
12. DISTRIBUTED GEOMERIC NONLINEAR 
ANALYSIS OF PLATES

12.1 GENERAL

Thin walled structural elements like plates and shells are commonly found in 

spacecrafts, missiles, aircrafts, land-based vehicles, underwater vessels and 

structures, chemical processing equipments and modern housing. A good 

knowledge of structural behavior of these elements under static, dynamic and 

environmental loading conditions is required to utilize the materials economically 

and efficiently. Practically all the problems of mechanics are nonlinear but 

linearization is commonly used to have approximate solution. Linearized 

approximate solution of structural mechanics problems is valid for many practical 

or engineering purposes but in certain situations linearized treatment may be 

inadequate [130].

Nonlinearities in structural mechanics can arise in different ways. The 

nonlinearity, in which generalized Hooke's law is not valid i.e. if the material 

stress-strain behavior is nonlinear, is known as physical or material nonlinearity. 

Elastic-plastic stress analysis of plate is the example of material nonlinear 

problem. Alternatively nonlinearity caused by the deformation of elastic body, 

involving nonlinear strain displacement relation, comes under geometric 

nonlinear problems. A flexible plate subjected to transverse loading and 

experiencing large deformation is an example of geometric nonlinear problem. In 

the present work geometric nonlinearity is considered for analysis [131].

In linear analysis it has been implicitly assumed that both the displacements and 

strains developed in the structure are small. Practically it means that the 

geometry of the elements remains basically unchanged during the loading 

process and linear strain approximation can be used. In practice such 

assumptions fail frequently even though actual strains may be small and elastic 

limits of ordinary structural materials not exceeded. If it is required to calculate 

displacements accurately, geometric nonlinearity may have to be considered 

when the transverse displacement is not small compared to thickness of element. 

In this case membrane stresses, which are usually neglected in plate flexure,
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may cause considerable decrease of displacements as compared with linear 
solution. The interaction between membrane stresses and curvatures results in 
the stretching of the median surface, which in turn leads to nonlinear terms in 
strain displacement relations. Significant saving in weight may be achieved if thin 
plates are designed with due consideration to large deflection behavior.

The solution of nonlinear problem by displacement based finite element method 
can be usually attempted by one of three basic techniques: incremental or 
stepwise procedure, iterative or Newton Raphson type methods and step- 
iterative or mixed procedures. As these techniques are iterative in nature, the 
solution of a nonlinear problem may require 10 to 100 times time required for 
linear solution. Use of high performance computing or distributed computing can 
improve the computational efficiency. This chapter therefore is devoted to 
distributed implementation of geometric nonlinear analysis of plate.

12.2 METHOD FOR NONLINEAR ANALYSIS

Whether the displacements or strains are large or small, equilibrium conditions 
between internal and external forces have to be satisfied. For the case of small 
strains the stiffness matrix in local coordinates is linear i.e. it is not a function of 
the displacements and it remains the same for all states of deformation. But due 
to nonlinearity between the strain and displacements element stiffness matrix in 
global coordinates varies with the displacement [132],

The discretized nonlinear system can generally be written as a set of algebraic 
equations in the form of:

v(a)s P(a) + f s K(a) . a + f = 0 ...(12.1)

While the solution of a linear equation system has a form of:

K . a + f = 0 ... (12.2)

where K is stiffness matrix, f is an actual force and a is structural displacements. 
The solution of linear equation can be accomplished without difficulty in a direct 
manner but for nonlinear systems various iterative methods (indirect methods)
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are available out of which Newton Raphson method is quiet popular and is 

described below:

The most obvious and direct solution procedure is one of iteration, which starts 

from the form

K . a + f = 0 ... (12.3)

In which K = K(a)

If initially some value of a = a0 is assumed, the improved approximation is 

obtained as

a1 = -(KVf where K° = K(a°) . . . (12.4)

Repetition of the process can be written as

an = -(K"'1)'1 f ... (12.5)

and this iteration is terminated when the error

e = an - a0'1 . . . (12.6)

becomes sufficiently small. Usually some norm of the error is determined and 

iteration continues until this is sufficiently small. The process is represented 

graphically as shown in Fig. 12.1(a).

