
6. DISTRIBUTED STATIC FINITE ELEMENT ANALYSIS

6.1 GENERAL REMARKS

Analytical solutions can be obtained only for certain simplified situations but for 

problems having complex material properties and boundary conditions, numerical 

methods provides approximate but acceptable solutions [104,105]. The growth 

in finite element method which one of the most popular numerical methods is 

because of continuous developments in high-speed electronic digital computers 

and growing need of numerical methods for solving complex problems.

The finite element method (FEM) is based on representing a body or a structure 

as an assemblage of subdivisions known as finite elements. These elements are 

interconnected at joints, known as nodes or nodal points. Simple functions are 

chosen to approximate the distribution of actual displacements over each finite 

element, which are known as displacement functions.; A variational principle of 

mechanics i.e. principle of minimum potential energy is used to obtain 

equilibrium equation of each element. After combining equilibrium equation of 

individual elements, solution yields the approximate displacements at discrete 

locations in the body and finally the strains and stresses at desired points.

A variety of examples of static finite element analysis have been implemented 

over distributed computing environment in this Chapter to understand application 

development using WebDedip, accuracy of solution, computational efficiency in 

various types of problems, and factors affecting speedup. Plane stress and plate 

bending problems are considered in subsequent sections. As the finite element 

formulations for these problems is simple and is available in standard books [106 

to 113], it is not repeated here.

6.2 THE STEP-BY-STEP FEM PROCEDURE

> Divide the continuum, which is physical body or structure or solid, to be 

analyzed into an equivalent system of finite elements known as discretization. 

The element can be one dimensional (spring, bar, beam), two dimensional 

(triangular, rectangular, quadrilateral) or three dimensional (tetrahedral, 

hexahedral).



Chapter 6 Distributed Static Finite Element Analysis

> Assume suitable displacement function to represent approximately the 
distribution of displacement within an element. The displacement function can 
be in the form of polynomial depending on type of problem and satisfying 

certain requirements known as convergence criteria.
> Derive element properties, like stiffness matrix and load vector, by applying 

principle of virtual work or minimization of potential energy. The stiffness 
matrix for an element depends on displacement model, geometry of element 

and material properties.
> Assemble stiffness matrix and load vector of all elements to have overall 

equilibrium of structure. The overall equilibrium relation between total 
stiffness matrix, total load vector and nodal displacements are expressed as a 

set of simultaneous equations.
> Apply geometric boundary conditions arising from' supports of structure to 

overall equilibrium equations using a suitable method.
> Solve the algebraic equations to get displacements at nodal points using any 

one of the suitable solution techniques such as banded, skyline or frontal 
solution technique. Displacements are primary unknowns in solution of
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structural mechanics problem.
> Calculate element strains and stresses, which are known as secondary 

unknowns, from nodal displacements. The stresses are generally used for 
design purpose.

6.3 PARALLEL COMPUTING IN FINITE ELEMENT METHOD

Evaluation of structural response of large and complex structures modeled with 
several thousand finite elements involves millions of number crunching 
operations. Static, dynamic or nonlinear analysis of such structures requires 
large computational time. Historically, the applicability of the finite element 
method to complex three dimensional domains has been greatly restricted by 
two physical constrains of the computing environment, namely, the large 
physical memory required for storing a complex discretized model and, large, 
solution time required due to limited computational speed of the machine. At 
present, because of the availability of inexpensive physical memory the problem 
of memory size is not perceived to be as crucial as the one of computational 
speed. In a large size finite element problem, the solution algorithm often takes 
about 90-95% of the total computational time , hence efforts to reduce this time
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may greatly reduce the computational cost as well as solution turnaround time. 

Accordingly current research is increasingly focusing on adopting proper strategy 

for the various stages of FEM processing that take advantage of new computer 

architectures to achieve higher computational speed.

Machine that provides computational speed higher than those available on 

standard, single processor machine incorporate one or more of the following:

(a) A very fast CPU

(b) Special hardware for vectorization, and

(c) Special hardware for concurrent processing

Efficient algorithmic design can significantly reduce the computational time by 

taking advantage of vectorization and concurrent processing. Vectorization can 

be exploited whenever the same operation is performed on all elements of an 

array e.g. multiplication of an array by a scalar. Concurrent or parallel processing 

applies when a particular task can be subdivided in a set of subtasks to be 

executed in parallel on separate processors. Vectorization involves lower level of 

modification while concurrent processing requires changes at higher level.

Consider an example of solution of linear equations KX = P, where K is stiffness 

matrix, P is force vector and X is the vector of the unknown displacements. If 

direct implementation of Gaussian elimination is used, because of its sequence of 

operations on vector each representing a row or column of K, vectorization can 

be exploited with little or no change. In contrast, to take advantage of parallel 

processing, not only the algorithm must be drastically changed but also the 

problem must be recast in a different form.

The analysis of large structures using finite element, involving thousands of 

unknowns, can be expedited by subdividing it into smaller parts referred to as 

substructures. In substructure technique, each substructure is analyzed 

separately and the results are combined to yield the displacements and stresses 

in actual structure. To speed up further the analysis time, the parallel processing 

approach can be used.
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Parallel implementation requires parallel machine consisting of multiple 
processors connected with each other and sharing the same memory. As parallel 
processing hardware designed exclusively for dedicated parallel processing is 
more expensive, an inexpensive alternative is to develop application software, 
which can run on network of workstations known as distributed processing. This 
arrangement employs a number of computers physically linked to permit online 
computer-to-computer communication. Using this approach of distributed 
processing, independent workstations interconnected by network and message 
passing for the communication of data between the computers can be 
transformed into cost effective parallel computing resource.

In the present chapter application of distributed processing in finite element 
analysis over network of computer is discussed with a variety of examples. To 
implement distributed computing in finite element method using LAN, WebDedip 
environment as discussed in Chapter 4 is used which is developed using client- 
server paradigm of distributed processing and JAVA technology. Substructure 
technique is used in finite element analysis [104] and entire application is divided 
into small tasks like preparation of substructure data, calculation of stiffness 
matrix and load vector corresponding to interface DOF, assembly of stiffness 
matrices and load vector of all substructure and calculation of displacements of 
interface DOF, calculation of internal DOF and element stresses from interface 
DOF. These tasks are executed on different computers and communication 
between them is done through FTP. Derivation of substructure stiffness matrix 
and load vector depends on number of internal DOF ,and interface DOF, while 
communication between computers depends on number of interface DOF. The 
effects of these parameters have been discussed by subdividing entire structure 
into number of substructures.

