
11. DISTRIBUTED FE ANALYSIS OF 
LAMINATED COMPOSITES

11.1 OPENING REMARKS

In recent years, continuous fibre reinforced laminated composite plates have 

been increasingly used as structural elements in civil, military and aerospace 

fields because of their desirable properties such as high strength-to-weight 

ratio, high stiffness-to-weight ratio etc. In addition there exists the possibility 

of optimum structural design through the variation of fibre orientation, 

stacking sequence and choice of fibre and matrix materials. By using 

composites as a structural material, the weight of a structure can be reduced 

drastically by as much as 35% [127]. A multiphase or two material laminae 

consists of a stiff filament material embedded in a compatible matrix material. 

Examples of filaments are glass, boron, carbon, graphite, and steel whereas 

matrix materials have included polyesters, aluminum, and epoxies. Fibre 

reinforced composite have potential to become very useful as a structural 

material in lightweight construction except their analysis is complex. Unlike 

isotropic materials, composite materials exhibit low out-of-plane moduli 

relative to in-plane moduli. This may result in quite considerable transverse 

shear deformation and transverse normal stresses and strains, which can 

significantly influence the response and the failure mechanisms of such 

laminated anisotropic composite plates. A number of theories including the 

effects of transverse shear deformation and transverse normal stress and 

strains have been proposed but finite element formulation based on higher 

order displacement theories are more attractive.

Finite element solution of large size composite plates is highly computationally 

intensive for which present day uniprocessor computers may found to be slow. 

To improve the speed of computations use of supercomputers or cluster of 

workstations using message passing libraries can be done. But the relatively 

easier alternative for better computational efficiency is to use network of 

computers or LAN along with client-server approach for distributed computing. 

This chapter includes introduction of laminated composite, finite element
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formulation based on higher order shear deformation theory and its 
implementation over distributed computing environment.

11.2 LAMINATED COMPOSITES - TERMINOLOGY

Laminated composites consist of layers of at least two different materials that 
are bonded together. Lamination is used to combine the best aspects of the 
constituent layers in order to achieve a more useful material. The properties 
that can be emphasized by lamination are strength, stiffness, low weight, and 
corrosion-resistance; wear resistance, beauty or attractiveness, thermal 
insulation, acoustical insulation etc. Examples of laminated composites are 
bimetals, clad metals, laminated glass, plastic-based laminates, and laminated 
fibrous composites.

Lamina: A lamina is a flat arrangement of unidirectional fibers in matrix as 
shown in Fig.11.1. The fibers are the principal reinforcing or load-carrying 
agent. They are typically strong and stiff. The matrix can be organic, ceramic, 
or metallic. The function of matrix is to support and protect the fibers and to 
provide a means of distributing load among and transmitting load between the 
fibres.

FIG. 11.1 LAMINA WITH UNIDIRECTIONAL 
FIBRES

FIG. 11.2 THREE-PLY LAMINATE 
CONSTRUCTION

Laminate: A laminate is a stack of laminae with various orientations of 
principal material directions in the laminae as in Fig.11.2. The layers of a 
laminate are usually bounded together by the same matrix material that is 
used in the laminae. Laminate can be composed of plates of different materials 
or of laminae of the same material. A laminated circular cylindrical shell can be 
constructed by winding resin-coated fibers on a mandrel first with one
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orientation to the shell axis, then another, and so on until the desired 
thickness is built up.

A major purpose of lamination is to tailor the directional dependence of 
strength and stiffness of a material to match the loading environment of the 
structural element. Laminates are uniquely suited to this objective since the 
principal material directions of each layer can be oriented according to need.

As far as environmental resistance is concerned, composite materials are more 
efficient than traditional civil engineering materials such as steel, concrete, 
masonry, and plaster. Degradation in strength and stiffness for steel 
structures due to the corrosion problem requires frequent inspection, 
maintenance, and repair. Similarly, stress cracking due to the warm/cold 
weathering limits the service life of concrete structures. Timber is susceptible 
to moisture-swelling problems and paste attack.

Currently, composite materials are being used to retrofit and/or reinforce 
existing infrastructures. Flat composite laminates have been bonded to the 
exterior surface of reinforced concrete deck to increase its bending stiffness. 
Several pedestrian bridges have been built successfully. Composite materials 
are suitable for construction of highway bridges, power transmission towers, 
office/residential buildings, retaining walls, etc.