In Newton Raphson method if an approximate solution a = an is reached, an 

improved solution using a curtailed Taylor expression can be written as,

\|/(an+1) s\|/(an) + (di|//da)n Aan = 0 ... (12.7)

with an+1 = an + Aa°

In above Eq. d\j//da s dP/da = KT(a) represents a tangential matrix. The 

improved value of an+1 can be computed by,

Aan = -(KtTY = -(Kxn)'1(Pn + f) ... (12.8)
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In this process at every step of computation a new set of linearized equations 
has to be solved for Aa11. The process is usually convergent in the vicinity of the 

solution. Fig. 12.1(b) graphically represents the process.

(a) Direct Method (b) Newton Raphson Method
FIG. 12.1 ITERATIVE METHOD

In modified Newton Raphson method the tangential stiffness matrix is made 

constant as,

KTn = Kt° ... (12.9)

And so modified equilibrium equation will be

Aan = -(KT°)"1(Pn + f) . . (12.10)

In this case a simple resolution of the same equation system is repeatedly used. 
This is more economical at each step but the convergence is slower.

12.3 GEOMETRIC NONLINEAR FINITE ELEMENT FORMULATION

The steps for geometric nonlinear finite element analysis based on Newton 
Raphson iterative method [133, 134] are as follows:

(a) Initial linear solution is obtained as first approximation of displacements a0.

(b) Unbalanced load vector \|/° is found by J BT a dV - f . where a is internal stress 

vector and f is external forces vector. If the displacements are large, strain
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depends nonlinearly on displacements and B depends on a and it can be 
written as B = B0 + BL(a).

(c) Tangential stiffness matrix KT° is calculated as KT = K0 + KL + where K0 is 
small displacement matrix, Kt is large displacement matrix and K„ is initial 
stress matrix.

(d) Correction in displacements is calculated as Aa0 = -(KT°)'V°-

The steps (b), (c) and (d) are repeated until y" becomes sufficiently small or till 
the desired Euclidean norm displacement criteria is satisfied. The final solution of 
first load increment becomes initial solution of next load increment in the 
incremental loading procedure. As the geometric nonlinear analysis requires 
number of iterations to reach the final solution, it is computationally 10 to 100 
times expensive than the linear solution.

In the present work eight-noded isoparametric quadrilateral element as shown in 
Fig. 12.2 is used. At each node following five degrees of freedom are considered: 
u, v, w, 0X, 0y. i.e. inplane displacements (u, v), lateral displacement (w) and 
rotations about y and x axes (0X, 8y). The nodal displacement vector is defined as

aT = {a,p , a,b}T = {u^v^wi, 6xi, 8yl, u2,v2,w2, 0x2/ 0y2,............u8,v8,w8, 0x8, 0y8}T

(1,1)

4
-----^
(1,0)

(1,-1)

1 2 3
Rectangle m natural coordinate Actual element

FIG. 12.2 EIGHT NODED ISOPARAMETRIC ELEMENT

The shape functions for this element in terms of the non-dimensional coordinate 
system are as follows:

i

7
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< .... ..............................
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Ni = 5 (5 - 1) ri(ri-l) / 4 

N3 = % + 1) n(ri-l) / 4
Ns = 5(5+ 1) 4(4+1)/4

N7 = ^a-l)n(ri+l)/4

N2 = (1- 42) T1 (ri-1) / 2

N4 = 5 ($ + 1) (1-n2) / 2

N6= (1- %2) 4(4+1)/2

N8 = £ (5 - 1) (1-42) / 2

. . . (12.11)

In geometrical nonlinear analysis the lateral displacements will be responsible for 

development of membrane type strains and now the two problems of 'in-plane' 

and 'lateral' deformation can no longer be dealt with separately but are coupled.

As shown in Fig. 12.3 transverse displacement 'w' produces some additional 

extension in X and Y directions of the middle surface and the length dx stretches 

to
dx' = Vl + (3w/3x)2 = dx ( 1 + (l/2)(3w/3x)2 + . . ) ... (12.12)

FIG. 12.3 INCREASE IN MID SURFACE LENGTH DUE TO w DISP.