6.4 SUBSTRUCTURE TECHNIQUE IN FINITE ELEMENT ANALYSIS

Application of substructure technique in the analysis of skeletal structures was 
discussed in chapter 5. Similarly, the substructuring technique can be 
implemented for Finite Element Analysis of structures [114]. Using basic 
approach of the substructuring technique analysis can be carried out in five 
phases. Various processes related with these phases can be summarized as 
follows:
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1) Data generation for individual substructure.
2) Calculation of substructure stiffness matrix and load vector corresponding to 

boundary degrees of freedom (DOF), using concept of static condensation of 
internal DOF.

3) Calculation of displacements at boundary nodes for each substructure after 
assembling substructure stiffness matrices and load vectors.

4) Calculation of displacements at internal degree of freedoms and element 
stresses for each substructure using boundary displacements.

5) Collection of results for each substructure and giving final result.

Out of the above five processes, first process of data generation is a sequential 
process so carried out on single computer. After generating data for each 
substructure, stiffness matrices and load vectors for each substructure can be 
calculated simultaneously on different computers. Each computer is having 
required data corresponding to the substructure allotted to that computer. Again 
the third process of assembly of matrices is a sequential process (i.e. carried out 
on single computer). So the completion of second process on all computers is 
necessary before beginning of third process. After calculation of displacements 
corresponding to boundary nodes, these displacements are distributed again to 
corresponding computers. So the fourth process is again the parallel process. 
And finally, after calculating displacements corresponding to internal DOFs, 
results are collected form each computer to have final results. This step-by-step 
procedure is explained as below with the help of suitable example.

STEP 1: Fig 6.1 show a plate, which is fixed at one end and subjected to tensile 
force on the other end. It is required to carry out the finite element analysis. For 
analysis CST element is used. The Fig 6.1 shows the discretization of plate into 
CST elements. For illustration plate is discretized into 32 number of elements and 
resulting in total 25 number of nodes.

In order to carryout the analysis using substructure technique, the plate is 
divided into 4 number of substructures. Fig 6.2 shows the plate divided into four 
substructures. For calculation purpose it is necessary to differentiate internal and 
boundary nodes. Here, each substructure is having 1 internal node and 8
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boundary nodes. Node 7, 9, 17 and 19 is the internal node for 1st, 2nd, 3rd and 4th 
substructures respectively. Along with the internal and boundary nodes, other 
data such as the restrained conditions and the load data are also supplied 
individually for each substructure.

FIG. 6.1 STRUCTURE DISCRETIZED INTO 32 CST ELEMENTS

FIG. 6.2 SUBSTRUCTURE DIVIDED INTO FOUR SUBSTRUCTURES

STEP 2: As discussed in the theory of the substructure technique, first the 
analysis is carried out by restraining the boundary of each substructure. Fig 6.3 
shows all substructures with restrained boundaries. In this step of analysis, 
nodes are renumbered. As shown in Figure, first all the internal nodes are 
numbered and then boundary nodes are numbered.

After renumbering of nodes, static condensation is carried out in which internal 
nodes are eliminated from each substructure. Calculation of condensed stiffness 
matrix and load vector is carried out. So the whole substructure will be treated 
as a single element. Fig 6.4 shows DOF corresponding to boundary nodes for 
each substructure. Here actual restrained conditions are also implemented as all
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substructure stiffness matrices and load vectors are to be assembled to get 
global stiffness matrix.

FIG. 6.3 SUBSTRUCTURES WITH ALL BOUNDARIES FIXED
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FIG. 6.4 SUBSTRUCTURES AFTER STATIC CONDENSATION

STEP 3: After calculation of condensed stiffness matrices and load vectors for 
each substructure, these matrices are assembled according to the boundary 
nodes. Fig 6.5 shows the nodes and corresponding DOF, which are incorporated 
in the global stiffness matrix. Nodes 1,6,11,16 and 21 are eliminated, as 
retrained and also internal nodes are not considered. After assembly of stiffness
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matrix and load vector, displacements corresponding to boundary nodes (shown 
in fig) are calculated.

FIG. 6.5 SUBSTRUCTURES COMBINED AFTER STATIC CONDENSATION

STEP 4: After calculating displacements corresponding to boundary nodes, these 
are again distributed to corresponding substructure to calculate internal 
displacements. Fig 6.6 shows all substructures with internal and boundary 
displacements. In this stage of analysis, internal displacements are calculated 
from boundary displacements and finally element stresses are calculated.

>43 - 45
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FIG. 6.6 SUBSTRUCTURES WITH KNOWN BOUNDARY DISPLACEMENTS

STEP 5: After calculating all displacements corresponding to internal and 
boundary nodes and element stresses, all results are assembled in order to have 
final results. Fig 6.7 shows the whole structure with DOFs corresponding to all 
nodes.
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FIG. 6.7 COMPLETE STRUCTURE WITH ALL DISPLACEMENTS

Some of the advantages of the substructure technique can be summarized as
follows:
❖ In substructure technique, the stiffness matrix of each substructure is 

statically condensed out so that effective stiffness matrix corresponds to only 
the boundary degrees of freedom.

❖ The number of nodes in the main structure is reduced because only the 
boundary nodes of substructure appear there.

❖ The size of individual substructure is less than that of the main structure 
being analyzed. Thus at any given instant the main memory required to 
process the data corresponding to any one substructure is reduced.

❖ Substructuring technique can be advantageous in case the structure is 
descritized into identical parts. In such cases, the stiffness matrix of a typical 
substructure can be formed and condensed only once and can be used as 
many times as the substructure appears in the main structure.

❖ Another advantage of substructuring is the reduction in data. But this will be 
so, only if substructures are identical and repeatedly used.

❖ The full advantage of substructure technique can be obtained in case of non 
linear analysis and structural optimization wherein a part of the structure only 
is modified before the subsequent analysis.

6.5 IMPLEMENTATION OVER DISTRIBUTED COMPUTING ENVIRONMENT

The substructure technique for distributed implementation of finite element
method over network of computers using WebDedip is discussed in this section.
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In WebDedip for development of distributed application, the solution of a 
problem is divided in to various tasks, which can run in parallel on different 
computers and communication between the tasks is carried out through 
intermediate files using FTP. As WebDedip do not require message-passing 
functions in program, development of distributed application becomes easy. The 
finite element method is divided in to number of tasks while using substructure 

technique as shown in Table 6.1.

