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ABSTRACT 

It is unthinkable for a structural engineer today to consider the analysis 

of any structure without calling on the aid of the computer to carry out 

the laborious and lengthy calculations that are often involved in the 

analysis. Basically there are two different types of method, named based 

on the primary unknowns, which finally determine the complete solution. 

In the force or flexibility approach, the redundant forces are chosen as the 

unknowns whereas in the displacement or stiffness method the 

displacements of the joints of the structure are considered as unknowns.  

Out of these two methods, Stiffness method is easier to perform and 

therefore it has become more popular. Both flexibility and stiffness 

approaches, however, are indirect approaches because the internal forces 

are not considered as primary unknowns directly in either method, but 

they are calculated from redundants in flexibility method and from nodal 

displacements in stiffness method. 

Recently a new formulation, which is based on the Direct Force 

Determination, is referred in the literature as Integrated Force Method 

(IFM). It couples equilibrium equations and compatibility conditions in a 

single matrix and thus gives the internal forces without an intermediate 

step of finding the displacements or redundants. It is independent of 

redundant selection and hence it is conducive to programming. Also, this 

method is not only applicable to framed structures but also to continuum 

structures like the well known Finite Element Method.  

To explore further the IFM, which has been mainly developed by Patnaik 

and his team at Ohio Aerospace Institute, the method is checked in the 

present work for its versatility by solving a variety of skeletal (1D) and 

surface (2D) structure problems. Formulation is developed for a number 

of 1D elements to handle pinned and rigid jointed plane and space 

structures whereas to deal with plane stress, plane strain, and plate 

bending problems a number of 2D elements are developed by representing 

both stress and displacement variations with suitable functions 



 

 

simultaneously. For example, rectangular element designated as 

RECT_5F_8D has five forces and eight displacements as unknowns and 

their variation inside the element is expressed with separate functions.  

A modified form of IFM, named as Dual Integrated Force Method (DIFM), 

is also developed where displacements are considered as primary 

unknowns and then using the same internal forces are calculated. 

IFM based formulation is developed to analyse both 1D and 2D structures 

under static and dynamic loading.  A rectangular element having 9 forces 

and 12 displacements (RECT_9F_12D) as unknowns is proposed for the 

plate bending problems of both isotropic and orthotropic material. A 

variety of problems are attempted and where possible results are 

compared with the available classical and/or numerical solutions. To deal 

with the axisymmetric circular and annular plate bending problems, an 

element named as CIRC_2F_4D element is also formulated and validated 

by solving a variety of problems under different loading and support 

conditions. 

Integrated Force based methodology is also extended to deal with 1D and 

2D problems of stability analysis. Geometric stiffness matrix is developed 

to evaluate critical buckling load of beam, truss, frame and plate 

problems. Results are found in good agreement with the available 

solutions. 

For carrying out the above work, Pre-, Main-and Post-processors are 

developed in Visual Basic 6 and Visual Basic.NET. Matlab software is also 

extensively used for numerical and graphical processing. Moment 

contours and deflection profiles are also plotted to facilitate easy 

interpretation of results and to make the whole exercise of finding the 

solution as attractive as possible.   
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NOTATIONS AND ABREVIATIONS 

 

A  Cross sectional area 

AR  Aspect ratio 

a         Size of element in x - direction 

[A]   Co-ordinate matrix 

Bccs  Boundary compatibility conditions 

b  Size of element in y - direction 

       ,             Coefficients corresponding to equilibrium matrix 

[B]   Equilibrium matrix 

[Be]  Basic element equilibrium matrix 

[BF]  Matrix based coordinates of forward end 

CCmatrix Product of [C] and [G] matrices in Matlab  

CCs  Compatibility conditions 

       ,        ,     Coefficients corresponding to equilibrium matrix 

[C]  Compatibility matrix  

DDRs  Displacement deformation relations 

DR  Displacement ratio 

ddof  Displacement degrees of freedom 

[D]  Material matrix 

[D]DIFM Dual matrix 

[Dps]   Material matrix for plane strain material 

E  Modulus of elasticity 

EEs  Equilibrium equations 

Ex , Ey  Modulus of elasticity along x -and -y directions 

FDRs  Force deformation relations 

fdof  Force degrees of freedom 

{F}  Internal force vector 

GJ  Torsional rigidity of member 

Gmatrix           [G] matrix in Matlab 



 

 

Gxy  Shear Modulus in xy plane 

[G]  Associated flexibility matrix 

[Ge]  Elemental flexibility matrix 

[Ge
ps]   Elemental flexibility matrix for plane strain  

I  Moment of inertia 

[J]  Coefficient matrix equals to [S-1]T 

[Kg]  Geometric stiffness matrix 

[Kge]  Geometric element stiffness matrix 

L  Length of member 

L1, L2, L3 Shape function in area coordinate system  

[L]  Operator matrix 

MJGmatrix Product of [M], [J] and [G] matrices 

MDNLM  Direct Nodal Lumping Mass 

Mxx, Myy Moments along x - and y- directions 

Mxy  Torsional moment in x-y plane 

m  Number of displacement degrees of freedom 

mo  Lumped mass 

[MC]  Consistent mass matrix 

[ML]  Lumped Mass Matrix or Mmatrix in Matlab 

Nx, Ny  In-plane forces along x- and y- directions 

n  Number of force degrees of freedom 

[N]  Shape function matrix 

Pcr  Critical buckling load 

Pmatrix  {P} vector in Matlab 

{P}  Load vector 

qo(r, ɵ) Transverse loading on circular plate 

r  Radius in polar coordinate system 

  ,    ,       Coefficients corresponding to respective directions  

Sinv  [S]-1 

[S]  Global equilibrium matrix 

[Sb]   Stability matrix 

[Smatrix] [S] matrix in Matlab 



 

 

T  Torque in the member 

t  Thickness of element 

U  Internal strain energy 

u, v  Nodal displacements along x- and y- directions 

[Y]  Stress interpolation function matrix 

z.cMatrix [C] matrix 

z.cTransposeB  Product of [C] and [B]T 

[Z]  Strain linking matrix 

    Coefficient corresponding to angle α 

{β}  Deformation vector 

δL  Extension in the member 

{δ}  Displacement Vector 

ε  Strain   

ɵx, ɵy  Rotations along x – and- y directions 

[λ]  Transformation matrix  

ϕxy  Polynomial function 

σr  Radial stress in curved member 

σx , σy  Stresses in  x – and- y directions  

σɵ  Tangential stress in curved member 

                 Shear stress in xy plane 

γ  Poisson’s ratio 

ω11  Frequency of first mode 

ωIFM  IFM based frequency  

ωexact  Exact Value of frequency 
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CHAPTER 1 

    INTRODUCTION 

1.1 MODERN METHODS OF STRUCTURAL ANALYSIS 

Structural analysis is concerned with the determination of the forces 

(stresses) and displacements (strains) experienced by the structure under 

the loading. The basic requirements to be satisfied by any method of analysis 

are the equilibrium between the internal stresses and the external loads, the 

compatibility of displacements at the joints and the satisfaction of the 

prescribed force or deformation conditions at the supports.  

Till 1930s the only means of solving indeterminate structures was to 

formulate simultaneous equations using slope deflection equation or its 

variation. Without the relaxation method or computers which were not 

known till then, the engineer had a formidable task solving large number of 

these equations and indeterminate structures. The moment distribution 

method of Hardy Cross in 1930 provided a spurt and the industry saw a 

great leap. Still many structures were beyond this method. Rigorous 

methods for solution of multistoried buildings with sway, for example, 

though within reach involved a formidable task. Air craft structures posed 

an even more difficult task. 

It was only after World War II that computers came into the field. It 

demanded a fresh look at the more “Exact” methods of computation in 

favour of iteration method such as moment distribution method. With the 

development of the digital computer, matrix notations and algebra came to 

be used in the organization of calculations. By formulating the tools of 

matrix structural analysis in a mathematically consistent fashion, the 

analyst achieves a systematic approach that is convenient for automatic 

computation. 
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Matrix methods afford the structural analysis of a class of problems to be 

represented as a series of algebraic operations on matrices representing force 

and displacement groups, and thus permits programming in terms of these 

symbols that are to be substituted later by numerical values. Thus by 

changing numerical data, solutions of structures of different geometry and 

loading can readily be obtained. Therefore one can develop general program 

for a given class of structures such as pin jointed frames, plane frames, etc, 

without any specific geometry of the structure or loading in view. From the 

practical view point of design office, the power of such computations is 

immense as general purpose program once written out and tested together 

with a powerful computational services, it can be used to solve a variety of 

problems.  

Basically there are two different types of matrix methods to analyse 

structures, namely force and displacement methods. These are frequently 

called compatibility method and equilibrium method respectively. Also the 

alternative names, flexibility method and stiffness method are equally 

popular. The names force and displacement methods are based on the 

features that certain force or displacement variables finally determine the 

solution. When forces are used as variable, equilibrium is satisfied first and 

the requirement of compatibility are used as conditions to determine the 

unknown force variables. When displacements are chosen as variables, the 

compatibility requirements are satisfied first and the requirements of 

equilibrium form the necessary equations to determine the displacement 

variables.  

Any approach of analysis, be it a force or displacement approach, breaks up 

the total effort in to a number of steps. The analysis proceeds from the part 

to whole. The analysis procedure essentially consists of two steps: (i) Member 

analysis, and (ii) Structural analysis. The first step is the study of the 

member itself as an independent body. Properties such as stiffness or 
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flexibility, which are required in the second stage are determined. The 

second step then consists of the analysis of the assembly of such members. 

In the first step certain displacement or force parameters are taken as 

unknowns and the member analysis is formulated in terms of these 

unknowns. The second step determines the set of all such unknowns. This 

step involves the knowledge of structural connectivity and from the 

computational viewpoint is a major issue. 

As mentioned above both flexibility and stiffness methods lead to a set of 

simultaneous equations to be solved. The number of unknowns in the 

flexibility method is generally smaller. However there is some arbitrariness in 

the force approach in the sense that the analyst has certain freedom to 

choose the set of force unknowns. The displacement approach, however, is 

more definite in its steps (without any alternatives) and thus becomes easier 

from the point of view of developing general purpose programs. Some 

analysts on the other hand, consider this a disadvantage and prefer the 

flexibility method since it offers freedom in the selection of the redundants.   

In practice one is required to analyse not only skeletal structures but also 

continuum structures such as plate and shell structures. In continuum 

structures the material is continuously distributed over the whole structure 

and not concentrated along discrete lines constituting individual members. 

In other words in a continuum structure, which may be a surface structure 

(two dimensional structure) or solid structure (three dimensional structure), 

there are no physically recognizable members or joints.  If the stiffness 

method is to be adopted for the analysis of such structures it is obviously 

necessary to imagine that the structure is assembled form discrete elements 

called finite elements connected at discrete joints called as nodes. It is of 

course necessary to ensure that the structure assembled from the finite 

elements satisfies the basic equilibrium and compatibility requirements. 



 

4 

 

 

An important feature of the finite element method (FEM), which sets it apart 

from other approximate numerical methods, is its ability to formulate 

solutions for each element before putting them together to represent the 

entire problem. In essence, a complex problem reduces to considering a 

series of greatly simplified problems. Another advantage of the FEM is the 

variety of ways in which one can formulate the properties of individual 

elements. Out of the various approaches available to formulate the element 

properties, direct approach and variational approach are generally used for 

structural engineering problems. While direct approach can be used to 

derive properties of simple (1D) elements i.e. members of framed structures, 

the variational approach can be used to derive properties of both simple (1D) 

and sophisticated (2D and 3D) element shapes. 

The variational approach relies on the calculus of variations and involves 

minimization of a function. For problems of solid mechanics, the functional 

turns out to be the potential energy, the complimentary energy or some 

derivatives of these, such as the Reissner variational principle. Following are 

the variational approaches available for deriving the element properties. 

The displacement based FEM employs the principle of minimum potential 

energy analogous to the principle of virtual displacement. A displacement 

function is assumed for each element. Compatibility of displacement within 

the element and across the interelement boundaries has to be satisfied.  

In the force based FE approach, principle of minimum complimentary energy 

analogous to the principle of virtual forces is employed. An equilibrium field 

is assumed within the element in such a way so as to satisfy internal 

equilibrium and continuity of stresses between the elements. 

In the mixed method, which is based on the Hellinger-Reissner variational 

principle, both displacements and stress fields are assumed separately for 
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each element and these have to be continuous within the element and 

between the elements. 

In the hybrid method, stress distributions are assumed within the element 

and displacement distributions are assumed along the boundaries of the 

element. Both internal equilibrium and compatibility of displacements along 

inter element boundaries are to be satisfied. 

Among the various approaches discussed above, the displacement 

formulation is the most popular and widely used for structural problems 

because of its simplicity and easy applicability to a variety of problems.  

1.2 FLEXIBILITY IN FORCE BASED METHOD 

The fundamental equation in the matrix form for the flexibility method is {D} 

= [F]{A}, which states that the displacements can be expressed in terms of 

actions by the formulation of flexibility matrix [F] that represents 

displacements due to the unit values of the actions. 

For Statically indeterminate structures, the displacements can be obtained 

by super-imposing those due to loads and those due to redundants for the 

displacements at the release where the redundants acts, the following 

equation can be written 

{DQ} = {DQL} + [F]{Q}                           … (1.1) 

where the column matrix {DQ} represents the actual displacements at the 

releases that are either prescribed or known, {DQL} represents the 

displacements corresponding to redundants in the released structure due to  

the actual loads, and [F] is a square flexibility matrix representing the 

displacements at the releases in the released structure due to unit values of 

the redundants {Q}. 



 

6 

 

 

If a computer is available for use, one can combine system analysis and 

member analysis by analyzing the system through a member approach. 

Matrix formulation allows to develop the necessary flexibility matrices by 

first considering the flexibilities of the individual members and then 

combining these to analyse the system - including members- as a whole. In 

the formalized version of the flexibility method use is made of transfer 

matrices in finding {DQL} and [F] and compatibility equation is expressed as  

 {DQ} = [AT
MQ][FM][AML] + [AT

MQ][FM][AMQ]{Q}                       … (1.2) 

Where {AML} and {AMQ} are known as transfer matrices and these represent 

respectively member end action due to actual loading and unit redundants, 

and [FM] is known as member flexibility matrix. 

There is considerable freedom in the manner one can generate compatibility 

equations in the formalized approach of flexibility method. Six different 

approaches which differ mainly in the formulation of {DQL} and [F] are 

discussed below. 

1.2.1 Conventional Approach 

The approach described by Gere and Weaver [1] is called here as 

conventional approach. In this approach the compatibility equation is used 

exactly in the manner as given in Eq. (1.2). After selecting the suitable 

released structure the displacements are obtained with the help of given 

equation as 

{DQL} = [AT
MQ][FM][AML] and,  [F] = [AT

MQ][FM][AMQ]      … (1.3) 

The determination of transfer matrices [AMQ] and [AML] requires that the 

released structure be analysed by statics for unit values of redundants and 

also for the combined joint loads. For each member the size of [AMQ], [AML] 

and [FM] depends upon the internal actions considered for the member. 
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These matrices are formed for the whole structure from the submatrices 

containing the contribution of individual members. The choice of the 

redundants greatly influence the amount of computational work required for 

the generation of the transfer matrices and because of the multiple choices 

in the selection of redundants one can not generate these matrices 

automatically through the computer. i.e. one has to supply these matrices  

as input to the computer. Moreover, most of the elements of the flexibility 

matrix are nonzero in this approach unless the released structure is chosen 

to ensure localized phenomena. 

1.2.2 Connection Matrix Approach 

The approach which requires the use of connection matrix in the generation 

of {DQL} and [F] matrices is called here as connection matrix approach [2]. 

The connection matrix is generated by writing the force equilibrium equation 

at each joint between the applied external forces and the member forces and 

discarding all rows corresponding to known displacements and thus 

introducing the boundary conditions. This matrix relates member forces to 

given joint forces. Therefore it is known as connection matrix [C]. The 

numbers of excess columns than the numbers in this connection matrix 

automatically represents the indeterminacy of structure. For the generation 

of [C] matrix, a translation matrix is required. For the generation of [AMQ] 

and [AML] matrces, proper partition is made for these in the connection 

matrix. Therefore, there is no need to divide the method into two steps i.e. 

one for the determinate structure and the other for the indeterminate 

structure. After the selection of redundants, the rearrangement of columns 

in [C] matrix and [CI] and [CII] is made. From which [AI] and [AII] are derived. 

From [AI] and [AII] by simply adding zero and identity matrix, one can obtain 

the [AMQ] and [AML] matrices.   

The proper selection of redundants is important as it effects the stability and 

accuracy requirements. The redundants are selected such that this matrix 

becomes sparse, banded and well conditioned. The sparseness can be 
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achieved, if attention is paid to the fact that a force in the direction of one 

redundant should not introduce displacements in the direction of all other 

redundants or its effect must be as localized as possible. The banded 

property which economizes memory space could be achieved by careful 

selection and numbering of the redundants. A well conditioned matrix can 

be obtained if redundants cause larger displacements in their own direction 

than in the direction of the other redundants. In connection matrix method 

displacements and member end actions are represented in global co-ordinate 

system. The method of connection matrix is advantageous only when the 

inverted form of the [C], or alternatively [AMQ] and [AML] can be set up directly 

but this is possible only in very few cases. 

 

1.2.3 Subframe Approach 

In the subframe approach, given by Shaw [3], for the generation of [AMQ] 

matrix i.e. Self equilibrating force system matrix the structure is broken up 

into small subframes. Every subframe is cut at suitable places and 

redundants are applied. Bending moment diagrams are drawn for all 

redundants and these diagrams are used to write [AMQ] matrix. This method 

has advantage that no inversion of connection matrix is required. Small 

subframe prevents spreading of redundant forces on more members and 

hence in this approach the effects are localized. For generating [AML] matrix, 

the bending moment diagram is drawn for applied loads and then [AML] 

matrix which is also known as static equilibrium matrix is formed by noting 

member end forces from the BMD. Although the technique of subframe is 

applicable to all structures weather fixed or hinged footed but it requires too 

many diagrams to be drawn and hence much work is to be done manually 

before making use of the computer for the analysis. 

1.2.4 Rank Force Approach 

The most significant difference in the stiffness and flexibility method is that 

one has to prepare more input data when adopting the flexibility approach. 
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The additional input consists of manually generating the basic redundant 

load systems which initially one has to decide whether or not the structure is 

redundant and, if so, to what degree. A proper set of redundancies must 

then be selected. For large size problems, these requirements are very time 

consuming, laborious and prone to error. Argyris in 1962 [4] suggested a 

method of reducing this work by considering redundant subsystems but this 

method is applicable only for specific structural configuration and cannot be 

used for general analysis. To remove these deficiencies a research was 

carried out at the Boeing Company and as a result of this work “the rank 

technique” was developed. This technique furnishes a method for automatic 

selection of redundancies in the matrix force method and removes the need 

to generate the basic and redundant load systems. 

An automated structural analysis system which adopts the force approach 

and incorporates the rank technique was developed by Robinson [5] and he 

called this technique as “The Rank Force Method”. An attractive feature of 

the method is that the structure is systematically and automatically 

investigated to determine the basic characteristics such as stability and 

indeterminacy. A consistent set of redundants is automatically isolated and 

moment diagram are not required unlike subframe approach to generate 

[AMQ] and [AML] matrices. However, the method is not simple and because of 

the complete generalization it involves large size matrices compared to the 

other methods and that is why it has not become that popular. 

1.2.5 Modified Force Approach 

A modified force approach was developed by Patel and Patodi [6] for the 

analysis of rigid jointed framed structures. The approach partly follows the 

subframe approach to retain its advantage of localized phenomena. In this 

approach a determinate structure is formed in a special manner to generate 

[AML] and use is made of small sub frames for the generation of [AMQ] matrix. 