The strain components, in terms of middle surface displacements, for coupled 

plane and flexural case including shear deformation are as follows:

s

Ep

Eb
£s

r
£x

£y
Yxy

-32w/3x2 = -30x/3x

-32w/3y2 = -30y/3y f

-23zw/3x3y = -30x/3y-30y/3x 

-^>x = 3w/3x - 0X

-ij>y = 3w/3y - 0y

. . . (12.13)

The corresponding stresses (defined in terms of resultants) as shown in Fig. 12.4 

are given by

a = CTb Tx Ty Txy Mx My Mxy Qx Qy

. . . (12.14)
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Y

FIG. 12.4 COMPONENTS OF RESULTANT FORCES (IN +VE DIRECTION)

In defining the strain in X direction considering up to second approximation (Fig. 

12.3)
ex = 9u/9x + (1/2) (9w/9x)z

Considering in a similar way, other components of strain can be written as.

E

du/dx "(l/2)(9w/9x)2'

9v/9y (l/2)(9w/9y)2

9u/3y + 9v/3x (3w/9x)(3w/3y) e0p £|_p

-92w/9x2
+

0 Eob 0
-9zw/9yz

► * ' + ■

0 E0S 0
-292w/9x9y 0 . •

-<|>x = 9w/3x - 0X 0

-(j>y = 3w/9y - 0y 0

. . . (12.15)

In this first term is related to the linear strain and the second term corresponds 

to nonlinear contribution.

The relations between stresses and strains are considered linear and constitutive 

law matrix is similar to that of plane stress and plate bending problems.

D =

0 O' 

0 Db 0 

0 0 Ds
. . . (12.16)
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where,

Dp = Et/(l-v2)

1 v o' ' 1 v 0
’ 1 o'

0 1
v 1 0 Db = Et3/12(l-v2) v 1 0 Ds = Et/2.4(l+v)

v 1 0 0 0 (l-v)/2
C J

To derive tangent stiffness matrix relation between d\j/ and da can be established 

by taking appropriate variation of y with respect to da,

dip = ! dBT a dV + J BT da dV = KTda

da = D ds = D B da

As B = Bq + B|_(a)

dy = J dBj a dV + J B1" D B dV da

Therefore d\j/ = 1C da + K' da

where 1C = / dBLT a dV and K' = J BT D B dV = K0 + KL

. . . (12.17) 

. . . (12.18) 

. . . (12.19) 

. . . (12.20) 

. . . (12.21) 

. . .(12.22)

Thus d\\i = (1C + K0 + Kl )da = KTda . . . (12.23)

Where K0 is small displacement matrix, KL is large displacement matrix and 1C is 

initial stress matrix.

The strain displacement relation matrix B, consisting of linear and nonlinear 

terms can be For calculated as:

B — Bo ■+■ Bj_

where
B0p 0 

0 B0b bl =
0 BLb‘ 

0 0

. . . (12.24)

Here B0P and B0b are standard strain displacement linking matrices for linear in

plane and bending element as:

nodes
Bo = S

i = l

3 N ,/ax 0 
0 9N,/3y

3N,/3y 3N,/3x 
0 0
0 0
0 0
0 0
0 0

0 0 0
0 0 0
0 0 0
0 -3N,/3x 0
0 0 -9N,/3y
0 -3N,/3y -3N,/3x

3N,/3x -N, 0
3N,/3y 0 -N,

. , . (12.25)
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For deriving BLb variation of eLp with respect to parameter ab, displacements 

corresponding to plate bending, is taken. The nonlinear strain component can be 

written conveniently as,

slp = (1/2)

9w/9x 0

0 9w/9y

9w/9y 9w/9x

9w/9x

9w/9y
(1/2) A 9

. . .(12.26)

The derivatives (slopes) of w can be related to the nodal displacements a as,

e
9w/9x

9w/9y
G a

. . . (12.27)

In which G matrix is defined purely in terms of the co-ordinates as [135],

Nodes
G = S

l

0 0 0 9Ni/9x 0 0

0 0 0 9Ni/9y 0 0 (12.28)

The variation of sLp is written as,

dsLp = (1/2) dA 0 + (1/2) A d6 = A G da ... (12.29)

So, BLb = AG ...(12.30)

For calculation of various elements of A matrix isoparametric shape functions 

and initial displacements of a particular iteration are to be considered. So,

9w/9x = (9Ni/9x)Wi + (9N2/9x)w2 + ............ + (9N8/9x)w8 . . . (12.31)

and 9w/9y = (9Ni/9y)Wi + (9N2/9y)w2 + ............+ (9N8/9y)w8 . . . (12.32)