TABLE 6.1 TASKS FOR DISTRIBUTED IMPLEMENTATION OF FEM

Sr.
No.

Task Functibn oftask t ; • v • . ;; \ *

1. CSUB1 Read the data of problem. Decompose the finite element mesh 
in to number of parts known as substructures, equal to number 
of computers and distribute the data of substructure to different 
computer.

2. CSUB2 For each substructure, calculate stiffness matrix and load vector 
corresponding to boundary or interface nodes using static 
condensation procedure in parallel on different computers. 
Subsequently communicate substructure stiffness matrix and 
load vector for global stiffness matrix and load vector.

3. CSUB3 Assemble substructure stiffness matrix and load vector of all 
substructures to form overall stiffness matrix and load vector 
corresponding to boundary or interface nodes of all 
substructures. After incorporating boundary conditions of 
structure, calculate the displacements corresponding to 
boundary nodes. Communicate the appropriate displacements 
of boundary nodes corresponding to substructure to different 
computers.

4. CSUB4 Compute displacement of internal nodes from that of boundary 
nodes and secondary unknowns i.e. internal stresses for each 
substructure in parallel on different computers and 
communicate the same for overall results.

5. CSUB5 Combine the results of each substructure i.e. nodal 
displacements and element stresses of all substructures and 
prepare the final output.

In first task to form the substructure data, each substructure is assigned an 
equal number of elements, to have equal computational load among different 
computers. The process of distributing computational load depending on 
processing power of computers so that they can complete the allotted task in the
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same time is known as load balancing. Load balancing carried out in the 
beginning of process only is known as static load balancing while load adjustment 
in the beginning and during the process is known as dynamic load balancing. If 
all computers are of same configuration distribution of equal number of elements 
to each computer will be a case of static load balancing. The substructure data 
includes element connectivity, nodal data and boundary nodes. The nodes which 
are common between more than one substructure is known as boundary nodes 
or interface nodes. The first task prepares data flies for each substructure. These 
substructures are assigned to different computers, if number of computers are 
equal to or more than number of substructures. If number of computers are less, 
more than one substructure may be assigned to some computers, which may 
violate the load balancing.

In the second task, to calculate substructure stiffness matrix and load vector, 
internal nodes are numbered first and then external or boundary nodes are 
numbered. This process of renumbering increases the bandwidth of stiffness 
matrix and so static condensation requires more computational time. The 
substructure stiffness matrix and load vector are written on file, which is 
communicated to master computer for the generation of total stiffness matrix 
and load vector. To reduce computation time and memory only upper half of 
banded stiffness matrix is stored. To reduce the size of file to be communicated, 
only upper half of substructure stiffness matrix is written to file. The intermediate 
file for second task consists of substructure stiffness matrix, load vector and 
corresponding boundary degrees of freedom.

The third task assembles substructure stiffness matrix and load vector of all 
substructures depending on boundary degrees of freedom, in banded form. As 
the bandwidth and number of unknowns are small, it takes less time to compute 
displacements of all boundary nodes of entire structure. This task prepares the 
intermediate file consisting of appropriate boundary displacements for each 
substructure for communication to different computers, where substructure 
stiffness matrix and load vector are calculated.

In fourth task the stiffness matrix and load vector are calculated for each 
substructure. Subsequently substituting the displacements of boundary nodes, 
displacements of internal nodes are calculated. As in this task, nodes are
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numbered in sequence and no renumbering is required, the bandwidth remains 

minimum and it takes less computational time. The intermediate file of this 

process consists of nodal displacements and element stresses, which are 

communicated for final results to be prepared by fifth task.

The various tasks carried out by different computers and communication of the 

data between them is shown in Fig. 6.8.
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Web Server 

DEDIP Server 
FTP
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1. Sends the data of substructures to slave 
computers.

2. Receives substructure stiffness and load 
vector from slave computers.

3. After assembling and imposing actual 
boundary conditions it calculates the 
displacements of interface DOF.

4. Sends displacements corresponding to 
interface DOF to slave computers.

5. From displacements and element stresses 
of each substructure it finalizes the results.
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1. From substructure data, it evaluates substructure 
stiffness matrix and load vector and sends to master 
computer.

2. From displacements of interface nodes, it calculates 
internal displacements and element stresses and 
sends to master computer

FIG. 6.8 IMPLEMENTATION OF DISTRIBUTED FE ANALYSIS ON WEBDEDIP
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The application can be configured using WebDedip environment as explained in 

Chapter 4. In configuration of application details for process, i.e. node on which 

it has to run, name of processes on which it is depending and name of dependent 

processes, and detail of file transfer, i.e. source process, destination process and 

name of file to be transferred, are given. A screen shot for typical configuration 

of application over five computers is shown in Fig. 6.9.

3" Hello Chamboo" Microsoft Internet Explorer

Rle Edit View Favorites lools Help

j «»Back ’ ’ 3 El 45 ^Search SjFavorites (jjHistory j JJ S3 ’ 3
Address g] http://sacweb/faciIity/html/CIientApp.htmI | i^Go
Links £]Java1.2.2-javax ©Java 1.2-com

C] Done

IB Start [ >>HljE..|iED...l8Bc...|^T mm 3:51 PM

FIG. 6.9 CONFIGURATION OF APPLICATION OVER FIVE COMPUTERS

6.6 BEAM SUBJECTED TO PURE BENDING EXAMPLE

A beam subjected to a bending stress distribution with a maximum intensity of 
20 N/mm2 is shown in Fig. 6.10(a). Young's modulus of elasticity E = 200 

kN/mm2, Poisson's ratio is 0.3 and thickness is 60 mm. Because of symmetry 

and antisymmetry about the x and y axis respectively, only one quarter of the 

beam is discretized in to 600 elements (20 rows containing 30 elements) as
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shown in Fig. 6.10(b). For the discretization plane stress quadrilateral element 
with linear displacement model is used. Stiffness matrix and load vector of 
quadrilateral element are obtained by combining properties of four constant 
strain triangular elements, and finally internal node is condensed out. Further, 
quarter of the structure is divided into five substructures as shown in Fig. 
6.10(b).