11.3 FINITE ELEMENT FORMULATION

In this section detailed finite element formulation for evaluating stiffness 
matrix and load vector of rectangular laminated plate element is discussed. 
The displacement model used accounts for membrane, bending and transverse 
shear deformations[128]. A eight nodded isoparametric element is used. A 
typical rectangular laminated plate with dimensions 'a' and 'b' and thickness't' 
is composed of number of perfectly bonded orthotropic layers (laminae) which 
are placed one over another. In symmetric laminate these lamina are placed 
symmetrically with respect to the mid plane. A coordinate system is adopted 
such that the x-y plane coincides with the mid plane and the z-axis is 
perpendicular to the plane as shown in Fig. 11.3. The displacements in the x, 
y and z directions of the symmetrically laminated composite plates subjected 
to transverse load may be taken as follows. The displacement along the x, y

204



Chapter 11 Distributed FE Analysis of Laminated Composites

and z directions are expressed in terms of higher order functions of thickness 
coordinates and mid plane variables [129].

u(x, y, z) = z 0x(x, y, 0) + z3 0x*(x, y, 0) = z 0X + z3 9X*
v(x, y, z) = z 0y(x, y, 0) + z3 0y*(x, y, 0) = z 6y + z3 0y*

w(x, y, z) = w(x, y, 0) + z2 w*(x, y, 0) = w0 + zz w0 * ... (11.1)

FIG. 11.3 GEOMETRY OF A RECTANGULAR LAMINATED COMPOSITE PLATE

where u, v, and w define the displacements of a point along x-, y- and z- 
directions respectively, 0X and 0y are the rotations of the normal to the mid 
plane at the same point, and w*, 0X*, 9y* are the corresponding higher order 

terms. An advantage of the displacement model under consideration is that 
the assumed field variables w, ex, 0y, w*, 0X*, 9y* need only be of C° continuity. 

This model includes the effects of the transverse normal strain / stress also.

Strain expressions corresponding to model Eq. (11.1) are,

ex = 3u / 3x = z Kx + z3 Kx*
£y = 3v/ 9y = z Ky + z3 Ky*

£z = 3w/3z = z Kz
yxy = 3u/3y + 3v/3x = z Kxy + z3 Kxy*
Yyz = 9v/8z + f)w/3y = <|)y + z2 <j>y*
Yxz = 8u/9z + 3w/9x = ^>x + z2 <(>x* . . .(11.2)

Where the definitions of the various terms are as follows:

Kx = 30)(/9x, Ky = 30y /9y, Kxy = 30x/3y + 90y/3x
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Kx* = 36xVax, Ky* = dQy /dy, Kxy* = dQx*/dy + dQy*/dx , 

tj>x = 0X + 9w0/9x , <|)y = 6y + 9w0/9y ,

<)>x* = 39x* + 9w0Vax , <j>y* = 30y* + 9WoV9y ,

Kz = 2w0* . • .(H.3)

The concise matrix form of Eq. 11.3 is,

Ex Kx ‘
f

{Bbk> =
Ey

£z
. = Z

-

Ky

Kz
. + z3 ■

Yxy Kxy

{Bsk} = <

f -v
Yyz

Y = z
Yxz

k* -

‘tV
*

<t>x
► + z2

Kx*

Ky*

Kz* 

K *^xy

z K + z3 K*

= (^ + z2 <()*

. . .(11.4a)

. . .(11.4b)

The above Eq. (11.4a) and (11,4b) are the expressions for the flexure and 

transverse shear strains respectively, at any point in the kth layer of the 

laminate located at a distance z from the mid-plane. It should be noted that 

owing to the nature of Eq. (11.4b), the transverse shear strains vary 

parabolically through the plate thickness.

For an orthotropic lamina in a 3-D state, the strain-stress relationship at a 

point in each of the three orthogonal planes is given by,

El 1/Ei -V21/E2 -V31/E3 0 0 0
*•

62 -V12/E1 1/E2 -V32/E3 0 0 0 o2

E3 -V13/E1 “V23/E2 1/E3 0 0 0 03

Yiz
►

0 0 0 1/G12 0 0 tl2

Y23 0 0 0 0 1/G23 0 T23

Yi3

-

0 0 0 0 0 1/G13 Tl3

Or {e} = [ s ] {c?} ... (11.5)

The stress-strain constitutive relations can be obtained by inversion of strain- 

stress relations given by Eq. 11.5 and are written in following matrix form.