After calculation of B0 and BLb matrices they are superimposed to get B matrix 

from which K' matrix is calculated as,

K' = K0 + Kl = J Bt D B dV ... (12.33)

Finally K„ is calculated as, defined earlier as J dBLT o dV,

dBLT

So, Kr da

'o ol
dBLbT OJ

I
v

0
GTdAT

. . . (12.34)

. . . (12.35)
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' Tx '
’ Tx

f

>-

de =

’ Tx ■>
Txy

Ty
_ TXy Ty _ Txy Ty

TXy .

This gives the formulation for K, as

G dab

Ko
Tx Txy 

Txy Ty G dv

. . . (12.36)

. . . (12.37)

From nodal displacements linear and nonlinear terms of strain are calculated and 

combined. Subsequently using constitutive law matrix D as defined earlier the 

membrane forces, Tx, Ty and Txy can be calculated.

The Gauss quadrature formula is generally used to evaluate the integrals. In the 

Gauss integration technique, a polynomial of degree (2n-l) can be integrated 

exactly by n sampling points. Thus the stiffness matrix can be evaluated as 

follows:
NG NG

K' = EE {[B(x,y)]T[D][B(x,y)] > |J|Wa Wb
a=i b=i ... (12.38)

NG NG
K0= S S {[G(x,y)]T[d][G(x,y)] > |J!jWa Wb ... (12.39)

a=l b=l

where Wa and Wb are the weighting factors corresponding to Gauss sampling 

points and NG is the number of Gauss points selected for the integration.

Numerically evaluated Kq , KL and K, are added to have tangent stiffness matrix 

of an element.

To evaluate the nodal loads due to uniformly distributed normal surface pressure 

P0, the displacement normal to the surface of the element is required. The load 

vector at node i is given by,

P = J P0 [N,]T dA
A

E EPo [N,f |j|Wa Wb
a=l b=l

. . . (12.40)

12.4 DISTRIBUTED IMPLEMENTATION OF NONLINEAR ANALYSIS

Geometrical nonlinear finite element analysis of plate, using procedure discussed 

in earlier section, is implemented here over distributed computing through Local
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Area Network and WebDedip environment. It is a coarse grain implementation, in 

which application is divided into small tasks, which can run concurrently over 

different computers, and communication of data takes place through 

intermediate files transferred by FTP. Two alternative implementations are 

considered in this section.

12.4.1 First Approach

In first alternative calculation of unbalanced load vector (y), calculation of initial 

and large displacement stiffness matrix (Ko + KL), and calculation of initial stress 

stiffness matrix (K^ ) are carried out, for entire structure, in parallel on different 

computers. Subsequently they are assembled on one computer for the solution. 

In the first iteration displacements obtained from iinear elastic analysis are taken 

as initial displacements. The geometrical data, load data and initial 

displacements are communicated to three computers, where above three process 

are carried out. After calculation, the computers communicate stiffness matrix 

and load vector of entire structure to any one computer where, stiffness matrices 

(K0 + KL) and (Kj, ) are added to get tangent stiffness matrix and using 

unbalanced load vector change in displacement (Aa) is calculated. Using this 

solution revised displacements are calculated and compared with displacement of 

previous iteration. For comparison Euclidean norm displacement criteria as 

defined below is used.

e = (V la,*/ - Via? ) / Via? . . . (12.41)

When the value of e is less than 0.01, the iterations will be stopped and next 

increment of load is started. For the next increment of load displacements of 

previous iteration are taken as initial displacements.

