coupled multi computer

system or distributed computing platform. Many times parallel computing and

distributed computing are used interchangeably. It can be safely said that the

computation can be distributed within a parallel computing environment, or that

the distributed computing environment can be used to exploit the parallelism in

some computations.

53

Chapter 3 Parallel Processing Issues

Various issues related to tightly coupled and loosely coupled multiprocessing
systems like hardware requirements, operating system, connection topology, and
software tools available etc. are discussed in subsequent sections [93, 94, 95].

3.2 TIGHTLY COUPLED MULTIPROCESSING SYSTEMS

Generally multiprocessor machines are constructed using general-purpose
microprocessors and much of the functionality required of a processing unit has
to be compensated by the operating system software.

3.2.1 Desirable Characteristics

Process recoverability: If the processor fails, another processor must be
assigned to the process / task and must be continued from the state where the
processor failed. This can be achieved by maintaining a shared register file that
keeps a record of the state for which active process in the system.

Efficient Context switching: When parallel machine have more processes than
the number of processors, there is a need for swapping the processes in and out
of context. The processor must have efficient mechanism to support operating
systems in switching the context efficiently.

Large virtual and physical address space: With the increase in the size of
problem to be solved by parallel machine, there is growing need for larger
memory space and addressing capabilities.

Effective synchronization primitives: Multiple processes of parallel program
need to cooperate to compute the results. This can be done by sharing data and
accessing common data while maintaining integrity. Such synchronization must
be supported at instruction level by the processors to facilitate switchover of
access.

Interprocess communication mechanism: The communication between
cooperating processes takes place in form of signals, messages, and interrupts.

3.2.2 Connection Topology

The sharing capability is provided through a set of two interconnection networks
- one between processors and memory modules and the other between the

54

Chapter 3 Parallel Processing Issues

processors and the I/O subsystems. The basic types of interconnections are as
follows:

Time shard or common bus: It is a common communication path connecting
all the functional units. As the bus is shared, a mechanism must be provided to
resolve contention between various processors and devices for access to bus for
interconnection. Refer Fig 3.1. A centralized bus controller simplifies the conflict
resolution but may have performance bottleneck. The overall system capacity is
limited by the bus transfer rate. Time share bus organization is appropriate for
small system upto 10 units.

FIG. 3.1 TIME - SHARED BUS

Crossbar switch: It provides complete connectivity with respect to the memory
modules because as shown in Fig. 3.2 there is a separate bus associated with
respect to the memory modules. The maximum number of transfer taken place
simultaneously depends on number of memory modules and the bandwidth of
the buses. The crossbar switch mechanism provides for multiple streams of
communication between the modules to be active in parallel. The access to
devices and memory modules by the processors is arbitrated by switch. This type
of interconnection system is complex to design and expensive to fabricate.

FIG. 3.2 CROSS - BAR SWITCH

55

Chapter 3 Parallel Processing Issues

Hierarchical organization of processors: Although all memory locations of

any of the memory modules are accessible from any processors, accessing some

subset of the address space is cheaper if the memory devices on which the

addresses are mapped sit on the same bus as the processor. The compiler must

generate loadable code such that the data required by certain task is accessible

using only the local bus as far as possible, by the processor that executes the

code for that task. Hierarchical bus architecture as shown in Fig. 3.3 is utilized

properly through software, gives the best price to performance ratio.

FIG. 3.3 HIERARCHICAL BUS

To reduce bus connection and average memory access time, all the processors in

multiprocessor machine normally have a local cache memory. The presence of

private caches necessarily introduces problem of cache coherence, which may

result in data inconsistency. That is, several copies of the same data may exist in

different caches at any given time. This is a potential problem especially in

asynchronous parallel algorithms, which do not possess explicit synchronization

stages of the computations. The possibilities of having several processors using

different copies of the same data must be avoided if the system has to perform

correctly. Hence data consistency must be enforced in the caches.