20 MPa 20 MPa

(a) Beam under pure bending

Substructure 5

Substructure 4 

Substructure 3

Substructure 2 

Substructure 1

c/l of

(b) Discretization and substructures

FIG. 6.10 BEAM BENDING EXAMPLE

On the host computer the structure is divided into substructures (csubl.c) and 
data files corresponding to each substructure are distributed to slave computers. 
Analysis of each substructure including generation of load vector, and stiffness 
matrix is carried out on different slave computers (csub2.c). Then substructure 
matrix and load vector of each substructure are communicated back from slave 
to host computer. On the host computer substructure stiffness matrix and load 
vector corresponding to boundary nodes of all sub substructures are assembled
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to find the displacements at the boundary nodes (csub3.c). These displacements 

are distributed by host computer to different slave computers as per the 

boundary nodes of each substructure to find the displacements at the nodes and 

stresses in each element. After calculating displacements and stresses 

(csub4.c), slave computers communicate the results of each substructure to host 

computer. Finally displacements of all nodes and stresses in elements are 

assembled on host computer (csub5.c) to have final result of analysis. For the 

problem under consideration the results of analysis are found m good agreement 

with that of theoretical results given by Desai and Abel [105].

6.7 A DEEP BEAM EXAMPLE

Figure 6.11 (a) shows an example of a deep beam subjected to uniformly 
distributed load. The Young's modulus of elasticity E = 200 kN/mm2, Poisson's 

ratio is 0.2 and thickness is 20 cm. Due to one way symmetry only half of the 

structure is considered for the analysis. This half portion is discretized in to 450 

elements (30 rows of 15 elements each) as shown in Fig. 6.11(b). For 

discretization plane stress quadrilateral element is considered. Further, for 

distributed processing it is subdivided in to five substructures and analysed on 

five different computers. The results of each substructure are combined to get 

the final result in the form of nodal displacements and element stresses.

20 kN/m

Substructure 5

Substructure 4

Substructure 3

Substructure 2

Substructure 1

(450 elements and 496 nodes)

(a) Deep beam (b) Substructures
FIG. 6.11 DEEP BEAM EXAMPLE
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The results of analysis are found to match with the finite element analysis results 
reported by Krishnamoorthy [102],

6.8 A SQUARE PLATE WITH CIRCULAR HOLE PROBLEM

The geometry of the plate is shown in Fig 6.12. The plate is a square and having 
a circular hole in the center. This plate is subjected to uniform tension on both 
edges. Young's modulus of elasticity of the plate material is E = 20000 kN/cm2 
and Poisson's ratio is 0.3. Plate is having thickness of 2.5 cm. As the plate is 
symmetrical about both x and y-axis, only the quarter plate as shown in Fig 6.12 
by hatched area, is descritized into number of elements. For descritization, CST 
element with linear displacement models is used. Typical discretization of plate 
with node and element numbering is shown in Fig 6.13.

FIG 6.12 RECTANGULAR PLATE WITH CIRCULAR HOLE

Further, this discretization of a quarter plate is divided into number of 
substructures, having almost equal number of elements to implement over 
distributed computing environment. Different number of substructures is 
considered in the study. Fig 6.14 show division of plate into five substructures.
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FIG. 6.13 DISCRETIZATION OF QUARTER PLATE USING CST ELEMENTS

FIG. 6.14 DIVISION OF QUARTER PLATE INTO FIVE SUBSTRUCTURES

Here the quarter plate is discretized into 27504 elements. So as to have 13990 

nodes. Each node is having 2 DOF so total number of unknowns are 27980. The 

screen shot for configuration of the application, when distributed over three 

computers is reproduced here in Fig 6.15.
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FIG. 6.15 CONFIGURATION FOR APPLICATION OVER THREE COMPUTERS

For the problem under consideration good agreement has been observed with 
the analytical solution for o0 given by Timoshenko [115]. Comparison of results of 
FEM analysis with the classical theory results is given in Table 6.2.

TABLE 6.2 COMPARISON OF ANALYSIS AND REFERENCE RESULTS

Sr. a b R S ox Oy Txy ae (N/mm2)

No (mm) (mm) (mm) (N/mm2) (N/mm2) (N/mm2) (N/mm2)
Timoshenko FEM

1 100 500 110 100 221.8 23.44 -40.25 234.58 229.58

2 150 152.9 32.32 4.34 147.05 147.78

3 200 121.9 20.42 5.28 118.29 117.00

4 250 111.7 14.49 4.78 108.59 107.13

5 300 107.7 10.88 3.94 104.28 103.39

6 375 104.3 7.07 2.88 101.25 100.33

7 450 102.4 4.94 2.19 99.80 98.69

In Table 6.2, R is the radial distance of point of interest and S is the intensity of 

tensile force.
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After completion of application, WebDedip gives the summary of application 
including node number on which application run successfully, start time and end 
time. If error occurs at any computer either due to communication or due to 
failure of program, can be known through the summary given by Operator 
Console. A typical screen shot of summary of an application is depicted in Fig. 
6.16.

Operator console - Microsoft Internet Explorer
File Edit View Go Favorites Help

«■ „ -► , £ uS
Stop Refresh Home uSearch

Si
Favorites History Channels Fullscreen Print

address ©' http7/222.222.8 5Vfacility/Html/0prConsole.html
.

JE53IUII III.™ - Q.|-------------------------------
Abort Actions Restart

Resume

Session Application

View Output... View Error...

Application: p(an3 Counter: 2

Sr. Process Name Node No. Start Time I Expected Time End Time Status
1 planl 222.222.8.51 04:57:57 04:58:07 04:58:03 NormalComplet..
2 plan21 222.222.8.64 04:58:19 04:58:29 05:12:47 NormalComplet.
3 plan22 222.222.8.65 04:58:23 04:58:33 05:07:40 NormalComplet..
4 plan23 222.222.8.67 04:58:26 04:58:36 05:09:07 NormalComplet..
5 DTHS1 222.222.8.51 04:58:03 04:58:03 04:58:19 NormalComplet..
6 DTHS2 222.222.8.51 04:58:04 04:58:04 04:58:23 NormalComplet..
7 DTHS3 222.222.8.51 04:58:04 04:58:04 04:58:26 NormalComplet..
8 plan3 222.222.8.51 05:13:09 05:13:19 05:13:21 NormalComplet.
9 DTHS4 222.222.8.51 05:12:47 05:12.47 05:13:09 NormalComplet.
10 DTHS5 222.222.8.51 05:07:40 05:07:40 05:08:07 NormalComplet.
11 DTHS6 222.222.8.51 05:09:07 05:09:07 05:09:27 NormalComplet.
12 DTHS7 222.222.8.51 05:13:21 05:13:21 05:13:37 NormalComplet.
13 DTHS8 222.222.8.51 05:13:21 05:13:21 05:13:41 NormalComplet.
14 DTHS9 222.222.8.51 05:13:22 05:13:22 05:13:44 NormalComplet.
15 plans 222.222.8.51 05:14:14 05:14:24 05:14:23 NormalComplet.
16 DTHS10 222.222.8.51 05:13:49 05:13:49 05:14:07 NormalComplet.
17 DTHS11 222.222.8.51 05:13:53 05:13:53 05:14:10 NormalComplet.
18 DTHS12 222.222.8.51 05:13:56 05:13:56 05:14:14 NormalComplet.