Four subprograms are prepared i.e. UNBALOD for calculating unbalanced load 

vector, STIFK for calculating initial and large displacement stiffness matrix, 

STIFKS for calculating initial stress stiffness matrix and ASSMBL for assembling 

stiffness matrices and load vector and for solving equations to get final 

displacements and checking convergence. The implementation is graphically 

represented in Fig. 12.5.
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FIG. 12.5 PARALLEL IMPLEMENTATION OF NONLINEAR ANALYSIS

As the entire structure is considered, bandwidth is minimum and so calculation of 

load vector and stiffness matrices does not take much time. The time taken for 

calculation of load vector is lowest while the solution of equation takes more time 

in comparison to other processes. The size of intermediate files depends on size 

of structure. As communication is done through FTP, transfer of large files takes 

more time and sometimes problems may occur in transfer, which may terminate 

the entire application. This approach uses only three computers for small or large 

size problem, and change in number of computers is not possible. So the 

scalability in this approach is not very high.
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12.4.2 Second Approach

In second alternative finite element mesh of a plate is divided into small parts, 
known as substructures [136], and analysis is carried out using number of 
computers equal to substructures. In this approach, calculation of unbalanced 
load vector and tangent stiffness matrix of each substructure is carried out 
concurrently on different computers and subsequently they are assembled to get 
degrees of freedom at interface nodes. From displacements of interface nodes, 
displacements of internal nodes are calculated again in parallel on different 
computers. The application is divided into five tasks as shown in Table 12.1.

TABLE 12.1 LIST OF TASKS FOR NONLINEAR ANALYSIS

iff'mmm1. DGNFEPl Divides entire finite element domain into small parts, known as
substructures and distribute data of each substructure i.e.
Geometrical, load, initial displacements and load increment to 
different computers.

2. DGNFEP2 Calculates tangent stiffness matrix and unbalanced load vector 

corresponding to boundary / interface degrees of freedom, using 
static condensation, for each substructure in parallel on different 

computers and communicates the same for further assembly.

3. DGNFEP3 Collects tangent stiffness matrix and unbalanced load vector of
each substructure and assemble to have stiffness matrix and load
vector corresponding to interface degrees of freedom. After 
incorporating boundary degrees of freedom, of original structure, 
calculates change in displacements of interface nodes and 
distributes the appropriate displacements of each substructure to 
different computers.

4. DGNFEP4 For each substructure, calculates change in displacements of 
internal nodes from displacements of boundary nodes and
communicates the same for overall results.

5. DGNFEP5 After combining change in displacements of all substructures, 
revise the initial displacements. The initial and final displacements 
are compared and Euclidean norm displacement criteria is checked
and if satisfied load is incremented otherwise next iteration will be
started and the control is transferred to first process till the end of 
all load increment. The revised displacements will become initial 
displacements for next iteration.
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In the first task finite element mesh is divided into parts such that each part 

consists of same number of elements. The first process generates the data for 

each substructure consisting of geometric and material data, number of load 

increment, boundary nodes and initial displacements of each node of 

substructure.

In second task for static condensation, internal nodes are numbered first and 

subsequently the boundary nodes. In this process bandwidth of substructure 

increases and from banded matrix of entire substructure degrees of freedom 

corresponding to internal nodes are condensed to get tangent stiffness matrix of 

substructure corresponding to boundary nodes. Similarly unbalanced load vector 

corresponding to boundary nodes are calculated. Second task prepares a 

intermediate file consisting of substructure's banded tangent stiffness matrix and 

unbalanced load vector along with corresponding number of boundary degrees of 

freedom. To keep size of file smaller only banded part of stiffness matrix is 

stored. But due to larger bandwidth second task takes more time.

Third task assembles tangent stiffness matrix and unbalanced load vector 

depending on degrees of freedom in a banded form to keep computation time 

and memory requirements lower. After solution third task prepares an 

intermediate file consisting of displacements corresponding to boundary nodes 

for different substructures.

Fourth task prepares substructure's tangent stiffness matrix and unbalanced load 

vector in a banded form and boundary conditions, i.e. displacements at boundary 

nodes as supplied by third task, are imposed to get displacements of internal 

nodes. In this task as all the nodes are numbered in sequence, bandwidth is the 

lowest and so process is faster and requires less memory. This task prepares an 

intermediate file consisting of change in displacements at all nodes for entire 

substructure. After combining results of each substructure and checking 

convergence, fifth task generates an intermediate file consisting of final 

displacement at each node after a particular iteration. If a Euclidian norm 

displacement criterion is satisfied then fifth task increases the load increment 

number in the intermediate file, otherwise it keeps the same increment number 

for the further iteration. The file prepared by fifth task is read by first task in 

subsequent iteration to have initial displacements.
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12.5 ANALYSIS PROBLEM AND RESULTS