This approach differs from the subframe approach in the generation of [AMQ] 
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matrix. The generation of [BF] matrix is carried out from the coordinates of 

forward ends of the members. Thus the labour involved in selecting the 

released structure and drawing BMD for each redundant is completely 

saved. The approach does not require any selection of redundants. These are 

automatically selected as in the rank force approach of Robinson. These new 

ideas for the generation of transfer matrices (AML and AMQ) were, however 

restricted to rigid jointed frames with encastre ends only.  To accommodate 

hinged, roller and guided support conditions, a new matrix called as “Hinge 

Matrix HM” is required and a modified form of compatibility equation is 

needed for the calculation of primary unknowns. The main drawback of this 

approach is that it requires a different treatment for pin jointed structures 

and hinged, roller and guided support conditions. 

1.2.6 Integrated Force Method 

In 1973, a new version of the force method, was developed by Patnaik [7] 

and named it “Integrated Force Method (IFM)”. It was shown in a comparison 

with early force methods that the IFM makes the automation as convenient 

as stiffness method and yet retains the known potential for superior stress 

field accuracy of finite element models that is associated with force method 

solution techniques. He also pointed out that with the further development 

IFM can become robust and versatile formulation to deal with variety of 

problems. 

1.3 SCOPE AND OBJECTIVES OF THE PRESENT WORK 

It is clear from the literature review, presented in the next chapter, that 

there are two alternative formulations available for the calculation of stresses 

directly i.e. hybrid stress method and the force method. In hybrid method, 

the inversion of the flexibility matrix is necessary in order to generate the 

element stiffness matrix, which may become a huge computational burden, 

especially if higher order stress field is strongly required.  On the other hand, 

the advantageous and attractive part of the force method is that it allows the 
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forces in the element to be considered directly as unknowns, which is very 

appealing feature to the design engineer as the properties of the members of 

structures most often depend upon the member forces rather than joint 

displacements. 

In case of framed structures subjected to static loading; only problems of  

beam, plane truss and plane frame have been attempted using Integrated 

Force Method. No work has been reported in the literature for the analysis of 

space truss and space frame structures. One of the objectives of the present 

work, therefore, is to systematize and generalize the analytical work 

including the development of program for each type of skeletal structure with 

pre- and post - processing facilities using VB as programming platform. Also, 

the aim is to include the effect of secondary stresses caused by initial 

strains, temperature variation and support disturbances in the compatibility 

condition through vector of initial deformation. 

In the field of dynamic analysis, except for one problem of propped cantilever 

beam subjected to a lumped mass at the centre, no work has been reported 

in the literature for the force vibration analysis of different types of framed 

structures using IFM. Hence in the present work it is planned to extend the 

IFM to deal with other types of framed structures for force based eigen value 

analysis considering both Lumped and Consistent mass matrices including 

development of the program for the same. 

It is also clear from the literature survey that Patnaik and his team have 

developed IFM based formulation for the analysis of isotropic plane stress 

and plate bending problems. The formulation is based on selection of 

displacement functions using Langragian/Hermite or generalized 

polynomial, and proper selection of stress polynomial. One of the objectives 

of the present work is to extend the IFM to handle two dimensional problems 

of continuum structures by appropriate selection of stress and displacement 

fields and to demonstrate its applicability to a variety of plane stress, plane 
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strain and isotropic plate bending problems. It is also proposed to develop 

the formulation for different types of orthotropic plate problems using 

suitable displacement and stress polynomial functions.  

Further, the objective of present work is to develop a rectangular element 

formulation with nine force and 12 displacement degrees of freedom to deal 

with plate bending problems under different inertial properties using both 

lumped and consistent mass matrices to obtain the natural frequency, 

internal forces and mode shapes for each frequency value. 

The objective of the present work is also to develop a modified integrated 

force method known as Dual Integrated Force Method (DIFM) for variety of 

problems of framed and continuum structures and to compare, where 

possible, with the known solutions to validate the proposed formulation. 

Also, one of the important objectives of the present work is to develop the 

IFM based formulation in the polar coordinates to handle different types of 

circular and annular plate bending problems and to validate the formulation 

by comparing the results with those available in the literature. 

It is also one of the objectives of the present work to carry out the buckling 

analysis of different types of beams, plane trusses and plane frames using 

Integrated Force Method. It is also planned to develop the necessary 

formulation to handle plate buckling problems. 

1.4 ORGANIZATION OF THE THESIS 

 

Chapter 1 starts with the classification of structures and brief account of 

various methods of analysis available for the same with due emphasis on 

flexibility in force based methods. After highlighting the scope and objectives 

of the present work, it gives brief account of the organization of the thesis.  
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Chapter 2 is devoted to literature survey.  Some of the major developments 

taken place in the analysis of structure in last eight decades are highlighted 

with specific reference to matrix methods, finite element method and 

integrated force method.  

In Chapter 3 concepts, methodology and variational functionals adopted in 

IFM are discussed in detail. Different issues related to compatibility 

conditions are also discussed with the emphasis on force compatibility 

conditions. Derivation of Equlibrium Equations (EE), Compatibility 

Conditions (CC) and Deformation Displacement Relations (DDR) are 

discussed. How concatenation of compatibility matrix [C] with basic 

equilibrium matrix gives global equilibrium matrix [S] is also explained.  

A new matrix based method is developed with minor modifications in the 

IFM based formulation in Chapter 4 and is named as Dual Integrated Force 

Method (DIFM). Different types of elements are formulated to facilitate 

analysis of different types of framed structures. 

Different stress functions which are required for solving different types of 2D 

in-plane problems and out of plane bending problems are discussed in 

Chapter 5. Firstly, a rectangular element (RECT_5F_8D) having 8 

displacement and 5 force degrees of freedom is discussed. Next, development 

of higher order elements by using Airy Stress Functions is explained. Also, 

force and displacement polynomials for triangular and curved elements are 

discussed.  For plate bending problems, the use of force polynomial with 

different terms and approximating the displacements using Hermitian 

formula is discussed. 

 

After highlighting some of the important features of selected environments 

for the development of the programs in Chapter 6, necessary matrices are 

derived in Chapter 7 for solving different types of framed structure problems 
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thru IFM. Computer program for plane and space structures are prepared 

using VB.NET. Results obtained are depicted in terms of internal moments 

and nodal displacements for different types of framed structures and are 

compared with the available solutions. 

Chapter 8 is devoted to dynamic analysis of various types of framed 

structures. Matrices required for dynamic analysis are formulated and a 

program is developed in VB.NET to find natural frequencies and thus the 

internal forces are calculated in addition to nodal displacements. IFM results 

are compared with the available solutions.  

 

In Chapter 9 different types of plane stress and plane strain problems are 

solved. Plate bending problems are also attempted using RECT_9F_12D 

element under different types of loading and boundary conditions. Linear 

Independent Unknown Technique is employed to calculate compatibility 

matrix [C] from the basic equilibrium matrix [B] using Matlab software.  

Computer program is also developed in VB.NET with input and output 

modules to handle different types of 2D problems. 

  

Chapter 10 is devoted to free vibration analysis of plate bending problems 

using IFM formulation. First four natural frequencies are calculated and 

internal moments and nodal displacements are worked out. The values 

calculated here for natural frequencies are validated using the standard 

available solutions in the literature. 

 

After discussing the different types of orthotropy in Chapter 11 

modifications required in the formulation to take care of material orthotropy 

are presented and a variety of problems of GFRP (Glass Fiber Reinforced 

Plastic) plate problems are solved under different boundary conditions. 

Problem of bending of Reinforced Cement Concrete Slab with double sided 

stiffened beam in only one direction is also attempted.  
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Dynamic analysis of orthotropic plates is attempted in Chapter 12. Values of 

natural frequencies are calculated using the standard Eigen operators given 

in Matlab. For the first four frequencies, internal moments and nodal 

displacements are calculated using the secondary equations.  

 

Various matrices required in IFM are formulated in polar coordinates to deal 

with axisymmetric plate problems in Chapter 13. A new element 

(CIRC_2F_4D) is developed with two force and four displacement degrees of 

freedom. A variety of circular and annular plate problems are solved and 

results are validated by comparing with the known solutions. 

 

Chapter 14 is aimed at development of IFM for the buckling problems. After 

deriving the geometric stiffness matrix, different types of problems are 

solved. It includes beam, truss and frame problems in addition to examples 

of buckling of rectangular plates. Comparison is made with the known 

solutions to validate the formulation and computer implementation. 

 

Finally, Chapter 15 highlights the conclusions and contributions of the 

present work followed by the scope for the future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1  HISTORICAL OUTLINE OF MATRIX METHODS 

The concept of framework analysis emerged during 1850-1875, due to the 

large amount of collaborative effort of Maxwell, Castigliano, Mohr and others. 

The concepts developed by them truly represent the corner stone of 

methodology of Matrix Structural Analysis (MSA), which did not take proper 

form and shape for about 80 years. Even overall progress in the development 

of theory plus analytical techniques was very slow from 1875 to 1920. This 

was due to grass-root limitation of solving a large number of algebraic 

equations required to get a large number of unknowns. The structures of 

primary interest in that period were basic pin-jointed and rigid-jointed 

structures which were mainly studied using truly force approach with force 

parameter in a member as unknown. 

In 1915, Maney in United States presented the method of Slope Deflection 

expressing the moments in terms of deflections and slopes at the rigid joints 

of framed structures. A similar idea was put forth by Ostenfield in Denmark.  

These ideas are considered as forerunners of MSA. Handling large size 

problems, was considered difficult till 1930 in both the approaches i.e., force 

and displacement based methods. Structural analysis work geared up, when 

Hardy cross in 1930 [8] introduced a method of Moment Distribution. This 

method made feasible the solution of different types of problems with various 

complexities in very easy manner, which were considered otherwise quite 

difficult using other methods.  Thus moment distribution method become a 

strong staple in structural analysis for next 25 years. 

In 1943, Courant [9] addressed the topic of theoretical and applied 

mathematics.  The equivalence between boundary value problems of partial 

differential equations on the one hand and problems of the calculus of 
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variations on the other hand was the main theme of the discussion in the 

paper. Variational formulations are fundamentally simpler to use for 

approximating extremum problems for different practical applications.  

Thus, methods emerged which could not fail to attract engineers and 

physicists; after all, the minimum principles of mechanics are more 

suggestive than the differential equations. Great successes achieved in 

applications were soon followed by further progress in the understanding of 

the theoretical background. 

In the year 1945, Southwell [10] explained how the relaxation method helps 

in converting the higher order mathematically complex problems to lower 

degree by different numerical techniques. He also suggested a new approach 

for stress calculation in frameworks by the method of relaxation.  

Later on digital computer appeared first in early 1950’s, but there real 

significance to both theory and practice did not become widely apparent 

immediately. Some of the researchers attempted codification of well 

established frame work analysis procedures in a format suited to the digital 

computer, which is known as today’s matrix format. Later on Argyris, Kelsey, 

Turner, Clough and Martin combined the concept of frame work analysis 

and continuum analysis, which resulted in the complete procedure in matrix 

format.  

The use of the so-called matrix methods is nothing but reformulation of 

existing methods and principles in matrix form, at the same time introducing 

a generalization of such methods because of the capabilities of computer 

techniques. The flexibility method is a generalization of the consistent 

deformation method that enables the engineer not only to include all 

possible types and directions of loads but also to calculate at the same time 

all the desired internal forces, reactions, and displacements. Displacements 

that are needed in this method are usually calculated by the unit load 

method. The stiffness method is a generalization and extension of the well-
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known slope deflection method that makes it possible to account not only for 

the effect of bending moment but for all types of deformations, such as those 

caused by shear, axial forces, twisting moments, and so forth. In addition, 

this method allows the determination of all member end actions and 

reactions at the same time. 

Jenen and Dill in 1944 [11], Kempner in 1945 [12], Benscoster in 1946 [13], 

Plunkett in 1949 [14] and Falkenheiner in 1953 [15] were the first to develop 

the basic principles of the matrix force method, with particular reference to 

standard orthogonal stringer sheet assemblies under loads. Falkenheiner’s 

paper included the clear statement on the importance of self equilibrating 

load systems as redundancies and also the derivation of the flexibility matrix 

for the assembled structure. The principle of least work was used in the 

derivation of the governing equations. Falkenheiner’s original contribution 

was nevertheless, more advanced than much of the subsequent work on the 

force method.  

The first person to apply the force method to the swept wing aircraft 

structure appears to have been Levy [16]. In 1947 Levy idealized the swept 

wing into an assemblage of simple structural units to which the force 

method could be applied. The idealization was more realistic than those 

previously used. Subsequently, Langefors in 1952 [17] gave another 

independent account of the force method based on minimum strain energy 

approach. Wehle and Lansing in 1952 [18] in their paper described clearly 

the basic force method and the flexibility matrix of an assembled structure. 

The discussion of redundancies was rather vague with no mention of self 

equilibrating load systems. They tabulated the flexibilities of various 

components and suggested to derive matrices by writing down and solving 

formally all the equilibrium equations with some of the internal forces taken 

as redundancies. Lang and Bisplinghoff in 1951 [19] obtained a matrix 

formulation of a strain energy analysis for a sweptback wing given previously 
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by Levy [16]. Langefors in 1955 [20] discussed very briefly the relative merits 

of the force and displacement methods. He used the matrix formulation of 

the unit load therein but in a more restricted form, and considered it as 

following from strain energy or Kron’s work [21]. Also, he proposed to solve 

highly redundant systems by splitting them into a number of subsystems, 

each of which is to be analysed separately. 

A recent modern exposition of the elements of the force method was given by 

Denke in 1954 [22], who effectively derived the matrix formulation of the 

unit load theorem, which he quoted to arise from Maxwell-Mohr approach. 

He selected as redundancies forces at hypothetical cuts by inversion of 

equilibrium conditions. Denke argued that since the strains in the Maxwell-

Mohr relations may be due to any cause, the incorporation of thermal strains 

or other initial strains is straightforward. Denke also showed how the 

procedure could be applied to certain non-linear cases [23]. 

The literature on the displacement method is not so extensive. For 

aeronautical structures the first semi-matrix scheme was proposed by Levy 

1953 [24]. He considered as components the sparse and ribs for bending and 

the cells for torsion, the stiffness of which were obtained by inversion of the 

flexibilities.  

In 1956, Livesley [25] gave the concept of automated structural design of 

structural frames in which he considered the problem of finding the lightest 

structural frame of given geometrical form. Following the development of 

geometrical analogue and an iterative method of solution, an analytic 

technique was presented which gave an exact solution to the problem 

discussed in the paper. A brief description of program developed was 

included and it was shown that with slight modification in the developed 

program it can be used to determine the collapse load of a given frame.  
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These initial contributions were followed by the work of Argyris in 1954 [26] 

and Argyris and Kelsey in 1957 [27]. Argyris and Kelsey subsequently [28] in 

their book gave a very general formulation of matrix structural theory based 

on the fundamental energy principles of elasticity. Although the work 

emphasized the force method, it also showed that the displacements, rather 

than internal forces, could be chosen as the primary unknowns of the 

structural problems. This alternative choice of unknown than brought the 

stiffness matrix into the formulation. In this early work the stiffness matrix 

was not calculated directly as in present days work, but rather was obtained 

by inverting the more familiar flexibility matrix at that time. Hence the 

stiffness method was considered as an alternative choice for solving the 

equations generated from the force method. Thus, Argyris and Kelsey 

presented a format unification of force and displacement methods using dual 

energy theorems. Although practical application of the duality proved 

ephemeral, this work systematized the concept of assembly of structural 

system equations form elemental components. 

A mixed force displacement method was proposed by Klein in 1957 [29-30] 

who presented the force displacement relations for all elements. The two 

groups of equations were solved jointly for the forces and displacements. The 

matrix formulation appeared only in the final equations. Since both forces 

and displacement were considered as unknowns, the number of unknowns 

were inevitably very high. Kron in 1959 [31] developed a theory to solve the 

complex structures by dividing the structure into number of subsystems 

which could be analysed separately. These subsystems when joined by links 

represented the static redundancies of assembly of subsystems. 

The above publications carried the traditional force and displacement 

methods to an advanced stage of development. Although the method thereby 

became applicable to wide classes of structural problems, it took several 

years for this work to become widely known outside the aircraft industry. 
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In 1966, Bazant [32] gave complete account of theoretical and historical 

development in analysis of framed structures. He also demonstrated that 

matrix analysis of framed structures consists of two major methods in which 

stiffness method is an extension of slope deflection method and flexibility 

method is an extension of consistent deformation approach. 

In 1968, Prezemieniecki [33] explained in detail the background required for 

deriving the stiffness and flexibility properties of all types of structural 

elements. He suggested various procedures for deriving the above properties 

using theorems based on virtual work and complementary work principles. 

He included various examples in his book to validate the above structural 

properties. The concept of substructure technique was also given in a 

systematic way for stiffness as well as flexibility matrix based approaches. 

The book also contains sufficient details regarding the dynamic analysis that 

is applicable to framed structures using various mass inertial properties. 

Using stiffness and flexibilities properties, different types of problems of 

vibration analysis are attempted. Concept of critical damping is also 

explained in detail accompanied with solution of problems based on damped 

structural system. Different aspects of nonlinear structural analysis are 

explained with reference to bar and beam elements using geometric stiffness 

matrix. Various important aspects of large deflection analysis using matrix 

force method are also given in his book in a systematic manner.  

2.2  FINITE ELEMENT METHODIZATION 

The finite element method had its beginning in the area of structural 

analysis. The first developments were in the aircraft industry, where 

researchers were striving to model the thin membranes of the fuselage and 

wing of a jet liner. Membrane elements were used in conjunction with the 

already established beam and frame elements. A classic paper by Turner, 

Clough, Martin and Topp appeared in the Journal of Aeronautical Science in 

1956 [34]. This marked the beginning of the analysis of large complex 
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structural systems. In 1960 Clough [35] coined the term “Finite Element 

Method” which was developed as an extension to established structural 

analysis techniques. This development is often noted as the beginning of 

modern finite element analysis. 

Two earlier classical papers in mid 1950, by Argyris & Kelsey [26] and 

Turner et al. [34] merged the initial concepts of discretized frame analysis 

and continuum analysis and kicked off the explosive developments in the 

finite element methods. Following the linear state formulation for each finite 

element, extension for practical applications have continued to include 

various field problems. 

Additional papers concerned with the basic theory appeared during the 

1960s. For example, Melosh’s doctoral work in 1963 led to a paper [36] 

placing the finite element method on the principle of minimum potential 

energy. Also in 1963, Besseling [37] presented the analogy between the 

matrix equation of structural analysis and continuous field equations of 

elasticity. The question of upper and lower bound was discussed by Venbeke 

[38] in a basic paper that introduced the alternative possibility of defining 

stress or equilibrium elements based on the principle of minimum 

complementary energy. 

Other papers further demonstrated the rich theoretical base offered by the 

variational principles for defining finite elements. Jones in 1964 [39] pointed 

out the advantages that could be secured by using Reissner’s general 

variational principle. This led to the development of mixed-element, which 

depends on assumed displacement and stresses. However, the conditions to 

be satisfied by these assumed functions are considerably less stringent than 

those required when seeking a displacement i.e. compatible or stress i.e. 

equilibrium element. Hence this approach is quite useful when certain 

complex elements are to be derived. 
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A variant of Jones theory was also published in 1964 by Pian [40]. In this 

also, element specifications are defined in terms of both displacements and 

stresses. However, the variation formulation was in terms of both the 

minimum potential and complementary energy principles. Again the added 

flexibility led to advantages of particular value for certain complex cases. 

This approach has led to what is now known as the hybrid element. 

Establishing the finite element on the variational principles led to advances 

that would have otherwise been impossible. This also permitted questions 

concerned with boundness and the convergence to be discussed with rigor. 

In addition, the variational formulation permitted a unified approach to be 

used for determining generalized nodal forces for surface tractions, body 

forces, thermal gradients, inertia forces and so on. Hence, it became possible 

to express fully the general elasticity problem in finite element terms. From a 

conceptual point of view the new theoretical foundations permitted the 

physical element to be replaced by its mathematical equivalent. The element 

thus could now be visualized as a small region of space within which the 

unknown function was to be prescribed in a simple manner. Moreover, the 

conditions to be met in choosing the function could be stated with certainty. 

This immediately lifted the method outside the borders of solid mechanics. 

These ideas and the underlying theory became widely known with the 

publication of the text by Zienkewicz and Cheung [41]. This was the first 

comprehensive treatment of the subject, and the text had a far-reaching 

influence on subsequent developments.  