19 plan43 222.222.8.67 05:13:44 05:13:54 05:13:56 NormalComplet.
20 plan42 222.222.8.65 05:13:41 05:13:51 05:13:53 NormalComplet.

21 plan41 222.222.8.64 05:13:37 05:13:47 05:13:49 NormalComplet.

FIG. 6.16 SUMMARY OF APPLICATION GIVEN BY WEBDEDIP

Average time required for various processes, when entire structure is divided into 
different number of substructures, is tabulated in Table 6.3. Also the time 
required in parallel implementation i.e. computation time and communication 
time are shown separately. Based on the time required for various processes in 
sequential and parallel implementation, speedup is calculated. The comparison of 
ideal speedup and observed speedup is shown in Fig 6.17. Comparison of 
communication and computation time for various substructures is also shown in
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Fig.6.18. From calculated speedup and ideal speedup, efficiency is also calculated 
as a measure of performance. The timing shown in Table 6.3 are observed when 
application is implemented over network of Pentium-IV computers having 256 
MB RAM running at 1.8 GHz. Computers are connected through 100 Mbps 
Ethernet line and are a part of local area network.

TABLE 6.3 TIME REQUIRED FOR SEQUENTIAL AND PARALLEL PROCESSING

IIP
1111

wif
m.

*
wm

p
iHlMilifitJfjfgwmiiicomp comm jfjj

I 3 Substructuresj planl - - 6

2127 725 80 3 2.64 88.07

1 plan2
9080 9476 689

plan3 632 1380 12
plan4 240 9476 12
plans - - 6

’ 4 Substructures - >v'A‘ „1 planl
- - 6

1128 297 87 4 2.94 73.44

! plan2
6808 7162 268

plan3 590 1612 7

[ plan4
240 7162 9

| plan5 - - 7
5 Substructures - ' '

planl - - 6

854 159 92 5 3.40 68.05

plan2 5442 5774 132
plan3 572 1852 8
plan4 240 5774 7
plan5 - - 6

6 Substructures

planl - - 7

467 97 100 6 2.37 39.51

plan2 4534 4848 68
plan3 554 2082 8
plan4 240 4848 6
plan5 - - 8

(NB Band width, NEQ Number of equations)
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FIG. 6.18 COMPUTATION AND COMMUNICATION TIME

The size of problem considered here is large so as to clearly observe the 

advantage of parallel processing. As the number of substructures or computers 

increases, the computation time reduces and communication time increases. 

From Table 6.3, it is observed that process 'Plan2', for calculation of substructure 

stiffness matrix and load vector consumes maximum time due to larger 

bandwidth of the stiffness matrix. But as number of computers increases, time 

required for second process reduces which lowers the overall computation time. 

As the number of computer increases, the total time required for solution 

reduces but the speedup i.e. ratio of sequential time to parallel time increases up
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to five computers but for six computers it reduces. This reduction in speedup is 
due to increased communication time. Thus, the optimum number of computers 
for maximum speedup depends on size of problem so that computational time is 
greater than that of communication time.

6.9 TRANSVERSELY LOADED ANNULAR PLATE PROBLEM

For plate bending problem, a circular plate having hole,in the center, as shown in 
Fig 6.19, is selected. Such analysis is often useful in case of annular raft or when 
any circular slab is having hole at the center and subjected to uniformly 
distributed load. Plate is fixed at the outer edge and free at the inner edge and is 
subjected to uniformly distributed pressure. Modulus of elasticity of plate is 2 x 
108 kN/m2, Poisson's ratio is 0.3, thickness of the plate is 0.1 m and the 
intensity of pressure is 20 kN/m2.

FIG. 6.19 ANNULAR PLATE SUBJECTED TO TRANSVERSE LOADING

For the analysis 8 noded isoparametric plate element is used. Due to symmetry 
only quarter plate is discretized in to eight noded isoparametric elements. 
Typical discretizations is shown in Fig 6.20.

130



Chapter 6 Distributed Static Finite Element Analysis

FIG. 6.20 DISCRITEZATION OF QUARTER PLATE

Further the plate is divided into number of substructures. Load balance for each 
computer is maintained by keeping number of elements same in each 
substructure. Fig 6.21 shows the typical division of quarter plate into three 
substructures.

[Substructure 3 /'xn 
> x

__ _ ■ A, \ ^ \
I / \ X
I__ / \ x \
I ^ / Substructure''^ \! . "-L V ' V-" \I / ' X , > X- , \

. .• Nx \ >■" \ '/ , \ \ \ \
■ \ ^ \ \ 

V ' \ , 1
1 \ V \ ‘ A

, , . \ Substructure 1 I

\, , - ' \ , , , 1

FIG. 6.21 DIVISION OF QUARTER PLATE INTO 3 SUBSTRUCTURES
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Results for the deflections are tabulated in Table 6.4. These results are compared 
with those obtained by analytical methods, and are reported by Timoshenko 
[116].

