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3. SIZE EFFECT 

3.1 SIZE-EFFECT 

The size effect parameter is related to scaling on the problem, which is 

applied to every physical theory. The size effect in solid mechanics is 

understood as the Effect of the characteristic structure size (dimensions) D on 

the Nominal Strength σ� of structure when Geometrically similar structures 

are compared. 

According to the Classical Theory Nominal strength is given by σ�=
�

��
 where 

P is the Ultimate load (or load parameter) and b specimen width and 

specimen depth. This Nominal strength is independent on structural size. If 

we are taking Geometrical similar structure having a same material. Here 

Nominal Shear strength (σ�) is constant. Any deviation in property is known 

as size effect. Deviation in terms of the length, width and Depth of the section 

of the beam. According to strength of material concept larger depth of beam 

and smaller depth of beam is failing at same stress but due to size effect 

larger depth of beam fails at lower stress. 

 

3.2 IMPORTANCE OF SIZE EFFECT 

     One of the reasons to use various specimens of different size and shape 

used in various countries. The characteristics of material properties and its 

behavior under loading condition can be evaluated by using model analysis. 

Models were tested to know the Ultimate load carrying capacity and its failure 

patterns. Size effect is also used in standards and codes to give 

nonconservative predictions of prototype (and design) strength. Thus, by 

varying size effect parameter, strength of the structure member can be 

predicted under applied load condition. 

3.3 CLASSICAL HISTORY OF SIZE EFFECT 

     A question of size effect was first discussed by Leonardo da Vinci (1500s), 

who stated that "Among cords of equal thickness the longest is the least 

strong". He also wrote that a cord "is so much stronger ... as it is shorter". 
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This rule implied inversely proportional to the nominal strength to the length 

of a cord, which is of course a strong exaggeration of the actual size effect. 

 

 

 

Fig.3-1 

Illustrating the Size Effect Discussions by Leonardo Da 

Vinci In the Early 1500s 

 

     More than a century later, the exaggerated rule of Leonardo was 

rejected by Galileo (1638) in his famous book in which he founded Mechanics 

of Materials. Galileo argued that cutting a long cord at various points (F, D 

and E in Fig.3-2) should not make the remaining part stronger. He pointed 

out, that a size effect is manifested in the fact that large animals have 

relatively bulkier bones than small ones, which he called the "weakness of 

giants" (Fig.3-2). 

 

 

Fig.3-2 
Illustrating the size effect discussions 
by Gallileo Galilei in 1638 

Fig.3-3 
Title page of the famous book of 
Galileo (1638), which founded 
Mechanics of Materials 
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After Midcentury, a major advance was made by Mariotte (1686). He 

experimented with ropes, paper and tin and made the observation, from 

today's viewpoint revolutionary, that "a long rope and a short one always 

supports the same weight unless that in a long rope there may happen to be 

some faulty place in which it will break sooner than in a shorter". He had 

proposed that this is a consequence of the principle of "the Inequality of the 

matter whose absolute resistance is less in one Place than another". In 

qualitative terms, he initiated the statistical theory of size effect, two and half 

centuries before Weibull. At that time, however, the Theory of Probability was 

at its birth and was not yet ready to handle the problem. 

Marriotte's conclusions were later rejected by Thomas Young (1807). 

He took a strictly deterministic viewpoint and stated that "A wire of 2 inches 

in diameter is exactly 4 times as strong as a wire 1 inch in diameter", and 

other statement "the length has no effect either in increasing or diminishing 

the cohesive strength". This was a setback; he had not taken random scatter 

of material strength. Later from numerous extensive experiments clearly 

demonstrated that the presence of size effect for different materials. 

The second major advance was the famous work of Griffith (1921). 

While founding the Theory of Fracture Mechanics, he also introduced fracture 

mechanics into the study of Size Effect. He concluded that "the weakness of 

isotropic solids, is due to the presence of discontinuities or flaws". The 

effective strength of technical materials could be increased 10 or 20 times at 

least if these flaws could be eliminated". 

 In Griffith's view, however, the flaws or cracks triggering failure 

were only microscopic, which was not characteristic of quasibrittleness 

materials. The sizes and random distribution of these flaws determined the 

local macroscopic strength of the material but did not affect the global 

scaling. Thus, Griffith's work represented a physical basis of Mariotte’s 

statistical concept of size effect, rather than a discovery of a new type of Size 

Effect. 

