
5. DISTRIBUTED MATRIX ANALYSIS OF
SKELETAL STRUCTURES

5.1 GENERAL

Analysis of large size complex structures such as muitistoried buildings, long 

span bridges and tall towers involve formulation and solution of large number of 

equations. A problem that can arise during analysis of large structures is that the 

computer may not have sufficient memory to store and process information 

about the entire structure. A commonly used approach to circumvent this 

problem is to condense the structure's stiffness equations that are to be solved 

simultaneously by suppressing some of the degrees of freedom. This process is 

referred to as static condensation. For very large structures, it may become 

compulsory to combine condensation with another process called substructuring 

[100], in which the structure is divided into parts called substructures with the 

condensed stiffness relations for each substructure generated separately. These 

are then combined to obtain the stiffness relations for the entire structure.

For the analysis of such large structures, involving large computer time, further, 

to speed up the analysis time, the parallel processing approach can be used. 

However a hardware system, dedicated to parallel processing, is expensive. The 

economical alternative is parallel processing over a network of workstations, 

which can be visualized as a distributed computing environment for tackling each 

substructure on a separate workstation using message passing functions [101] 

for the communication of data between the computers. Distributed computing is 

a variation of parallel computing in which loosely coupled processors cooperate 

to solve a problem. Such networks consist of a number of computers that can 

communicate over the network, but that are otherwise independent. For 

example, although a program on any given processor has its own data segment, 

messages can be passed between programs, enabling a kind of cooperative 

problem solving. However, such communication should be minimized because of 

relatively high network latencies.

As use of message passing functions complicates programming, use of client 

server approach can be made without any difficulty of knowing about operating
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systems, syntax of message passing functions and theoretical background of 

parallel processing.

In the present chapter feasibility study of distributed computing for analysis of 

skeletal structure is carried out. The parallel processing requirement is fulfilled 

using WebDedip, which helps the user to develop his parallel application easily 

over a network of heterogeneous systems. In this environment the user needs 

not to use any message passing function in program as is generally required in 

various available distributed processing environments. In WebDedip the user has 

to assign various processes to different computers and he has to define 

communication path between various processes using preprocessor. The 

communication or message passing between computers is then automatically 

taken care of by WebDedip. Thus, the user having no theoretical background of 

parallel processing can also develop application using this environment with 

small modifications in the program as discussed in Chapter 4.

A problem of static analysis of microwave tower is attempted here using 

distributed processing concept by dividing the structure into a number of 

substructures. A program is developed in VC++ based on direct stiffness method. 

The work of generation of overall stiffness matrix and load vector for different 

substructures is distributed to different processors and thus each substructure is 

analysed in parallel on different computers. Finally results are combined to get 

final displacements and member forces.

5.2 SUBSTRUCTURE TECHNIQUE FOR MATRIX ANALYSIS OF STRUCTURE

The method of substructuring for static structural analysis is based on 

subdividing the large structure into smaller parts, known as substructures, to 

obtain the relationship between forces and displacements at the common 

interfaces or boundaries. These boundary variables are then determined and are 

used to obtain the unknowns within each substructure. The division of the 

structure into smaller parts is totally left to analyst, but it will affect the 

communications between the computer and subsequently efficiency of 

computation.

The substructure technique has been in use since earlier generations of 

computers, when the computers were not having large memory and faster
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processors. To solve large size probiem using such machines, to reduce memory 

consumption and to increase computational speed by reducing number of 

unknowns, substructure technique was used. In present era of supercomputers 

also the substructure technique is having its own relevance because of its parallel 

implementation potential. The computation corresponding to substructures can 

be carried out on different computers concurrently and solution for boundary 

degrees of freedom can be carried out sequentially. In this section basic 

formulation of substructure technique is given in detail [102].

In displacement formulation for structural analysis the basic equation used is the 

equilibrium equation applied to the structure as a whole and is given by

[K] {r> = {P> ... (5.1)

where [K] is the stiffness matrix, {r} is the displacement vector and {P} is the 

load vector.