An example of plate subjected to uniformly distributed load is considered for 
distributed geometric nonlinear finite element analysis. The size of plate is 12 m 
x 12 m and is clamped on all edges. Young's Modulus of Elasticity (E) is 2.2 x 106 

t/m2, Poisson's Ratio (v) = 0.3, thickness of plate (t) = 0.1 m and Rigidity of 
Plate = D = E t3 /12(1 - v2) = 201.465 t-m

Due to symmetry about both the axis only quarter part of the plate is considered 
for the solution. Again the quarter plate is divided into 64 and 1296 eight-nodded 
isoparametric element having 1125 and 20165 degrees of freedom. Typical 
meshing along with element and node number is shown in Fig. 12.6.

zzo ssl see ssz 224 szs

57 58 59 60 • 61 62 63 64

1 2 3 4 ■ 5 . 6 7 8 .

1 £ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FIG. 12.6 TYPICAL DISCRETIZATION OF PLATE

The maximum uniformly distributed load of 4.04174 t/m2 is applied in thirteen 

load increments. Solution in each increment is carried out by Newton type 
iterative method. The final solution for a particular load increment is considered 
as an initial displacement for the next increment. Load and final displacement of 
are represented in dimensionless form as shown in Table 12.2. It also includes 
the comparison of final displacements obtained by analytical method represented 
by Timoshenko [116] and with that of Finite Difference Method reported by Alami 
[137]. The results are shown graphically in Fig. 12.7. The result of finite element 
formulation matches closely with the available results.
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TABLE 12.2 COMPARISON OF DISPLACEMENTS AT DIFFERENT LOADS

Sr. No. 'q' t/m2 q
a4/Dt

wmax / t Wmax / t
Timoshenko

[116]
Alami
[137]

FEM - 1125
DOF

FEM -
20165 DOF

1 0.311 20 0.39 0.38 0.37 0.40
2 0.622 40 0.63 0.67 0.64 0.67
3 0.933 60 0.83 0.89 0.85 0.88
4 1.244 80 1.01 1.04 1.03 1.06
5 1.555 100 1.15 1.19 1.15 1.19
6 1.865 120 1.26 1.32 1.28 1.32
7 2.176 140 1.37 1.41 1.40 1.44
8 2.487 160 1.46 1.52 1.46 1.56
9 2.798 180 1.55 1.60 1.59 1.62
10 3.109 200 1.62 1.66 1.65 1.69
11 3.420 220 1.68 1.74 1.72 1.77
12 3.731 240 1.74 1.81 1.79 1.84
13 4.042 260 1.8 1.87 1.86 1.92

0 50 100 150 200 250 300
q a4 /D t

FIG. 12.7 COMPARISON OF NONLINEAR DISPLACEMENTS

To implement distributed computing two approaches, as discussed in earlier 

section, are used. As per first approach calculation of unbalanced load vector, 

initial and large displacement stiffness matrices and initial stress stiffness matrix 

for entire structure is carried out in parallel on different computers. After
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collecting load vector and stiffness matrices, tangent stiffness matrix is formed 

and after solution of linear equations, revised displacements are calculated and 

convergence is checked. If convergence is satisfied next load increment is 

considered otherwise iterations are continued till convergence is achieved.

The time taken by various processes to solve problem with 20165 degrees of 

freedom, is shown in Table 12.4. Three Pentium IV computers running at 1.8 

GHz connected in LAN through ethernet were used in this application. In this 

method process UNBALOD, STIFK and STIFKS are carried out in parallel while 

process ASSMBL is carried out sequentially. The timing shown here are only for 

one iteration. Number of such iterations are carried out till final load reaches, but 

in all iteration time spent in different processes is almost same.