  Fisher and Tippett (1925) and Frechet (1927) published 

fundamental papers and formulated the weakest-link model for a chain to 
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explain size effect. Their work was early supplemented by the studies of 

Tippett (1925), and Peirce (1926), and later refined by von Mises (1936) and 

others.  

     The capstone on the edifice of statistical size effect initiated by Mariotte 

was laid by Weibull (1939) in Sweden. Weibull (1939) reached a crucial 

conclusion: The tail distribution of extremely small strength values with 

extremely small probabilities cannot be adequately described by any of the 

known distributions. He proposed for the tail of the extreme value 

distribution of local strength of a small material element, a power law with a 

threshold. The distribution of the strength of a chain based on this power law 

came to be known as the Wei bull distribution. With Weibull's work, the basic 

framework of the statistical theory of size effect became complete. Most 

subsequent studies until the 1980s dealt basically with refinements, 

justifications and applications of Weibull's theory. The researcher 

contribution in research work is as follows  

Dugdale(1960), Barenblatt(1959,1962), Knauss 

(1973,1974),Wnuk(1974),Zaitsev and Wittmann (1974),Bazant(1976),Zech 

and Wittmann(1977),Mihashi and Izumi (1977),Kfouri and Rice(1977),Bazant 

and 

Cedolin(1979,1980),MihashiandZaitsev(1981),Petersson(1981),Mihashi(1983),

Mandelbrot(1984),Bazant,Belytschkoand Chang (1984),Bazant (1984b), 

Brown(1987),Mecholsky and Mackin (1988), Carpinteri(1986 1989),Pijaudier-

Cabot and Bazant(1987), Bazant and Pijaudier-Cabot(1988),Bazant and Lin 

(1988),Cahn (1989),Chen and Runt (1989),Kittl and Diaz (1988, 1989, 

1990),Hornbogen(1989), Peng and Tian (1990), Saouma et al (1990), 

Bouchaud et al. (1990), Chelidze and Gueguen (1990),Bazant and Cedolin 

(1991),Long et al.(1991), Issa et al. (1992),Bazant (1992),Malcy et al.(1992),  

Mosolov and Borodich(1992), Borodich(1992), Lange et al. (1993),Planas and 

Elices (1988, 1989a, 1989b, 1993),Xie (1987,1989,1993)  Xie et  al.(1994, 

1995), Saouma and Barton (1994),Mihashi et al., eds.(1994) , Feng et al. 

(1995), Carpinteri and Chiaia (1995),Wittmann, ed.(1995),  Mihashi and 

Rokugo (1998), Bazant and Rajapakse (1999). 
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3.4 FACTORS INFLUENCING SIZE EFFECTS 

     A number of factors influence the strength properties and its material 

behavior systems. The strength properties include compressive, tensile 

strength, shear bond strength, fatigue strength, and creep of various 

dimensional changes. Along with these properties, the nature of the material 

and the geometric configuration of specimens are also important. The 

materials range from naturally occurring timber and rocks to manufactured 

materials, such as concrete, steel, plastics, etc. 

     Some of the properties of the above materials are affected more by changes 

in size than by other variables. Some properties may not influence the final 

interpretation of a model investigation to the same degree as the size effect 

because of their minor influence on the behavior of a structure. In the case of 

reinforced concrete, the change in compressive strength is not an important 

as the yield strength of the reinforcement in an under reinforced or lightly 

reinforced beam. On the other hand, in the investigation of shear strength of 

a slab or heavily reinforced beam, the compressive strength (as related to its 

tensile strength) plays a direct and important role. If It is not considered 

properly, the observed difference in the strength of specimens of two scales 

might be attributed incorrectly to the size effect. 

     Generally, theoretical studies treat the behavior of material systems and 

their physical results on a statistical basis. The basic philosophy being that 

the failure in heterogeneous materials is a statistical phenomenon. Thus, the 

larger the volume, the greater the chances for failure which will result in 

lower strength. 

     In general, variations in strength of similar shape but different specimen 

size of concrete are caused by the following factors: 

1. Differential curing rates of the various size specimens. 

2. Differences in the quality (density) of the material cast into the various   

size molds. 