Using substructure technique the above equilibrium equation is obtained by the 

assemblage of substructure equations. For each substructure, the stiffness 

matrix, the displacement vector and the load vector are partitioned 

corresponding to internal and boundary degrees of freedom {d,} and {db> 

respectively as follows:

[k„] [k,b] 

[kb|] [kbb]

f-----
“O1 i-----
2

{db}
v. J

{ Qb} ^
. . . (5.2)

In the above equation, a boundary node is defined as a node, which is a part of 

more than one substructure, and the degrees of freedom at the boundary nodes 

are termed as boundary degrees of freedom.

Now the analysis can be performed m two stages,

1. Considering degrees of freedom at the boundaries as fixed, each 

substructure is analysed on different computers in parallel. Denote the 

solution obtained from this step by a superscript a.

2. Combine the condensed stiffness of the substructures from different 

computers to get the global structure stiffness matrix and analyse the

97



Chapter 5 Distributed Matrix Analysis of Skeletal Structures

assemblage by releasing the boundary degrees of freedom. Denote the 
processing carried out m this step by a superscript p.

The displacement and load vectors can now be expressed as the sum of above 

two cases as,

and
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. . . (5.4)

where subscript i and b denote the terms corresponding to the internal and 
boundary degrees of freedom respectively. Obviously as {db“} is the 

displacement at the boundary degrees of freedom, when boundaries are fixed it 
will be zero. Thus

{db“> = {0} ... (5.5)
Also in the first stage of the analysis, all the forces are applied at the internal 
nodes of the substructure and hence these forces do not appear at the second 

stage. Hence,
{Q,p> = {0} and {Q“> = {Q,} . . . (5.6)

STAGE I - ANALYSIS WITH FIXED BOUNDARIES

Substituting the value of {db“} = {0} from Eq. 5.5 into the equilibrium Eq. 5.2, 
the set of equations for the first stage of analysis with boundaries of substructure 
fixed can be written as,

[k„] [k,b] ' '{d,“}'
-j

'{QJ

[kb,] [kbb]

-----
s

! o..........j {Qb“l
k.\- J

Solving the first set of above equation ,
{d,“> = [k,,]-1 {Q,} . . . (5.8)

Substituting the value of {dia> in the second equation
{Qba> = Mk,,]-1 {Q,} . . . (5.9)

98



Chapter 5 Distributed Matrix Analysis of Skeletal Structures

Here {Qb“} is the force required to be applied at the substructure boundaries to 
keep the boundary displacements equal to zero. The above analysis is performed 
on all the substructures in parallel on different computers.

STAGE II - ANALYSIS WITH BOUNDARIES RELEASED

Again substituting the value of {Qbp> in Eq. 5.2, the set of equations for the 

second stage of analysis with boundaries released can be written as,

[k„] [k,b] ' 1
r'SOSr*

V___
[kb,] [kbb] [{dbp}J ^ {QbP}

V. J

Solving the first set of above equations,
{d,p> = -[k,,]'1 [klb]{dbp} ...(5.11)

Solving the second set of equations,
[kbi]{d,p> + [kbb]{dbp> = {Qbp> . . . (5.12)

Substituting from Eq. 5.11 for {d,p> into Eq. 5.12
-[kb,][kn] -1 [k,b]{dbp> + [kbbKdb15} = {Qbp> • ■ • (5.13)

or [k*] {dbp> = {Qbp> . • • (5.14)
where [k*] = [kbb] - [kb,][k„] -1 [k,b] . . . (5.15)

The Eq. 5.15 is the equilibrium equation for the substructure in terms of its 
boundary degrees of freedom and [k*] is the corresponding stiffness matrix 
called as condensed stiffness matrix or substructure stiffness matrix. This 
analysis can be carried out in parallel for all the substructures on different 
computers and the condensed stiffness matrix for each substructure can be 
assembled to form the global structure stiffness matrix. Thus,

[K] =V[k*]s . . . (5.16)

s=l

and {P} = {Qb> -SE{Qb“}s • • ■ (5.17)

s=l

In the above equations n stands for the number of substructures, which is equal 
to the number of computers. The assemblage of the substructures through Eq. 
5.16 and 5.17 leads to Eq. 5.1 where all the degrees of freedom are along the 
common boundaries of the substructures. Solution of Eq. 5.1 gives the global
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displacements along the boundaries of the substructure. Now, picking up the 
appropriate displacements, the vector {dbp> can be obtained for each 
substructure, which can be communicated to different computers and from that 
{d,p} can be determined using Eq. 5.11.