In structural dynamics, three developments are of particular interest. The 

first was by Archer [42], who in 1963 showed how to correctly determine the 

mass matrix for distributed mass systems, when using the finite element 

method. This made the mass matrix consistent with the determination of the 

stiffness matrix and generalized nodal forces in the stiffness equation. Two 

years later Guyan [43] pointed out how the mass matrix could be reduced in 
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a manner consistent with the reduction of the assemblage stiffness matrix. 

Such reductions are invariably used in dynamics calculation since they 

permit the eigen value problem to be condensed to a numerically suitable 

size. Then Hurty in 1965 [44] presented a technique for undertaking the 

dynamic analysis of higher order structural systems. This procedure is 

based on using natural modes of vibration of structural subsystems, 

calculated in terms of displacement mode functions for the various 

components.  

The period from 1965 may be considered as golden age of finite element 

developments. Any attempt at cataloging this vast literature would require 

many pages. A brief account of some of the summary papers along with 

papers which are related to present work is given below. 

In 1966, Burton [45] handled a two-dimensional problem of equilibrium of a 

perfectly elastic body with coupling stresses criteria. The general form of 

solution of the problem in the case of an orthotropic medium  indicated that 

there exists a close analogy between the equations governing the behavior of 

a plane rectangular lattice composed of rigidly interconnected elastic beams, 

and the general set of equations of the two-dimensional couple-stress theory 

for certain orthotropic bodies. 

In 1968, Fellipa and Clough [46] formulated a fully compatible general 

quadrilateral plate bending element. The element was assembled from four 

partially constrained linear curvature compatible triangles, arranged such 

that no mid-side nodes occur on the external edges of the quadrilateral; 

thus, the resulting element had only 12 DOF. Also they described the 

modifications required for incorporating shear distortion. Results were 

presented for static analyses with and without shear distortion, plate 

vibration and plate buckling studies; all performed with this quadrilateral 

element. They claimed it to be the most efficient bending element. 
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Gallagher in 1969 presented detailed account of contributions to two 

important subject areas. One treats plates and shells [47] while the other 

discusses the finite element method’s contributions to problems of stability 

analysis [48]. 

In 1972, Neale, et. al. [49] formulated triangular and rectangular elements, 

both based on the hybrid formulation for the analysis of plate bending 

problems. Static and dynamic analyses were performed for which results 

were presented to prove superiority of the hybrid elements over the 

equivalent displacement elements. Results were also compared with those 

obtained with elements having strain degrees of freedom. 

In 1975, Kikuchi [50], studied convergence rates of the ACM non-conforming 

scheme for thin plate bending elements with the shape of the domain as 

rectangular and the exact solution being sufficiently smooth. Error bounds 

of moments and deflection and error of eigen value were found of the order of 

square of the maximum mesh size. This result was also confirmed by 

numerical experimentation.  

Also in 1975, Anderson [51] formulated a Mixed isoparametric element for 

the Saint-Venant torsion problem of laminated and anisotropic bars. Both 

triangular and quadrilateral elements were considered for the analysis 

purpose. The “generalized” element stiffness matrix was obtained by using a 

modified form of the Hellinger - Reissner mixed variational principle. The 

working of the mixed iso-parametric elements was demonstrated by means 

of numerical examples. 

In 1978, Gupta and Rao [52] developed the stiffness and mass matrices for a 

twisted beam element having linearly varying breadth and depth. The angle 

of twist was assumed to vary linearly along the length of the beam. The 

effects of shear deformation and rotary inertia were considered in deriving 

the elemental matrices. The first four natural frequencies and mode shapes 

were calculated for cantilever beams of various depth and breadth taper 
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ratios at different angles of twist. The results were compared with those 

available in literature. 

In 1985, Gallagher and Ding [53] attempted diversified application of force 

method in optimization process, based on the size variable-independence of 

the equilibrium equations in matrix format. A rational reduced basis 

reanalysis and approximate reanalysis methods were presented. Because the 

static redundancy of pin-jointed structures is often low, and the decomposed 

coefficient matrix is known, these techniques can be advantageous in the 

structural optimization process. Several truss structures were studied for 

the purpose of analysis and validation of results. 

In 1993, Argyris and Tenek [54] formulated a three-nodes layered triangular 

element constrained to comply with an assumed linear direct strain 

distribution across its thickness and including transverse shear deformation 

for bending analysis of plates. The concepts of the natural mode and matrix 

displacement methods together with decomposition and lumping ideas based 

on appropriate kinematic idealizations were combined for stiffness matrix 

derivation.  

In 1993, Wilson [55], summarized the evolution of computational and 

numerical methods for the static and dynamic analysis of finite element 

systems. The majority of the material discussed was based on the reflection 

of the personal experience of the author’s working for the past 35 years. It 

was the opinion of the author, that at the present time, the finite element 

method is far from being completely automated for complex structures. 

In 1993, Kosmatka and Friedman [56] developed an improved two noded 

beam element with appropriate stiffness, mass, and consistent matrices. 

Timoshenko beam element was developed based upon Hamilton's principle. 

Cubic and quadratic polynomials were used for the transverse and rotational 

displacements respectively, where the polynomials were made 

interdependent by requiring them to satisfy the two homogeneous differential 
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equations associated with Timoshenko's beam theory.  Numerical results 

were presented to show that for short beam subjected to complex distributed 

loading the proposed element predicts shear and moment resultants and 

natural frequencies better than the existing Timoshenko beam elements. 

In 1996, Gupta and Meek [57] presented summary of the works of several 

eminent authors and research workers associated with the invention of the 

analysis technique now referred to as the Finite Element  

Method.  It is believed to be an accurate record of the historical sequence of 

published papers on FEM in the international literature. The complete 

development of the ideas, which led to the method of analysis in which the 

field equations of mathematical physics are approximated over simple 

regions (triangles, quadrilaterals, tetrahedrons, etc.), and then assembled 

together so that equilibrium or continuity is satisfied at the interconnecting 

nodal points,  are presented in interesting manner by the authors. 

In 1998, Fellipa and Park [58] presented variational framework for the 

development of partitioned solution algorithms in structural mechanics. This 

framework was obtained by decomposing the discrete virtual work of 

unassembled structure into that of partitioned substructures. New aspects 

of the formulation were an explicit use of substructural rigid-body mode 

amplitudes as independent variables and direct construction of rank-

sufficient interface compatibility conditions. The resulting discrete 

variational functional was shown to be variationally complete, thus yielding 

a full rank solution matrix. Four specializations of the suggested framework 

were also discussed in detail. 

In the year 2000, Fellipa [59] gave again a historical background of major 

contribution made by Collar, Duncan, Argyris and Turner, who really worked 

hard and shaped the Matrix Based Structural Analysis. He divided the 

complete development into following three parts: (1) Formative period in 

which methodological concept were developed, (2) The period in which Matrix 
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methods assumed bewildering complexity in response to conflicting demand 

and restrictions, and (3) The period in which development of Direct Stiffness 

Method took place, through which MBSA completely morphed into the 

present implementation of structural mechanics 

In year 2005, Kikuchi [60] presented theory and examples of partial 

approximation as a modification of the displacement based FE analysis. This 

method needs various types of shape functions for different terms in the 

potential energy expression to curtail the processes in the standard 

displacement method. The theory is explained with simple example.  

In year 2006, Samuelsson and Zinenkiewicz [61] presented a brief history of 

the development of stiffness method tracing the evolution of the complete 

method for discrete type of structures i.e. trusses and frames composed of 

two noded members. Brief description is also given in the same paper for the 

application of the same method for continuum type of problems, which are 

modeled by finite difference and finite element methods. 

In year 2006, Oztorun [62] developed a FE based formulation for the static 

and dynamic analysis of linear-elastic space structures. He suggested that 

the finite element method can be efficiently used for the analysis of linear-

elastic structures with shear walls. The element considered for the study had 

six degrees of freedom at each node and an in-plane rotational degree of 

freedom, which makes it compatible with 3D beam-type finite element model. 

The rigidity coefficients of the element were determined analytically. The 

element can be used with facility for the modeling of a shear wall with the 

connections of slab components.  Convergence studies were carried out on 

actual structures by using several models to check the performance of the 

rectangular finite elements. Acceptable results were obtained with coarse 

mesh and reasonable convergence was observed on the models tested.  

Kuoa et al. [63] in the year 2006, proposed a simple method for deriving the 

geometric stiffness matrix (GSM) of a three‐noded triangular plate element 
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(TPE). It was found that when the GSM of the element is combined into the 

global matrix, the structural stiffness matrix becomes symmetric and 

satisfies both the rigid body requirements and incremental force and 

moment equilibrium (IFE) conditions. In addition, the advantage is that the 

derivation of the matrix needs only simple matrix operations without 

cumbersome non‐linear virtual strain energy derivations and tedious 

numerical integrations.  

In 2007, Kaveh et al. [64] developed force based methods which were found 

highly efficient for the generation of sparse and banded null bases and 

flexibility matrices. However, these methods require special considerations 

when the support conditions are indeterminate. These considerations with 

special methods were presented in the paper, which lead to efficient 

utilization of force method for indeterminate support conditions with no 

substantial decrease in sparsity. 

In 2011, Lang and Yan [65] found that finding deformation and internal 

force of rectangular plate under complex boundary and free corner 

supported condition is comparatively complicated.  Based on the elastic thin 

plate flexure theory, the rectangular plate with complex boundary was firstly 

divided into several simple rectangular elements. Introducing the concept of 

generalized supporting edge in the common boundary, the unknown 

coefficients of the plate bending functions were determined by satisfying the 

boundary conditions and thus the geometric compatibility conditions, and 

the analytic solution of the original plate was finally obtained. It provides a 

valuable reference for the inner force analysis and engineering design of 

rectangular plates under various edge and loading conditions. 

2.3  EVOLUTION OF INTEGRATED FORCE METHOD 

A novel formulation was developed in 1973 by Patnaik [7] for the analysis of 

discrete structures by considering member forces as primary unknowns 



 

30 

 

 

instead of conventional way of treating the redundants as prime unknowns. 

He named the method as Integrated Force Method (IFM). Illustrative 

examples for the determination of forces and displacements were presented 

for pin-jointed and rigid connected frame structures for various load 

conditions. 

In 1977, Patnaik and Yadagiri [66] developed IFM for frequency analysis of 

spring systems, beams and trusses. In the paper, this concept of eigen 

analyses was explored considering force mode shape as primary variable.  

After calculating the frequency, internal forces and moments were calculated 

using the homogenous equation by substituting each frequency value. 

Utilizing the force mode shape concept, direct design of structures was 

attempted by keeping the frequency constrains.  

In 1984, Patnaik and Joseph [67] developed two schemes for the generation 

of compatibility conditions for discrete structures which were used in IFM. 

The first scheme was based on displacement deformation relation and was 

recommended for the basic analysis of structures. The second scheme was 

developed using Linear Programming (LP), in which Equilibrium Equations 

(EEs) were used as constraints and linearized internal strain energy of 

structure as objective function. Linear programming had advantage of 

sparsity of coefficient matrix. Both the schemes were included in IFM and 

thus using the same different problems were attempted 

 

In the year 1986, Patnaik [68] compared the IFM with the Standard Force 

Method (SFM). Standard Force Method was considered as solution technique 

as a part of IFM for static analysis. IFM bypasses the popular concept of 

selection of redundant. IFM was applied to twenty bay truss and cantilever 

plate problems. It has been observed in the paper that the numerical 

stability of IFM is much better and superior than the SFM. 
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In the year 1989, Patnaik [69] extended the application of Integrated Force 

Method to structural optimization problems, in which prior knowledge of 

design variable was necessary. In the paper two methods were presented; 

first was of Linear Programming and other was based on fully utilized design 

concept. The Nonlinear Mathematical Programming (NLP) was elegantly 

removed without disturbing the main aspect which resulted in considerable 

reduction in computational time.  

 

Nagabhushanam and Patnaik [70] in the year 1989 explained the basic 

methodology of IFM, in which development of equilibrium equation and 

compatibility conditions were explained in detail.  The generation of EEs was 

very simple, and straightforward while the development of CCs was intricate. 

They considered both the conditions i.e. field and boundary compatibility 

conditions with applications to FE based problems. The key feature in the 

development of compatibility conditions was based on the concept of node 

determinacy, which was used to reduce the complexity of the displacement 

deformation relation. It also helped to reduce the mathematical complexity 

by eliminating the node at intermediate level. 

 

In the year 1990, Patnaik et al. [71] applied IFM to plane stress and plate 

bending problems of deep cantilever beam and clamped plate subjected 

central point loading. Software named as GIFT was developed based on IFM 

and displacement based modified approach which was named as IFMD. The 

same problems were solved by commercially available software “MSc-

NASTRAN”, which was based on displacement based FE approach and 

another software “NHOST”, which was based on mixed method. IMF with 

simultaneous emphasis on stress equilibrium and strain compatibility gave 

acceptable solutions even for coarser discretization.  

 

In the year 1990, Patnaik and Satish [72] used the Boundary Compatibility 

Conditions (BCCs) that geared the force method and brought up IFM upto 
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the level of stiffness method. Based on the new concept and theoretical 

development of BCCs novel formulation, various problems of static and 

dynamic analysis of framed and continuum structures were attempted which 

provided quite accurate results.  

 

In the year 1996, Kaljevic et al. [73] explored the possibility of finding 

secondary stresses in beams and circular annulus by using IFM. The initial 

strain was directly incorporated into the compatibility conditions using 

vector of initial deformation. Two problems were successfully attempted i.e. 

support settlement in two span continuous beam and thermal strain effect in 

circular annulus. 

 

In the year 1996, Kaljevic et al. [74] developed triangular and quadrilateral 

elements with necessary displacements and stress fields. Elements were 

developed by discretizing the potential and complimentary strain energies. 

The displacement field was approximated using the Lagrange’s, Hermitian’s 

and generalized coordinate systems. The stress field was approximated by 

using the complete polynomial of correct order. Airy’s stress theory was 

explored for its constant, linear, quadratic and cubic stress fields which were 

used in IFM. The resulting matrices were also checked for equations of 

equilibrium and conditions of compatibility. The elements were insensitive to 

the orientation from local to global axis. Elements having large number of 

unknowns in the stress field increased the size of matrices and finally to 

work out the solution became cumbersome. Thus, in the same paper 

different schemes were discussed to reduce the number of unknowns 

without disturbing the accuracy.  For comparison purpose, quadratic, linear 

and constant fileds were assumed. Various examples were considered to 

validate the developed library of 2D elements. The results were checked and 

verified with the available solutions. 
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A two dimensional beam element having eight displacement degrees of 

freedom and five force degrees of freedom was used in the year 1997, by 

Patnaik et al. [75] for frequency analysis by using IFM and IFMD. Two 

lumping mass were considered at extreme nodes for which force mode shape 

based frequency analysis was carried out. From the frequency vectors, 

internal forces and mode shapes were worked out. Solutions for frequencies 

and force mode shapes were compared with the standard displacement 

based eigen value analysis and analytical solutions.  

 

In the year 2004, Patnaik et al. [76] gave an account of theoretical 

development with various numerical examples of framed and continuum 

structures. It was just a summary of the work done by Patnaik and his team 

on IFM till that year.  

  

In the year 2005, Dhananjaya et al. [77] presented a formulation of a 2D 

element based on Mindlin - Reissner theory with element having 12 

displacement degrees of freedom and 9 force degrees of freedom using IFM. 

The performance of the element was checked by solving different benchmark 

problems. Results for deflection and internal moments were checked by the 

exact solution and displacement based FE method; a good agreement was 

indicated.  

 

Also, in 2005, Dhananjaya et al. [78] extended IFM to laminated composite 

plate bending problems. A quadrilateral element having total 20 

displacement degrees of freedom and 16 force degrees of freedom was 

developed including shear deformation theory. Simply supported plates 

under central point load and uniformly distributed loading were considered 

for the analysis purpose. Different discretization schemes were used for 

checking the accuracy and convergence with reference to an exact solution. 
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In the year 2005, Dhananjaya et al.[79] also developed a general purpose 

program for automatic generation of the equilibrium and flexibility matrices 

which were based on Kirchoff’s and Mindlin-Reissner’s plate bending theory. 

Using the equilibrium and flexibility matrices for triangular, rectangular and 

quadrilateral elements, different types of thin and thick plate bending 

problems were attempted by using the IFM formulation. The performance of 

the developed element was evaluated for its accuracy and convergence and it 

was found satisfactory. 

Further, in the year 2005, Dhananjaya et al. [80] developed closed form 

equilibrium and flexibility matrices for four noded and eight noded plate 

bending elements. The necessary matrices were developed by discretizing the 

different strain energies required. Numerous standard plate bending 

problems were solved to get results for deflections and internal moments; a 

good agreement was indicated, with the  available solutions. 

In the year 2006, Patnaik and Pai [81] formulated the boundary 

compatibility conditions in the incomplete form of Beltarmi’s Michells 

formulation. It is now recognized as “Completed Beltrami’s Michell’s 

Formulation (CBMF)”. Using this concept different problems of circular 

boundary with mixed boundary conditions were efficiently attempted. 

 

Recently, in the year 2010, Dhananjaya et al. [82] developed closed form 

solutions for equilibrium and flexibility matrices by using Mindlin-Reissner’s 

theory of plate bending based on IFM. The rectangular element with 12 

displacement degrees of freedom and 9 force degrees of freedom was 

developed.  Large scale plate bending problems were attempted using IFM 

and results for deflection and moments were calculated and compared with 

the available small deflection theory. 
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CHAPTER 3 

INTEGRATED FORCE METHOD AND ITS FORMULATION 

3.1  PREAMBLE 

Navier’s table problem (1785) perhaps was the initiator of the analysis of 

indeterminate structural problems. Navier wanted to calculate the four 

reactions induced at the foot of the table, but he had only three standard 

equilibrium conditions. The problem was one degree statically indeterminate. 

He developed one additional condition i.e. deformational compatibility 

condition simply by indirect approach, as the available compatibility 

formulation was just insufficient, incomplete or adhoc in nature to deal with 

the structural mechanics and Theory of Elasticity.  

Despite of immature and insufficient compatibility condition, the 

development in structural mechanics continued but only through indirect 

approach and methods were categorized as either displacement method or 

force method. In the displacement method, the possible nodal displacements 

are constrained and by applying unit displacement in the direction of 

constrained displacement stiffness coefficients are worked out. Thus, by 

considering primary unknowns as displacements, first of all unknown joint 

displacements are calculated and then the secondary unknowns such as 

reaction and internal forces are calculated. In the force method, on the other 

hand, the complete structure is made statically determinate and 

displacements are calculated in the direction of redundants due to loading. 

By applying unit force in the direction of primary unknowns, the flexibility 

coefficients are calculated. Using governing compatibility equations, primary 

unknowns i.e, redundants, reactions and then other internal actions are 

calculated.  

Infact, the names stiffness method and flexibility method are more diffuse 

name for the displacement and force methods, respectively. Generally 
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speaking these apply when stiffness and flexibility matrices, respectively, are 

important part of the modeling and solution process.  

Now, the whole pretext regarding immature development of compatibility 

condition methods for structural mechanics and theory of elasticity can be 

understood with the help of a Pie diagram which is shown in Fig. 3.1.  

 

 

 

 

 

                                          

 

 

 

 

Fig. 3.1 Equilibrium Equations and Compatibility Conditions 

It is a fact that all the indirect methods discussed above were just developed 

by using the three quarter of the pie chart Fig. 3.1 i.e. field and boundary 

part of equilibrium equations and field part of compatibility conditions. The 

remaining component was developed by Patnaik [7], by considering one 

additional condition which is known as force compatibility condition and 

Beltrami-Michell’s formulation was converted to Complete Beltrami Mitchell’s 

formulation. Thus, Structural Mechanics and Theory of Elasticity become 

full fledge computational tool for solving the various framed and continuum 

structure problems. 