3.2.3 Parallel Programming Models

A programming model is a collection of program abstractions providing the

programmer a simplified and transparent view of computer hardware and

software. Parallel programming models are specifically designed for

multiprocessors or vector / SIMD computers. Five such models are described

56

Chapter 3 Parallel Processing Issues

here. Parallel program is collection of processes or tasks. The models described
here differ in the way these processes share data, achieve synchronization and
communicate.

(i) Shared Memory Model
Multiprocessor programming is based on the use of shared variables in
commonly accessible memory for communication and sharing data. Besides
sharing variables in a common address space, communication also takes place
through software signals and interrupts. Since multiple processors may attempt
to access the shared data as shown in Fig.3.4, data memory management or
locking is required to ensure the integrity of data and handle conflicts.

This model is also available in the form of multithreading libraries. Various
techniques are available for scheduling of processes across the subtasks to be
carried out to solve the given instance of a problem. In such models it is the
programmer's responsibility to decompose the problem effectively and employ
either static or dynamic scheduling of processes for achieving maximum
parallelism.

(Process A) *

Shared variables m a
common memory

>

>

(Process B)

(Process C)

FIG. 3.4 SHARED MEMORY MODEL

(ii) Message Passing Model
Multicomputers employ message passing as the mechanism for inter process
communication. Two processes residing at different nodes communicate with
each other by passing messages over communication channel. The message may
be instruction, data, and synchronization or interrupt signals. The communication
delay in message delivery is much longer than in case of a shared memory
model.

Message (send/receive)

(Process A) 4....................................... ... » (Process B)

(Communication channel)

FIG. 3.5 MESSAGE PASSING MODEL

57

Chapter 3 Parallel Processing Issues

Two types of message passing models can be implemented: Synchronous and

Asynchronous. Synchronous message passing requires both sender and the

receiver to be synchronized in time for transfer of message. No buffering of

message is done by the communication channel. The receiver is always blocked

waiting for the message to arrive, the sender also; remains blocked till the

receiver receives and acknowledges the message. On the other hand

asynchronous message passing does not impose blocking on the sender. The

message gets buffered by the communication channel and is delivered to the

target processes when they choose to look for the message. Message passing

model does not require mechanism for mutual exclusion for access to shared

data because there is no way for processors to share each other's address space

for data exchange. All data sharing is done through message passing.

(iii) Data Parallel Model
It is appropriate for SIMD machines because the data is distributed to the

processors and each executes the same set of instructions. The programming

model for data parallel SIMD processors is an extension of the sequential

programming. For example Fortran90 is specifically tailored for data parallelism.

Data parallel programs require the use of pre-distributed data sets. Thus choice

of parallel data structure plays a significant role in data parallel programming.

(iv) Object Oriented Model
Mapping of execution units to object is naturally achieved in this model. Objects

are dynamically created and manipulated. Processing is performed by sending

and receiving messages among the objects. Concurrent programming models are

built up from low level objects such as processors, threads, queues into high

level objects like monitors and program modules.

(v) Functional and Logic Model
A functional programming language emphasizes the functionality of a program

and should not produce any side effect during execution. There is no concept of

storage, assignment and branching in functional programming. The lack of side

effects opens up much more opportunity for parallelism. The evaluation of a

function produces the same value regardless of the order in which its arguments

are evaluated. Thus arguments in dynamically created structures of a functional

program can be evaluated in parallel. Logical programming is based on predicate

58

Chapter 3 Parallel Processing Issues

logic and is suitable for knowledge processing dealing with large database. This

model adopts an implicit search strategy and supports parallelism in the logic

interface process. A question is answered if matching facts are found in the

database. Two facts match if their predicates and associated arguments are the

same. The process of matching and unification can be parallelised under certain

conditions.

Both functional and logical programming models are used in artificial intelligence

applications where parallel processing is very much in demand.

3.2.4 Operating System

Generally operating system manages the resources, but in multiprocessors it has

to manage scheduling of resources across the competing tasks of the machine.