3. Change of quality of the cast material as a result of the water gain of the 

top layers and water leakage through the forms. 
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4. Differential drying of the various size specimens during testing. 

5. Difference in induced stress conditions because of variation of quality of 

end capping of different size compressive specimens. 

6. Statistical variations in strength as a result of volume effects. 

7. Loading rate on specimens. 

8. Strain gradient effects in flexural specimens. 

3.5 SIZE EFFECT IN REINFORCED CONCRETE 

     Overall size effects in reinforced concrete models are important since the 

behavior of the model is to be extrapolated for predicting prototype behavior. 

Three types of behavior are important in comparing model and prototype 

structures made of reinforced concrete. 

1. Bond characteristics 

2. Cracking similitude (service conditions) 

3.  Ultimate strength and deformation 

 

3.5.1 Bond Characteristics 

     Investigation into the bond characteristics is complicated by limited 

knowledge of the bond phenomenon in the prototype concrete. The bond 

strength of prototype deformed bars is mainly due to the mechanical wedge 

action and eventual cracking of concrete stressed by the deformations. This 

action reduces the size effect on bond to a certain degree, if bar deformations 

are reproduced in the model reinforcement. 

     A limited number of pullout tests by Aroni (1959) on smooth and square-

twisted bars, indicated the existence of scale effects in bond strength of 

different-size bars tested with the bars in their usual condition. However, 

when the surface was polished, this scale effect disappeared, suggesting that 

it was related to the surface condition associated with a given size, rather 

than the size itself. Alami and Ferguson (1963) concluded from beam tests 

that models fail to predict the behavior of reinforced concrete prototype as the 

result of inadequate bond. which is the primary reason of failure, thus 
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casting doubt on the use of models in the cases where the bond may be the 

expected cause of failure. For investigations concerned with pre-cracking 

behavior, or if the flexural or shear resistance is required, it is not necessary 

to satisfy all the requirements of bond similitude. It is sufficient to ensure 

that there is sufficient bond resistance so that premature cracking or bond 

failure does not occur. This can be achieved by providing sufficient 

embedment length to develop the yield strength of the bar. 

     The results of tests by Harris (1966), Mina (1967), and many others 

indicate that certain phenomena involving the bond as the primary cause for 

failure can be modeled with reasonable reliability. If these models are 

constructed carefully to eliminate any variation and also if the variables such 

as the concrete strength, steel yield strength, and mechanical deformations 

are controlled accurately. Clark (1971) showed that the bond between 

concrete and reinforcement has a significant effect on service load behavior. 

This is so particularly in small-scale models, where the reinforcement may 

take a variety of forms, such as threaded rods or deformed wires, which 

would exhibit entirely different bond characteristics. 

     From these various experiments, it may be concluded that certain 

deformed model bars exhibit bond characteristics that are comparable to 

those of the prototype reinforcing bars. 

3.5.2 Cracks in Service Conditions 

     Inelastic load-deflection response of a reinforced concrete 

structure is often strongly dependent upon the degree and manner of 

cracking. Cracking modes can also influence behavior under reversed or 

repeated loading, moment and force redistribution in indeterminate systems, 

and service load conditions. The existence of size effects in cracking is defined 

as follows: crack width should vary with the size of model, and the number of 

cracks will be reduced with decreased model size. Initiation of cracking is a 

function of the tensile strength of concrete. As it is proved that tensile 

strength increases as the size of specimen is reduced. Therefore, it may be 

stated that on reducing the size of a structure the load level at which the first 

crack forms will be somewhat higher. Crack spacing and width will both be 
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dependent on the bond between the two materials. If the bond properties are 

inadequate, there will be a reduced number of cracks with relatively fewer 

and wider cracks. Variation of strain gradient can also affect cracking, but 

very little research has been done on this parameter. 

     Many tests conducted on small-scale reinforced concrete beam specimens 

which reveal that the total number of major visible cracks decreases with 

decreasing beam size. However, the overall cracking patterns are found to be 

similar, and load-deflection behavior is properly modeled. These tests also 

indicate that only a small size effect is associated with cracking in scaled 

models, provided that the other conditions of similitude (mainly the properties 

of materials and bond strength) are satisfied. 