TABLE 6.4 COMPARISON OF DISPLACEMENT COEFFICIENT

Sr
No

ID
= b

ED
= a

TNE TNN kl
FE

Analysis
Reference

[116]
1 2 4 4 21 0.057 0.057
2 2 6 4 21 0.129 0.130
3 2 8 4 21 0.161 0.162
4 2 10 4 21 0.174 0.175
5 4 8 12 51 0.057 , 0.057
6 5 15 12 51 0.129 0.130
7 4 16 12 51 0.161 0.162
8 4 20 12 51 0.175 0.175
9 2 4 24 93 0.057 , 0.057
10 2 6 24 93 0.129 0.130
11 2 8 24 93 0.162 0.162
12 2 10 24 93 0.174 0.175
13 2 4 48 173 0.057 0.057
14 2 6 48 173 0.129 0.130
15 2 8 48 173 0.162 0.162
16 2 10 48 173 0.175 0.175
17 2 4 72 253 0.057 0.057
18 2 6 72 253 0.129 0.130
19 2 8 72 253 0.161 0.162
20 2 10 72 253 0.173 0.175
21 2 4 96 333 0.057 0.057
22 2 6 96 333 0.129 0.130
23 2 8 96 333 0.162 0.162
24 2 10 96 333 0.174 0.175

In Table 6.4 TIME = Total number of elements, TNN = Total number of nodes and 
coefficient kx = Wmax E h3 / q a4 , where Wmax is maximum deflection, 'q' is 
intensity of uniformly distributed load, 'E' is Young's modulus of elasticity, 'h' is 
thickness of plate and 'a' is external diameter of annular plate.

For distributed implementation this plate bending problem is discretized into 
1800 elements and 5725 nodes. Each node is having three DOF resulting into 
total 17175 unknowns. In this application the finite element analysis of plate 
using substructure technique is divided in to following five tasks. The first task 
"planal" prepares separate data file for individual substructure. This data file 
includes the details such as number of elements, number of nodes, material
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property, loading data, and the boundary nodes for that particular substructure. 
Second task "plana2" calculates stiffness matrix and load vector corresponding 
to boundary nodes for a substructure using static condensation. Third task 
"plana3" assembles stiffness matrix and load vector for all substructures and 
calculates displacements of boundary nodes. In fourth task "plana4" internal 
displacements are calculated using boundary displacements. After calculating all 
degrees of freedom, element stresses are calculated. Finally, the fifth task 
"plana5" combines results of all substructures to have final result. The 
configuration of the problem on WebDedip, when divided into four substructures 
(assigned each substructure on separate computer) is shown in Fig 6.22.

Dedip - Microsoft Internet Explorer

FIG. 6.22 CONFIGURATION OF PLATE BENDING PROBLEM

From the summary of the application as shown in Fig. 6.23 time required for 
various tasks i.e. computational time and communication time are obtained.
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View Output... View Error...

Session Application

Application: displan4 Counter: 2

Sr. Process Name Node No. Start Time Expected Time End Time Status
1 _ |plana1 222.222.8.51 21:48:01 21:48:11 21:48:08 NormalComplet.
2 plana21 222.222.8.65 21:48:25 21:48:35 21:53:09 NormalComplet.
3 plana22 222.222.8.67 21:48:27 21:48:37 21:53:12 NormalComplet.
4 plana23 222.222.8.68 21:48:31 21:48:41 21:53:11 NormalComplet.
5 plana24 222.222.8.69 21:48:34 21:48:44 21:53:17 NormalComplet.
6 DTHS1 222.222.8.51 21:48:08 21:48:08 21:48:24 NormalComplet.
7 DTHS2 222.222.8.51 21:48:08 21:48:08 21:48:27 NormalComplet.
8 DTHS3 222.222.8.51 21:48:08 21:48:08 21:48:31 NormalComplet.
9 DTHS4 222.222.8.51 21:48:08 21:48:08 21:48:34 NormalComplet.
10 DTHS5 222.222.8.51 21:53:09 21:53:09 21:53:38 NormalComplet.
11 DTHS6 222.222.8.51 21:53:12 21:53:12 21:54:09 NormalComplet.
12 DTHS7 222.222.8.51 21:53:11 21:53:11 21:54:01 NormalComplet.
13 DTHS8 222.222.8.51 21:53:18 21:53:18 21:54:09 NormalComplet.
14 plana3 222.222.8.51 21:54:09 21:54:19 21:56:55 NormalComplet.
15 plana41 222.222.8.65 21:57:12 21:57:22 21:58:18 NormalComplet.
16 DTHS9 222.222.8.51 21:56:55 21:56:55 21:57:11 NormalComplet.
17 DTHS10 222.222.8.51 21:56:55 21:56:55 21:57:14 NormalComplet.
18 DTHS11 222.222.8.51 21:56:55 21:56:55 21:57:18 NormalComplet.
19 DTHS12 222.222.8.51 21:56:55 21:56:55 21:57:21 NormalComplet.
20 planaS 222.222.8.51 21:58:48 21:58:58 21:58:55 NormalComplet.
21 plana42 222.222.8.67 21:57:14 21:57:24 21:58:21 NormalComplet.
22 plana43 222.222.8.68 21:57:18 21:57:28 21:58:24 NormalComplet.
23 plana44 222.222.8.69 21:57:21 21:57:31 21:58:28 NormalComplet.
24 DTHS13 222.222 8.51 21:58:18 21:58:18 21:58:34 NormalComplet.
25 DTHS14 222.222.8.51 21:58:21 21:58:21 21:58:39 NormalComplet.
26 DTHS15 222.222.8.51 21:58:24 21:58:24 21:58:44 NormalComplet.
27 DTHS16 222.222.8.51 21:58:28 21:58:28 21:58:48 NormalComplet.

FIG. 6.23 TIME REQUIREMENT FOR INDIVIDUAL PROCESS

The average time required for various processes, when entire structure is divided 

into different number of substructure, is included in Table 6.5. Also time required 

in parallel implementation i.e. computation time and communication time is 

shown. Based on the time required for various tasks / processes in sequential 

and parallel implementation, speedup is calculated. The comparison of ideal 

speedup and observed speedup is depicted in Fig 6.24. From calculated speedup 

and ideal speedup, efficiency is also calculated as a measure of performance. Fig 

6.25 shows the comparison of computation and communication time.
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------ Ideal speedup

3 4 5 6 7
No. of Substructures

FIG. 6.24 COMPARISON OF SPEEDUP

TABLE 6.5 TIME REQUIRED FOR SEQUENTIAL & PARALLEL PROCESSING

Processes NB NEQ Time
(Sec)

Sequential
Time
(Sec)

Parallel time Speed up Efficiency
(O/o)Comp

(Sec)
Comm.
(Sec)

