
8 TRAINING OF NEURAL NETWORKS
IN WEBDEDIP ENVIRONMENT

8.1 OVERVIEW OF ARTIFICIAL NEURAL NETWORKS

The human brain's powerful thinking, remembering and problem solving

capabilities have inspired many scientists to simulate its operations using

computer modeling. The brain is most complex system comprising of billions of

neurons made up of the cell body, the axon and dendrites. The response of

neuron depends upon several biological and chemical factors corresponding to

the synapses and the receiving neuron. A neuron may fire a signal if magnitude

of the signal is strong enough to activate it. The synaptic efficiency or strength is

modified to adjust to the received signal. The brain is said to learn when the

synapse adjust themselves to receive new signals.

Artificial Neural Networks (ANNs) are computational models, which attempt to

mimic the learning function of brain. As brain learns from examples, ANN is

trained by presenting it the set of input-output patterns. Because of this, ANN

can be used to solve complex problems, where predefined knowledge is not

required. In general the most useful properties of neural networks are self

organization, generalization, fault tolerance and massive parallelism.

Artificial neural networks are composed of a set of neurons or processing units,

which are connected together by means of connecting weights. ANNs are

structured to learn and generalize so that network may learn by continuous

adjustment of weights of connections. Typically ANNs consist of input layer to

which data is presented for network, hidden layer and output layer where the

response of the network to a given input is received. The ANN requires a number

of input-output patterns for training. The purpose of training is to adjust a set of

initially randomized weights, using a training algorithm, until a non-linear and

continuous function representing a mapping space, which includes the training

patterns, may be formed. Such networks learn the mapping task by using

examples and after learning provides output for unknown instances

instantaneously.

Chapter 8 Training of Neural Network in WebDedip Environment

The training process is time consuming as it may take many iterations in order

that net reaches a desired accuracy. It takes more time particularly when either

the size of net is large or the training pattern is large. The training process can

be made faster by utilizing parallel nature of the algorithm. In this chapter

implementation of training of ANN on distributed processing environment is

discussed to speed up the process.

8.2 SELECTED NETWORK AND PROBLEM

Adeli and Park [119] in 1995 employed Counter Propagation Neural network

(CPN) in analysis and design of beam and plate problems and demonstrated its

superiority over the widely used Back Propagation Neural network (BPN)

especially for the problems involving thousands of links. Therefore, CPN is

selected in the present work. Further to improve computational efficiency, the

greatest scope lies with the parallel nature of the algorithm. This nature enables

the algorithm to be implemented on parallel or distributed computing

environment. Parallel implementation of multi layered neural networks may be

carried out in a number of ways including [89]:

(i) Distribution of the network by dividing the units and or layers amongst the

processors;
(ii) Distribution of units by representing each unit with a single processor; and

(iii) Distribution of input-output data patterns among the processor.

If network structure is not large but a large number of training patterns are to be

used then third approach is likely to be more efficient.

In recent times due to readily available network of workstations (LAN),

application developer can speed up computations using the available computers

on a local area network in parallel. As a result, the network of computers can be

treated as a virtual parallel machine. The common benefits of distributed

applications include resource sharing, performance enhancement, availability,

extensibility, and reliability. In the present work for distributed processing,

WebDedip environment is used.

To demonstrate the implementation of training of neural network, an application

of design of rectangular short and slender column sections is discussed. The

163

Chapter 8 Training of Neural Network in WebDedip Environment

Counter Propagation Neural network [120] which combines Kohonen layer with
competitive units that undergo unsupervised learning with the Grossberg layer
which is fully connected to Kohonen layer and undergo supervised learning is
used. More than 7400 data sets are extracted from the charts given in the design
aid SP:16 [121] for the design of rectangular columns. The data set in form of
input-output are distributed among the slave computers where training of
network is carried out and final weights are collected on master computer.
Comparison of time between sequential and distributed version of training is
made.

8.3 DATA PROCESSING IN CPN

A counterpropagation network has three-layer architecture as shown in Fig. 8.1.
First layer is an input layer; the number of neurons in this layer corresponds to
number of inputs. The next layer is taken as a Kohonen layer, which is a hidden
layer, and all nodes in this layer are competitive. This layer is trained through
winner take all learning algorithm in an unsupervised way. Each neuron of this
layer represents an input cluster, so if layer works in local representation, a
particular mth neuron's input and the response will be the largest. This neuron is
considered as a winner neuron for that cluster. Hence for similar input vectors,
belonging to the same cluster activates the same mth neuron among all other
neurons of this layer. Further all neurons of this layer are assumed with
continuous activation function during the learning. The last layer, which is known
as Grossberg layer, is an output layer. All neurons of this layer are fully
connected with hidden neurons and are non-competitive. Training of this
interpolation layer is supervised where weight vector between winner neuron and
output layer is adjusted by Outstar learning algorithm.