 

3.5.3 Ultimate Strength and Deformation 

     In many model studies, the objective is to obtain the ultimate strength as 

well as the load-deflection behavior of a scaled model. 

     Tests of over reinforced beams have been reported by Sabnis (1969) with 

models at scale factors of 1/10 and 1/6 to compare the prediction of ultimate 

loads, moment-rotation behavior, and effectiveness of helical binders (for 

confinement) in the compression zone. The cross sections of specimens were 

15 mm x 28 mm and 25 mm x 47 mm to match the scale of the available 

reinforcement. Comparable-size cylinders were tested to determine the 

various properties of the model concrete. It was found from moment-rotation 

curves that for prototype and two different sizes of models there was no size 

effect in these beams. The predictions of other related behavior were within 

±10% for models of both scales. In punching shear investigations of slabs, 

Sahnis and Roll (1971) used a scale factor of 2.5 for model slabs as well as for 

the control cylinders. Since this type of failure is directly related to the tensile 

strength of concrete, great care in determining tensile strength is required in 

such tests. Predictions of the parameter Pu/bd√fc the punching shear strength 

of slabs were excellent, with no scale effect observed. 

     From tests on specimens tested under pure torsion and combined bending 

and torsion. Syarnal (1969) reported excellent deformation similitude to 
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cracking load values of about 40 to 45% of the ultimate load. However, post 

cracking torque-twist and the predicted values of angles of twist showed 

considerable variation. He concluded that it is possible to obtain reasonably 

good deformation similitude (deflections, twists. etc.), for the entire loading 

range, between the prototype and its small-scale models (minimum 

dimensions= 50 mm) reinforced with deformed steel wires without excessive 

size effects. 

     Chowdhury (1974) tested model beam-column joints at the scale factor of 

10. His tests were successful in predicting the complete behavior of reinforced 

concrete joints subjected to fully reversed loads. These included flexural and 

shear behavior and load-deflection response. Cracking patterns obtained were 

also very similar to those in the prototype. 

 

3.6 INFLUENCE OF SIZE EFFECT ON STRUCTURAL STRENGTH 

     There are six different size effects that may cause the nominal strength to 

depend on structure size: 

3.6.1 Boundary Layer Effect  

     It is also known as the wall effect. This effect is due to size of aggregate. 

Cement mortar adjacent to wall has smaller effect compare to larger size 

aggregate. Therefore, the surface layer, whose thickness is independent of the 

structure size and is of the same order of magnitude as the maximum 

aggregate size, has different properties. The size effect is due to the fact that 

in a smaller member, the surface layer occupies a large portion of the cross-

section, while in a large member, it occupies a small part of the cross-section. 

In most situations, this type of size effect does not seem to be very strong. A 

second type of boundary layer effect arises because, under Normal Stress 

parallel to the surface, the mismatch between the elastic properties of 

aggregate and mortar matrix causes transverse stresses in the interior, while 

at the surface these stresses are zero. A third type of boundary layer size 

effect arises from the Poisson effect (lateral expansion) causing the surface 

layer to nearly be in plane stress, while the interior is nearly in plane strain. 
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This causes the singular stress field at the termination of the crack front edge 

at the surface to be different from that at the interior points of the crack front 

edge (Bazant and Estenssoro 1979). A direct consequence of this, easily 

observe in fatigue crack growth in metals, is that the termination of the front 

edge of a propagating crack cannot be orthogonal to the surface. The second 

and third types exist even if the composition of the boundary layer and the 

interior is the same. 

3.6.2 Diffusion Phenomenon 

     Size effect is due to the fact that the diffusion half-times (i.e. half-times of 

cooling, heating, drying etc.) are proportional to the square of the size of the 

structure. At the same time, the diffusion process changes the material 

properties and produces residual stresses which in turn produce inelastic 

strains and cracking. For example, drying may produce tensile cracking in 

the surface layer of the concrete member. Due to different drying times and 

different stored energies, the extent and density of cracking may be rather 

different in small and large members. This develops different response in the 

members. For long-time failures, it is important that drying causes a change 

in concrete creep properties, that creep relaxes these stresses and in thick 

members the drying happens much slower than in thin members. 

 

3.6.3 Hydration Heat 

     Hydration heat or other phenomena associated with chemical reactions. 