Thus all the values of {d} required in Eq. 5.3 are known for each substructure 
and from that other quantities like member end forces can be calculated.

The substructure technique for the analysis of large structures is essentially the 
same as the standard stiffness method. However, each substructure is treated as 
an ordinary member of structure and the degrees of freedom of only those joints 
through which the substructures are connected to each other and / or to supports 
are considered to be the structure's degrees of freedom. The structure's stiffness 
matrix and load vector are assembled, respectively, from the substructure 
stiffness matrices and fixed joint force vectors, which are expressed in terms of 
external coordinates of substructures only. The equations thus obtained can then 
be solved for the joint displacements. Some of advantages of analysis of 
structure using substructure technique are number of unknown displacements to 
be found at any time will be considerably less and all substructures can be 
analysed in parallel on different computers. It is also observed that during this 
process there is no loss of accuracy in the final results. The division of the 
structure into smaller parts is totally left to analyst, but it will affect the 
communication time between the computers and subsequently efficiency of 
computation.

5.3 SUBSTRUCTURING IN DISTRIBUTED ENVIRONMENT

The substructure technique, for the analysis of large structures, can be 
implemented easily over distributed computing environment. In this process 
some of the calculations can be carried out in parallel, while some are to be 
carried out sequentially. Stiffness matrix (Eq. 5.15) and load vector (Eq. 5.9) of 
substructures are calculated in parallel on different computers. The stiffness 
matrix and load vector of all substructures are assembled (Eq. 5.16 and 5.17) on 
one computer and displacements corresponding to boundary degrees of freedom 
are calculated sequentially. Subsequently from boundary degrees of freedom 
internal displacements (Eq. 5.11), total displacements of all nodes of
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substructure (Eq. 5.3) and member end actions of all members of substructures 
are calculated in parallel. Finally results of all substructures are combined on one 
computer. The above process is represented graphically in Fig. 5.1.

FIG. 5.1 SUBSTRUCTURING IN DISTRIBUTED COMPUTING ENVIRONMENT

In distributed implementation communication between computers takes place 
four times. In first communication data corresponding to substructures are 
distributed to different computers. In second, computers communicate stiffness 
matrix and load vector of substructure to have total equilibrium equations
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corresponding to boundary nodes. Thirdly, displacements of boundary nodes are 
distributed to appropriate computers for calculation of total displacements and 
member end actions. Finally, in fourth communication, results of substructures 
are collected from different computers. As communication time and time spent 
for sequential calculations reduce computational efficiency, they should be kept 
minimum. The division of structure is to be done in such a way that each 
substructure should have equal number of members (as far as possible) for equal 
computational loads among computers and number of boundary nodes should be 
minimum for less communication and minimum sequential computation.

In the WebDedip environment, the whole process is subdivided in to five sub 
tasks. The first sub task (parantl.c) decomposes the whole structure in to 
substructures and distributes the substructure data to different computers. The 
second subtask (parant2.c) analyses each substructure separately on different 
computers, and communicates substructure stiffness matrix and load vector. 
The third sub task (parant3.c) assembles the substructure stiffness matrix and 
load vector of all substructures and after imposing actual boundary conditions 
calculates displacements at boundary nodes and distribute back to different 
computers for correction of displacements obtained in sub task two. The fourth 
sub task (parant4.c) calculates actual displacements of the internal nodes of 
each substructure on separate computers considering displacements at 
boundary nodes. It also calculates final member end forces. The fifth sub task 
(parantS.c) collects the final displacements at nodes of substructure and 
member end forces from different computers and displays the final result. The 
interface among different tasks is carried out using intermediate files. All the 
tasks are then inter linked using graphical user interface of DEDIF to configure 
the application for parallel processing. These programs are not containing any 
message passing functions and data to be communicated is to be written in 
files. The syntax of file input and output is slightly modified to suit distributed 
processing, which is already described in Chapter 4.