In CPN, the weight vector between input instances and Kohonen layer is
stabilized first and then convergence of weights between Kohonen and Grossberg
layer takes place. Once the unsupervised learning phase is completed and
weights are stabilized, interpolation layer starts to learn the desired output.
Input data set from the training pattern is presented to the competition layer as
a fresh and the winning node j in the competition layer is selected. Then the
supervised learning is performed on the connections from winning unit j to all the
units in the output layer. The CPN can then learn the given set of vector pairs

164

Chapter 8 Training of Neural Network in WebDedip Environment

(X^Yi), (X2,Y2), (X„Y,) to associate X vector on the input layer with Y vector
at the output layer. The objective of the CPN is to describe the approximate
mapping relation between X and Y m to bi-polar binary response for the entire
range specified by the set of training instances.

FIG. 8.1 BASIC TOPOLOGY OF COUNTERPROPAGATION NETWORK

The properties of different layers and steps of learning process are as follows:

1. Initialize the network weights between input and hidden layer in proportion to
the normalized reflection of the input pattern.

2. Assign the input values of training pattern one by one.

3. Train the weights from input to the Kohonen layer nodes through
unsupervised winner take all learning rule. For each iteration, the network is
presented with all the input samples of training data sets. Let Wj be the
arbitrary weight vector assigned to the links between input nodes and jth node
in the competition layer. For each input sample, the nearest node in
competition layer is obtained by means of Euclidean distance dj with the help
of

dj = [£(X-Wj)]’a ' ...(8.1)

4. Hold the competition. The node having minimum Euclidean distance is
considered as the winner node and its activation is set to 1 while for all others

165

Chapter 8 Training of Neural Network in WebDedtp Environment

it is set to 0. Let jth neuron wins the competition, hence output vector Zj of

the competition layer becomes,

Z] = [yl y2 y3 . ..yj. yp] = [0 0 0 ...1... 0] ... (8.2)

5. Adjust only those weights which are corresponding to the winning node using
the following equation for (n+l)th iteration.

Wji (n+1) = Wji (n) + a [Xi - Wji (n)] Zj ... (8.3)

where a is small positive learning coefficient and for one iteration keep this

learning rate constant and as iteration progresses shrink the learning rate.

Shrinking in the learning rate as a function of iteration number as mentioned

in Eq.8.4 shows comparatively a faster convergence.

a = 1 /(n+1)2 ... (8.4)

6. Compute the error term which is an average Euclidean distance of all winning

nodes for that iteration.

7. Repeat steps 2 to 6 till desired convergence in error term is achieved.

8. Initialize the random weights between competition nodes and output layer.

9. Assign the training pattern with input and desired output to the input layer.

10.Select the winner node from the competition layer using stabilized weights of

unsupervised learning for the input set.

11. Perform supervised learning using a weighted summation function as a

transfer function for interpolation layer and adjust the weights between

winner node j and all the units in output layer according to the learning rule

suggested by Grossberg as,

Vji (n+1) = Vji (n) + p [Yi - Vji (n)] Zj ... (8.5)

where p = small positive learning constant and is taken in the range of

0 < p<i.

12. Determine output of the network from the ith node of interpolation layer as

Yi = £ Vji.Zi ...(8.6)

13. Compute Root Mean Square (RMS) error as an error term for this learning.

166

Chapter 8 Training of Neural Network in WebDedip Environment

14.Repeat the above steps 9 tol2 till this learning ensures the desired reduction

in the error term i.e. till the output pattern becomes similar to the desired

output.

After connection weights are stabilized through winner take all and outstar

learning rules, performance of the network is tested using untrained instances.

During testing number of winning nodes in competition layer may be set to value

more than one depending on the type of the problem. In case of number of

winning nodes, during verification stage, their non zero outputs are set such that

the winner node associated with the weight vector closest to the given untrained

instance has the largest output. However, the sum of the outputs of all winning

nodes in the competition layer must remain equal to 1. Actual output is then

computed through interpolation of these winning nodes output. If Sw is the set of

n winning nodes, output of the winning node Z3 is given by

E(dk)-dj
k=l
n

< SW * (n-l)
k=l

0
v

if Z} e Sw

if Zj e Sw

. . . (8.7)

where S(dk) is the summation of Euclidean distances of first n nearest winning

nodes and d-, is the Euclidean distance of corresponding winning node.

8.4 CPN SIMULATED COLUMN DESIGN

The exact design of column section subjected to an axial load and bi-axial

bending moment as shown in Fig. 8.2 is extremely laborious. A simplified

approach is given in IS: 456 [122] based on the concept of failure surface where

the load - moment interaction diagram is assumed to be extended in three

dimensions. In this approach also, however, solution requires several steps.