This effect is related to the previous one in that the half-time of dissipation of 

the hydration heat produced in a concrete member is proportional to the 

square or the thickness (size) of the member. Therefore, thicker members 

heat to higher temperatures, a well-known problem in concrete construction. 

Again, the non-uniform temperature rise may cause cracking, induce drying, 

and significantly alter the material properties. 
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3.6.4 Statistical Site Effect 

     Statistical size effect is caused by the randomness of material strength. 

Size effect has been explained traditionally in concrete structures. The theory 

of the size effect, originated by Weibull (1939), is based on the Model of a 

chain. The failure load of a chain is determined by the minimum value of the 

strength of the links in the chain, and the statistical size effect is due to the 

fact that the longer the chain, the smaller is the strength value that is likely 

to be encountered in the chain. 

3.6.5 Fracture Mechanics Size Effect 

     This type of size effect is due to the release of stored energy of the 

structure into the fracture front. This is important source of size-effect. 

3.6.6 Fractal Nature Of Crack Surfaces  

     If fractality played a significant role in the process of formation of new 

crack surface, it would modify the fracture mechanics size effect. Probably 

this size effect is only hypothetical conjecture. 

3.7 SIZE EFFECT IN SHEAR STRENGTH OF CONCRETE 

     In 1955, the Wilkins Air Force Depot warehouse (Fig No. 3-4) in Shelby, 

Ohio, collapsed due to the shear failure of 36 in. (914 mm) deep beams which 

did not contain any stirrups at the location of failure. These beams had a 

longitudinal steel ratio of only 0.45%. They failed at a shear stress of only 

about 0.5 MPa whereas the ACI Building Code of that time (ACl Committee 

318, 1951) permitted an allowable working stress of 0.62 MPa for the 20 MPa 

concrete used in the beams. 
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Figure.3-4 Wilkins Air Force Depot in Shelby, Ohio, 1955 

Kani (1966 and 1967) was amongst the first to investigate the 

effect of absolute member size on concrete shear strength after the dramatic 

warehouse shear failures in 1955. His work consisted of beams without web 

reinforcement with varying member depths ‘d’, longitudinal steel percentages 

‘ρ’ and shear span-to-depth ratios ‘a/d’. He determined that member depth 

and steel percentage had a great effect on shear strength and that there is a 

transition point at a/d≈2.5 at which beams fails in shear mode critical (i.e. 

the value of the bending moment at failure was minimum).

 

Figure.3-5 Relative strength (Ultimate Moment/Flexural Moment) vs. a/d 
ratio (Kani 1967) 
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Kani found this value of ‘a/d’ to be the transition point between failure 

modes and is the same for different member sizes and steel ratios. When ‘a/d’ 

value is lower than 2.5 the test beams developed arch action and had a 

considerable reserve of strength beyond the first cracking point. For ‘a/d’ 

values greater than 2.5 failure was sudden, brittle and in diagonal tension 

soon after the first diagonal cracks appeared. Kani’s work was summarized in 

the textbook "Kani on Shear in Reinforced Concrete" (Kani et al.1979). 

Bazant and Kim (1984) derived a shear strength equation based on 

the theory of fracture mechanics. This equation accounts for the size effect 

phenomenon as well as the longitudinal steel ratio and incorporates the 

effect of aggregate size. This equation was calibrated using 296 previous 

tests obtained from the literature and was compared with the ACI Code 

equations. It was noted after the comparison that the practice used in the 

ACI Code of designing for diagonal shear crack initiation rather than 

ultimate strength does not yield a uniform safety margin when different 

beam sizes are considered. It was also found, according to the new equation,  

for larger specimen depths the factor of safety in the ACI Code almost 

disappears. 

Mphonde and Frantz (1984) tested concrete beams without shear 

reinforcement with varying ‘a/d’ ratios from 1.5 to 3 and concrete strengths 

ranging from 21 to 103 MPa. They concluded that the effect of concrete 

strength becomes more significant with smaller ‘a/d’ ratios and that failures 

became more sudden and explosive with greater concrete strength. It was also 

found that there is a greater scatter in the results of specimens with small 

‘a/d’ ratios due to the possible variations in the failure modes. 