{a} = [c]{e} ...(11.6)
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, k k
6i El(l-V23V32) Ei(V2i+V31V23) El(v3i + V2lV32) 0 0 "N0
£2 E2(Vi2+Vi3V32) E2(1-v13v31) E2(v32+v12v31) 0 0 0 o2
£3 1 E3(Vl3+Vi2V23) E3(v23+V2lV13) E3(1-v12v2i) 0 0 0 C*3

Yl2 A 0 0 0 AG12 0 0 - tl2

Y23 0 0 0 0 AG23 0 T23

Yl3 0 0 0 0 0 ag!3 -tl3
. .

In which, A — (I-V12V21- V23V32- V31V13-2 Vi2V23v3l)

In the stress-strain relation Eq. (11.6), the subscript k is introduced to 
designate kth layer of the laminate. The relations given by Eq. (11.6) are the 

stress-strain constitutive relations with reference to lamina axes for a 
homogeneous orthotropic layer in a general 3-D state of stress and these are 
adopted here to develop a theory based on the displacement model given by 
Eq. (11.1).

As noted earlier, the relation given by Eq. (11.6) is the stress-strain 
constitutive relation for the orthotropic lamina referred to the lamina's 
principal axes (1,2,3). The principal material axes of a lamina may not coincide 
with the reference axes for the laminated plate. It is therefore necessary to 
transform the constitutive relation given by Eq. (11.6) from the lamina 
principal axes (1,2,3) to the reference axes of the laminate (x, y, z).

a'=Tc and e' = T e
The transformation matrix T is given by,

...(11.7)

c2 s2 0 2sc 0 0
s2 c2 0 -2sc 0 0

0 0 1 0 0 0
-sc sc 0 (c2 - s2) 0 0

0 0 0 0 c -s
0 0 0 0 s c

. . . (11.8)

Where, c = cos a and s = sin a with a as angle between reference axes and 

principal axes of laminate
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The relation between engineering and tensor strain vectors is given by, 
{ e > = [ R ] { ets }

{^ > = [ r r { e }
R matrix is defined as,

m

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
2

0
0

0
0
0
0
2

0

0
0
0
0
0
2

(11.9)

(11.10)

The stress-strain constitutive relations with reference to laminate axes are 
obtained in the following form by making use of relations (11.6), (11.7) and 
(11.10),

. . . (11.11) 

. . .(11.12)

= T1CRTR"1e 

It can easily be proved that,
R T R'1 = Tn

Thus, the relation (11.11) can be rewritten as, 
a = Q 8 

Where,
Q = T1 C Tu 

In matrix form,

<*x

oy
Oz 
T<y

Tyz

Tcz

The matrix coefficients Q are defined as,
Qn — Cue4 + (2C12+4C44) s2c2 + C22

Q12 = (s4 + c4) C12 + (Cu+ C22 ~ 4 C44) s2 c2
Ql3 = C2 C13 + S2 C23

'Qu
Ql2 Ql3 Ql4 0 0 ex

Ql2 Q22 Q23 Q24 0 0 By

Ql3 Q23 Q33 Q34 0 0 £z

Ql4 Q24 Q34 Q44 0 0 Yxy

0 0 0 0 Q55 0 Yyz

0 0 0 0 0 Qs6 Yxz

L •>

(11.13)

(11.14)
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Q14 = (Cu- C12 - 2C44) C3s +(C12 - C22 + 2C44) S3c

Q22 = Cu s4 + C22 c4 + (2Ci2 + 4C44) s2 c2

Q23 = C2 C23 + S2 Ci3

Q24 = (C11- C12 ~ 2C44) s3c + (C12 - C22+ 2C44) c3s

Q33 = C33

Q34 = (C13 ~ C23) sc
Q44 = (Cu + C22 " 2Ci2 - 2C44) s2 c2 + (c4 + s4) C44

Q55 = c2 C55 + S2 Cg6

Q56 = (Ce6 "Css) SC

Qs6 = S2 C55 + c2 Cfi6 ■ • . (11.15)

And the coefficients of C matrix in Eq. (11.15) are defined by Eq. (11.6).

The solution of the fundamental equations of the displacement model based on 

higher order shear deformation theory for laminates anisotropic plates, can 

conveniently be obtained by using the finite element displacement formulation. 

Element properties are derived by assuming a displacement function, which 

ensures completeness within the element and compatibility across the element 

boundaries. The finite element theory is developed in this section for 

application to linear equilibrium problems of isotropic, orthotropic and 

multiplayer anisotropic plates with various loading and boundary conditions. In 

present work, 8-noded isoparametric quadrilateral element (Fig 11.4) is used. 