Before implementation of above process over distributed environment, it is 
essential to check the functioning of all programs on single computer. In this 
process during configuration of application each task is assigned to same 
computer with appropriate dependency information. As all the tasks are carried
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out on same computer, communication of data is not required. Successful 

implementation of application on single computer indicates proper functioning of 

program as well as proper execution of tasks as per configuration. This 

procedure makes debugging of the programs, to be implemented over 

distributed environment, easier otherwise to find error either in program or in 

communication may be time consuming. Subsequently all tasks are distributed 

over different computers and communications between them are defined 

through configuration of application. Fig. 5.2 shows screen shot depicting the 

required interdependency. The DEDIP GUI is used to provide the information 

about remote node on which the process is to be executed.
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FIG. 5.2 DEDIP GUI FOR CONFIGURATION OF DISTRIBUTED APPLICATION

5.4 EXAMPLE OF STATIC ANALYSIS OF A MICROWAVE TOWER

A microwave tower is modeled as a three dimensional pin jointed structure 

subjected to various types of loading like dead load, weight of antenna, wind 

load and earthquake loads. Generally loads are applied at nodes. The stiffness
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matrix of space truss member with three translational degrees of freedom at a 

joint can be determined easily by direct approach [103].

rkl =

1 0 0-100 
0 0 0 0 0 0

AE 0 0 0 0 0 0
L -10 0 10 0

0 0 0 0 0 0
0 0 0 0 0 0

L J

where E is modulus of 
elasticity of material, A is cross 
sectional area, L is length of 
member

. . . (5.18)

The stiffness can be transformed to structural axis by using rotation 

transformation matrix as,
[k]s = [R]t [k] [Rj ...(5.19)

where [R] is rotation transformation matrix and is given by [103].

[R] = [Ry] [Rp] [RJ . . . (5.20)

cx 0 cz CX Cy 0
r *\
10 0

with [RJ = 0 10

-Cz 0 cx
L j

[Rp] = — Gy Cx 0

0 0 1

£ ii 0 cx c2

0 -Cz Cy

Where cx = (xk - x3) / L , cy = (yk - y3) / L , cz = (zk - z,) / L 

and L - x3)2 + (yk - y3)2 + (zk - z3)2

(Xj, y3, z3) and xk, yk, zk) are the coordinates of the j and k end of the member 

respectively.

A microwave tower with 102 m height is shown in Fig. 5.3. It is modeled with 

426 members and 124 joints. It is analysed for static conditions when subjected 

to dead load and wind load. The whole structure is divided into two, three and 

four substructures as shown in Fig. 5.4. On the host computer the structure is 

divided into substructures (parantl.c) and data files corresponding to each 

substructure is distributed to slave computers. Analysis of each substructure, 

including generation of substructure stiffness matrix, is carried out on different 

slave computers (parant2.c). Then substructure matrix and load vector of each 

substructure are communicated back from slave to host computer. On the host 

computer substructure stiffness matrix and load vector corresponding to 

boundary nodes of all sub substructures are assembled to find the 

displacements at the boundary nodes (parant3.c). These degrees of freedom are 

distributed by host computer to different slave computers as per the boundary
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nodes of each substructure to find the displacements at the internal nodes and 
forces in each member. After calculating displacements and member end forces 
(parant4.c) slave computers communicate the results of each substructure to 
the host computer. Finally displacements of all nodes and member end forces 
are assembled on host computer (parant5.c) to have final result of analysis.