Equilibrium 
Equations 
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Using the additional condition in terms of forces with boundary compatibility 

condition, a new force method was evolved named as Integrated Force 

Method (IFM), which can complement all the available indirect methods.  The 

IFM is a relatively young approach for the analysis of indeterminate 

structures, which makes use of both the fundamental equations i.e. 

equilibrium equations (EEs) and compatibility conditions (CCs). Formerly 

there was certain degree of asymmetry in the development and utilization of 

these two concepts. The underlying principle behind the EEs is force 

balancing likewise the compliance of forces and initial deformations are 

achieved through the CCs. Augmentation of these CCs with system EEs 

leads to IFM. It is possible by taking into account of these relations to obtain 

a complete system of equations which must be satisfied by stress 

components and thus the way is open for direct determination of forces 

without solving for components of displacements. In IFM all the internal 

forces and reactions are directly treated as primary unknowns unlike the 

displacements and redundants in well-known stiffness and flexibility 

methods respectively. 

3.2 VARIATIONAL FUNCTIONALS FOR IFM 

The IFM is one of the five formulations of structural mechanics, where others 

are Flexibility Method (FM), Displacement Method (DM), Mixed Method (MM) 

and Total Method (TM). The Pie chart depicted in Fig. 3.1 shows the role of 

three parts i.e. Field, Boundary equilibrium conditions and Field 

compatibility condition in the formulation. Using the stationary condition of 

variational formulations for the IFM yields the equilibrium equations and 

compatibility conditions as well as force and displacement boundary 

conditions. Also, it yields a new set of boundary conditions which was 

identified as the boundary compatibility conditions before few years. It 

opened a new thrust for theory of elasticity based problems by considering 

force boundary condition rather than displacement boundary condition. In 
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literature, it has been named as Completed Beltrami-Mitchell Formulation 

(CBMF), or known as IFM for Theory of Elasticity.  

For a two dimensional elasticity problem, the variational functional 

  (     
   of the IFM is obtained by adding the three expressions as follows. 

                               … (3.1) 

In which the variables of the functional  , for variational purpose are the 

displacements u and redundant stresses      The BMF has two EEs and one 

CC in the field expressed in term of stresses. The variational variables of 

functional   
    are two displacements u and v and one redundant stress 

function which can be considered as Airy Stress Function ϕ that gives, 

   
   

   
 

   
 -V;      

   
   
 

   
 –V;      

     
   
 

    
                                 … (3.2) 

The internal strain energy functional represents stresses and strains which 

are treated independently in explicit form. It is expressed as  

 A(       h     

  

  
   

  

  
      

  

  
  

  

  
                     … (3.3) 

The functional B(     gives the compatibility conditions of the structural 

deformation in two dimensional elasticity. Thus the functional B(    ) can be 

written in the form as  

           h      
 

 
     

        
               … (3.4) 

This         is the complementary strain energy function in which the 

strains   and redundant stresses    are treated independently. For IFM, as 

per stress strain law, the strain is converted into stresses. So, the functional 

for a two dimensional elasticity problem can be written as  

          h  
       

 
  
 

 
 

       

 
  
    

   

 
       

                     … (3.5) 

The potential of the external force W(P, u) has following three components; 



 

39 

 

 

 W(P,u) = h      
          +         

          +          
          

    = I1 + I2 + I3             … (3.6) 

The first integral (I1) is for body forces Bx and By in the field S, second 

integral (I2) is for the portion of boundary L1 on which the external loading   

    and     is acting and remaining integral (I3) is for the boundary L2 on which 

displacements    and    are prescribed as shown in Fig. 3.2. 

  

 

 

 

Fig. 3.2 Boundary Compatibility Conditions in BVP 

Substituting Eqs. (3.3) to (3.6) in Eq.(3.1) after substituting Eq. (3.2) in Eq. 

(3.3) gives  

  
    = h     

  

  
   

  

  
      

  

  
  

  

  
        + h  

       

 
  
 

 
 

       

 
  
  

  
   

 
       

        - h      
          -        

          -         
          

                                … (3.7) 

For the stationary conditions of the VF, in which u, v and ϕ are non zero 

quantities, making their brackets including coefficients equals to zero leads 

to the following field equations and boundary conditions: 

(1) The field equilibrium equation are  

   

  
 

    

  
 +    = 0 and 

   

  
 

    

  
 +    = 0                        … (3.8) 

(2) The field compatibility conditions are  
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 = 0               … (3.9) 

 

The Eq. (3.9) is CC which can be simplified by using equilibrium equation 

(3.8) and relation between body forces and its potential     
  

  
,      

  

  
 as  

                    
                     … (3.10) 

 

Along the boundary, where forces are prescribed as     and    , stress 

boundary conditions are considered which gives 

                             =     and              =                                   … (3.11) 

  
 

  
(            

 

  
 (            - (1+     

    

  
    +

    

  
     = 0      … (3.12) 

Here Eq. (3.11) is known as classical stress boundary condition and the 

boundary condition given by Eq. (3.12) is identified as the novel boundary 

compatibility condition. Due to which Beltarmi-Michell’s Formulation is 

known as Completed Beltarmi-Michell’s Formulation (CBMF) which is IFM 

procedure for Theory of Elasticity. 

 

3.3 IMPORTANCE OF STRAIN FORMULATION 

The strain formulation in theory of elasticity and development of 

compatibility condition in structural mechanics have neither understood 

properly and neither utilized in past. Due to this shortcoming, the important 

development in the direction of methods of analysis for framed and 

continuum structures got stuck up and diverted to indirect solution 

techniques. Also, because of this direct stress formulation, which calculates 

stresses and strains in the structures and continuum could not be developed 

properly. Using indirect methods, it has been calculated using mathematical 

differentiation of displacement function, which was developed through an 

approximate interpolation function. After understanding the importance of 
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strain formulation in terms of Boundary Compatibility Conditions (BCCs) 

and it has been derived using variational formulation and also verified using 

mathematical form of integral theorem. Navier’s method in elasticity and 

displacement method in structural mechanics have to  take care of this 

additional condition as an extra step typically at inter-elemental boundaries 

in discrete element models.  

Thus the completion of strain formulation led to revival of direct force 

calculation method in addition to availability of indirect method, known as 

IFM and IFMD which are applicable for structural mechanics based framed 

types problem and Completed Beltarmi-Michells Formulation (CBMF) in 

theory of elasticity which is based on strain formulation is used to solve 2D 

plane elasticity problems.  Through CBMF now one can attempt problems of 

direct stress calculation, displacement calculation, mixed boundary value 

problem with the other major limitations and loop holes of classical force 

method  also being removed; which was in past applicable to only stress 

boundary condition. The researchers found highest fidelity response by 

using both the new methods even with coarser FE models for different types 

of problems. Table 3.1[83] shows the different methods of structural 

mechanics and theory of elasticity with and without use of compatibility 

condition. 

Table 3.1 Various Methods and Associated Variational Formulations 

Various Methods Primary Variables Variational 

Formulation 
Elasticity Structures Elasticity Structures 

Completed 

Beltrami-Mitchell 

Formulation 

(CBMF) 

Integrated 

Force Method 

(IFM) Stresses Forces 
IFM Variational 

Formulation 
EEs & CCs 

Enforced  

Airy Formulation 

(AF) 

Redundant 

Force Method 
Stress Function Redundants 

Complementary 

Energy 
Field CCs 
Enforced 
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Navier’s 

Formulation 

(NF) 

Stiffness 

Method 

Displacements Deflection Potential Energy Boundary 

Compatibility 

Non compliant 

Hybrid Method 

(HM) 

Reissner 

Method 
Stresses and 

Displacements 

Forces and 

Deflection 

Reissner 

Formulation 
Boundary 

Compatibility 

Non compliant 

Total Formulation 
 (TF) 

Washizu 

Method 

Stresses, 

Strains and 
Displacements 

Forces, 

Deformations 
and 

Deflections 

Washizu 
Functional 

Boundary 

Compatibility 
Non 

compliant 

 

 

3.4 BASIC RELATIONS OF INTEGRATED FORCE METHOD 

The concept of equilibrium of forces and compatibility of deformations are 

fundamental to analysis of framed structures. The equilibrium equations are 

written in terms of forces, which can be axial forces, shear forces, bending 

moments and twisting moments. The compatibility conditions are expressed 

in terms of deformations, which can be elongations, deflections and 

curvatures. Hence, it is utmost compulsion to express these developed CCs in 

terms of forces, so that it can be coupled and concatenated from bottom side in 

a matrix form with Equlibrium Equations, which are already available in terms 

of forces. So, to convert the deformations to forces, two additional sets of 

equations are required. These are the deformation displacement relations 

(DDRs) and force displacement relations (FDRs).  Thus, the four sets of 

structural mechanics equations required in IFM analysis are:  

1. Equilibrium equations (EEs), 

2. Deformation displacement relations (DDRs),  

3. Compatibility conditions (CCs), and 

4. Force deformation relations (FDRs).   
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3.4.1 Equilibrium Equations (EEs) 

A member as shown in Fig. 3.3, subjected to a system of external forces, is 

said to be in equilibrium, when it remains in a position of rest i.e. when the 

force resultants in the directions of the reference axes are equal to zero. This 

way three equations for forces and three for moments are available. Force 

balancing is the central concept behind the equilibrium equations in structural 

mechanics.   

 

 

 

                            

 

Fig. 3.3 Forces and Moments in Three Directions 

Generally equilibrium equations are written by considering either reactions 

or applicable internal forces as the unknowns. The generation of equilibrium 

equation is illustrated here with reference to a fixed beam example having 

length L and flexural rigidity EI, which is subjected to transverse load P as 

shown in Fig. 3.4. 

Case 1- External reactions as unknowns  

In this case all the applicable external support reactions are treated as 

unknown forces. Two equilibrium equations for the beam case can be 

formulated as algebraic summation of forces along y-y axis and moments 

about z-z axis equals to zero as follows 
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                                    Fig. 3.4 Fixed Beam Example 

 

∑ Fy = 0, gives     VA + VB – P = 0                         … (3.13) 

 

∑ M zz = 0, gives    MA + VB x L - PL/2 - MB = 0                             … (3.14) 

 

Case 2- Internal Moments as unknowns 

In this case beam is discretized into two segments i.e. AC and  

CB. Both the end moments, for each element, are considered as unknowns. 

Equilibrium equation in this case can be formulated at joint C by considering 

equilibrium between: (i) External force P and shearing forces of both the members , (ii) 

Internal moment induced on either side as shown in Fig. 3.5.  

 

 

 

Fig. 3.5 Free Body Diagram of Fixed Beam 

Equilibrium Equations are formulated as follows; 

 ∑ F y = 0 at C gives                       …      

  ∑ M z = 0 at C gives            -M2 + M3 = 0                                               … (3.15) 
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3.4.2  Deformation Displacement Relations (DDRs) 

Deformation is a change in geometrical shape of the structure due to applied 

loading. Deformation is often described in terms of strains in mechanics of 

structures. Displacement on the other hand specifies the position of a point 

with reference to its original or previous position. The deformation 

displacement relation (DDR) is an important relation in IFM and is a central 

component behind both equilibrium and compatibility conditions. The DDR can 

directly be derived from the equilibrium equations. It depends on the type of 

material, size and geometry of the member and the forces applied. The 

deformation is always associated with each type of force variable, i.e. extension 

in the rod is the deformation due to axial force, bending curvature is the 

deformation in beam bending, shear deformation is due to shearing forces and 

twisting angle is the deformation due to twisting action. In the derivation, 

deformation displacement relation in IFM can be written using the transpose 

of the equilibrium matrix derived for a particular system. In DDR the system 

displacements are mapped into the elemental deformations. Symbolically it 

can be represented as  

{}=[B] T {d}                                    … (3.16)      

where, {} are the ‘n’ elemental deformations in given structure, [B] is 

equilibrium matrix of  size (m x n) and {d} are the nodal displacements. 

3.4.3  Compatibility Conditions (CCs) 

While studying the geometry of the system, the deformation of the small 

segment of complete structure must be consistent as well as continuous 

with the overall deformation pattern (Fig. 3.6). It is known as condition of 

continuity or compatibility. 
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               Fig. 3.6 Deflected Shape Showing Slope Compatibility 

Whenever structural member deforms due to external loading, at any point 

of the deflected shape, the displacement function must be continuous, 

differentiable, and single-valued which takes care of non-distortional and 

non-overlapping mechanism. The deformational compatibility conditions are 

necessary for the solution of indeterminate structural problems [76].  Also, in 

IFM sinking of supports and temperature variation can be considered as the 

initial strain which can be directly accounted through compatibility relations 

for solution purpose 

In IFM, first the DDR is derived and then the elimination of the displacements 

from the deformation displacement relation is carried out to obtain the 

compatibility conditions.  

3.4.4 Force Deformation Relations (FDRs) 

In order to analyse any problem using IFM, force deformation relations are 

necessary to convert all the compatibility conditions, which are in terms of 

displacements to independent variables which represent the internal forces  for 

given structural members.  The bottom most part of the equilibrium matrix [B] 

i.e. which represents the equilibrium equations needs this paradigm because 

upper few rows of [B] are already in terms of forces. Thus, final equation is [B] 

{F} = {P}. Likewise, the compatibility conditions (CCs) are written in terms of 

deformations {} and thus [C] {} = {0}.   

The force deformation relation (FDR) can be obtained from the Hooke's law by 

simply relating the internal stress developed to the force applied and then 

deformation to strain induced.  
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(i) Derivation of FDR for an Axial Rod 

For a cylindrical rod having cross sectional area as A and length as L, subjected 

to an axial force F (Fig. 3.7), the FDR can be written as follows: 

 

                  

                            Fig. 3.7 Bar subjected to an Axial Force 

As per strength of material relations, 
L

l
ε

 

In IFM     
 

   
       

 

 
   

Now according to Hooke’s law stress and strain can be related as 
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 L
                     … (3.17)     

Where 









A

L is the flexibility coefficient corresponding to an axial force F.   

According to Castigliano’s theorem, the first derivative of strain energy U 

with respect to force P is equal to the deformation ( in IFM) corresponding 

to that force P. 

P

U

P

W









                                                                    … (3.18) 

Where strain energy    dxA
2

U

L

0




  

Replacing  by F/A and  = /E by F/AE, the strain energy for a uniform bar 

of area A corresponding to force F can be written as  

F 

L  δL 

Area (A) 
Fixed End 
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AE

LF
dx

AE

F
L

22
U

2

0

2

                                    … (3.19)     

 Deformation  Fβ 














AE

L

P

U
                                      … (3.20)        

In indeterminate analysis the energy based derivation for FDR is preferred. 

(ii) Derivation of FDR for a Beam Member 

Generally shear force and bending moment are the two governing internal 

forces for the bending deformations in the beams, which are related to each 

other. However, the strain energy due to shear force as it violates the basic 

assumption of stress-strain is neglected, only the strain energy due to the 

moments is taken into account. 

From the Castigliano’s second theorem,  

P

U

P

W











 
dx

EI2

M

P

L

0

2




                  … (3.21)      

Where, dx
EI

M
U 

2

2

 

To simplify the procedure, one may consider 

 
EI

dx

P

M
Mβ

L

0













                                             … (3.22)   

Beam response requires two internal unknown forces i.e. either two end 

moments or a pair of bending moment and shear force. 

The FDR for these two cases is worked out as follows. 

Case 1: Consider a beam as shown in Fig. 3.8 with two end moments (M1 

and M2) as unknowns with reactions developed as VA and VB. 
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 Fig. 3.8 Beam subjected to Moments at ends 

Taking moment at any section distance x from A 

 M(x) = VAx + M1                             

Substituting the value of VA from the diagram and differentiating with respect to 

M1 gives 

 
     

   
   = 1 - 

 

  
                     

So,  
 
  

  

   
 = 

 

   
     
 

 

     

   
    = 

 

   
( 
  

 
 

  

 
       

           

Similarly,  
 
  

   

   
 = 

 

   
     
 

 

     

   
   = = 

 

   
( 
  

 
 

  

 
                               … (3.23) 

It can be seen from the above equations that the coefficients associated with 

the two moment unknowns are the generalized flexibility coefficients. Thus, 

the two deformations for the beam can be represented in matrix form as:  



























M2

M1

21

12

6EI

L

β

β

B

A                               … (3.24) 

  {} = [G] {F} 

where [G] is the  flexibility matrix associated with M1 and M2 for the beam. 

Case 2: Consider a beam as shown in Fig. 3.9 with shear force V and 

bending moment M at a distance L from A as unknowns. As seen above, the 

FDR for this case can be directly expressed through the flexibility coefficients 

related to the type of force unknowns.  

X

  

x

  
M2

  

VB = (M1 – M2)/L

  

M1

  

VA = (M2 - M1)/L

  

L 

X

  
A

  

B
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    Fig. 3.9 Beam Subjected to Moment and Shear at B end 

 

Following the same procedure, the matrix form for deformation in terms of 

flexibility coefficients can be written as 

           


































V

ML

EI

1

β

β

B

A

32

2
32

2

LL

L

                                                  

… (3.25) 

  {} = [G] {F} 

 

where [G] is the flexibility matrix associated with M and V for the beam. 

 

3.5 NULL PROPERTY OF EEs AND CCs 

Once the equilibrium between external loading and internal forces or 

external reactions is satisfied, a rectangular matrix [B] of size m x n is 

developed with m being the number of equilibrium equations considered 

along displacement directions and n being the total number of unknowns 

considered. Thus, r = n – m compatibility conditions are needed. After 

developing the equilibrium matrix [B], displacement deformation matrix is 

written as follows. 

 {               
 
        

                           … (3.26) 

Once {   is developed, in terms of nodal displacements (    , one has to 

develop r number of compatibility conditions by eliminating the nodal 

displacements from the equations.  

X

  

x

  MA = M + VL 
L 

X

  
A

  
B

  

V

  

M

  
V
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Let r = 2, then the problem is 20 degree of statically indeterminate. 

Converting the compatibility conditions in a matrix form gives   

                        = {0}                         … (3.27) 

Substituting     from Eq.(3.26) gives, 

               
 
        

            = {0}                        … (3.28) 

As displacement vector {δ} ≠ {0}, its coefficients matrix               
 
        

must 

be zero. Thus, 

               
 
        

= {0}                         … (3.29) 

or                            
                                   … (3.30) 

Which is a must for the correctness of the solution for all the problems and 

it also confirms that the developed equilibrium matrix [B] and the 

compatibility matrix [C] are correct.  

3.6 IFM SOLUTION PROCEDURE 

The complete procedure is explained here with the help of a fixed beam 

example shown in Fig. 3.4.  

Step 1:  Develop Equilibrium Matrix [B] 

By referring Fig. 3.4 and Eq. (3.15), one can write 

  
 

 
 
 

 
 
 

 

 

 

     
  

  

  

  

  

   

 
 
 
 

             

 or                                     … (3.31) 

Step 2:  Develop Displacement Deformation Relation { } 
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δ
 
                                                     … (3.32) 

Which can be written as 

     =     {d}  

which can be written in expanded form as follows: 

     
 

 
δ           

 

 
δ +  ,       

 

 
 δ -   and      

 

 
δ                     … (3.33) 

Step 3:  Develop Compatibility Matrix [C] 

Let nodal displacements δ      , just below the central point load P. To make 

[B] matrix square, one needs to develop two additional conditions using 

displacement deformation relations {    as r = n - m = 4 – 2 = 2. 

So,               
 
   

 
   

 
   

 
      and     

 
   

  
               

Arranging in matrix form, one can write 

  
    
     

 

 
 
 

 
 
 
 

 
 

 
 

 
  
 
 

 
 

  

 
 
 
 

                 … (3.34) 

or [C]{     }, where [C] is known as the compatibility matrix which is 

developed by eliminating the two nodal displacements ( δ    from the 

displacement deformation relation.  Developing coefficients for all the {   is 

always a mathematical hurdle in the further development. 

Using Eq. (3.17), the null property of all the matrices is checked, which 

validate the above formulation 
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                               … (3.35) 

Step 4:  Develop Force Deformation Relation 

As the problem is having four internal moments as unknowns, considering 

relative flexibility coefficients and using Eq. (3.4), one can write for AC and 

CB segments of fixed beam, 
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
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21

12

12EI

L

β

β

                              … (3.36) 

Substituting Eq. (3.24) into Eq. (3.22), all the DDRs can be converted to 

FDRs (Force deformation relations). 