The finite element formulation starts with writing the shape functions, followed 

by the derivation of the strain-displacement matrix [B], and calculation of 

element stiffness matrix.
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The vector,
q = [Woi, 0X1, 0yl, W0 l, 0X 1, 0y 1, W02 , 9x2, 0y2, W0 2, 9x 2, 9y 2 - -^Qy 8]

denotes the element displacement vector. Thus the degrees of freedom at 

each node are:
w0 = Transverse displacement at the geometrical mid-plane,
0X, 0y = Rotations of the 'normal' to the geometrical mid-plane in x-z & y-z 

plane respectively,
w0* = Higher order term of transverse displacement w0 at the geometrical

mid-plane.
0X*, Qy*= Higher order terms of rotations of the 'normal' to the geometrical 

mid-plane in x-z and y-z plane i.e, 0X and 0y respectively.

The shape functions for this element in terms of the non-dimensional 
coordinate system can be written as:

Ni = Ul-i) ti(ti-15 / 4 n2 = (l- e) *i (TV-1) / 2

n3 = 5 (£ + i) n(T]-i) / 4 n4 = % (5 + l) (l-r,2) / 2
Ns = $ a + 1) T1(T1+1) / 4 N6 = (1- E,2) n(ri+l) / 2
N7 = 5 (4 - 1) *1(11+1} / 4 Ns = \ - 1) (1-T12) f2 ■ • ■ (11-16)

Where, ^ and tj are the non-dimensional coordinates (Fig. 11.4) of a given 

point on the element.

Now the displacement field is expressed in terms of the nodal values. Thus, if 
d = [w0, 0X/ 0y, w0*, 8x*, 0y*]T represents the displacement components of a 

point located at (£,ri), and q is the element displacement vector, then

Wo = N1W01+ N2Wo2+- •■+ NgWoe
0x = Ni0xi+ N20x2+ . - + N89x8 

0y = N]0yl+ N20y2+ ■ • + N80y8 

Wo = N1W01 + N2Wq2 +.. ..+ N8Wo8 
0X = Nx0xl + N20x2 +• ■ + N80x8*

0y = Nl0yl + N20y2 + + N80y8 . . . (11.17)
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Where,

[N]
(6x48)

IMN
£
i =1

N

0

0

0

0

0

0 0 0

N, 0 0

0 IM, 0

0 0 N,

0 0 0

0 0 0

0 0

0 0

0 0

0 0

N, 0

0 N,
. . .(11.18)

The strain-displacement matrix relating strain components to element nodal 

variables can be formed as:
[e] = [B] [5] ... (11.19)

Where each [8],T = [w0, 0X, 0y, w0*, 0X*, 0y*)iT for i = 1 to 8.

Now, considering the flexure strain terms and shear strain terms separately 

and from Eq. (11.15), writing the strain-displacement relationship in terms of 

the bending curvature-displacement relation [Bb] and shear rotation- 

displacement relation [Bs].

The shear rotation - displacement relations are,
C "

<j>x 0X + 3w0 /3x

<i>y 0y + 3w0 /3y
30x* + 3wo*/3x

4>y* 30y* + 3w0V3y

And the bending curvature-displacement relations are,

Kx 30x/3x

Ky 30y/3y

Kxy 30x/3y + 30y/3x

Kx*
>• = "

30x73x

Ky* 30y*/3y

Kxy* 30x*/3y + 30y73x

Kz
w -

2 w0*

. . . (11.20)

. . . (11.21)

So, B matrix for curvature and shear can be given as,
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f

0 dn ,/ax 0 0 0 0 '

0 0 9N,/9y 0 0 0

NN
0 9N,/9y 9N/9x 0 0 0

[Bb ]=Z 0 0 0 0 3N,/3x 0
(7x48) l =1

0 0 0 0 0 9N,/9y

0 0 0 0 9N,/9y 9N,/9x

0 0 0 2N, 0 0
(11.22)

9N,/9x N, 0 0 0 0

NN 9N/9y 0 N, 0 0 0

[Bs] = 2
(4x48) i =1

0 0 0 9N,/9x 3N, 0

0 0 0 9N,/9y 0 3N

The element stiffness matrix [Ke] is calculated by,

(11.23)

[Ke]=J{[Bb(x,y)]T[Db][Bb(x,y)]+[Bs(x,y)]T[Ds][Bs(x,y)]>dA . . . (11.24)
A

Note that the matrices [Bb] and [Bs] are evaluated based on the shape 

functions given above. Upon evaluating matrices [Db], [Ds], [Bb] and [Bs] the 

element stiffness matrix can be evaluated. However, since the shape functions 

and, thus, the matrices [Bb] and [Bs] are defined in terms of the non- 

dimensional coordinate system, the element stiffness matrix must be 

evaluated as follows:

+i +i
[Ke] — J J{[Bb(x,y)]T[Db][Bb(x,y)]+[Bs(x,y)]T[Ds][Bs(x,y)]> |J| d§ dn. . . (11.25)

-i -l

The Gauss-Quadrature integration technique is used to evaluate the integrals. 