Ideal Calculated

3 substructures
planal - - 7

2068 780 100 3 2.35 78.33

plana2 5391 6327 556

plana3 1848 3738 122

plana4 1365 6327 88
plana5 - - 7

4 substructures
planal - - 7

1879 604 119 4 2.60 64.97

plana2 4047 4971 358
plana3 1836 4635 165
plana4 1365 4971 67
plana5 - - 7

6 substructures
planal - - 7

1216 421 135 6 2.18 36.45

p!ana2 2703 3615 115
plana3 1824 6429 248
plana4 1365 3615 44
planaS - - 7
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FIG. 6.25 COMPUTATION AND COMMUNICATION TIME

6.10 TRANSVERSELY LOADED SKEW PLATE EXAMPLE

A skew plate (Fig 6.26) subjected to uniformly distributed transverse pressure is 
simply supported at two edges and free at the remaining two edges. Modulus of 
elasticity of plate is 2 x 108 kN/m2, Poisson's ratio is 0.2, thickness of the plate is 

0.1 m and the intensity of pressure is 20 kN/m2. For the analysis eight noded 

isoparametric plate element is selected. Typical discretization of the plate is 
shown in Fig 6.26 whereas typical division of plate into four substructures in 
shov

FIG. 6.26 SKEW PLATE PROBLEM AND ITS DISCRETIZATION
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FIG. 6.27 DIVISION OF PLATE INTO 4 SUBSTRUCTURES

Results for the deflections and moments for various skew angles are compared 
with those obtained by analytical methods and represented by Timoshenko 
[116]. Variation of maximum deflection for various skew angles and for various 
discretization of plate is tabulated below in Table 6.6.

TABLE 6.6 DEFLECTION COEFFICIENT FOR SKEW PLATE

Sr
No

Angle LX Ly Nex Ney Tne - «*o -
* Present■f Timoshenko

1 0 5 10.00 6 12 72 0.212 0.214
2 0 5 10.00 10 20 200 0.211 0.214
3 0 10 20.00 30 40 1200 0.172 0.214
4 0 10 20.00 26 52 1352 0.198 0.214
5 30 5 8.31 6 12 72 0.115 0.118
6 30 5 8.31 10 20 200 0.114 0.118
7 30 10 16.63 30 40 1200 0.103 0.118
8 30 10 16.63 26 52 1352 0.091 0.118
9 45 5 7.07 6 12 72 0.070 0.070
10 45 5 7.07 10 20 200 0.070 0.070
11 45 10 14.14 30 40 1200 0.071 0.070
12 45 10 14.14 26 52 1352 0.068 0.070
13 60 5 5.00 6 12 72 0.018 0.018
14 60 5 5.00 10 20 200 0.018 0.018
15 60 10 10.00 30 40 1200 0.018 0.018
16 60 10 10.00 26 52 1352 0.018 0.018
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Where Lx / Ly is Length of plate in x and y-direction respectively, Nex / Ney is 
number of elements along x and y-direction respectively, TNE is Total number of 
elements, a0 = WD/qa4, W is deflection at the center of plate, q is intensity of 
uniformly distributed load and D is flexural rigidity of plate = E h3 / 12(l-v2).

Variation for maximum moment (My) at the center of plate for various skew 
angles and for various descritization of plate is tabulated below in Table 6.7

TABLE 6.7 COEFFICIENTS FOR MAXIMUM MOMENT AT CENTER OF PLATE

Sr No Lx Ly Nex Ney TNE Bo
Present Timoshenko

1 5 10 5 11 55 0.497 0.495
2 5 10 11 21 231 0.499 0.495
3 5 10 15 25 375 0.500 0.495
4 5 10 25 51 1275 0.500 0.495
5 5 10 5 11 55 0.364 0.368
6 5 10 11 21 231 0.365 0.368
7 5 10 15 25 375 0.365 0.368
8 5 10 25 51 1275 0.363 0.368
9 5 10 5 11 55 0.275 0.291
10 5 10 11 21 231 0.278 0.291
11 5 10 15 25 375 0.275 0.291
12 5 10 25 51 1275 0.283 0.291

In Table 6.7, B0 = M/ qa4 where M is maximum moment at the center of plate

Variation for maximum moment (My) at the center of unsupported edge of plate
for various skew angles and for various descritization is presented in Table 6.8.

TABLE 6.8 COEFFICIENT FOR MAXIMUM MOMENT AT FREE EDGE

Sr No Lx Ly Nex Ney TNE B1
FE Analysis Reference

1 5 10 5 11 55 0.509 0.508
2 5 10 11 21 231 0.511 0.508
3 5 10 15 25 375 0.511 0.508
4 5 10 25 51 1275 0.512 0.508
5 5 10 5 11 55 0.376 0.367
6 5 10 11 21 231 0.373 0.367
7 5 10 15 25 375 0.371 0.367
8 5 10 25 51 1275 0.367 0.367
9 5 10 5 11 55 0.298 0.296
10 5 10 11 21 231 0.296 0.296
11 5 10 15 25 375 0.293 0.296
12 5 10 25 51 1275 0.294 0.296
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In Table 6.8, Bt = Ml / q a4 where Ml = maximum moment at the center of free 

edge of plate

For distributed implementation the plate is discretized into 3000 elements and 

9221 nodes. Each node is having three DOF resulting in total 27663 unknowns. 

Average time required for various processes, when entire structure is divided into 

different number of substructure, is reported in Table 6.9.

TABLE 6.9 TIME FOR SEQUENTIAL AND PARALLEL PROCESSING

Process NB NEQ Time Sequential Parallel speed up Efficiency
(sec) time Comp Comm Ideal Calculated (%)

(sec) (sec) (sec)
3 Substructure

planal - - 7 2545 951 110 3 2.40 79.96
plana2 8895 9423 707
plana3 840 1914 140
plana4 465 9423 90
plana5 - - 7

4 substructure
planal - - 7 2499 747 127 4 2.86 71.48
plana2 6675 7143 502
plana3 780 2211 149
plana4 465 7143 82
plana5 - - 7

5 substructure
planal - - 7 2466 566 143 5 3.48 69.56
plana2 5343 5775 315
plana3 744 2508 172
plana4 465 5775 65
plana5 - - 7

6 substructure
planal - - 7 1648 433 161 6 2.77 46.24
plana2 4455 4863 180
plana3 720 2805 175
plana4 465 4863 63
plana5 - - 8

Also time required in parallel implementation i.e. computation time and 

communication time is indicated. A comparison of ideal speedup and observed 

speedup is shown in Fig 6.28. Whereas comparison of communication and 

computation time for number of substructures is depicted in Fig 6.29. From
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FIG. 6.28 COMPARISON OF SPEEDUP