The additional requirements of a multiprocessor operating system are as follows:

Load Balancing: The operating system must utilize the resources efficiently by

achieving uniform balance of loads across the processors. The operating system

should schedule the subtasks such that there are no idle resources including the

processors.

Scheduling Cooperating Processes: Parallel programs, which consist of

concurrently executing tasks, must be scheduled such that collectively they are

able to use the resources in the machine required to solve the given problem.

Scheduling of processes can be done such that the processes belonging to a

single parallel program are scheduled for execution together.

Graceful Degradation in case of Failure of one of the Resources: To have

fault tolerant system, failure of one of its resources should not result in a

catastrophic system crash. The operating system should be able to reschedule

the task running on failed resource and continue the parallel program.

Communication Schemes: To achieve effective cooperation among the

subtasks of a parallel program, operating system must provide adequate facilities

for communication between the tasks, to share data .and intermediate results

during the processing towards the solution of the problem.
i

59

Chapter 3 Parallel Processing Issues

Synchronization Mechanisms: Synchronization between tasks is required to

ensure integrity of the shared data across the subtasks of a parallel program.

The tasks may need to wait till some state is reached across all the tasks of

parallel program. The operating systems need to provide signaling mechanism

for such synchronization requirements.

Generally centralized operating system is used for shared memory

multiprocessors and distributed operating system is used for distributed memory
multiprocessors. Basically there are following three1 concepts in design of

operating systems for multiprocessors:

□ Master - slave configuration,

□ Separate supervisor configuration, and

□ Floating supervisor configuration.

In the master-slave mode, one processor, called as master, maintains the status

of all the other processors in the system and distributes the work to all the slave

processors. The operating system runs only on the master processor and all

other processors are treated as schedulable resources. The separate supervisor

system is running in each processors and the approach is similar to that in

computer networks. Each processor contains a copy of or access to shared kernel

and resource sharing occurs via shared memory blocks. Each processor services

its own needs. The floating supervisor control treats all the processors as well as

other resources symmetrically. This type of system can attain better load

balancing over all types of resources and the most flexible but is the difficult

mode of operation to implement. Generally the combination of above schemes is

used for obtaining useful solution.

3.2.5 Software Tools

Many software tools are available for development of parallel programs for

realistic applications. These tools are:

Parallelising Compilers: It compiles the sequential program and generate an

object code that will optimally utilize the underlying computer architecture.

Techniques like dependency analysis are used to detect those segments of a

code which can be executed in paralleland then the code is generated to exploit

60

Chapter 3 Parallel Processing Issues

the parallelism in the architecture of the machine. The programmer is freed of
the responsibility of detecting and analyzing the parallelism in the solution to the

given problem and then coding accordingly.

UNIX IPC: The inter process communication (IPC) facilities in UNIX operating
system lets the programmer develop programs which, when executed run as a
collection of cooperating processes. The IPC facility provides a set of machines to
share data, control access to shared data, synchronize process and dynamically
create and destroy processes. The process can share certain block of memory for
sharing and exchanging data while cooperating. Synchronization is achieved by

using signaling mechanism supported by operating system.

Thread Model: Conceptually, multithreading is similar to multiprocess
programming using IPC. The difference is that a multithreaded program has a
single process that manages multiple threads of control executing
asynchronously. The thread library provides functional calls to create threads,
control threads, terminate threads, control access to shared data through locking
mechanism, generate events and wait for events. The practical advantage of
using threads is that threads are lightweight process. In multiprocess model
multiple memory images of the program exist in the core while in multithreaded
program this overhead is avoided by sharing the same core image of the
process. Also context information for each thread is also maintained.

PVM and MPI: PVM and MPI are two competing and functionally equivalent tools
for parallel programming using the message passing model. Both the libraries
have been developed by academic institutions and are being used widely by the
scientific community for improving efficiency of computationally intensive
programs. They are discussed in detail later.