In the present formulation a selective integration scheme is used to evaluate 

element stiffness matrix. For the bending stiffness terms 3x3 integration 

scheme and for the shear stiffness terms 2x2 integration scheme has been 

adopted. Thus the stiffness matrix has been evaluated as follows:

NG NG
[Ke]= £ E{[Bb(x,y)]T[Db][Bb(x,y)]+[Bs(x,y)]T[Ds](Bs(x,y)]}|J|Wa Wb . . . (11.26)

a=l b=l
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where Wa and Wb are the weighting factors corresponding to Gauss sampling 
points and IMG is the number of Gauss points selected for the integration 
schemes.

In the evaluation of the load vector the entire laminate is considered as a 
single layer of thickness t,. The applied external forces may consist of 
independent or combination of the following load cases:
1) Gravity Load : The gravity loads, generally the self-weight of the element, 

always act in the global z-direction. Let 'p' be the uniform mass density of 
the element material and 'g' be the acceleration due to gravity in z- 
direction. The element load vector at node i is given by,

Pg, = f P g t [N,]t dA
A

NG NG
[Pge] = E 2 p g t [N,]t | J1 Wa Wb

a=l b-1

The above equation represents the element load vector for all the nodes.

. . . (11.27) 

. . . (11.28)

2) Uniform normal surface pressure: To evaluate the nodal loads due to 
normal surface pressure Po, the displacement normal to the surface of the 
element is required. As here, there is only the transverse displacement, the 
transverse normal pressure acting either innermost or outermost surface is 
considered. The load vector at node i is given by,

[Pp,] = I Po[N,]TdA
A . . . (11.29)

NG NG
[Ppe] =2 2 Po [N,]T IjiWa Wb

a=l b=l . . . (11.30)

The above equation represents the element load vector for all the nodes.

3) Sinusoidal normal surface pressure: The load vector at node i due to 
sinusoidal distributed normal pressure is obtained from Eq. (11.30) by 
replacing P0 by,

P0 sjnjrmx sin nny 
a b . . . (11.31)
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Where, P0 is amplitude of loading in the z-direction and the element load 
vector is given by Eq. 11.31

4) Point load along the transverse direction: When the point of application is 
not coincident with nodal point and Ppt be the point load normal to the 
surface of the element, the load vector at node i is given by,

[Ppt,] = PPt[N,]T ...(11.32)

11.4 IMPLEMENTATION IN DISTRIBUTED COMPUTING ENVIRONMENT

To implement finite element analysis method over distributed processing 
environment the entire process is divided into various subtasks. Further these 
subtasks are distributed over number of computers and communication 
between computers is carried out by intermediate files. Two alternative 
approaches have been considered for implementation of distributed 
computing. In first alternative, derivation of stiffness matrix for each lamina is 
carried out on different computers concurrently and assembly of all stiffness 
matrices is carried out to get stiffness matrix of laminated plate. Load vector is 
calculated by considering single lamina. After applying boundary conditions 
displacements corresponding to free degrees of freedom are calculated. 
Subsequently the stresses in each lamina are calculated concurrently over 
different computers. The flow chart of the same process is shown in Fig. 11.5.

The simplicity of the implementation is the advantage of this approach. As the 
bandwidth of stiffness matrix for each lamina is minimum, its derivation needs 
not require much time, but the size of file to store stiffness matrix of each 
lamina increases with problem size. The communication between processes is 
carried out using FTP and so for larger file transfer more communication time 
is required. The mode of communication is using packet switching in which 
large sizes of data is divided into small packets and subsequently transfer of 
packets is carried out. It is observed that due to network congestion the 
packets are lost and so files cannot be transferred properly, which terminates 
the process uncompleted.
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FIG. 11.5 FLOWCHART FOR DISTRIBUTED LAMINATED PLATE ANALYSIS 

In the second alternative the constitutive matrix of different lamina is lumped 

together and stiffness matrix and load vector of each element is calculated 

using plate theory as discussed in previous section that includes effect of each 

lamina. To have advantage of distributed processing, substructure technique is 

used. Using this technique the finite element analysis of laminated composite 

plate is subdivided into five subtasks as shown in Table 11.1.