TABLE 12.3 COMPARISON OF TIMING FOR FIRST ALTERNATIVE

Name of
Process

NB NEQ Process
Time
(Sec)

Time for Distributed
Computing (Sec)

Sequential 
Time (Sec)

Speedup

Comput. Commun.
UNBALOD

565 20165

10

265 150 355 0.86
STIFK 80

STIFKS 85
ASSMBL 180

In the second approach, substructure technique is used. The problem with 20165 

DOF is divided into 2, 3, 4 and 6 substructures and calculation of tangent 

stiffness matrix and unbalanced load vector for each substructure is carried out 

in parallel on same number of computers. After calculating displacements of 

boundary nodes sequentially, calulation of displacements of internal nodes is 

carried out in parallel. Finally assembly of result of each substructure and check 

for convergence is carried out sequentially. Screen shot of WebDedip GUI for 

configuration of application on four computer is shown in Fig. 12.8

After successful completion of application WebDedip gives the summary of 

application from which time required for various processes as well as 

communication time can be known. The screen shot of WebDedip, for summary 

of application, is shown in Fig. 12.9. The timings have been observed when 

application was implemented over Local Area Network having Pentium IV 

computers with 256 MB RAM and running at 1.8 GHz. Similarly after
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implementation of application over different number of computers, time taken by 

various process was noted and is reported in Table 12.4. The time taken by 

different processes and communication time are for one iteration only. For 

complete nonlinear analysis a number of iterations are required but time required 

is almost same for each iteration.
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View Output... ZJ View Error...

Session Application

Application: dnfeap Counter: 5

Sr. I Process Name Node No. Start Time Expected Time End Time I Status

1 dgnfep5 222 222 8.51 22:26:09 22:26:1 9 22 26 16 NormalComplet..
2 dgnfep3 222 222 8 51 22 24:33 22 24 43 22:25:01 NormalComplet..
3 dgnfepl 222.222.8.51 22:20:04 22:20:14 22:20:10 NormalComplet...
4 dgnfep22 222.222 8 67 22 20:29 22:20:39 22:24:03 NormalComplet.
5 dgnfep41 222 222 8 64 22:25:18 22 25:28 22:25:39 NormalComplet.
6 dgnfep21 222.222 8 64 22 20:26 22:20:36 22:23:40 NormalComplet...
7 DTHS16 222 222 8 51 22:25:50 22:25:50 22 26:09 NormalComplet.
8 DTHS15 222 222 8 51 22:25 44 22:25 44 22:26:04 NormalComplet.
9 DTHS14 222.222.8.51 22:25:41 22:25:41 22:26:00 NormalComplet...
10 DTHS13 222 222 8.51 22:25:39 22:25:39 22 25:55 NormalComplet.
11 DTHS12 222 222 8 51 22 25:01 22:25:01 22:25:27 NormalComplet.
12 DTHS11 222 222 8 51 22:25:01 22:25:01 22:25:24 NormalComplet
13 DTHS10 222 222 8 51 22 25:01 22:25:01 22 25 20 NormalComplet.
1 4 DTHS9 222 222 8 51 22:25 01 22:25:01 22:25 18 NormalComplet
1 5 DTHS8 222.222 8 51 22:24 11 22:24 11 22:24:33 NormalComplet..
16 DTHS7 222 222 8 51 22 23 40 22:23 40 22:24 01 NormalComplet..
1 7 DTHS6 222.222 8 51 22:24:03 22 24 03 22:24 26 NormalComplet..
1 8 DTHS5 222 222 8 51 22 23:40 22:23 40 22:24:1 0 NormalComplet.
1 9 DTHS4 222 222 8 51 22:20:10 22:20:10 22:20:36 NormalComplet...
20 DTHS3 222222851 22:20:10 22:20:1 0 22:20:33 NormalComplet..
21 DTHS2 222 222 8 51 22:20:10 22 20:10 22:20:29 NormalComplet...
22 DTHS1 222.222 8 51 22 20:10 22:20:1 0 22:20:26 NormalComplet..
23 dgnfep44 222.222 8 69 22 25:27 22 25 37 22:25:49 NormalComplet...
24 dgnfep42 222.222 8 67 22:25:20 22 25 30 22:25:41 NormalComplet..
25 dgnfep24 222.222 8 69 22 20:36 22:20:46 22:24:11 NormalComplet..
26 dgnfep23 222.222 8 68 22 20:33 22 20 43 22:23:40 NormalComplet...
27 dgnfep43 222 222 8 68 22 25 24 22 25 34 22:25 44 NormalComplet...

FIG. 12.9 SCREEN SHOT SHOWING SUMMARY OF APPLICATION
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TABLE 12.4 COMPARISON OF TIMING FOR SECOND ALTERNATIVE

Number of
Substructure

Name of
Process

NB NEQ Process
Time
(Sec)

Time for Distributed
Computing (Sec)

Sequential
Time
(Sec)

Speedup

Com put. Commun.