DEC-RPC Threads: Distributed computing environment (DCE) is a standard
proposed by the Open Software Foundation (OSF) for design and implementation
of distributed systems. The standard provides a specification of tools and
services that implementor of DCE must provide for the development of
distributed computing system. The major components of DCE are RPC (Remote
Procedure Call). Time/directory/fiie services, access authorization features,
threads package and interface definition facility. These components provide a

61

Chapter 3 Parallel Processing Issues

formwork for organizing distributed resources into a client server oriented

network. RPC provides a procedural programming abstraction for design and

implementation of distributed programs. The services available on geographically

distributed machines can be accessed by calling a remote procedure. To bring

this interface, the DCE framework requires daemons running on the distributed

machines for routing and forwarding data. DEC provides a thread package for

building servers having multiple threads of execution, serving multiple clients.

The synchronization and concurrency issues involved in using threads interface

must be handled by the application developer.

CORBA - Common Object Request Broker Architecture: CORBA is a set of

standard mechanism for naming, locating, and defining objects in a distributed

computing environment. The formwork provides an object-oriented abstraction

for the design and implementation of a distributed computing system. The entire

system consists of client server objects, which communicate through the object

request broker (ORB). ORB is a set of distributed processes running on different

machines and coordinating the communication between the objects.

3.3 LOOSELY COUPLED MULTI COMPUTER SYSTEMS

The shared memory multiprocessors or tightly coupled multiprocessing system is

a specifically designed computer system. An alternative form of multiprocessor

can be created by connecting complete computers through an interconnection

network [2], Each computer consists of a processor and a local memory that is

not accessible by other processors. In a multicomputer, the memory is

distributed among the computers and each computer has its own address space.

A processor can only access a location in its own address space. The

interconnection network is provided for processors to send messages to other

processors. These messages can include data that other processor may require

for their computation. Such multiprocessor systems are usually called message

passing multiprocessors or simply multicomputers especially if they consists of

self-contained computers that could operate independently. The messages in a

message-passing multicomputer carry data from one processor to other as

dictated by the computer.

62

Chapter 3 Parallel Processing Issues

Message passing paradigm is not as attractive for a programmer as the shared
memory paradigm. It usually requires the programmer to provide explicit
message passing calls in their code, which is very error prone and has been
compared to low-level assembly language programming. Data cannot be shared,
it must be copied. This may be problematic in applications that require multiple
operations across large amount of data.

The message passing paradigm has the advantage that special mechanism are
not necessary for controlling simultaneous access to data, which may
significantly increase the execution time of a parallel program. Many custom
designed shared memory multiprocessor systems have a very short life because
of unending progression towards faster and faster single processors. It is better
to use a new single processor than an old multiprocessor if new processor
operates m times faster than each of m older processors. Using interconnected
computers allows newer computers to be more easily incorporated into the
system. The message-passing multicomputer will physically scale easier than a
shared memory multiprocessors, that is it can more easily made larger.

Issues related to distributed computation over multicomputer are [10]:
• Identification and control of the separate subtasks in order to facilitate

local and global management,
• Effective communication among the separate subtasks,
• Synchronization of subtask activities to ensure that the correct results are

generated.

3.3.1 Operating System

In computing environment where many computers are linked, the operating
system should provide the user with the facilities for distribution in a friendly
manner. A desirable objective is to create an interface with the system which
allows the user to feel that his / her interactions are with single computer.

The vehicle for user interaction with the computer system is the command
processor or window manager. It may be helpful if the user does not have to
specify in the command the separate processors that will be involved in handling
the user's task.

63

Chapter 3 Parallel Processing Issues

In computer networks, each host computer runs its own operating system. This
operating system can be:

(a) Distributed operating system in which each computer can be cooperating
similar local edition of one large homogeneous operating system. Such
systems are more likely to be found in networks, which use compatible
machinery.

(b) Network operating system, in which each computer have distinct
heterogeneous operating systems which cooperate through network-
access agent processes. Such system can easily accommodate the
differences in machine design prevalent in wide area network.