In second subtask to calculate stiffness matrix and load vector corresponding 

to boundary nodes, degrees of freedom corresponding to internal nodes are 

numbered first and degrees of freedom corresponding to boundary nodes are 

numbered last. This increases the bandwidth of the matrix, which in turn 

increases the time required for calculation of substructure stiffness matrix and 

load vector. With increasing number of substructure the bandwidth reduces 

and speed of computation increases. To reduce the communication time only 

upper part of banded substructure stiffness matrix is stored in the 

intermediate file. In third subtask also half band stiffness matrices of all 

substructures are assembled and subsequently after imposing boundary 

condition of actual structure displacements are calculated. In fourth subtask to 

calculate displacements of internal nodes from boundary nodes, stiffness 

matrix of substructure is to be formed, but in this process all nodes are
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numbered in sequence to keep the bandwidth minimum, which reduces the 
computational time. With increase in number of substructure time required for 
second and fourth subtask reduces while for third subtask increases.

TABLE 11.1 SUBTASKS FOR DISTRIBUTED ANALYSIS OF LAMINATED COMPOS.

ND. ^SuS4a,4c^

1. LAMANAl Decompose entire finite element domain into small parts, 
known as substructures and distribute data of each 
substructure to different computers.

2. LAMAISIA2 Calculates stiffness matrix and load vector corresponding to 
boundary / interface degrees of freedom, using static 
condensation, for each substructure in parallel on different 
computers and communicates the same for further 
assembly.

3. LAMANA3 Collects stiffness matrix and load vector of each 
substructure and assemble to have stiffness matrix and 
load vector corresponding to interface degrees of freedom. 
After incorporating boundary degrees of freedom, calculates 
displacements of interface nodes and distribute the 
appropriate displacements of each substructure to different 
computers.

4. LAMANA4 For each substructure, calculates displacements of internal 
nodes from displacements of boundary nodes and stresses 
in all laminae of each element and communicates the same
for overall results.

5. LAMANA5 After combining displacements and stresses in elements of 
each substructure form the results of entire finite element 
domain.

11.5 ANALYSIS PROBLEM AND RESULTS

A simply supported square laminated composite plate as shown in Fig 11.6 is 
selected for analysis. It consists of four layers symmetrically placed with 
respect to mid plane. It is subjected to sinusoidal transverse lading. The size 
of laminated plate is 100 cm x 100 cm. Plate consists of four laminates, each 
of 6.5 cm thick, so the total thickness of plate is 25 cm. Intensity of sinusoidal 
load is 10 kN/cm2. Various material properties considered for laminated plate 

are as follows.
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Ei / E2 = 25, E3 / E2 = 1, V12 = v23 = vi3 = 0.25, Gi / E2 = 0.2, G2 / E2 = 0.5 

and G3 / E3 = 0.2

For analysis of composite plate 8 nodded quadrilateral isoparametric element 
is used. Due to two way symmetry, only quarter plate is analyzed. Typical 
discretization of quarter plate in 8-noddeed isoparametric elements along with 
element and node numbering is shown in Fig 11.7.

220 221 222 223 224 225

57 58 59 60 61 62 63 ■ •64

1 2 3 4 5 6 i 7 • 8 i

1 2 3 4 5 6 7 8 9 ID 11 12 13 14 15 16 17

FIG. 11.7 DISCRETIZATION OF LAMINATED PLATE

Further to implement the analysis over distributed computing environment, 
the mesh is divided into various number of substructures. A typical 
substructuring system is shown in Fig. 11.8.

217



Chapter 11 Distributed FE Analysis of Laminated Composites

SUBSTRUCTU
■ ~i

FIG. 11.8 DIVISION OF PLATE INTO FOUR SUBSTRUCTURES

A computer program is developed which discretize the plate into desired 
number of elements and further data for substructure is generated depending 
on number of substructures. For generating data of substructures number of 
elements are kept same to balance the computational load among various 
computer having identical configuration, which is known as static load 
balancing. As this is a coarse grain implementation, dynamic load balancing 
during runtime depending on completion of process on different computers is 
difficult and hence it is not considered here.