Bazant and Kazemi (1991) performed tests on geometrically similar 

beams with a size range of 1:16 and having a constant ‘a/d’ ratio of 3.0 and a 

constant longitudinal steel ratio. Beams tested varied in depth from 1 inch 

(25 mm) to 16 inches (406 mm). The study of size effect parameter required to 

verify the previously published formula. 
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 Kim and Park (1994) performed tests on beams with a higher-than-

Normal concrete strength (53.7 MPa). Test variables were longitudinal steel 

ratio, shear span-to-depth ratio ‘a/d’ and effective depth ‘d’. Beam heights 

varied from 170 mm to 1000 mm while the longitudinal steel ratio varied from 

0.01 to 0.049 and ‘a/d’ varied from 1.5 to 6.0. Their findings were similar to 

Kani's from which it was concluded that the behavior of the higher strength 

concrete is similar to that of Normal-strength concrete. 

Shioya (1989) conducted a number of tests on large-scale beams in 

which the influence of member depth and aggregate size on shear strength 

was investigated. In this study, lightly reinforced concrete beams containing 

no transverse reinforcement were tested under a uniformly distributed load. 

The beam depths in this experimental program ranged from 100 mm to 3000 

mm. Shioya found that the shear stress at failure decreased as the member 

size increased and as the aggregate size decreased. 

Stanik (1998) performed tests on a wide range of beam specimens at 

the University of Toronto. The specimens tested had varying depths ‘d’, 

ranging from 125 mm to 1000 mm, varying amounts of longitudinal steel 

(0.76% to 1.31%) as well as varying concrete strength, ranging from 37 MPa 

to 99 MPa. The longitudinal reinforcement was distributed in some specimens 

along the sides and some specimens contained the minimum amount of 

transverse reinforcement recommended by the CSA Standard (CSA 1994). In 

the series with longitudinal bars along the sides, a set of wider beams was 

also tested. The purpose was to evaluate the influence of the amount, as well 

as the distribution of the longitudinal steel on the shear strength. Stanik 

found that the size effect is very pronounced in lightly reinforced deep 

members. Members containing the minimum amount of transverse 

reinforcement or side distributed steel performed better than their 

counterparts with only bottom longitudinal reinforcing bars.  

Deep members with side distributed reinforcement performed nearly as 

well as the shallow members containing only bottom longitudinal 

reinforcement. As well, the wider members containing side distributed steel 

were weaker than the narrower ones with similar side distributed steel. 

Stanik found very little gain in shear strength with the use of higher concrete 
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strengths. Stanik used the modified compression field theory proposed by the 

CSA Standard (CSA 1994) to predict the response of his test beams. He found 

good agreement between his experimental results and these predictions. 

Stanik also performed a comparison between his experimental results and the 

ACI Code (ACI committee 318-1995) expressions. He found that the ACI 

expressions substantially overestimate the shear contribution of concrete, 

notably in the deeper members. 

3.8 SIZE EFFECT PARAMETERS CONSIDERED FOR SHEAR STRENGTH 

AND CRACK WIDTH FOR MODERATE DEEP BEAM  

Many researchers have considered various size effect parameters 

for Strength and flexure crack in RCC and Pre-stressed members. While a 

very little work had been done for Shear strength of moderate deep beam 

using size effect parameter incorporating fibers in it. List of size effect 

parameters are given below: 

• Longitudinal reinforcement ratio (ρt) 

• Shear reinforcement ratio (ρw) 

• Steel rebar arrangement 

• Grade of steel (fy) 

• Grade of concrete (Fck) 

• Steel stress (fs) 

• Strain in rebar (εs) 

• Strain in concrete at level of reinforcement (εc) 

• Concrete cover (Cc) 

• Bond factor (bond between steel and concrete at level of reinforcement) 

• Duration of load application 

• Modular ratio (m) 

• Diameter of bar to Percentage of Reinforcement (Φ/ρ) 

• Strain distribution factor 

• Shear span to depth ratio (a/d) 

• Effective length to overall depth ratio (Leff/D) 

• Modulus of Elasticity of steel (Es) 

• Fiber aspect ratio (diameter/length) 
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• % of fiber reinforcement 

• Depth of neutral axis (xu) 

• Maximum bar spacing (s). 

 

 

 