The creation and management of names are key issues in the design of
operating systems. Names must be given to the users, to the processes, which
they generate on the computer, and to the resources, which they access. The
presence of the network increases the volume of names, and presents a
distributed context in which the names can emerge and in which these names
must be managed.

Another major issue in operating system design that :is particularly relevant to
distributed computing is the implementation of a communication mechanism for
process-to-process interaction. The system should be easy extension from purely
local interaction to interaction with remote sites, which led development of
interprocessor communication schemes. A communication system can also
provide synchronization of activity among processes.

The control access to shared resources is also of major importance. The linkage
of a facility to a communication network exposes the facility to a large user base
and there is probability of existence of malicious intruder.

The operating system must manage efficiently the many processing units and
other resources available. The parallel strands within the program have to be
identified and allocated to available units and their interaction ought to be
adequately controlled.

64

Chapter 3 Parallel Processing Issues

3.3.2 Client-Server Model

One of the advantages for linking computers in network is the opportunity to

share the services located at single site to widely available. In many cases the

cost of expensive resources like large software package, laser printer can be

justified by sharing. The client-server model of distributed computing identifies

the service and provides a software system to administer that services. This

software system includes server, which produces the service and runs on a

dedicated computer and client, which consume the service and run on user

machine.

Due to inherent modularity in client-server architecture, it provides an effective

strategy for making computer resources very widely available. New servers and

clients can be added on demand to allow smooth incremental development of

information systems. The innumerable services can be offered via the client-

server technology. File server system for shared file storage system is the most

popular of such system due to considerable significance of file storage and

retrieval facilities.

To ensure only authorized use and to increase the availability of resource

security consideration arises. Individual request for the service must be

identifiable. The server must be able to determine about handling of a particular

request, and client should be able to repeat a request if earlier one was not

received.

The server should have facility to regulate flow of traffic to handle heavy

demands by clients. To improve throughput times, concurrent access should be

allowed. To ensure that data area, when changed, preserve the integrity of

information stored some mechanism must be employed.

3.3.3 Communication and Computer Network

In order to communicate a signal, three elements are required: a transmitter to

send, medium to convey and receiver to receive. The digital signaling of

computer uses binary coded forms and the representation of a sting of binary

digit in computer communication approximates a square wave. In order to

transmit such a signal two values of voltage are used, zero and one. In many

65

Chapter 3 Parallel Processing Issues

cases installing a new network to transmit digital signals over a long distance is
expensive and so existing telephone lines are used. As telephone lines are used
to carry analog signals, suitable modulation techniques are used to convert
digital signal to analog signal and vise versa. The device used for the same is
called modem (modulator / demodulator). Some of the mediums used in
communication are twisted pair, coaxial cable, optical fibers, radio frequencies
and communication satellites.

A computer network is built upon a communication base using layered
architecture [10] in order to facilitate the design, construction and maintenance.
It is a seven layer model called the reference model of open system
interconnection (OSI). These seven iayers range from the hardware dependent
layer at the bottom of the hierarchy to the user level applications environment at
the top. These layers beginning at the lowest layer are as:

1. The Physical layer which is responsible for the transmission of the raw bits
from one host to other over communication channel. It is necessary to choose
suitable signaling technique, transmission medium and related equipment to
provide an acceptable communication channel. Other aspects to be
considered are multiplexing to provide better' utilization of available
bandwidth, making choice between circuit-switching and packet-switching
techniques, the handling of terminals and the management of errors.

2. The Data link layer which transforms the raw bit stream into a string of bits
which is free of transmission errors. Link protocols are concerned with
efficient and reliable transmission of information from one node (host or IMP)
in the network to a neighboring node. In order for a host to communicate
with another, the message will have to pass through the subnet, stopping
several IMPs along the way. Therefore each node should shoulder the
responsibility of error-free transmission to neighboring nodes. This layer
addresses link-level responsibility which involves the IMP-to-IMP link as well
as host-to-IMP link.

