ABBRIVATIONS

Area of Tensile reinforcement in mm² Ast Α Area of individual web reinforcement bar (mm) а Shear span of the beam b,bw Width of beam (mm) Depth of Neutral axis (mm) $\mathbf{x}_{\mathbf{u}}$ Cc Concrete cover C1 Empirical coefficient equal to 1.4 and 1.0 for Normal weight and Light weight concrete respectively C2Empirical coefficient equal to 130 N/mrn² for Plain round bars and 300 N/mm² for Deformed bars d Effective depth of beam (mm) Maximum size of coarse aggregate da $d_{\rm c}$ Distance from centroid of reinforcement to bottom of beam (mm) df Diameter of Fiber in mm Overall depth of the beam in mm *D*, h f_v Yield stress of steel in N/mm² Characteristic compressive strength of concrete in N/mm² fck f_s Tensile stress in reinforcement (N/mm²) Compressive strength of cylinder in MPa f_c' f t Split cylinder tensile strength (N/mm²) 1f Length of Fiber 1. Effective span of the beam Ultimate shear crack length (mm) Lc Modular ratio m Percentage of Steel ($\frac{Ast}{hd}x$ 100%) pt Maximum bar spacing S The depth at which an individual web bar intersects the potential цi diagonal crack

- V Ultimate shear strength of the beam (N)
- V_c Shear resistant offered by concrete Strength in N
- V_p Shear resistant offered by restressing of concrete
- Vs Shear resistant offered by stirrups (vertical reinforcement)
- Vf Volume of Fiber in %
- Wc First Crack Load
- W_{max} Maximum crack width (mm)
- Wu Ultimate Load
- A_a $A_e/_n$ = effective area of concrete around steel bar (mm²)
- a/d Shear span to depth ratio
- $\frac{lf}{df}$ Aspect ratio of fiber
- *l*/D Effective length to Depth ratio
 - β 1.17 \sqrt{fck} for Steel fibers
 - β 0.07 \sqrt{fck} for Monofilament Polypropylene fibers
 - β Size effect constant
- ϕ_c Resistant factor for concrete (taken as 0.65)
- Φ Diameter of bar (mm)
- $\rho_t \quad \ \ Longitudinal \ reinforcement \ ratio$
- ρ_w Shear reinforcement ratio
- ε_s Strain in rebar
- ε_c Strain in concrete at level of reinforcement
- λ Factor used for light weight concrete (for normal concrete taken as unity)
- λο Constant