2

DGNFEP1 - - 6

1178 95 2318 1.82

DGNFEP2 9565 10265 1100

DGNFEP3 1080 1795 25

DGNFEP4 565 10265 40

DGNFEP5 - - 7

3

DGNFEP1 - - 6

549 99 1569 2.42

DGNFEP2 6385 6965 480

DGNFEP3 960 2150 26

DGNFEP4 565 6965 30

DGNFEP5 - - 7

4

DGNFEP1 - - 6

278 102 989 2 60

DGNFEP2 4795 5315 215

DGNFEP3 900 2505 28

DGNFEP4 565 5315 22

DGNFEP5 - - 7

6

DGNFEP1 - - 6

155 108 715 2 72

DGNFEP2 3205 3665 95

DGNFEP3 840 3215 30

DGNFEP4 565 3665 17

DGNFEP5 - - 7

From Table 12.4 it is clear that the maximum time is consumed in formation of 
tangent stifness matrix and unbalanced load vector of a substructure i.e. process 
DGNFEP2. As number of substructures increases the time taken by process 
DGNFEP2 reduces. The reason for more time is the bandwidth. As in static 
condensation internal nodes are numbered first and boundary nodes are 
numbered last, bandwith of stifness matrix increases. Further, as the number of 
substructure increases, computation time reduces and communication time 
increases, but overall time to complete one iteration reduces. Comaprison of 
computation and communication time is presented in Fig. 12.10.

The speedup which is the ratio of sequential time to parallel time do not 
increases much after four substructures or computers for the size of problem
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B Computation Time 

E3 Communication Time

1200 -

considered here. Fig. 12.11 shows comparison of ideal and observed speedup for 
different number of computers.

1400

200

2 3 4 6

No of Computers

FIG. 12.10 COMPUTATION AND COMMUNICATION TIME

For calculation of speedup, sequential time is obtained when ail substructures are 
solved using one computer and time for distributed computing is obtained by 
adding computation and communication time. Fiere each substructure is assigned 
to one separate computer but if number of substructures are larger than number 
of computers available, more than one substructure can be assigned to one 
computer. More speedup can be achieved by keeping computation time larger 
compared to communication time.

As communication time increases overhead, speedup with more number of 
computer reduces. With mcreas in computers, communication time approaches 
computation time and further with more number of computers communication 
time will be greater than computation time and subsequently computational
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efficiency will decreases. For still larger size of problem more speedup may be 

observed with increasing computers.

If time required for one iteration is considered for both the strategy as given in 
Table 12.3 and 12.4, it is observered that, when three computers are used 
communication time in first stragegy is more while computation time in second 
strategy is more. This is due to large size of intermediate file required to be 
transferred in first strategy while more time required for calculating tangent 
stifness matrix with large bandwidth in second strategy. But this observation 
may change for still larger size problem. So, for smaller size problem first 
strategy may be more suitable while for large size problem second strategy may 
prove better. However, combination of both the strtegy may give more 
computational efficiency. In combination of both the strtegy, entire finite element 
mesh can be divided into subdomain and for each domain calculation of 
unbalanced load vector, linear, nonlinear and initial stress stiffness matrices is 
carried out in parallel. This strategy is depicted in Fig. 12.12.

FIG. 12.12 COMBINED STRATEGY FOR DISTRIBUTED NONLINEAR ANALYSIS
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12.6 SUMMARY

In this chapter geometric nonlinear finite element analysis was implemented over 
distributed computing environment using Local Area Network and WebDedip. 
Two strategies were considered. In first strategy, calculation of unbalanced load 
vector, initial, large displacement and initial stress stiffness matrices for entire 
structure was carried out in parallel on different computers. In second strategy, 
entire structure was divided into number of substructures and calculation of 
tangent stiffness matrix and unbalanced load vector corresponding to boundary 
nodes was carried out in parallel on different computers and after calculation of 
displacement of boundary nodes, calculation of internal displacements was done 
in parallel. Second strategy proved more efficient and scaleable for large size 
problem. With different number of computer an efficiency of about 60 to 80% 
was observed when second strategy was implemented on distributed computing 
environment of WebDedip.
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