3. The Network layer, which handles the routing within the subnet and
determines the interface between the host and IMP (Interface Message
Processor). At this layer the host receives a packet of information from the

66

Chapter 3 Parallel Processing Issues

layer above it, adds its protocol header to the packet and uses data link layer

to transmit it to the IMP. At that IMP, network layer selects a route to another

IMP and then uses the data link layer to handle link transmission. This

process is repeated until the packet is delivered to the destination host. The

protocol header information will depend on type of service, i.e. virtual call to

support connection oriented services or datagram which supports a

connectionless service.

4. The Transport layer, which is responsible for the safe transfer of messages

from one application process at a host to another. The transport layer is

designed to support interprocess communication and the protocols in this

layer are implemented only at host and not in the IMPs.

5. The Session layer, in which connection is initiated for a communication

exercise. The user interacts with the network to obtain services which are

made available via sessions which have identifiable begin and end points and

must be carefully managed.

6. The Presentation layer, which resolves differences in formats among the

various hosts. The major concerns are to ensure that information remains

semantically sound when transmitted to a remote host and to provide an

acceptable level of security and privacy to user of the network. It handles the

form in which data are presented to the network by the users and delivered

to the user by the network.

7. The Application layer where the functions or applications that user can run are

created. The network provides several services to the user designed to meet

the users' application needs, which may vary with users, A few relatively

popular applications include electronic mail, electronic fund transfer, file and

job transfer systems, remote job entry, public bulletin board, advertising

system etc.

The topology of the network involves the location of IMPs, hosts and terminals

and the existence of physical links between these devices. Two widely adopted

topologies are Wide Area Network (WAN) and Local Area Network (LAN).

67

Chapter 3 Parallel Processing Issues

(A) Wide Area Network: The aim of WAN is to provide services to users over a

wide geographical area and major concerns are location of IMPs (nodes) and

lines so as to provide reliable services. The extent for demand for network

services will differ with hosts and therefore volume of information traffic

generated in the segment of the network will vary. Some hosts and terminals

can be connected to concentrators rather than directly to IMP. A concentrator

accepts input from several lines and output information onto a single line and

in addition it can feed several lines off the input from that single line. The

topology usually involves a hierarchical approach with a backbone system of

IMPs and large capacity lines to which are connected clusters of concentrators

serving the hosts or terminals. One IMP can therefore serve a relatively large

user population, which will then be divided, into smaller areas each served by

concentrators. To provide acceptable level of reliability some redundancy

must be built into the network.

(B) Local Area Network: LAN occupy a limited physical range, usually an office

building, manufacturing plant, university campus and similar single

organizations. The computing elements are connected directly to each other

via the communication link. The location of computing units and their

interconnection depends on needs of various departments of the organization.

A few patterns have emerged offering different levels of performance and

reliability with the tradeoffs being simplicity and inexpensiveness. The degree

of reliability can be achieved by upgrading the quality of the physical medium

and employing an efficient method for sharing the use of the medium. Some

of the commonly used patterns are Bus, Ring, Star, Tree, and Mesh.

In order to extend the opportunities for information exchange, computer

networks can be interconnected. To connect two networks, a computer is

dedicated to the handling of the interface between the two networks, which is

known as Gateway. The function of gateway is to perform protocol conversion

i.e. packets addressed to the other network go to the gateway which converts

them from protocol of sender's net to that of the receiver's. After the conversion

the packet will be relayed.

The Internet uses the transport layer protocol, TCP (Transmission Control

Protocol) and the network layer protocol and IP (Internet Protocol) to link

68

Chapter 3 Parallel Processing Issues

together a vast number of local area and wide area networks, TCP is connection-

oriented protocol and IP is a connectionless protocol to transport layer. TCP/IP is

widely used in many systems.

3.3.4 Software Tools

PVM and MPI are two competing and functionally equivalent tools for parallel

programming using message passing.