Some of the steps are to be executed in parallel with the manual reference of

design aid SP: 16 [121] and the design procedure is to be iterated till acceptable

solution is obtained. Further for getting optimum design solution several trials

are necessary and also picking the values from the available graphs is quite

tedious and time consuming.

167

Chapter 8 Training of Neural Network in WebDedip Environment

X

FIG. 8.2 RECTANGULAR SECTION UNDER BI-AXIAL BENDING

Here CPN is used for structural design of column. For training the design

network, data is gathered from 24 charts given in SP:16 (Chart Nos. 27 to 50)

[121] which cover different grades of steel and concrete. More than 7400

training data sets are extracted from these charts to build a network with four

inputs Pu/Fck.bD, p/Fck, d'/D and grade of steel Fy and one output Mu/Fck.bD2

for reinforcement detailing. The typical input-output pattern is shown in Table

8.1.

TABLE 8.1 SAMPLE TRAINING DATA SETS FOR BIAXIALLY LOADED COLUMNS

Sr Pu P d’ Fy Mu

No FckbD Fck D MPa FckbD2

01 0 08 0 02 0 05 415 0 06

02 0 12 004 0 05 415 0095

03 02 014 0 05 415 0211

04 0 28 0 24 0 05 415 0318

05 04 006 005 415 009

06 0 52 014 0 05 415 0147

07 0 72 018 005 415 013

08 104 024 005 415 0 088

09 008 0 24 01 415 0305

10 0 24 0 0 1 415 0 055

11 0 36 0 26 01 415 0 29

12 0 56 0 04 0 1 415 0 005

13 0 72 0 1 0 1 415 0 02

14 0 92 0 24 0 1 415 0 125

15 0 0 06 0 15 415 0 078

16 004 022 0 15 415 0 237

17 0 12 0 1 015 415 0 136

18 016 026 0 15 415 0 272

19 024 014 0 15 415 0 169

20 0 28 0 08 0 15 415 0114

Sr Pu P d* Fy Mu

No FckbD Fck D MPa FckbD2

21 032 0 24 015 415 0 243

22 0 36 018 015 415 0 188

23 04 012 015 415 0 127

24 044 0 06 015 415 0 069

25 0 52 02 015 415 0 17

26 06 0 18 015 415 0138

27 0 68 02 015 415 0136

28 0 92 016 015 415 0 019

29 0 02 02 415 0 189

30 0 08 0 08 02 415 0105

31 02 0 12 02 415 0 135

32 0 28 0 02 415 0 05

33 032 0 16 02 415 0 15

34 0 36 0 1 02 415 0 102

35 0 56 0 1 02 415 0 07

36 06 01 02 415 0 058

37 076 02 02 415 01

38 0 88 02 02 415 0 071

39 1 04 0 22 02 415 004

40 1 24 0 26 02 415 0 015

168

Chapter 8 Training of Neural Network in WebDedip Environment

The counterpropagation initialization function of the program initializes all weight
values of the competition layer first. Every component Wtf of every competition
layer node is then assigned a random value depending upon the input patterns.
Next the weights of the interpolation layer are initialized to a random value
depending upon the output patterns. A CPN with 4-7440-1 topology is selected,
which converges in 30 cycles for unsupervised learning and in 25 cycles for
supervised learning.

8.5 IMPLEMENTATION OF CPN TRAINING IN WEBDEDIP ENVIRONMENT

To implement the training process over distributed computing environment, the
total number of training sets need to be divided in to number of sets (tasks),
which can run on different computers, and communication between these tasks
can be carried out using intermediate files. The process of distributed training of
ANN using counter propagation algorithm is divided into three tasks. The first
task (DATADIST) divides the total input-output patterns in to the number of sets
equal to number of computers available on network. Theses data sets are
transferred to different computers. The second task (CPNTRAIN) is the training of
network for allotted data set on different computers. The training of network
consists of finalization of weights between various layers as described in the
earlier section and are written in the files. These files are transferred to one
computer. The third task (CPNFINAL) combines the finalized weight files from all
computers to have common weight file which can be used for further testing. The
interface among different tasks is carried out using intermediate files. All the
tasks are then inter linked using DEDIP GUI to configure the application for
parallel processing.

Figure 8.3 shows screen shot depicting the required interdependency. The DEDIP
GUI is used to provide the information about remote node on which the process
is to be executed. In this application DATADIST and CPNFINAL tasks are carried
out in sequence while CPNTRAIN is carried out in parallel depending on number
of computers. To achieve better performance, the time for the task running in
parallel should be kept larger than that of sequential process.