Thus, one can write 

 
 

    
                                                            

 
 

    
                       

Arranging in matrix form, 

 
 

    
 
    
     

  

  

  

  

  

   

 
 
 
 

                 … (3.37) 

Step 5:  Develop Global Equilibrium Matrix 

Concatenating the Eq. (3.25) by substituting related values of parameters in 

Eq. (3.19), one can have the global equilibrium matrix as 
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Which can be written in the form 

 [S]{F} = {P}                       … (3.38) 

Solving the above matrix gives the value of internal moments as 

  

  

  

  

  

   

     
      
      
     

  kN-m                             … (3.39) 

Which are matching with the exact solution of moments in a fixed beam at 

supports and at a mid span under a central point load. 

Step 6:  Calculate Nodal Displacements 

The equation for nodal displacements is given by 

{δ} = [J][G]{M} 

where [J] = m rows from top of         matrix and is of size 2 x 4, [G] consists 

of  flexibility coefficients calculated from Eq. (3.24) of {   matrix as  

            

 
 
 
 
 
 
 

 

 

  
  

 

  

 

 
  

  
 

 

 

  

  
 

  

 

  
 
 
 
 
 

    

The solution obtained from Eq. (3.39) is as follows: 

                  = 0.0 radians, which is matching with the exact solution 

of deflection of a fixed beam under the central point load as 
   

     
 = 

0.005208mm. 
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3.7 IFM FOR FRAMED STRUCTURES 

In the IFM any structure is designated as “structure (n, m)” where n and m 

are the force and displacement degrees of freedom respectively. The n 

component of force vector {F} must satisfy m equilibrium equations along 

displacement directions, with r = (n - m) being the number of compatibility 

conditions. For framed structures, the equilibrium equations can be 

symbolized as                   

[B] {F} = {P}                   … (3.40)  

The EEs represent a relation between the internal forces {F} and external 

loads {P}.  The internal forces {F} are the prime variables of equilibrium. The 

equilibrium matrix [B] is always rectangular for statically indeterminate 

structures, where n > m, and is a sparse matrix for large scale problems. The 

development of [B] matrix is very simple and straight forward.  

The work done by external loading {P} of the structure by considering the 

nodal displacements {X} of the structure can be written as 

 W = 
 

 
        = 

 

 
     +     +      +……….     ]                   … (3.41)               

The internal strain energy of the structure can also be written considering 

the deformation of the elements as follows. 

 IE = 
 

 
    {} = = 

 

 
    +    +     +……….     ]                    … (3.42)               

In which, {} represents the vector of generalized internal deformations of the 

elements developed due to the straining.  

According to the energy conservation theorem, the internal energy (IE) stored 

in the structure is equal to the work done (W) by the external loads {P}.  

 IE = W   or 
 

 
    {} =  

 

 
     δ                 … (3.43)           

               (1) 
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Substituting the value of {P} from Eq. (3.40) in Eq. (3.43), one can eliminate 

{F}T from the above equations. Thus, the equation becomes 

{} =      δ                                                … (3.44)      

The above deformation displacement relation represents n deformations 

expressed in terms of m displacements, which leads to (n – m) constraints on 

the deformations of the elements. The constraint on deformations are called 

compatibility conditions and are expressed through a compatibility matrix 

[C] and a generalized internal deformation vector {} which can be written as    

[C]{} = 0                            … (3.45)      

Now as per IFM these CCs are required to be augmented along with the 

system equilibrium equations that are already in terms of primal variables 

{F} i.e. internal forces. Therefore, it is required to express this compatibility 

matrix in terms of primal variables {F}. Noting that {} = [G]{F}, one can write  

[C]{} = [C][G]{F}                              … (3.46)      

where [G] is concatenated flexibility matrix. 

Combining Eqs. (3.40) and (3.46), the coupled equations of IFM can be 

written as  

  
   

      
      

   

    
       or   [S] {F} = {P}                           … (3.47) 

Equation (3.47) is known as the basic equation of IFM. In which, [S] is the 

global equilibrium equation matrix of size (n x n) which consists of two 

components The upper part [S] is known as [B] matrix, which is a sparse 

matrix of size (m x n) and is developed through basic equilibrium equations. 

Bottom part [C][G] is known as the compatibility matrix which is of size (r x 

n), where r = n – m. {F} is unknown vector of internal force of size (n x 1), 

which depends upon the type of problem. {P} is the vector of external loading 

of size (n x 1), in which {    is the vector related to the secondary effect to be 
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concatenated with respect to nodal displacement in {P} matrix. The solution 

of Eq. (3.47) can be obtained by inverting the [S] matrix. However, before 

inverting normalization of major elements with respect to upper components 

has to be carried out. This is required, because [C][G] always gives  

components that are of much less value compared to the components of [B] 

matrix. 

The nodal displacements {δ} can be worked out using the following relation: 

 {δ} = [J][G]{F}                                                                  … (3.48) 

where [J] = m rows from top of          of size (m x n), [G] = flexibility 

coefficients calculated from Eqs. (3.24) or (3.25) and {F} is the vector 

calculated from using Eq. (3.47). 

3.8 IFM FOR CONTINUUM STRUCTURES 

In reality, a physical system has three dimensional domain. Practical 

situation, however, may have geometry and loading condition such that a 

three dimensional problem may be idealized as one or two dimensional 

problem. Two dimensional simplifications implies that one may disregard 

one of the coordinate axes in these problems, for instance z axis and 

consider that the whole phenomena takes place in xy plane. Four common 

situation of 2D simplification are; (i) Plane strain problems, (ii) Plane stress 

problems (iii) Plate bending problems and (iv) Axisymmetric problems. 

Problems involving long body whose geometry and loading do not vary 

significantly in the longitudinal direction are referred to as plane strain 

problems (Fig. 3.10).  Examples of this type are long strip footing, retaining 

wall, dam and long underground tunnel. In a plane strain problem, the 

strain normal to the plane and loading is assumed to be zero. Thus, only in-

plane strains               are nonzero whereas                 are zero. In 

contrast to the plane strain condition, in which longitudinal dimension in 
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the z-direction is large compared to the z and y dimensions, the plane stress 

condition is characterized by very small dimension in the z-direction.  

A thin plate loaded in its own plane is the well known example of plane 

stress approximation. In a plane stress situation, in-plane stresses i.e. 

               are non-zero and other stresses are zero. In plate bending 

problem, however, a thin plate is subjected to lateral load instead of inplane 

loading and in such cases moment-curvature relationship is considered for 

the analysis for the analysis of plate instead of stress-strain relationship. 

When the geometry, boundary condition, material properties and loading are 

identical with respect to axis of symmetry, the three dimensional problem 

can be reduced to an analogous two dimensional problem which is 

characterized as an axi-symmetric problem (Fig. 3.10). Typical examples, 

where the axisymmetric analysis may be sufficient are pressure vessels, 

water tanks etc. 
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Fig. 3.10 Different Types of 2D Problems 
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The basic equations of IFM for solving 2D continuum type of problems 

remain the same. Here also primarily internal forces {F} are worked out first 

and then utilizing the secondary equations the nodal displacements are 

calculated. The complete formulation consists of derivation of different types 

of element properties based on the discretization of different strain energies.  

3.9 FORMULATION FOR PLANE STRESS/STRAIN PROBLEMS 

The continuum problem is discretized into finite number of elements with ‘n’ 

and ‘m’ force and displacement degrees of freedom respectively. The 

governing equations are obtained by coupling the m equilibrium equations 

and r = n – m compatibility conditions. The equilibrium equations are 

expressed as  

  [B]{F} = {P}                               

with ‘r’ compatibility conditions as  

([C][G]{F}= {δR})                                                                  

 

 The basic governing IFM equation for analysis is expressed as  

 

 
   

      
      

   

    
   or [S] {F}={P}                    

  

From forces {F}, the nodal displacements can be calculated using the 

following formula; 

{δ} = [J] {[G] {F} + { 0}}                                    … (3.49)  

 

where [J] = m top rows of matrix [[S]-1]T.  

The complete formulation requires the following 3 matrices:  

1. The equilibrium matrix [B], which works as a link between internal 

forces and external loads. 

2. The compatibility matrix [C], which governs the deformations by [C]{ }.   

3. The global flexibility matrix [G], which relates deformations to forces. 
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3.9.1   Formulation of Equlibrium Matrix [B] 

The ‘EE’ written in terms of forces at grid points of finite-element model 

represents the vectorial summation of ‘n’ internal forces {F} and ‘m’ external 

loads {P}. The nodal EE in matrix notation gives a banded rectangular matrix 

[B] of size m x n. The variational functional is evaluated as a portion of IFM 

functional which yields the basic elemental equilibrium matrix [Be] in explicit 

form. 

 

Ue =       
  

  
      

  

  
      

  

  
 

  

  
       

 
 = ∫ [N]T{Є} ds              …  (3.50) 

 

Where Nx, Ny, Nxy are the in-plane internal forces and     
  

  
     

 
  

   
           

  

  
  

  

  
  represents the respective strains. 

 

Consider four-noded, 8 ddof rectangular in-plane element of thickness t with 

dimensions 2a x 2b along x - and y- axes as shown in Fig. 3.11.  

 

 

 

 

 

 

Fig. 3.11 Rectangular Element with Nodal Displacements 

 

For the rectangular membrane element, the force field is chosen in terms of 

five independent forces as; 

                  
     

                                                   … (3.51) 

 

Here the distribution of internal forces in terms of unknowns is considered 

as follows: 
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             =    +   
 

 
 ,      =    +   

 

 
  and      =                        … (3.52) 

Although the variation of normal forces is linear, the shear is constant. The 

displacement field should satisfy the continuity condition and the selected 

forces should satisfy the mandatory requirement. Displacement interpolation 

functions for generalized element are as follows: 
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                  … (3.54) 

 

Where u1, v1 ----- u4, v4 are eight nodal displacements as shown in Fig. 3.11. 

Substituting Eqs. (3.53) and (3.54) in the Eq. (3.50) and rearranging all force 

and displacement functions properly, one can obtain the elemental 

equilibrium matrix as follows 

Ue = {δ}T[Be]{F}               

 

where [Be] = ∫s [Z]T[Y] ds                   … (3.55) 

 

Here [Z] = [L][N], [L] is the  differential operator matrix, [N] is the displacement 

interpolation function matrix and  [Y] is the  force interpolation function 

matrix. Substituting and integrating yields the following non-symmetrical 

equilibrium matrix [Be] for the element, which represents the displacements 

of m rows from u1 to v4 in increasing order from top to bottom and n columns 

represents forces from F1 to F5 in increasing order from left to right.  
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                      … (3.56) 

 

3.9.2 Element Flexibility Matrix [Ge] 

The basic elemental flexibility matrix is obtained by discretizing the 

complementary strain energy which gives 

 

     [Ge] = ∫s[Y] T[D][Y] dxdy                                                     … (3.57) 

 

where [Y] is the force interpolation function matrix,  which is developed from 

Eq.(3.40) and [D] is material property matrix. Substituting values in Eq. 

(3.44) and integrating within the domain (2a x 2b) with the origin at the 

center of the element yields the symmetrical flexibility matrix [Ge] as follows;

  

[     
   

  

 
 
 
 
 
 
      

 
 

 
   

      

   
 

 
 

           
 
 
 
 
 

               … (3.58) 

 

3.9.3  Global Compatibility Matrix 

The compatibility matrix is obtained from the deformation displacement 

relation ({ } = [B]T{X}). In DDR all the deformations are expressed in terms of 

all the possible nodal displacements and the ‘r’ compatibility conditions are 
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developed in terms of internal forces F1,------ F2n, where ‘2n’ indicates the 

total number of internal forces  in a given problem. So, global compatibility 

matrix [C] can be evaluated by multiplying the global coefficients of { } of 

complete matrix (r x n) under consideration by global flexibility matrix, 

which is developed by putting all elemental flexibility matrix at diagonal 

position as per the numbering pattern of each element.  One can check the 

null property of the matrix as per Eq. (3.30) for its mathematical validity. 

3.10  FORMULATION FOR PLATE BENDING PROBLEMS 

The procedure discussed above remains the same except the change in 

formulation of element matrices required for the solution of bending 

problem. 

3.10.1 Formulation of Equlibrium Matrix [Be] 

The ‘EE’ written in terms of forces at grid points of discrete model represents 

the vectorial summation of ‘n’ internal forces {F} and ‘m’ external loads {P}. 

The nodal EE gives banded rectangular matrix [B] of size m x n. The 

variational functional is evaluated as a portion of IFM functional which 

yields the basic elemental equilibrium matrix [Be] in explicit form. 

 

Ue =       
   

   
       

   

   
       

   

    
        

    = ∫ [M]T{Є} dxdy                          … (3.59) 

 

Where Mx, My and Mxy are the internal moments and {Є}T 

=  
   

   
 
   

   
       

   

    
   represent the corresponding curvature terms. 

 

Consider a four-noded, 12 ddof (w1 to  y4 with three degrees of freedom at 

each node) rectangular element of thickness t with dimensions as 2a x 2b 

along the x and y axes. The force field is chosen in terms of nine independent 

forces as; 
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                              T                                                … (3.60)                            

Relations between internal moments and independent forces are written as 

                                                                                    

                                                                                     

                                                                                                  

Arranging above equations in matrix form,  
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                      … (3.61) 

or          eFYM  , where {Fe} = [F1, F2, F3…………….F9]T           

The variation of above forces is considered bilinear along both the directions. 

The displacement fields satisfy the continuity condition and the selected 

forces satisfy the mandatory requirement.  

The Hermitian Interpolation function for the lateral displacement for 

rectangular plate bending element is as follows: 
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         … (3.62) 

Where,                    ,     
     =               and       

   =              and 

so on. Also, 
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2 …. etc are associated with the 

nodal displacements w1,     -----------    as shown in Fig. 3.11                       
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       Fig. 3.11 Nodal Displacements 

By arranging all force and displacement functions properly, one can 

discretize the Eq. (3.46) to obtain the elemental equilibrium matrix as follows. 

 

Ue = {δ}T[Be]{F}                                                                 

 

Where [Be] = ∫s [Z] T[Y] ds and   [Z] = [L][N]                                                                

        

where [L] is the differential operator matrix, [N] is the displacement 

interpolation function matrix and [Y] is the matrix of force interpolation 

function. Substituting and integrating yields the following equilibrium matrix 

[Be] of size 12 x 9. Here the row from top to bottom represents the 

displacement components (X1 to X12), while column from left to right 

represents the independent unknowns (F1 to F9).  
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  [Be] =   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

    

 
   

    

 
  

 
  

 
 

   

  
  

   

 
  

     

 
 

    
    

 

     

 
  

   

 

  

  
 

   
    

 
    

    

 
  

    
  

 
 

   

  
 

    

 
  

     

 
 

         
    

 

     

 
  

  

 

  

  
 

    
    

 
    

    

 
  

  
  

 
 

  

 
 

   

 
  

     

 
 

     
    

 

     

 
  

   

 
 
  

  
 

    
    

 
   

   

 
 

  
  

 
 

   

  
  

    

 
  

     

 
 

    
    

 

     

 
  

  

 

  

  
 

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            … (3.63) 

 

3.10.2 Formulation of Element Flexibility Matrix [Ge] 

The element flexibility matrix is obtained by discretizing the complementary 

strain energy; which gives 

 

     [Ge] = ∫s[Y] T[D][Y] dxdy   

                                              

where [Y] is the force interpolation function matrix and [D] is the material 

property matrix. Integrating within the domain (2a x 2b), with origin at center 

of the element, yields the symmetrical flexibility matrix [Ge] as follows;  
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      … (3.64) 

 

3.10.3 Global Compatibility Matrix 

The compatibility matrix is obtained from the deformation displacement 

relation ({ } = [B]T{δ}). In DDR the deformations are expressed in terms of all 

the possible nodal displacements and the ‘r’ compatibility conditions are 

developed in terms of internal forces i.e.,F1,------ F2n, where ‘2n’ are the total 

number of internal forces  in a given problem. The global compatibility 

matrix [C] can be evaluated by multiplying the global coefficients of { } of 

complete matrix (r x n) by the global flexibility matrix; which is generated by 

putting all the elemental flexibility matrices at diagonal position as per the 

numbering of each element. Before using the global compatibility matrix for 

further calculations, one has to check the null property of the matrix to 

ensure the mathematical validity of the developed matrices.  
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CHAPTER 4 

DUAL INTEGRATED FORCE METHOD 

4.1 GENERAL REMARKS  

In the present chapter, formulation for Dual Integrated Force Method (DIFM) 

is developed from the basic equations of IFM. IFM has two fundamental 

equations, in which the first one calculates the independent unknowns (F1, 

F2,…..Fn), which represents the internal forces or moments and the other 

one evaluates the nodal displacements based on the first set of developed 

equations. Like IFM, DIFM also has two sets of equations, in which first set 

of equations are considered as primary equations, which are symmetrical 

and are used to calculate the global nodal displacements, while all the 

necessary internal forces developed due to external forces in terms of 

independent unknowns are calculated using the second set of equations.  

 

The DIFM is analogous to the available well known Stiffness Method. The 

DIFM has two set of equations, one for calculating the nodal displacements 

and other for evaluating the internal forces, which are based on independent 

unknowns. The stiffness method for framed structures and the Displacement 

based FE method for continuum structures on the other hand consist of only 

one set of equations to calculate the global nodal displacements. Stresses are 

then calculated by differentiating the displacement function, which can be 

the source of error. In the present chapter, after giving the basic equations of 

DIFM, equilibrium ant other matrices are derived for different types of 

framed structures. 

 

4.2  BASIC THOERY OF DIFM  

The complete set of DIFM equations are developed here from the following 

IFM equations derived in the previous chapter 
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Equilibrium Equations (EE):      [B]{F} = {P}          … (4.1)                                           

Compatibility Conditions (CC):    [C]{ } = {0}                          … (4.2) 

Force Deformation Relation:     { } = [G]{F}                         … (4.3) 

Displacement Deformation Relation:  { } = [B]T{δ}                         … (4.4) 

Equating Eqs. (4.3) and (4.4), one can write 

 [G]{F} = [B]T{δ}                                                                            … (4.5)                         

Thus, {F} = [G]-1[B]T{δ}                                                                      … (4.6) 

Multiplying by [B] on both sides of Eq. (4.6), one gets 

 [B]{F} = [B][G]-1[B]T{δ} = {P}                                                          … (4.7) 

Rewriting the above equations with the size of matrices,  

[[B]m x n [G] -1n x n [B] Tn x m ]]{δ}m x 1 = {P}m x 1                                             … (4.8)  

or [D]difm {δ} = {P}                     … (4.9) 

Where, [D]difm = [B][G]-1[B]T     and  {P}difm =  {P}                            … (4.10) 

Once displacements are known from the Eq. (4.9), the force displacement 

relation given in Eq. (4.6) is used to calculate the forces. Eq. (4.9) is the 

primary equation, and the Eq. (4.10) is the secondary equation of DIFM. 

In DIFM, the dual matrix [D]difm is assembled from the element matrices in a 

manner quite similar to the direct stiffness method of assembly. The 

assembly of the dual matrix [D]difm is carried out by considering individual 

element equilibrium matrix [Be] and element flexibility matrix [Ge] which for 

each element can be worked out as follows: 

 [D]difm(e)
1 = [Be

1][Ge
1]-1[Be

1]T                                                      … (4.11) 
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The procedure to get Dual Matrix [D]difm for the different types of structural 

elements is explained below. 

4.3  FORMULATION FOR AN AXIAL ELEMENT  

Consider an axial element of length L and axial rigidity AE,  for the 

derivation of an element Equilibrium Matrix [Be] and Flexibility Matrix [Ge]. It 

is one of the elements of the total assembly, having three elements with 

varying geometrical properties as shown in Fig. 4.1. 

 

   

 

 

 

 

 

Fig. 4.1 Non-Prismatic Bar Problem 

The displacement field for a typical element shown in Fig. 4.2 is 

approximated by using the nodal displacements u1 and u2 in the given 

cartesian coordinate system (x, y). The force in the element is {F} associated 

with an axial stress {σ} for the cross sectional area A.  