3.3.4.1 PVM (Parallel Virtual Machine)

PVM is a portable message passing programming system designed to link

separate Unix host machines to create a virtual machine which is a single

computing resource [96]. The PVM system is composed of two parts. The first is

a daemon program, which runs on all machines that are part of the virtual

machine. This permits the user to run a PVM application at a Unix prompt from

any of the machines. The second part of the system is a library of PVM interface

routines. This library contains user callable routines for passing messages,

spawning processes, coordinating tasks and modifying the virtual machine.

Application programs can be written in a mixture of C, C++ and FORTRAN but

must be linked with the PVM library.

Terminologies related to PVM

Host: A networked computer that can participate in the formation of a parallel

multi computer is referred to as a host. A host has attributes such as name,

architecture type and a relative speed rating.

Virtual machine: A meta machine formed with heterogeneous collection of

networked computers. A collection of programs running on these machines

cooperates to realize a virtual machine. This machine can be accessed from any

of the host through a console program that gives an interface to the virtual

machine. The virtual machine is configured by user through software and no

hardware reconfiguration is required.

Task: the process running on virtual machine is called task.

TID: Each task has a unique task-id (TID) per virtual machine. TID is used to

refer to the task for sending messages, synchronizations and control.

69

Chapter 3 Parallel Processing Issues

Pvmd (PVM daemon): This process runs on every host that forms a part of the
PVM configuration. These daemons collectively support message routing across
task in virtual machine. Tasks running on a host communicate with the other
tasks via pvmd running on that host. This pvmd process keeps communicating
with the other pvmds to monitor the status of other hosts.

Message: An ordered list of data elements sent between tasks. A message can
be composed using elements of various data types. The sender composed a
message before sending it and the receiver must decompose it exactly in the
same order as it was composed.

Group: An ordered list of tasks is assigned a symbolic name. Each task has a
unique index in a group. Any task may be m zero or more groups.

Architecture of PVM

A virtual machine across a networked collection of computers is realized through
a layer of PVM daemons, running on each host. These daemons provide certain
functionality such as addressing hosts, addressing of tasks, mapping of tasks to
hosts, routing of messages, scheduling tasks on hosts for execution etc. Fig 3.6
shows the architecture of a PVM.

FIG. 3.6 PARALLEL VIRTUAL MACHINE ARCHITECTURE

3.3.4.2 MPI (Message Passing Library)

In past, as different hardware manufacturers developed their own distributed
memory parallel computers, they also developed and implemented their own
message passing libraries. So, the programmer was tied to particular computer

70

Chapter 3 Parallel Processing Issues

architecture. This lack of portability lead to a number of public domain message
passing libraries being developed, each with their own1 software implementation.
The natural progression from this therefore was the definition of a standard
message passing library.

MPI (Message Passing Interface) provides a standard set of definitions, which
allow parallel programs to be written under distributed memory paradigm [97,
98]. These definitions describe a library of over 100 C and FORTRAN
subprograms, which are now supported by almost all parallel computer
manufacturers. In addition, numerous commercial and public domain
implementations of MPI exist, which allow clusters of workstations to be used as
a single parallel computing system. The main purpose behind writing such
specifications is to develop some software, for the first time since the advent of
parallel computers, which is truly portable between different parallel
architectures.

When working with a distributed memory computer, it is necessary to ensure
that each processor has its own copy of each data item that is required for each
computation, performed by that processor. Often, some or all of this data will
depend upon the result of a previous computation, which may have been made
on one of the other processors. Therefore, some mechanism is required for the
transfer of copies of data between processors. This is achieved through the
message passing whereby each processor is given the ability to send and receive
copies of data to and from other processors. This requires the cooperation of
each processor that is involved in communication, whether as a sender or
receiver or both. This system provides an API (Application Programming
Interface), which permits a standard to develop parallel programs with standard
message passing. A carrier such as PVM is required for distinct implementations
if the operating system does not support the message passing.