The training of network is carried out using different number of computers on
the network. After configuration of application and successful run of application,

169

Chapter 8 Training of Neural Network in WebDedip Environment

WebDedip gives the summary of application indicating the status of various
processes i.e. node number (IP address), start time, end time. The time
required for computation and communication can be obtained from this
summary when process is distributed over number of computers. In the present
implementation network of Pentium - IV computers running at 1.8 GHz with 256
MB RAM connected through 100 Mbps Ethernet was used.

Hello Chamboo" Microsoft Internet Explorer -Iglxi

File Edit View Go Favorites Help JO
+ - "► - £ 3) fS H

a
i « I a »Stop Refresh Home Search Favorites History Channels Fullscreen Print

Address http:W222.222.100.11/facility/Html/ClienlApp.html J Links

New Folder I NewAppJ Status Summary

All Folders C Vlnet PubAvwwrooMaci I ity/Dedi p Ar ea/DTN N C D

5J--LJ cstdedl

(S--LJ DTNNCD

SH ~1 cpnfinal

E-LJ cpntrainl

[+J--! 1 cpntrain2

5>-U cpntrain3

S> u datadist

0THS1
!-[j DTHS2

j-Pn DTHS3

i—P~1 DTHS4

I-Pi DTHS5

DTHS6

l' 1 input

i-LJ intermed ate

*•••11 output

femdp

^Application Detail Window wan^ Grid Size (n*m): ^11 j *

ProcessO.O Process 1,0

Process 0,1

Process 0,2

Process 0,3

Process 0,4

Process 0,5

Process 0,6

DTHS1

cpntrainl

DTHS4

Process 1,4

Process 1,5

Process 1,6

P-ocessl.C | Process 4,0

Lt

DTHS2

cpntrain2

DTHS5

cpnfinal

Process 2,5

Process 2,6

DTHS3

cpntrain3

DTHS6

Process 3,4

Process 3,5

Process 3,6

Process 4,1

Process 4,2

Process 4,3

Process 4,4

Process 4,5

Process 4,6
0] Applet started.
iJ8Start| ^CommandPro...| gjWebDedip - . 0]" HeUo Cham... || s Application... [y® 10:14 PM

FIG. 8.3 DEDIP GUI TO CONFIGURE THE APPLICATION ON 3 COMPUTERS

Table 8.2 shows the time taken by various tasks when distributed over different
number of computers. It also includes total computation time and
communication time and its comparison with sequential time. From the
observation of time the speed-up is calculated. Ideal speed-up is equal to
number of computers used. But due to time involved in communication of data

170

Chapter 8 Training of Neural Network in WebDedip Environment

between the computers, observed speed-up is lower than ideal speed-up. The
comparison of computation time and communication time is shown in Fig. 8.4.
The speed-up observed is shown in Fig. 8.5.

TABLE 8.2 COMPARISON OF TIME REQUIRED FOR TRAINING

No. of
Computers

Name of
Task

Time
in Sec

Total
computation

time

Communication
Time in Sec

Observed
Speedup

Efficiency
(%)

1 - - 1470 0 l 100
2 DATADIST 12 773 100 1.68 84.19

CPNTRAIN 748
CPNFINAL 13

3 DATADIST 15 533 110 2.29 76.21
CPNTRAIN 503
CPNFINAL 15

4 DATADIST 17 415 120 2.75 68.69
CPNTRAIN 380
CPNFINAL 18

5 DATADIST 18 343 135 3.08 61.51
CPNTRAIN 305
CPNFINAL 20

No of Computers
FIG. 8.4 COMPARISON OF COMPUTATION AND COMMUNICATION TIME

In the present work computational load is distributed in the beginning of the
process, which is known as static load balancing. As ail computers are of same

171

Chapter 8 Training of Neural Network in WebDedip Environment

configuration, equal number of training patterns are distributed to number of
computers. Adjustment of load during processing, known as dynamic load
balancing, is not possible in this implementation because depending on number
of input-output patterns network topology is decided m the beginning of the
process, which can not be changed subsequently.

No of Computers

FIG. 8.5 COMPARISON OF SPEED-UP

8.6 CLOSING REMARKS

The training is the most compute intensive part of ANN and to achieve speed in
training parallel or distributed computing can be used. In the present Chapter,
distributed training was implemented over the Local Area Network using
WebDedip. Use of WebDedip simplified the distributed application development.
For training of network Counter Propagation learning algorithm was used. The
distributed training was demonstrated through an example of design of
rectangular R.C.C. column subjected to an axial load with biaxial bending. To
implement distributed processing, number of input-output patterns were
distributed over different number of computers for training. The efficiency of
order 60 - 80% was observed during distributed training of ANN.

172