                                           

                             Fig. 4.2 Basic Axial Element 
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The displacement and stress fields for the element can be written as  

x
2a

uu
uu 12

1


                            … (4.12) 

 
A

F
σ                                                                                        … (4.13)                                               

Eqs. (4.12) and (4.13) can be rewritten using the interpolation function as 

follows: 

  u = N1u1 + N2u2           … (4.14) 

and 
A

F
  =  F

A

1








=   }F{Y                  … (4.15) 

Where N1 = 
 

 
   

 

 
    and N2 = 

 

 
   

 

 
    are the displacement shape functions 

and [Y] is the stress interpolation function. Now the strain- displacement 

relationship for an axial element can be written as 
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1
                  …. (4.16) 

Where [Z] = [L][N] = [Z] 










a2

1

a2

1
                    … (4.17) 

is the strain-displacement linking matrix for an axial element, and [L] = 

Single order differential operator. 

The element equilibrium matrix for an axial element is written as 

[Be] = 
v

T dV]Y[]Z[                                                                     … (4.18) 

Substituting [Z] from Eq. (4.17) and [Y] from Eq. (4.15) in Eq. (4.18) and 

integrating over the limits (-a, a) gives [Be] matrix of size (2 x 1) as follows: 
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  [Be] = 









1

1                                                              … (4.19) 

The element flexibility is obtained from 

 [Ge] = dV]Y][D[]Y[
a

a

T

                                                            
… (4.20) 

Considering [D] = 1/E,  

 [Ge] = 
 

  

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

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Adx
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1
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1
AdV]Y][D[]Y[

a

a

a

a

T

                      
… (4.21) 

4.4  FORMULATION FOR A BEAM ELEMENT  

A two span continuous beam is depicted in Fig. 4.3. A typical element from 

the same is shown in Fig. 4.4.   

                       

                                Fig. 4.3 A Continuous Beam Problem 

The displacement field for the element AB is written by considering the origin 

at the center of the element in the cartesian coordinate system.        

 

Fig. 4.4 Beam Element 

The shape functions, using the generalized coordinate system, corresponding 

to the four displacement degrees of freedom are as follows 
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  and          

 

 
  

 

 
  

  

  
 

  

   
                                … (4.22) 

Now, the deflection w for the beam element can be expressed as 

w(x,y) = [N]{δ}                    … (4.23) 

where, [N] = is the shape function matrix of size 1 x 4 and {δ} is the nodal 

displacement vector corresponding to the nodal displacements at nodes 1 

and 2 respectively.  

Consider a small layer EF at a distance y from the neutral axis as shown in 

Fig. 4.4. A contraction of EF layer, which causes lateral displacement u of 

point E or F in horizontal direction can be written as  

 u =            
  

  
                                                     … (4.24) 

So, strain in the layer EF can be calculated from Eq. (4.24) as 

    = 
  

  
 = -y 

   

   
 = -y[L][N] = -y[Z1] = [Z]                                  … (4.25) 

Substituting Eq. (4.22) in Eq. (4.25), the strain linking matrix for beam 

member can written in the form as  

        

 
 
 
 
 
 
  
    

   

    

   

    

   

    

    
 
 
 
 
 
 

                                                             … (4.26) 

As per the theory of simple bending, the compressive bending stress      can 

be written in terms of moment and resisting moment of inertia I as  

 σ    
  

 
                                                                      … (4.27) 

Now the internal moment M can be expressed in terms of independent 

unknowns {F1, F2) as 
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 M = F1 + F2 
 

  
                                                                             … (4.28) 

Substituting Eq. (4.28) into Eq. (4.27), one can write   

 [M] = [Y]{F} =   
 

 
 [ 

 

  
 ]  
  
  
                         … (4.29)    

The element equilibrium matrix [Be] can be calculated by using Eq. (4.18) as 

 [Be] =    

 
 
 
 
 
 
  
    

   

    

   

    

   

    

    
 
 
 
 
 
 

  
 

 
   

 

  
         

   

  
                       … (4.30) 

Substituting,  I = y2dA and integrating gives the basic equilibrium matrix as 

 [Be] = 

 
 
 
 
  

 

 

   

  
 

 

   
 
 
 
 

                                                                    … (4.31) 

The flexibility matrix for the beam element is obtained by substituting [Y] 

and [D] in Eq. (4.20) as follows; 

 [Ge] =     
  

  
           

                                                           
… (4.32) 

        =   
 

 
  
 
 

 

 
  

  
 
 

 
   

 

 
   

 

 
       

                       
… (4.33) 

Substituting I = y2dA, the element flexibility matrix for beam member can be 

written as  

[Ge]  = 
 

   
 
   

 
  

 

                                                             … (4.34) 

4.5  FORMULATION FOR A PLANE TRUSS ELEMENT  

Consider a pin jointed structure having three members with AE and L as 

shown in Fig. 4.5.     
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Fig. 4.5 Forces in Three Wire Suspension Problem 

The basic matrices are the same as for an axial rod.  However, a 

transformation is required from local to global axis as depicted in Fig. 4.6. 

 

 

                            

 

 

            

Fig. 4.6 Nodal Displacements in Global and Local Coordinate Systems 

If l and m are the direction cosines of the member AB, the local nodal  

displacements uL1 and uL2 can be expressed in terms of global nodal 

displacements  ug1 to vg2 as follows;  

  
   
   

  =  
    
    

  

   
   
   
   

                                                 … (4.35) 

The displacement u in terms of (ug1, vg1, ug2, vg2) can be written by using the 

relation 
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     =     
   
   

                                                                             … (4.36) 

Substituting Eq. (4.35) into Eqn. (4.36)  

     =                       … (4.37) 

Now strain can written as  

  ]N][L[













x

u
ε            

 Considering [Z] = {                                                                    … (4.38) 

the element equilibrium matrix in global direction will be 

[Be(global)] =                                                      … (4.39) 

Substituting [Z] from Eq. (4.38) into Eq. (4.39), one gets 

[Be(global)] =  
     ]                                                            … (4.40) 

Substituting equilibrium matrix [Be] for bar element in local direction in Eq. 

(4.40) from Eq. (4.19) [Be
(global)] can be calculated as 

 [Be
(global)] =  

  
  
 
 

             … (4.41) 

Finally, the flexibility matrix for the element is obtained by the Eq. (4.21). 

 

4.6  FORMULATION FOR A PLANE FRAME ELEMENT 

Consider a plane frame example as shown in Fig. 4.7.  
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Fig. 4.7 Plane Frame Problem 
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The displacement field for element AB is approximated by using nodal 

displacements in the cartesian coordinate system (x, y, z).   

                                            

Fig. 4.8 Plane Frame Element 

For a plane frame element such as shown in Fig. 4.8, the shape functions 

can be written as combination of previous two cases as follows; 
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    … (4.41) 

Thus, the deflection form for a plane frame element can be written by using 

the shape functions as 

w(x,y) = [N]{δ}                    … (4.42) 

As no interaction between axial and bending effects is assumed, the  

complete [Z] matrix can be written as  

[Z] =  

      

  
  

      

  
  

   
    

   
  

    

   
   

    

   
  

    

   

             … (4.43) 

The stress interpolation function [Y] can also be formed by using appropriate 

position of corresponding matrix components of the element. Using Eq. 

(4.15) and Eq. (4.29), it can be written as  

 [Y] =  

 

 
  

  
 

 
 
 

 
 
 

 
 
                                                            … (4.44) 

After integration the basic equilibrium matrix [Be] is obtained as 
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 [Be] = 

 
 
 
 
 
 
 
   

  
 

 

    
    

   
 

 

     
 
 
 
 
 
 

                                                           … (4.45) 

The flexibility matrix for the beam element is obtained by substituting [Y] 

from Eq. (4.44) into Eq. (4.20) and substituting [D] = 1/E,   

[Ge]  = 

 
 
 
 
 
  

  
  

 
  

  
 

  
  

    
 
 
 
 

                                                            … (4.46) 

 

4.7  FORMULATION FOR A GRID ELEMENT 

A grid structure as shown in Fig. 4.9 is considered now.   

                                 

Fig. 4.9 A Grid Structure 

The displacement field for a grid member AB (Fig. 4.10) is approximated by 

using the nodal displacements in the cartesian system (x, y, z). The shape 

functions are the same as last case but an axial component is replaced by 

torsional one. The shape function for twist is also linearly approximated 

along the length of member.   
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                                                               … (4.47) 

 

              

Fig. 4.10 Grid Element 

where      , and         are the twisting angles at nodes 1 and 2 respectively. 

The shape functions for a grid element are as follows; 
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… (4.48) 

Thus displacement function can be expressed as 

w(x,y) = [N]{δ}                    … (4.49) 

where [N] is shape function matrix. By separating torsional and bending 

components, the complete [Z] matrix can be written as 

[Z] =  
 
      

  
   

      

  
  

   
    

   
  

    

   
   

    

   
  

    

   

    … (4.50) 

The stress interpolation function [Y] also can be formed by using appropriate 

position corresponding to each component of the matrix. Using Eq. (4.15) 

and Eq. (4.29), it can be written as  

 [Y] =  

 

 
  

  
 

 
 
 

 
 
 

 
 
                                                            … (4.51) 
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                         Fig. 4.11 Torsional Deformation of Circular Rod 

The element volume of the circular rod (Fig 4.11) is                   … (4.52) 

Where, rdϕ is the circumferential segment at distance r of an angle dϕ, dr is the 

element length of radius r and dx is the element length along 2a.  

Torsional shearing stress (   due to torque T can be written in the form  

   
   

 
                             … (4.53) 

In which [Y] = 
  

 
  is considered as stress interpolation function,         = T is the 

constant torque value along the rod and J is the polar moment of inertia, which 

can be worked out as 

 J =       
  

 

 

 
                                        … (4.54) 

The element equilibrium matrix [Be] can be written by using Eq. (4.18) as 

 [Be] = 

 
 
 
 
 
 
 
   

  
 

 

    
    

   
 

 

     
 
 
 
 
 
 

                                                           … (4.55) 

The flexibility matrix [Ge] is obtained by substituting [Y] from Eq. (4.44) and 

[D] = 1/G; where G is the shear modulus of material.  
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[Ge]  = 

 
 
 
 
 
  

  
  

 
  

  
 

  
  

    
 
 
 
 

                                                            … (4.56) 

 

4.8  FORMULATION FOR A SPACE TRUSS ELEMENT 

Consider a pin jointed space truss as shown in Fig. 4.12    

                                     

                                     Fig. 4.12 Space Truss Problem 

The basic approach for developing various matrices is same as for a plane 

truss. The transformation from local axes to global axes is carried out 

referring to Fig. 4.13. 
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As per Fig. 4.13, (ug1,vg1,tg1) and (ug2,vg2,tg2) are the global displacements at 

node A and node B respectively. The bar is oriented at an angle  1,  2 and  3 

with respect to global axes (xg, yg and zg). Let l, m and n are the direction 

cosines of the angles between line AB and global axes respectively. The nodal 

displacements (u1, u2) can be expressed as  

  
   
   

  =  
      
      

 

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

                                      … (4.57) 

The displacements can be written as 

 u =     
  
  
                                                                                … (4.58) 

Substituting nodal displacement vector from Eq. (4.57) into Eq. (4.58) 

 u =             

 Strain in the truss element is given by  

  ]N][L[













x

u
ε        = [Z]                                       … (4.59) 

The element equilibrium matrix in global direction is 

[Be(global)] =                                                      … (4.60) 

Substituting [Z] from Eq. (4.59) in Eq. (4.60), one gets 

[Be(global)] =  
     ]                                                            … (4.61) 

Substituting equilibrium matrix [Be] for bar element in Eq. (4.61) from Eq. 

(4.18), [Be
(global)] can be calculated as 

 [Be
(global)] = 

 
 
 
 
 
 
  
  
  
 
 
  
 
 
 
 
 

            … (4.62) 
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The flexibility matrix for the bar element is same as given in Eq. (4.21). 

 

4.8  FORMULATION FOR A SPACE FRAME MEMBER 

A space frame structure is shown in Fig. 4.14 with AE, EI, GJ and L of 

various members.  

                      

                     Fig. 4.14 A Typical Space Frame Structure 

A typical space frame member has six DOF as shown in Fig. 4.15. 

               

        Fig. 4.15 Space Frame Element 
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The shape functions are written by considering the origin of the coordinates 

at the centre of the element as follows; 
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                                                     … (4.60) 

The displacement function for a space frame element can be written as 

w = [N]{δ}                    … (4.63) 

By separating axial, torsional and bending components, a complete [Z] 

matrix can be written in the form as 

[Z] =  

              
                
                  
               

          … (4.64) 

The stress interpolation function [Y] matrix can be written as  

 [Y] = 

 
 
 
 
 
 
 
 

 
     

  
 

  
 

 

  
 
 

 
    

    
 

  
 

 

  
 
 

 
  

     
 

  
 
 
 
 
 
 

                               … (4.65) 

The element equilibrium matrix [Be] can be written by using Eq. (4.18) as 
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         [Be] = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
       

  
 

 
   

       

    
 

 
 

       
       
      

   
 

 
   

       

     
 

 
 

      
       

 
 
 
 
 
 
 
 
 
 
 
 
 

                                            … (4.66) 

The element flexibility matrix for the space frame element is obtained by 

substituting [Y] from Eq. (4.64) into Eq. (4.20).  

[Ge]  = 

 
 
 
 
 
 
 
 
 
 
  

  
     

 
  

  
    

  
  

   
   

   
  

  
  

    
  

   
 

     
  

   
 
 
 
 
 
 
 
 
 

                                                … (4.67) 

 

4.10 SOLUTION STEPS OF DIFM 

The solution of a problem by DIFM mainly consists of development of proper 

Dual Matrix [Ddifm], which depends upon the element equilibrium [Be] and 

flexibility [Ge] matrices.  For solving a problem, following steps are required. 

1. Generate shape function matrix [N] as per the type of problem. 

2. Develop strain linking matrix [Z]. 

3. Develop force interpolation function matrix [Y] which depends upon 

the representation of internal stress in member in terms of number of 

independent force unknowns i.e. F1, F2….. Fn. 
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4. By using Step 2 and Step 3, develop the element equilibrium matrix 

[Be] for each element.  

5. Develop element flexibility matrix [Ge]. 

6. Develop dual matrix by using Eq. (4.11).  

7. Develop global dual matrix [Ddifm] by using standard assembly 

procedure. Remove the rows and columns which correspond to 

restrained displacements. 

8. Find the solution of equations to find the free displacements by using 

standard solver.  

9. Get all the independent force unknowns {F1, F2….. Fn.} using Eq. (4.6). 
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CHAPTER 5 

IFM BASED FORMULATION OF 2D ELEMENTS 

5.1 IMPORTANCE OF STRESS AND DISPLACEMENT FUNCTION 

The accuracy of IFM based solution of different types of problems depends 

upon the formulation of following three matrices;  Basic equilibrium matrix 

[Be], Compatibility matrix [C] and Flexibility matrix [Ge], where contribution 

of displacement and stresses functions plays a key role. Both displacements 

and stresses are approximated by using properly derived shape functions.     

In this chapter, IFM based formulation for rectangular and triangular shape 

elements is developed. The displacement field within the element is 

represented using appropriate interpolation formula whereas stress field is 

aproximated using complete polynomial of proper order where coefficients of 

force polynomial are independent.  They are considered as prime unknowns 

in IFM based analysis.  Each equation of force consisting of stress tensor are 

generally derived using standard Airy Stress Theory. The element stress 

polynomial should identically satisfy the equation of equilibrium.  The stress 

field within an element is derived without any reference to the shape and 

number of kinematic degrees of freedom. Number of independent forces are 

generally chosen such that n   m – l, where n represents number of 

independent forces per element (F1, F2……Fn = fdof), m represents number of 

nodal displacement degrees of freedom per element (w1, ɵx1, ɵy1 …….m = ddof) 

and l represents number of rigid body modes for the element for hybrid 

method and number of independent strains present in element for IFM 

which is equal to 3, i.e.  x,  y and γxy for 2D problems. 

In IFM based analysis a detection of zero energy mode and suppressing of it 

is strongly required, which is automatically taken care by approximating 

stress and displacement functions of appropriate order that produces correct 

rank of the given equilibrium matrix. The methodology of Pian and Chen [84] 
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is found truly ensure the absence of spurious zero energy modes.  The 

expression of internal energy helps in calculating the correct rank of 

equilibrium matrix, in which zero energy modes correspond to rigid body 

modes are given by the following formula: 

 [Ac] = 
 

 
          δ                          … (5.1) 

Where [F] = Number of force degree of freedom for each element, [B] = 

Elemental equilibrium matrix, {δ} = Displacement degrees of freedom. Thus 

spurious zero-energy mode can be removed sometimes by constructing 

totally new element if needed, so that the resulting equilibrium matrix has a 

rank of nr   m – 1 [85].   

5.2 BASIC LINEAR 2D STRESS FUNCTIONS 

Consider a four-noded, 8 ddof (u1 to v4) rectangular in-plane element of 

thickness t with dimensions as 2a x 2b along x and y axes respectively as 

shown in Fig. 5.1.  

 

 

 

 

 

 

 

Fig. 5.1 Rectangular Element with Nodal Displacements 

 

For a rectangular membrane element, the force field is chosen in terms of 

five independent forces as; 

                             
     

                                              … (5.2) 
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Here the number of internal forces and their selection totally depend upon 

formula given in Eq. (5.1). The distribution of internal forces in the element 

can be considered as follows (Fig. 5.2). 

              =    +   
 

 
 ,    =    +   

 

 
  and                                          … (5.3) 

 

 

 

 

 

 

 

 

Fig. 5.2 Rectangular Element with Internal Stress Distribution 

The structural idealization of a 2D plane rectangular plate may be thought of 

as being represented by pin-jointed frame work with bars representing sides 

of rectangular plate and one of their diagonal is such that where adjacent 

sides of two rectangular plate elements meet [86]. The same can be 

approximated by a small plate, which is subjected to axial force in x-x 

direction and straining takes place in the same direction of an amount  
γσ 

 
 . 

The shear stress in diagonal direction converts the rectangular element in 

rhombus shape. This causes one of the diagonals extent and other contract. 

Thus, its effect don’t interfere the strain produced by normal stress 

(σ      σ  . Due to this reason its distribution is taken separately and is 

represented by a constant term as F5 [87].  

 

The displacement field should satisfy the continuity condition and the 

selected forces should satisfy the mandatory requirement. Lagrangian 

interpolation functions are selected to represent displacement field inside the 

element as follows: 

 

 b 

a   F1 – F2 

  F1 + F2 

  F1 
b 

b 

  
F

3
 +

 F
4
 

  F1 

  
F

3
 -

 F
4
 

a 

  F3 

  F2 

  F3   F4 

  F5 



 

90 

 

 

 u(x,y) =
4

1



































































































43

21

u
b

y
1

a

x
1u

b

y
1

a

x
1

u
b

y
1

a

x
1u

b

y
1

a

x
1

                … (5.4) 

      v(x,y) = 
4

1

 



































































































43

21

v
b

y
1

a

x
1v

b

y
1

a

x
1

v
b

y
1

a

x
1v

b

y
1

a

x
1

                … (5.5) 

 

where u1, v1 -----------v4 are the  nodal displacements as shown in Fig. 5.1. 

5.3 AIRY STRESS THEORY BASED FUNCTIONS  

Airy stress theory is basically based on adding different order of x and y 

polynomials which correspond to stresses developed in the continuum, 

which are varying along horizontal and vertical directions from the origin 

under consideration.  

As per the theorem of calculus if the two functions f(x,y) and g(x,y) satisfy 

 
       

  
 = 

       

  
                                                      … (5.4) 

then, there exists a function A(x,y) such that f(x,y) =    = 
  

  
 and g(x,y) = 

       
  

  
  for which an equilibrium equation given below should be satisfied 

along x-x direction. 

  
   

  
 +  

    

  
 = 0                                                              … (5.5) 

If same procedure is followed for the B(x,y), then one can have f(x,y) =    = 
  

  
 

and g(x,y) =        
  

  
  for which an equilibrium equation given below 

should be satisfied along y-y direction. 