1000
□ Computation time 

■ Communication time

Number of Substructures

FIG. 6.29 COMPARISON OF COMPUTATION & COMMUNICATION TIME

6.11 EFFECT OF RATIO OF INTERNAL NODE TO INTERFACE NODE ON 

COMPUTATIONAL TIME

In previous sections it was observed that computational time for calculating 

substructure stiffness matrix and load vector is maximum due to renumbering of 

internal nodes and boundary or interface nodes. To study the effect of ratio of 

internal nodes to interface nodes, an example of beam subjected to pure bending 

as discussed in section 6.6, is considered. Due to symmetry and anti symmetry 

about the x and y axis respectively only one quarter of the plate is discretized in

2 3 4 5 6 7
No. of Substructures

calculated speedup and ideal speedup, efficiency is also calculated as a measure 

of performance.
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to 21600 elements, 21901 nodes and 43802 unknowns. For the discretization, 
plane stress quadrilateral element with linear displacement model is used. 
Quarter of the structure is divided into number of substructures for the analysis.

For different number of substructures, the number of internal nodes and 
interface nodes are shown in Table 6.10. As internal nodes are numbered first 
and all interface nodes are numbered last, the bandwidth of stiffness matrix 
generated from equilibrium equation increases which in turn increases the time 
required for derivation of substructure stiffness matrix and load vector. To 
observe the time required for substructure stiffness matrix and load vector all 
the substructures are run on the single computer. The average time required is 
shown in Table 6.10.

TABLE 6.10 TIME REQUIRED TO DERIVE SUBSTRUCTURE STIFF. MATRIX & LOAD VECTOR

No. of
substructures

No. of
internal
nodes

No. of
interface

nodes

Ratio of
internal to .
interface

Nodes ;
»

Average time in
Seconds to derive

substructure stiffness
matrix and load

vector

2 10561 480 22.00 3440
3 6981 440 15.87 1764
4 5191 420 12.36 947
5 4117 408 10.09 608.6
6 3401 400 8.50 372.83
8 2506 390 6.43 166.75
10 1969 384 5.13 96.4
12 1611 380 4.24 69.7

Figure 6.30 shows the variation of time spent in deriving substructure stiffness 
matrix and load vector with various ratios of internal to interface nodes, from 
which it can be observed that the time increases rapidly with the increase in ratio 
of internal to interface nodes.
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Ratio of internal to interface nodes

FIG, 630 VARIATION OF TIME WITH RATIO OF INTERNAL TO INTERFACE NODES

The number of equations (NEQ), half bandwidth (NB) and average time spent in 
seconds (TAv) in various processes are presented in Table 6,11.

TABLE 6.11 TIME REQUIRED FOR VARIOUS PROCESSES

No. of
Substructures

; Process Name
CSUB1 CSUB2 CSUB3 CSUB4 CSUB5

2 NEQ - 22082 1568 22082 “
NB 21490 960 366
Tav 1 3444 10 37 2

3 NEQ - 14842 1916 14842 "
NB 14330 880 366
Tav 1 1786 14 26 2

4 NEQ - 11222 2274 11222
NB 10750 840 366
TAv 1 942 17 20 2

5 NEQ - 9050 2632 9050 “
NB 8602 816 366
TAv 1 608.6 21 16.6 2

6 NEQ - 7602 2990 ■ 7602 -
NB 7170 800 366
TAv 1 377.833 23 14.5 2

8 NEQ “ 5792 3706 5792 "
NB 5380 780 366
TAv 1 166.75 29 12 2

10 NEQ “ 4706 4422 4706
NB 4303 768 ’ 366
Tav 1 96.4 33 9.6 2

12 NEQ - 3982 5138 3982 “

NB 3590 760 366
TAv 1 69.667 39 8.333 2
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Table 6.12 shows comparison of time in sequential and distributed processing 
and speedup observed for different number of substructures or number of 
computers. The time in distributed processing consists of computation time and 
communication time on network of Pentium IV computers running at 2.4 GHz 
speed and having 256 MB RAM. With increase in number of substructures 
computational time reduces and communication time increases. Due to this after 
eight numbers of substructures the time speedup starts reducing. Figure 6.31 
shows the variation of observed speedup and its comparison with ideal speed up, 
for various number of computers assigned to carry out the task.

TABLE 6.12 COMPARISON OF TIME IN SEQUENTIAL & DISTRIBUTED PROCESS

No. of Sequential Distributed:Processing’(Sec) Speedup
Substructures Processing Computation. Communication Total

2 6967 3494 89 3583 1.94
3 5387 1829 90 1 1919 2.81
4 3888 999 93 1092 3.56
5 3150 694 95 ! 789 3.99
6 2380 436 97 533 4.47
8 1456 219 1031 322 4.52
10 1096 143 106 249 4.40
12 978 ,121 110 231 4.23

FIG. 6.31 COMPARISON OF SPEEDUP

143



Chapter 6 Distributed Static Finite Element Analysis

6.12 CLOSING REMARKS

For large size problem finite element solution requires large memory and good 
processing speed. When such problems are solved on uni-processor computer, it 
may require large computational time. To improve computational speed, parallel 
processing using supercomputers or cluster of high performance workstations 
can be used but they are costly, not easily available and difficult to use. The 
economical alternative for high performance computing is to use network of 
computers for distributed processing. In this chapter finite element method for 
static analysis was implemented over Local Area Network using WebDedip 
environment. Here it was demonstrated that the finite element method can be 
easily implemented over distributed computing environment using substructure 
technique.

First of all examples discussed in section 6.6 and 6.7 were of smaller size in 
which use of distributed computing did not prove advantageous due to less 
computation time and comparatively more communication time required by these 
applications. However through these examples the application development using 
WebDedip became clear, the proper functioning of programs for various tasks as 
described in Table 6.1 was ensured. Also the feasibility of the distributed 
environment was proved. Otherwise to start with large size problem, difficulties 
may be faced for debugging of programs, and understanding working with 
distributed computing environment. In subsequent subsections larger size 
problems were considered to observe the improvement in computational speed 
using distributed processing.

For the applications like plane stress and plate bending analysis a computational 
efficiency of order 70-80% was observed. With increase in size of problem the 
computational efficiency can be further improved because with smaller problem 
communication overhead reduces computational efficiency.
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