In the present work, the laminated plate is divided into 1600 elements and 
4961 nodes. Each node is having six degrees of freedom as discussed in 
earlier section. So problem is having total 29766 degrees of freedom. The 
mesh is further subdivided into three, four and six substructures to use same 
number of computers to solve the problem. The configuration of application 
consists of allotting various processes to different computers of network and 
the communication between various computers is carried out by FTP. Typical 
screen shot of configuration of application using WebDedip, when distributed 
over four computers is shown in Fig. 11.9.
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illo Chamboo" Microsoft Internet Explorer
Edit View Go Favorites Help

Application Detail Window

FIG. 11.9 CONFIGURATION OF APPLICATION ON 4 COMPUTERS

After building and successful completion of the application WebDedip gives the 
summary of application comprising the IP address of computer on which 
application was run along with start and completion time. A typical screen shot 
of summary of application as obtained from WebDedip is shown in Fig. 11.10.

Sr. | Process Name Node No. Start Time Expected Time End Time Status
lamanal 222.222.851 23:11:08 23:11:18 23:11:14 NormalComplet...

2 Iamana21 222.222.8 61 23:11:30 23:11:40 23:22:11 NormalComplet.
3 Iamana22 222.222.8 67 23:11:33 23:11:43 23:21:48 NormalComplet..
4 Iamana24 222.222.8 69 23:11:40 23:11:50 23:21:43 NormalComplet..
5 Iamarta3 222.222.851 23:22:34 23:22:44 23:23:25 NormalComplet...
6 Iamana41 222.222.861 23:23:41 23:23:51 23:24:25 NormalComplet..
7 Iamana42 222.222.8 67 23:23:44 23:23:54 23:24:26 NormalComplet..
8 Iamana43 222.222.8 68 23:23:48 23:23:58 23:24:31 NormalComplet..
9 Iamana44 222.222.8 69 23:23:51 23:24:01 23:24:33 NormalComplet.
10 Iamana5 222.222.851 23:24:55 23:25:05 23:25:09 NormalComplet.
11 DTHS1 222.222.8 51 2311:14 23:11:14 23:11:30 NormalComplet.
12 DTHS2 222.222.851 23:11:14 23:11:14 23:11:33 NormalComplet
13 DTHS3 222.222 8 51 23:11:14 23:11:14 23:11:37 NormalComplet.
14 DTHS4 222.222.8.51 23:11:14 23:11:14 23:11:40 NormalComplet...
15 DTHS5 222.222.8.51 23:22:11 23:22:11 23:22:34 NormalComplet...
16 DTHS6 222.222.8 51 23:21:48 23:21:48 23:22:13 NormalComplet...
17 Iamana23 222.222.8 68 23:11:37 23:11:47 23:21:21 NormalComplet...
18 DTHS7 222.222.851 23:21:21 23:21:21 23:21:45 NormalComplet...
19 DTHS8 222.222.8 51 23:21:43 23:21:43 23:22:06 NormalComplet.
20 DTHS9 222.222.8 51 23:23:25 23:23:25 23:23:41 NormalComplet.
21 DTHS10 222.222.8 51 23:23:25 23:23:25 23:23:44 NormalComplet.
22 DTHS11 222.222.8 51 23:23:25 23:23:25 23.23:48 NormalComplet
23 DTHS12 222.222.8 51 23:23:25 23:23:25 23:23:51 NormalComplet.
24 DTHS13 222.222.8 51 23:24:25 23:24 25 23:24:41 NormalComplet...
25 DTHS14 222.222.8 51 23:24:26 23:24:26 23:24 46 NormalComplet
26 DTHS15 222.222.8 51 23:24:31 23:24:31 23 24:51 NormalComplet..
27 DTHS16 222.222.8 51 23:24:33 23:24:33 23:24:55 NormalComplet...

FIG. 11.10 SUMMARY OF DISTRIBUTED APPLICATION
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The results obtained by above procedure are found in good agreement with 

that given in literature. Comparison of various response quantities like 

transverse deflection and in-plane stresses with that of reference [129] is 

shown in Table 11.2. These results include thin to moderately thick plates. The 

numerical results are presented in non-dimensional form as follows:

Non dimensional displacement: w' = 100 E2 h3 w / q0 a4

Non dimensional stresses: (ctx' / ay' / Txy') = h2 (crx / ay/ Txy) / q0 a4

Where, w = Transverse displacement, crx / oy/ Txy = In-plane stresses, h = 

Thickness of composite laminate, a = Lateral dimension of plate and q0 = 

Intensity of uniformly distributed load

TABLE 11.2 COMPARISON OF CALCULATED AND REFERENCE RESULTS

a/J» ..;Metho;dv Ox ' Txy,,' _

V: "
<0', ',sat ’ •_ ‘ r;' -at,_

(a/2, b/2, h/4)
x , '■
{Of Or b/2)