 
   

  
 +  

    

  
 = 0                    … (5.6) 



 

91 

 

 

Finally, from  
  

  
 = 

  

  
, one can deduce that there exists a function         

which is known as Airy Stress Function,  such that A = 
  

  
  and B = 

  

  
 , from 

which three components for stress field can be represented by the stress 

function [88] : 

      
   

   
 ,      

   

   
 and        

   

    
                                  … (5.7) 

The Airy stress based polynomial requires a suitable stress field for deriving 

the stress interpolation matrix [Y], which is directly linked to equilibrium 

and flexibility matrices. Hence proper selection of polynomial is important to 

obtain accurate results. A method is developed here which uses an Airy 

stress function ϕ in terms of complete polynomial. The Airy stress function 

for a location (x, y) within an element can be written as a complete 

polynomial of order p as follows; 

 

                                            … (5.8) 

where  with j = 0, 1, 2, 3--------------, p are constants and x, y are the 

cartesian coordinates of the point in the element for the local coordinate 

system. The components of stress tensor are obtained using the definitions 

of the stress function as 

                                                     

                                                   

                                …  (5.9) 

 which can be rewritten as 
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                                                 … (5.10) 

        

The coefficients of the polynomials in Eq. (5.10) can be considered as 

elemental forces Fi, with i = 1, 2,……., 3(p+1), and Fi can be expressed in 

terms of (p+1) constants Cj as 

Fi = C0, C1,………..Cp)       for  i = 1, 2,………3(p-1)          … (5.11) 

 

Where  is the linear function with constants Cj. Thus, not all forces Fi are 

linearly independent. Final stress field interpolation polynomials can be 

obtained by eliminating the dependent forces.  This results in (p+1) 

independent forces, when stress function  is written as a complete 

polynomial of order (p - 2). The stress function is represented by complete 

cubic polynomial as follows. 

 

y +        … (5.12) 

 

Substituting p = 3 into Eq. (5.10) yields the following expressions for the 

stress components: 

          

                                   

                           … (5.13) 

 

Where the superscript 1 denotes the linear terms in the stress polynomial. 

From Eq. (5.13), it is clear that the six coefficients  are expressed in terms 

of four independent constants ; and only four  forces are linearly 

independent. By eliminating two forces from Eq. (5.13), one can obtain the 

linear stress terms as follows: 

   ,     and     … (5.14) 
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By substituting p = 2, 3, 4 and 5 into Eq. (5.10) and then eliminating various 

intermediate terms using above procedure, one can obtain constant, linear 

quadratic and cubic terms for the stress components as [89, 90],  

 Constant terms (p = 2), Number of forces (F) = P +1 = 3  

   = F1,      = F2   and     = F3                                        … (5.15) 

 Linear terms  (p = 3), Number of forces (F) = P +1 = 4  

    = F1x + F2y,  σ  = F3x + F4y  and       = -F4x – F1y             … (5.16) 

 Quadratic terms (p = 4), Number of forces (F) = P +1 = 5 

   = F1y2 + F2xy – F5 (x2/2),    = F3x2 – F5 (y2/2) + F4xy                                      

and     = – F4 (x2/2) – F2 (y2/2)  +  F5xy                                      … (5.17) 

 Cubic terms (p = 5),  Number of forces (F) = P +1 = 6 

   = (F3/3)x3 + 3F4x2y + 3F5xy2 – F6y3
                                   

 

   = F1x3 + 3F2x2y + F3xy2 + F4y3
                                     

    = – F2 x3 – F3x2 y -3F4xy2 – F5y3
                     … (5.18)       

For solving various problems, one can add above equations to develop full 

polynomial, like full constant terms have total 3 terms in terms of internal 

forces in Eq. (5.15). The full linear force polynomial can be written as  

         σ  = F1 + F4x + F5y   ,     σ  = F2 + F6x + F7y and      = F3 – F7x - F4y  … (5.19) 

Similarly, full quadratic polynomials can be written as  

    σ  = F1 + F4x + F5y + F8y2 + F9xy – F5 (x2/2)                
 

σ  = F2 + F6x + F7y + F10x2 – F12 (y2/2) + F11xy              

    = F3 – F7x - F4y – F11 (x2/2) – F9(y2/2)  +  F12xy                       … (5.20) 

Table 5.1 gives complete information regarding all affecting parameters for 

developing higher order stress polynomials. 
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Table 5.1 Various Parameters for Stress Functions 

 

5.4 REDUCTION TECHNIQUE FOR HIGHER ORDER POLYNOMIALS 

Higher order elements are preferable for increasing the accuracy but such 

elements increase the total number of unknowns and thus gives large size of 

global equilibrium matrix, compatibility matrix and material flexibility 

matrix. For the last two matrices there is no mathematical complexity. 

However, the individual element equilibrium matrix is of sparse nature, 

assembly of the same may raise percentage sparsity to considerable level 

which may create problems in finding the solution.  Thus, it is preferable to 

reduce the number of independent forces in the stress field representation 

while preserving the original desired mathematical property of overall 

problem and related matrices. The compatibility condition can be used to 

reduce number of independent forces. It is written as follows [91]; 

    (σ  + σ               … (5.21) 

where     
  

   
 + 

  

   
                                                     

Applying Eq. (5.21) to cubic representation one may reduce one or two 

independent forces in the complete polynomial. On the other side, cubic 

representation may be converted into a quadratic representation by reducing 

one or two individual force unknowns. It is preferable to apply compatibility 

conditions to the force polynomial which is of higher order than linear terms 

Type of 
Polynomial 

Numbers of 

Terms in   

Maximum 
Power of 

x or y 

Total Number of 
Individual Forces 

in Polynomial 

Total Number 

of Forces in 
Full 

Polynomial 

Constant 3 2 3 3 

Linear 4 3 4 7 

Quadratic 5 4 5 12 

Cubic 6 5 6 18 
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as second derivative may not give necessary results for linear and constant 

representations. 

5.5 INTERPOLATION FUNCTIONS FOR INPLANE PROBLEMS 

Function used to represent behavior of a field variable within an element are 

called interpolation functions. These functions are also known as shape 

functions. Different types of functions could be used as interpolation 

functions such as polynomials or trignometric functions. As polynomials are 

easy to manipulate and have recognizable degree of approximation, they are 

most widely used as interpolation functions. Depending on the problem 

dimension, polynomials of one, two or three independent variables may be 

used in the interpolation functions. Starting directly with polynomial, 

however, requires inversion of generalized coordinate matrix to derive shape 

function Ni. Such a process can be quite cumbersome for higher order 

polynomials. Alternatively, shape functions can be easily derived by using 

Lagrangian formula for any simple or most sophisticated element. However, 

these functions can be used for Co degree continuity elements only i.e. where 

only function and not their derivatives are used as degree of freedom.  

The displacement field can be expressed, for a 1D element, as follows: 

U =    
 
                                … (5.22) 

Where n is number of nodes and interpolation function Ni can be calculated 

by using the formula: 

 Ni =  
      

        

 
    
    

            … (5.23) 

For example, for 2-noded element, the linear functions for u can be written 

as 

 u =             
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Where N1 = 
      

      
 and N2 = 

      

      
  

For 3 - noded element having quadratic variation,  one can write  

 u =                   

where N1 = 
      

      
 
      

      
 , N2 = 

      

      
 
      

      
  and N3 = 

      

      
 
      

      
    

The interpolation functions can be written by considering the origin of 

coordinates outside the element as shown in Fig. 5.3 or at the left node of 

the element or may be at the centre of the element.  

  

 

a) Two Noded Line Element          b) Three Noded Line Element 

Fig. 5.3 One Dimensional Elements 

The procedure can be easily generalized to accomplish shape functions for two 

and three dimensional elements. Consider a rectangular element in plane 

stress with nodes at corners as shown in Fig. 5.4(a). The displacements in the 

x-direction u and in y direction v can be written in terms of nodal 

displacements as  

   

 u =                                 +            

v =                                 +                                … (5.24) 

where,                                             

                                     and                       

Where             
 

  
  ,         

 

  
  

                           
 

  
                       

 

  
                                             … (5.25) 
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a) Origin at Node 1               b) Origin at Centre 

Fig. 5.4 Two Dimensional Rectangular Element 

 

Considering origin at the centre of the element as shown in Fig. 5.4(b), the 

shape functions along each direction can be written as  

                       
 

 
    

 

 
  ,          

 

 
   

 

 
      

                  
 

 
   

 

 
  , and          

 

 
   

 

 
)                                      … (5.26) 

5.6   SHAPE FUNCTION FOR 2D QUADRATIC RECTANGULAR ELEMENT 

For 3 nodes in each direction, with origin at the centre  

                   
 

   
       ,          

 

   
                    

  

  
  ,            

  

  
   

                   
 

   
       ,        

 

   
                                         … (5.27)   

 

 

     

                              

a) 9-Noded Element                             b) 8-Noded Element 

                    Fig. 5.5 Quadratic Rectangular Element 
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Hence for 9 noded rectangular element Fig. 5.5(a) which belongs to 

Lagrangian family, the interpolation function will be 

                                
 

   
       

 

   
                          

  

  
 
 

   
         

                               
 

   
      

 

   
                             

 

   
          

  

  
  

                                
 

   
      

 

   
                               

  

  
  

 

   
        

                                  
 

   
        

 

   
                          

 

   
          

  

  
  

                                         
  

  
     

  

  
                … (5.28) 

Eliminating the internal node, one can have the interpolation functions for 8 

noded element Fig.5.5(b). For mid side nodes, shape functions are obtained 

by considering quadratic variation along 3-noded line and linear variation 

along 2 noded line. For corner nodes, shape functions are obtained by 

substracting from linear variation along its sides the half of the shape 

functions at mid side nodes lying on the sides of the respective corner node. 

Finally,  
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99 

 

 

Using above shape functions the displacement u in the x direction and v in 

the y direction can be expressed as 

u =                  + …….. +           
 
      

v =                  +………+           
 
                         … (5.30)            

5.7 IFM BASED IN-PLANE TRIANGULAR ELEMENTS  

The major advantage of the triangular type of element is that it can be used 

to discretize any irregular shape domain. The mathematical expression and 

related matrices are relatively simpler; hence it is always suited in terms of 

domain geometry and computational cost. 

Following two types of triangular elements are developed in the present 

work: 1. Basic Triangular Element (TRI_3F_6D) and 2. Higher order 

Triangular Element (TRI_9F_12D). 

 

5.7.1 Triangular Element ( TRI_3F_6D) 

Consider a 3-noded triangular element as shown in Fig. 5.6. The element is 

designated as TRI_3F_6D where 3F represents three independent forces (F1, 

F2, F3) and 6D represents total number of displacements u1,v1, u2,v2 and u3, 

v3 respectively at nodes 1, 2 and 3 of the element. 
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Fig. 5.6 Basic Triangular Element (CST) 

 

 



 

100 

 

 

  Here (x1, y1), (x2, y2) and (x3, y3) are the known nodal coordinates of nodes 

1, 2 and 3 respectively. The procedure for deriving basic equilibrium matrix is 

based on displacement function and appropriate forcing function. 

Selecting linear displacement function in u and v direction as 

         u(x,y) = c1 + c2x + c3y         

         v(x,y) = c4 + c5x + c6y                   … (5.31) 

The unknown nodal displacement vector {δ} is as follows; 

    δ   

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

                                                                … (5.32) 

 Thus writing Eq. (5.31) in matrix form gives  

       
      
      

    
        
      

   

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

                  

                               … (5.33) 

Considering cartesian set of axes and substituting nodal coordinates one can 

write in matrix form as 

  

  
  
  
   

     
     
     

  

  
  
  
               … (5.34) 

Calculating value of constants by inverting in terms of nodal coordinates of only 

u(x,y) in  Eq. (5.34) one can have 
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                       … (5.35) 

In which,                ,                                                       ,  

                               ,                             ,                                     ,  

                              ,                                and                             

While,     =                                    is the determinant of the 

generalized coordinate matrix given in Eq. (5.34) and is equal to two times the 

area of the triangle. Thus substituting vector [c1 c2 c3]T from Eq. (5.35) into Eq. 

(5.34), one gets  

                   
 

  
      

      
      
      

  

  
  
  
                                   … (5.36) 

Multiplying, one gets 

                   
 

  
                                                          

                               … (5.37) 

                    
 

  
                                                         

                      … (5.38) 

Coefficients of nodal displacements are shape functions which can be written 

as  

  N1 =  
 

  
                 

 N2 = 
 

  
                        … (5.39) 

 N3 = 
 

  
                 

Thus, one can write 
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                                                     … (5.40) 

                     
      
      

    
         
         

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

     δ              … (5.41) 

Where [N] is the shape function matrix which is given by  

 [N] =   
         
         

        … (5.42) 

For plane stress/strain problem, strain vector can be written as  

{ } =  

  
  
γ
  

  = 

 
 
 

 
 

  

  
  

  

  

  
  

  

   
 
 

 
 

             … (5.43) 

Substituting the Eq.  (5.41) into (5.43) 

                       

 
 
 

 
 

 

  
                  

 

  
                  

 

  
                    

 

  
                  

 
 

 
 

  

       = 
 

  
 

         
         
            

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

     δ                     … (5.44) 

Where, [Z] is known as strain displacement linking matrix. 
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Fig. 5.7 Constant Stress Distribution for Triangular Element 

Now number of independent unknowns in forcing function {F} = Total 

displacement degrees of freedom (ddof) – Number of rigid body modes (3) = 3 

So, {F} = [F1 F2 F3 ]T               … (5.45) 

Expressing internal stress distribution of the given element in terms of 

independent unknowns, one can write  

  

  
  
   

    
   
   
   

  
  
  
  

   [Y]{F}        … (5.46) 

The equilibrium matrix [Be] for the given triangular element is given by 

            
 

                            … (5.47) 

Now substituting strain linking matrix [Z] from Eq. (5.44) and [Y] from Eq. 

(5.46) into above equation. The equilibrium matrix can be written as   

                  
 

 

 
 
 
 
 
 
     
     
     
     
     
      

 
 
 
 
 

                              … (5.48) 

    = F2  

1 

X 

(x1, y1) 

2 (x2, y2) 

3 (x3, y3) 

    = F1  

     = F3  

Y 
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The elemental flexibility matrix for the triangular element can be worked out 

using the following expression.  

            
 

                                                       … (5.49) 

In which material property matrix [D] is written as  

 [D] = 
 

  
 
     
    
        

                                                      … (5.50) 

Where E, t and   are the modulus of elasticity, thickness of plate and Poisson’s 

ratio of plate material respectively.  

Substituting material matrix [D] and stress interpolation matrix [Y] in Eq. 

(5.49), one gets 

 [Ge] = 
 

  
 
     
    
        

         … (5.51) 

5.7.2 Higher Order Triangular Element ( TRI_9F_12D) 

Consider a higher order triangular element with 3 additional nodes at the 

midpoints of the each side.  The displacement function has 3 nodes along 

each edge of triangle, thus, it can be approximated using parabolic behavior.  
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4 
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(x4, y4) 
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 u5 

v5 

(x5, y5) 

6  u6 

 

v6 

(x6, y6) 

Fig. 5.6 Higher Order Quadratic Triangular Element   
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Selecting quadratic displacement function for u and v, one can write  

 u(x,y) = c1 + c2x + c3y + c4x2 + c5xy + c6y2       

 v(x,y) =  c7 + c8x + c9y + c10x2 + c11xy + c12y2                        … (5.52) 

The unknown nodal displacement vector can be written as  

     δ                      
                             … (5.53) 

 Arranging Eq. (5.52) in matrix form, thus 

       
      
      

    
                 

               
    

  
 
 
   

       

 or,                               … (5.54) 

Substituting the nodal coordinates, one can have  

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 

 
 
 
 
 
 
 
       

       
 

       
       

 

       
       

 

       
       

 

       
       

 

       
       

  
 
 
 
 
 
 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 =                      … (5.55) 

Inverting Eq. (5.55) gives  

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 
 

  

 
 
 
 
 
 
            
            
            
            
            
             

 
 
 
 
 
 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

                   … (5.56) 

In which,             are the elements of generalized coordinate matrix which 

depends upon values of nodal coordinates. Substituting {C} vector from Eq. 

(5.56) into Eq.(5.54),  
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… (5.57) 

or one can write expressions for u and v as  

          
 

  
          

 
            

           
       

 

  
   
 
      

          
 

  
          

 
            

           
       

 

  
   
 
      

In matrix form, the same can be written as  

             
                   
                  

  

 
 
 

 
 
  
  
 
 
  
   
 
 

 
 

        

                               … (5.58) 

Strain vector for a plane stress/strain problem can be written as  

      

  
  
   

   

 
 
 

 
 

  

  
  

  

  

  
 

  

   
 
 

 
 

 

  

 
 
 
 
 
   

  
  

   

  
 

   

  
 

   

  
 

   

  
 

   

  
 

 
   

  
 

   

  
 

   

  
 

   

  
 

   

  
 

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

  

   

   
 
 
 
 

 

 
 
 

 
 
  
  
 
 
  
   
 
 

 
 

             

 
 

  
 

      
 
                

    
                

   
                      

 
              

 

 
 
 

 
 
  
  
 
 
  
   
 
 

 
 

                     … (5.59)   
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The forcing function {F} with nine number of internal unknowns can be 

expressed as   

So, {F} = [F1 F2 F3 …..F9]T             

The internal stress distribution of the given element can be expressed in terms 

of independent unknowns as  

  

  
  
   

    

         
         
         

 

 
 
 
 
 

 
 
 
 
  
  
  
  
  
  
  
  
   
 
 
 
 

 
 
 
 

  [Y]{F}     … (5.60) 

Where, [Y] is known as stress interpolation matrix.  

The distribution of internal stresses is depicted in Fig 5.7. 

 

 

                

                      

                                                                              

                                                                                      

            

  Fig. 5.7 Variation of Internal Stresses along Orthogonal Directions 

Now element equilibrium matrix [Be] is formulated by substituting [Z] matrix 

from Eq. (5.59) and stress interpolation matrix [Y] from Eq. (5.60) into Eq. 

(5.47). The elemental flexibility matrix [Ge] is also formulated by substituting 

necessary matrices in Eq. (5.49)  

      F1 + x3 F3 + y3 F3 

    = F1 + x1F2 + y1F3 

      F4 + x2F5 + y2 F6       F4 + x1F5 + y1F6 

X 

 

Y 

 

2 (x2, y2) 

3 (x3, y3) 

4 (x4, y4) 

5 (x5, y5) 

6 (x6, y6) 

 

u

2 

 (x1, y1) 1 

       F7 + x2F8 + y2 F9 
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Instead of using generalized coordinate system, one can use the non-

dimensional natural coordinate system, known as are coordinate system used 

to derive the basic element matrices. Here three coordinates L1, L2 and L3 are 

used to define the location of any point in the element, in which two of these 

are independent.  

The relation between area coordinate system and cartesian coordinates x, y is 

can be written as   

  
 
 
 
    

   
      
      

  
  
  
  

              … (5.61) 

 

 

 

 

 

 

         Fig. 5.8 Area Coordinate System for Triangular Element     

If A is the area of triangle 1-2-3, and A1, A2, and A3 are the areas of the smaller 

triangles as shown in Fig. 5.8, then the non-dimensional coordinates can be 

defined  as  

 L1 = A1/A, L2 = A2/A and L3 = A3/A                                     

Now, inverting the Eq. (5.61), yields 

  
  
  
  

   
 

  
 

      
      
      

  
 
 
 
                                                       … (5.62) 

1 
X 

(x1, y1) 

Y 

2 
 

u
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(x2, y2) 

3 (x3, y3) 

 

(1, 0, 0) 

(0, 1, 0) 

(0,0,1) 

A1 

A3 

A2 

P(L1, L2, L3) 
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Where b1 = y2 – y3, c1 = x3 – x2  and a1 = x2y3 – x3y2   and others can be written in 

cyclic order. Here L1, L2 and L3 are calculated from Eq. (5.62), in which 

differentiation and integration are carried out as follows. 