3.4 PERFORMANCE MEASUREMENT OF PARALLEL PROCESSING

The objective of parallel or distributed processing must be to execute a problem
at greater speed and to solve large problems with greater or more dedicated
idealization. The performance measurement of parallel processing and other
factors affecting its performance are discussed in following sections.

71

Chapter 3 Parallel Processing Issues

3.4.1 Granularity

To achieve improvement m speedup through the use of parallelism, it is
necessary to divide the computation into tasks or processes that can be executed
simultaneously. The size of a process can be described by its granularity. In
coarse granularity, each process contains a large number of sequential
instructions and takes a substantial time to execute. In fine granularity, a
process might consist of a few or perhaps single instruction. The granularity must
be increased to reduce the cost of process creation and inter process
communication. For message passing, it is desirable to reduce the
communication overhead because of the significant time taken by inter computer
communication. This is especially true for the network of workstations.

Granularity = Computation time / Communication time

It is very important to maximize the computation / communication ratio while
maintaining sufficient parallelism.

3.4.2 Speedup

A measure of relative performance between a multiprocessor system and a single
processor system is the speed up and is defined as;

S = Tseq / Tn

where Tseq is the time taken by the code to execute on a single processor and TN
is the time taken for the same code to execute on a parallel system having N
processors.

Theoretically a problem should run N times faster on a network containing N
processors than on a single processor. In reality, the speed up achieved are less
than the theoretical values owing to the increase in the communication time with
the increase in the number of processors. In addition any load imbalance in the
problem will result in less than optimum performance.

3.4.3 Efficiency

The efficiency of the parallel system for a given algorithm is defined as;

72

Chapter 3 Parallel Processing Issues

E = S/H

where S is the speed up and N is the number of processors.

Efficiency is given as percentage. Efficiency gives the fraction of the time that the
processors are being used on the computation. If E = 50%, the processors are
being used half the time on the actual computation, on average. The maximum
efficiency of 100% occurs when all the processors are being used on the
computation at all times and the speed up factor would be N.

3.4.4 Overhead

There are several factors that will appear as overhead in the parallel version and
limit the speed up. These factors are:

1. Periods when not all the processors can be performing useful work and are
simply idle (load imbalance).

2. Extra computations in the parallel version not appearing in the sequential
version

3. Communication time for sending message

3.4.5 Cost

The processor-time product or cost of computation can be defined as,

Cost = Execution time x Total number of processors used

The cost of a sequential computation is simply its execution time Tseq. The cost of
parallel computation is TN x N. A cost optimal parallel algorithm is one in which
the cost to solve a problem on a multiprocessor is proportional to the cost on a
single processor system.

3.4.6 Scalability

It is used to indicate a hardware design that allows the system to the increased
in size and in doing so to obtain increased performance. This could be described
as architecture or hardware scalability. Scalability is also used to indicate that a
parallel algorithm can accommodate increased data items with a low and

73

Chapter 3 Parallel Processing Issues

bounded increase in computational steps. This could be described as algorithmic

scalability. Combined architectural / algorithmic scalability suggests that

increased problem size can be accommodated with increased system size for a

particular architecture and algorithm.

3.5 CHOICE OF DISTRIBUTED COMPUTING ENVIRONMENT

Developments in microelectronics and networking increased popularity of multi

computer system for distributed processing which is cost effective and attractive

alternative for high performance computing. To utilize network of computer as

distributed computing environment message passing libraries like PVM and MPI

can be used. However its use requires background of operating system,

networking for communication of data, various constructs of message passing

libraries and concept of parallel processing. These message passing libraries are

available freely for UNIX or LINUX operating system but for WINDOWS operating

system commercial products are available. The user familiar with WINDOWS

operating system may find it difficult to use UNIX or LINUX. In such situation

Client-Server approach is very useful which can work on WINDOWS operating

system also. WebDedip is one such tool developed using JAVA which relieves

application developer from using message passing functions in program. The

overview of WebDedip environment and application development is given in

detail in Chapter 4.

74
1