>P resent stu8^

FSDT 1.71 0.41 0.58 0.03
4

HSDT 1.89 0.67 0.63 0.04

Elasticity 1.94 0.72 0.66 0.05

-V--'Jv'-W WAVS-W* V ^ A*Q«50..- • -X
-> •> . ’v*''--' 's

10
FSDT 0.66 0.50 0.36 0.02

HSDT 0.71 0.55 0.39 0.03

Elasticity 0.74 0.56 0.40 0.03

Present study \£; :0|5i:,T';:' \^;vp:54- X xV' „ 14 N

20
FSDT 0.49 0.53 0.50 0.02

HSDT 0.51 0.54 0.30 0.02

Elasticity 0.51 0.54 0.31 0.02

Presentstudy * v * * s N ~0.43 v .033' " .V ;0i26 /'' „ 0.02 X-'

100
FSDT 0.43 0.54 0.27 0.02

HSDT 0.43 0.54 0.27 0.02

Elasticity 0.43 0.54 0.27 0.02

The average time required for various processes, when entire structure is 

divided into different number of substructures, is tabulated in Table 11.3. Time 

required in computation and communication is also shown. From the time
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required by various processes, it is observed that second process which 

calculates substructure stiffness matrix and load vector consumes more time. 

As the size of substructure reduces, in case of more number of substructures, 

time for computation of substructure stiffness matrix and load vector reduces. 

As the ratio of number of internal nodes to boundary nodes increases time for 

substructure stiffness matrix and load vector computation increases.

TABLE 11.3 TIME REQUIRED FOR SEQUENTIAL AND PARALLEL PROCESSING

Processes

’ Vv '% -3k

'Njrr; NEQ

* A ' '

Average
;itfmev”
ICSie#:

o. . ^ , 
s-f „ y ( -\«l

Sequential

VJ:,, [v.

Paralleltime Speedup

' c/be? -:r/ *

Efficiency
Comp
■||lci

Comm
. . -vv

l

^^substructures ^ v ' x , '
lamanal - - 6

3471 1195 90 2.70 90.04

DTHS - - 23
Iamana2 9438 10206 1090

DTHS - - 26
Iamana3 1248 2820 44

DTHS - - 22
Iamana4 714 10209 48

DTHS - - 19
Iamana5 - - 7

v'^'s.ubstructiife^rt; ■; / ' -
lamanal - - 6

2687 725 99 3.26 81.52

DTHS - - 26
Iamana2 7110 7806 611

DTHS - - 25
Iamana3 1200 3342 51

DTHS - - 26
Iamana4 750 7806 43

DTHS - - 22
lamanaS - - 14
Substructures ' '
lamanal - - 8

1294 279 115 3.28 54.67

DTHS - - 23
Iamana2 4734 5334 181

DTHS - - 67
lamana3 1080 4170 50

DTHS - - 25
Iamana4 714 5334 22

DTHS - - 20
lamanaS - - 18
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FIG. 11.12 COMPUTATION AND COMMUNICATION TIME

4 5
No. of Substructures

FIG. 11.11 COMPARISON OF IDEAL AND OBSERVED SPEEDUP

Based on the time required for various processes in sequential and parallel 

implementation, speedup is calculated. The comparison of ideal speedup and 

observed speedup is shown in Fig. 11.11. From calculated speedup and ideal 

speedup, efficiency is also calculated as a measure of performance. 

Comparison of communication and computation time for different 

substructures is shown in Fig. 11.12. These timings are observed when 

application is configured on network of Pentium IV computers running on 

WINDOWS-XP OS at 1.8 GHz with 256 MB RAM. The computers are connected 

through ethernet network with speed of 100 MBPS.
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■ Ideal speedup

■ Observed speedup
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11.6 CLOSING REMARKS

Distributed implementation in WebDedip environment based on substructure 
concept of finite element analysis of laminated composite plate using higher 
order shear deformation theory was discussed in this chapter. Local Area 
Network was used for the implementation without any additional resources. 
This implementation has lead to following conclusions:

□ Computation time decreases with more number of computers but 
communication time increases.

□ Efficiency of computation increases with higher ratio of computation time to 
communication time. But the overall time to complete the solution of 
problem reduces with more number of computers.
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