GEOMETRICAL DETAILS OF THE 
MICROWAVE TOWER

> Base width 18.00 m

> Top width 2.50 m

> Total tapered height 90.00 m

> Total uniform height 12.00 m

> Types of tapered panels 3

> First five tapered panels of height 10.00 m

> Next six tapered panels of height 6.00 m

> Next four tapered panels of height 2.50 m

> Next six uniform panels of height 2 00 m

FIG. 5.3 3-D VIEW OF MICROWAVE TOWER
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(a) 2 - Substructures (b) 3 - Substructures (c) 4 - Substructures

FIG. 5.4 TOWER DIVIDED INTO DIFFERENT NO. OF SUBSTRUCTURES
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For the problem under consideration, the results of analysis (nodal 

displacements, member end forces and reaction at supports) are found in good 

agreement with that obtained by STAAD software. The maximum joint 

displacement at top of tower, maximum axial force in bottom panel and 

reactions at one of the supports are compared in Table 5.1, 5.2 and 5.3 

respectively.

TABLE 5.1 COMPARISON OF MAXIMUM JOINT DISPLACEMENT AT TOP

Result obtained
from

- 'Dead load. Wind loadjn right
, 1

angle direction
, Wind load in diagonal *

direction ... '
Disp-^X ' Disp-Y Disp-Z' Disp-X Disp-Y Disp-Z , Disp-X Disp-Y DisprZ

STAAD/Pro 0.000 -3.602 0.000 363.668 -11.60 0,004 328.522 0.000 -328.54

2 Substructures 0.000 -3.601 0.000 363.656 -11.59 0.003 328.529 0.000 -328.53

3 Substructures 0.000 -3.603 0.000 363.663 -11.60 0.004 328.525 0.000 -328.53

4 Substructures 0.000 -3.598 0.000 363.670 -11.61 0.004 328.523 0.000 -328.54

(Displacements are in mm)

TABLE 5.2 COMPARISON OF MAXIMUM AXIAL FORCE AT BOTTOM

Result obtained
from

Dead load Wind load in right angle
direction

Wind load in diagonal
direction

STAAD/Pro 190.917 kN 1202.703 kN 2111.529 kN

2 Substructures 190.920 kN 1202.710 kN 2111.525 kN

3 Substructures 190.919 kN 1202.705 kN 2111.535 kN

4 Substructures 190.921 kN 1202.707 kN 2111.530 kN

TABLE 5.3 COMPARISON OF REACTIONS At ONE SUPPORT

Result obtained
from

Dead load Wind load in right angle
direction

, Wind load in diagonal
. direction

Rea-X Rea-Y Rea-Z Rea-X Rea-Y Rea-Z Rea-X Rea-Y Rea-Z
STAAD/Pro 25.94 219.98 -25.94 -242.83 -1338.2 115.24 -312.3 -2345.0 312.29

2 Substructures 25.96 220.00 -25.96 -242.90 -1338.2 115.26 -312.3 -2346.0 312.30

3 Substructures 25.95 219.91 -25.95 -242.84 -1338.3 115.27 -312 3 -2345.9 312.31

4 Substructures 25.95 219.95 -25.95 -242.86 -1338.2 115.25 -312.2 -2345 9 312.27

(Reactions are in kN)
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5.5 DISCUSSION OF RESULTS

In this chapter feasibility of distributed computing in structural analysis was 
explored using an example of static analysis of microwave tower. Substructure 
technique, which can be used for distributed implementation of structural 
analysis, was discussed. From the comparison of results it is observed that for 
different number of substructures the results are matching closely with that of 
entire structure. It proves that the accuracy of solution is not affected by 
number of substructures.

For the example of static analysis of microwave tower, the use of distributed 
processing concept takes about 18% less computer time compared to sequential 
processing. As the size of problem considered here is small size, advantage of 
distributed processing is not very high. Because for small size problems the time 
required for computation on different computers is not large compared to 
communication time and sometimes computation time is smaller than 
communication time. However, for very large size problems having total number 
of unknowns more than 10000, it is expected to give significant reduction in 
computer time.
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