 
 

  
 =  

   

  
  

   
 

   
 =  

  

  

 
   

 

   
  , 

 

  
 =  

   

  
  

   
 

   
 =  

  

  

 
   

 

   
      

          
 

 
  

   
      

      

          
                   … (5.63) 

Using above mathematical operations and relations, one can calculate the 

equilibrium matrix [Be] and flexibility matrix [Ge] for both Constant Strain 

Triangular element (TRI_3F_6D) and Higher order quadratic element 

(TRI_9F_12D) as follows:  

 TRI_3F_6D Triangular Element  

The values of area coordinates L1, L2, and L3 are found identical to those N1, 

N2 and N3 for the 3-noded triangular element of cartesian coordinates and 

therefore one can write  

 N1 = L1, N2 = L2 and N3 = L3                                                  

      
      
      

    
         
         

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

     δ                        … (5.64) 

Differentiating as per Eq.(5.63), the strains can be related to displacements as  

{ } =  

  
  
γ
  

  = 

 
 
 

 
 

  

  
  

  

  

  
  

  

   
 
 

 
 

             

    = 
 

  
 

         
         
            

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

     δ                                 … (5.65) 
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The forcing function {F} is taken from Eq. (5.46) and strain displacement linking 

matrix [Z] is taken from Eq. (5.65) to get the equilibrium matrix [Be] as per Eq. 

(5.47) as 

  [Be] = 
 

 
 

 
 
 
 
 
 
     
     
     
     
     
      

 
 
 
 
 

                                                      … (5.66) 

Similarly [Ge] is obtained which is same as given in Eq. (5.51)  

  TRI_9F_12D Triangular Element  

Considering higher order triangular element with 3 corner nodes and 3 mid 

side nodes. Using area coordinate system, the six shape functions are 

obtained using Lagrangian formula as 

  

N1 = L1(2L1 -1) ,       N2 = L2(2L2 -1) ,             N3 = L3(2L3 -1),  

N4 = 4L1L2,             N5 = 4L2L3 and              N6 = 4L1L3     … (5.67) 

 

By following the same procedure as outlined above from Eq. (5.39) to (5.51) 

the equilibrium matrix [Be] and flexibility matrix [Ge] can be calculated as 

       

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

 
 

  

  
   

  

  
      

  

 
 

  

  
   

  

  
  

    
  

 
 

  

  
   

  

  
   

  

 
 

  

  
   

  

  
  

 
  

 
 

  

  
   

  

  
      

  

 
 

  

  
   

  

  
  

    
  

 
 

  

  
   

  

  
   

  

 
 

  

  
   

  

  
  

 
  

 
 

  

  
   

  

  
      

  

 
 

  

  
   

  

  
  

    
  

 
 

  

  
   

  

  
   

  

 
 

  

  
   

  

  
  

        

 

        

  
  

        

  
     

        

 

        

  
  

        

  
  

   
        

 

        

  
  

        

  
  

        

 

        

  
  

        

  
  

        

 

        

  
  

        

  
     

        

 

        

  
  

        

  
  

   
        

 

        

  
  

        

  
  

        

 

        

  
  

        

  
  

        

 

        

  
  

        

  
     

        

 

        

  
  

        

  
  

   
        

 

        

  

        

  
  

        

 

        

  
  

        

  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 … (5.68) 



 

111 

 

 

     
  

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

 

  

 
   

   

 
 
   

 
   

 
  

 
 
      

  
 
   

 
   

  

 
 
 

   
     

  
    

 
  

 
 
 

 
   

 
   

     

  
    

  

 
 
 

   

 
  

 

  

 
   

 
  

 
 
      

  
   

 
  

 
 
 

   

     
     

 

     

 

   
  

 
 
 

   
     

  
 

   
  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                   … (5.69) 

Where               ,              ,                                    

               ,                 ,                   and     = 2 +2 . 

5.8 IFM BASED IN-PLANE CURVED ELEMENT.  

A rectangular element having two opposite edges with curved boundaries as 

shown in Fig. 5.9 is approximated using IFM based two dimensional 

element and named as CURVE_5F_8D for having five independent force 

degrees of freedom and eight displacement degrees of freedom. 

Procedure for deriving the basic equilibrium matrix is the same as all previous 

elements except coordinate system. The displacement function in u and v are 

selected as  

  u(r,α) = c1 + c2r + c3α + c4rα       

 v(x,y) =  c5 + c6r + c7α + c8rα                                                  … (5.70) 
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                                    Fig. 5.9 Curved Element           

The unknown nodal displacements are 

     δ                
                                            … (5.71) 

Arranging Eq. (5.52) in matrix form, one can write 

       
      
      

    
            
          

    

  
 
 
  

       

 So,                                … (5.72) 

Substituting the values of nodal coordinates. 

  

  
  
  
  

   

         
         
         
         

  

  
  
  
  

  =                                         … (5.73) 

X 
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2b 
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4   2a2 
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α2 

  2a1 
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r1, α1 
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u1 
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v2 

v4 

u4 

v3 

u3 
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r1, α2 

r2, α2 

r2, α1 
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By inverting Eq. (5.55), one can have 

  

  
  
  
  

  
 

     
 

                 
          
          
      

 

 

 

  
  
  
  

                    … (5.74) 

Where,        =                         

Substituting {C} in Eq. (5.72), one can get 

                             
 

     
 

                 
          
          
      

 

 

 

  
  
  
  

            … (5.75) 

Now u and v can be expressed as  

     
 

     
   
 
      and     

 

     
   
 
                                         … (5.76) 

Writing in expanded form, one can write 

                 
      
      

    
             
            

  

 
 
 
 

 
 
 
  
  
  
  
  
  
  
   
 
 
 

 
 
 

               … (5.77) 

Where      
 

     
                    ,     

 

     
                       

             
 

     
                    ,         

 

     
                         

                                … (5.78) 

The strain vector can be written as  
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                                                                                                               … (5.79) 

The forcing function {F} with five numbers of internal unknowns can be written 

as  

 {F}T = [F1 F2 F3 …..F5]T             

Expressing internal stress distribution of the element in terms of independent 

unknowns, one can write  

  

  
  
   

    
     
     
     

 

 
 
 

 
 
  
  
  
  
   
 
 

 
 

  [Y]{F}                         … (5.80) 

Where [Y] is known as stress interpolation matrix in which the variation of both 

the stresses along r and α is considered as linear.  

Substituting strain linking matrix [Z] and stress interpolation function [Y] in the 

following equation gives the terms of [Be] matrix in which the non-zero terms 

are as follows;  

 [Be] =               
  

  

  

  
                                                      … (5.81) 
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Now the flexibility matrix [Ge] can be worked out by using the formula, 

 [Ge] =                  
  

  

  

  
  



 

116 

 

 

           
 

  
 

 
 
 
 
 
 
 
 
    

 

      

 
 
    

 
 
      

 
 

     

 
 
      

 
  

     

 
 

   
      

 
 

   
  

 
   

    
   

       
 
 
 
 
 
 
 

                                  … (5.82) 

Where 

      
    

        
    

                               
    

 , 

          ,         and               

 

 

5.9 IFM BASED PLATE BENDING ELEMENTS 

 

5.9.1 RECT_9F_12D Plate Bending Element 

Consider a typical rectangular plate element having size as 2a x 2b with its 

thickness t.  The coordinate system and node numbering is as shown in Fig. 

5.7, in which each node of the element has  three displacement degrees of 

freedom i.e. transverse deflection w(x,y) and two orthogonal rotations (ɵx and  

ɵy).  The displacements at node 1 are w1, ɵx1 and ɵy1 with corresponding 

internal forces P1, Mx1 and My1. The displacement and internal force vectors 

are assumed as  

 {δe} = [w1     ,      w2     ,    , w3     ,    , w4     ,    ]T     … (5.83) 

{Pe} = [P1 Mx1 My1, P2 Mx2 My2, P3 Mx3 My3, P4 Mx4 My4]T                 … (5.84) 
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Fig. 5.6 Rectangular Plate Bending element  

For a two dimensional rectangular plate bending element having 3 degrees of 

freedom at each node (w.  x,  y), the lateral deflection w can be expressed as  

w(x,y)  =     +          +         
      

  +    
       

            

                                        
  +      

       
        

      … (5.85) 

 = [       

where, [A] is known as function of (x, y) matrix and  αs are the constants. 

The above displacement function however may not satisfying an inter-element 

compatibility along common boundaries (non-conformal element) but with finer 

discretization pattern it may provide the solution for moments and deflections 

within acceptable limits. 

Referring to Fig. 5.6 and Eq. (5.85) and substituting nodal coordinates one 

can write 

 {d} = [A1]{α}                                                             … (5.86) 

Where {de} = Vector of displacement degree of freedom of size 12 x 1. 

[A1] = Generalized coordinate matrix of size 12 x 12. 

and {α} = Vector of constants of size 12 x 1. 

w1 
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 y4 
w3 

 x3 
3 

w4 

w1 
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 x1 
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Inverting [A1] using matlab based inverting module and substituting in 

(Eq.5.85), once can write 

w(x,y) = [A][A1]-1{δe}  = [N]{δe}                                                        … (5.87) 

Or      w(x,y)  = [N]{δe} =            
 
   +             +              ] 

In which, [N] is known as shape function matrix for rectangular plate 

bending problem of size (1 x 12). In which first three values corresponding to  

deflection w(x,y) in vertical direction and rotations ɵx and  ɵy along x-x and y-y 

direction respectively are given below. 

         
 

  
 

  

   
 

   

   
  

  

    
 

    

    
  

   

    
 

   

     
  

  

   
  

    

     
  

   

    
   

           
 

 
 

 

 
 

  

  
  

  

  
 

  

 
  

  

   
 

   

  
  

   

    
                               

             
  

  
 

  

    
 

   

   
  

  

  
 

   

    
  

   

   
 

  

   
  

   

    
  

   

    
                  … (5.88) 

Now, the strain vector, which consists of curvature terms can be expressed as  

      

  
  
   

   

 
 
 

 
 

        

   

        

   

 
        

     
 
 

 
 

  

 
 
 

 
 
   

   
                              

  

   
                            

 
  

    
                             

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
  

   
   
  

   
   
  

   
   
  

   
    

 
 
 
 
 

 
 
 
 
 

        

                                                                                … (5.89) 

Where [Z] = [L][N], is known as strain linking matrix and [L] is flexural strain 

operator. 
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The forcing function {F} in IFM is selected for bending element based on 

number of rigid body modes. As each strain component has its own rigid body 

component, number of independent unknowns in forcing function {F} = Total 

displacement degrees of freedom (ddof) – Number of rigid body modes (3) = 9 

So, {F}T = [F1 F2 F3 …..F9]T              … (5.98) 

Expressing internal moments in terms of independent unknown, one can write  

  

  

  

   

   
          
          
         

 

 
 
 
 
 

 
 
 
 
  
  
  
  
  
  
  
  
   
 
 
 
 

 
 
 
 

  [Y]{F}                   … (5.90) 

Where, [Y] is known as stress interpolation matrix. The element has bilinear 

variation for the orthogonal moments Mx and My while constant relation for 

torsional moment Mxy.  

The behavior of Mx can be understood in orthogonal direction with respect to 

origin (0, 0) by substituting approximating values at each corner and at 

midpoint of each edge of the element 

 

 

 

 

 

            Fig. 5.7 Coordinates for expressing Variation of Mxx 
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Referring to Fig 5.7 the values of Mx at each different nodes can be written as  

 M1 = F1 – aF2 - bF3 + abF4,    M2 = F1 - bF3 ,      M3 = F1 + aF2 - bF3 - abF4,          

          M4 = F1 – aF2 ,                     M5 = F1,               M6 = F1 + aF2      

M7 = F1 – aF2 + bF3 - abF4     M8 = F1 + bF3      

and M9 = F1 + aF2 + bF3 + abF4                           … (5.91) 

Here M9 has the maximum value compared to all other values.  

The equilibrium matrix [Be] for the given plate bending element is obtained 

using  

            
  

  

  

  
                                      … (5.92) 

Substituting flexural strain displacement linking matrix [Z] from Eq. (5.89) and 

stress interpolation matrix [Y] from Eq. (5.90) and integrating one can get the 

equilibrium matrix [Be] as 
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Now the flexibility matrix for plate bending element can be obtained by 

substituting stress interpolation matrix [Y] and material matrix [D] in the Eq. 

(5.49) as  

      
    

   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          

  

 
     

  

 
   

  

 
     

  

 
  

    

 
     

    

 
 

     
  

 
  

    
  

 
  

    

 
 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

          … (5.94) 

5.9.2 RECT_13F_16D Plate Bending Element 

When C1 continuity has to be satisfied, both displacement and its first 

derivatives are taken as nodal degrees of freedom and Hermitian 

Interpolation functions can be used. The order of function depends on order 

of derivatives used for the degrees of freedom. If only the first derivatives are 

used, then first order function are used.  

 

For a n-noded beam element with w and its first derivative 
  

  
 as degree of 

freedom at each node, the Hermitian function can be written as  

w =      
 
           

    
   

  
 ] 

 

Where shape function corresponding to w and 
  

  
 can be calculated 

respectively by 
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                                                       … (5.95)                  

For a two noded beam element of length 2a and origin of coordinates at the 

centre of the element, these shape functions are as follows: 

                     
           

   
 

                          
            

   
 

                 
              

   
 

                                
              

   
                                 … (5.96) 

If product of these shape functions in x and y are used for a two dimensional 

rectangular element with four corner nodes, one gets 16 shape function in 

all. The nodal degree of freedom at any node will be w, 
  

  
 and their 

derivatives in y i.e. 
  

  
 and 

   

    
  which is shown in Fig 5.8. 

                      

Fig. 5.8 Degrees of Freedom for Higher Order Element 

 

For a four noded rectangular element Hermitian Interpolation function can 

be written as  

w =           
 
              

   

  
 +          

   

  
 +           

   

    
    … (5.97) 

where         =             ,         =              ,          =                

2a 

2b 

2 

4 3 

1 

  w3,  x3,  y3,  xy3    W4,  x4,  y4,  xy4  

  W1,  x1,  y1,  xy1    w2,  x2,  y2,  xy2  
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and           =                                                                   … (5.98) 

for example, for node 1 the shape functions will be  
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Similarly, shape function for the other nodes can be written and finally w 

can be expressed in terms of these functions as per Eq. (5.97). 

Now strains can be related to nodal displacements as 

      

  
  
   

   

 
 
 

 
 

        

   

        

   

 
        

     
 
 

 
 

  

 
 
 

 
 

   

   
                                  

  

   
                                

 
  

    
                                   

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
  

   
   
    
 
 
 
  

   
   
     

 
 
 
 
 

 
 
 
 
 

        

                                                                                … (5.99) 

Where [Z] = [L][N] is known as strain displacement linking matrix and [L] is 

flexural strain operator. 

The forcing function {F} is selected for bending element based on number of 

rigid body modes. As each and every strain component has its own rigid body 

component inside, the number of independent unknowns in forcing function {F} 
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= Total displacement degrees of freedom (ddof) – Number of rigid body modes 

(3) = 13. 

So, {F} = [F1 F2 F3 …..F13]T                     … (5.100) 

Expressing internal stress distribution of the given element in terms of 

independent unknown, one can write  

  

  

  

   

   
                

                
             

 

 
 
 

 
 
  
  
 
 
    

 
 

 
 

 [Y]{F}                      

                                                                                                            … (5.101) 

Where, [Y] is known as stress interpolation matrix, in which x and y are the 

distances from the centre of element.  

The Basic elemental equilibrium matrix [Be] for the given plate bending element 

can be obtained by 

            
  

  

  

  
                                    … (5.101) 

in which flexural strain linking matrix [Z] is taken from Eq. (5.99) and stress 

interpolation matrix [Y] from Eq. (5.101) respectively. After integrating, the 

equilibrium matrix [Be] is obtained as  
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… (5.102) 

The flexibility matrix for this element can be worked out by substituting stress 

interpolation matrix [Y] and material matrix [D] in the Eq. (5.49), which is 

found as as below  
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                                                                                           … (5.103) 

Where,     
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CHAPTER 6 

ENVIRONMENT SELECTED FOR THE DEVELOPMENT 

6.1 PREAMBLE 

Generally speaking, the programming language is a language code designed 

to communicate schematically as per user requirement to computer. The 

instructions are given to computer in terms of various functions, procedures, 

subroutines and various types of modules. User friendly programming 

languages with flexible type Graphical User Interface (GUI) based input data 

mainly succeed in competence of other type of programming language. Least 

number of input data, successful connection with data bases needed with 

minimum linking procedure are also important factors for good programming 

language. All these necessary information are easily developed by the Visual 

Programming Language, which mainly consists of powerful GUI based input 

editor. Some of the important features of VB6, VB.NET and Matlab software 

which are necessary for understanding the procedure adopted for finding the 

solution are described in the subsequent sections.  

6.2   VISUAL BASIC AS PROGRAMMING ENVIROMENT  

Visual Basic 6 is designed to provide all the essential information which is 

needed to create user friendly and sophisticated programs. It provides a 

graphical environment in which one can visually design the forms and 

controls using the coding which becomes the building blocks to develop 

applications. VB’s integrated development environment (IDE) is the term 

commonly used in the programming world to describe the interface which is 

used to create the applications. It is called integrated, because one can 

access virtually all of the development tools which are needed from the 

bunch, called an interface.  
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6.2.1 General Features 

Following are some of the features (Fig. 6.1) and inbuilt functions, which are 

used in the development of program in the present work. 

1. Form:  The most basic object is the form object, which is the visual 

foundation of any application. It is basically a window that can add 

different elements in order to create a complete application. Every 

application is based on some type of form. Some features of form are, 

border, title bar caption, control menu, minimize and maximize button. 

2. MDI form: MDI stand for Multiple Document Interface. With the MDI 

option, all of the IDE windows are contained within a single resizable 

parent window. One can easily switch between the two modes 

simultaneously. 

 

Fig. 6.1 Standard Toolbar 
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3. Command button: It is used to execute the event. One can write a code 

by clicking on the command button. 

4. Text box: Each and every VB project involves a text box control. Text 

boxes are commonly used for accepting user input or for entering data 

5. Label: A label control is similar to a text box control, in that both display 

text. The main difference, however, a label displays read-only text, though 

one can alter the caption as a run-time property. 

6. Image object: The image control is an equivalent of the picture box 

control. But unlike the picture control, the image control can’t act as a 

container for other objects, but it is a good choice. It simply displays on 

the form as picture.  

7. Option button: Option button control is also called as radio buttons 

which are used to allow a user to select one, and only one option. Usually 

option buttons are grouped together within a frame control. 

8. Check box: A check box control is rather similar to an option button. 

But, the fundamental difference between check boxes and option button 

is the check box allows multiple selections in a single form or frame. 

9. Frame control: This has the effect of grouping the controls such as 

option buttons and check boxes, so that when the frame is moved, the 

other controls also move simultaneously.  

10. Timer:  The timer is one of the few controls always hidden at run time, 

means it doesn’t have to find room for it on a form. The timer basically 

does just one thing; it checks the system clock and acts accordingly. 

11. Immediate window: Immediate window is used to test the prepared 

application interactively. From this, one can launch procedures, view 

and change the values of variables, and evaluate expressions and to 

print information without any intervention. This technique works for 

both functions and subroutines.  

12. SSTAB control:  It is like the dividers in a notebook or the labels on a 

group of file folders. Using an SSTab control, one can define multiple 
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pages for the same area of a window or dialog box in the application. 

Using the properties of this control,  

 Determine the number of tabs. 

 Organize the tabs into more than one row. 

 Set the text for each tab. 

 Display a graphic on each tab. 

 Determine the style of tabs used. 

 Set the size of each tab.  

13. Microsoft FlexGrid (MSFlexGrid) control: It displays and operates on 

tabular data. It allows complete flexibility to sort, merge, and format 

tables containing strings and pictures. When bound to a Data control, 

MSFLEXGrid display only read data. 

14. Types of conditional statements: An application needs a built-in 

capability to test conditions and take a different course of actions 

depending on the outcome of the test. Visual Basic provides three 

decision structures, which are as follows; 

a. If…Then 

b. If…Then…Else 

c. Select Case. 

15. Summary of looping statements: The general forms of loops used  

in the present work are: 

a) For…Next   For variable identifier = start value  

To end value 

       statement(s) = body of loop 

      Next variable identifier 

b) Do While…Loop  Do While condition 
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        statement(s) = body of loop 

      Loop 

c) Do…Loop Until   Do 

       statement(s) = body of loop 

      Loop Until condition. 

16. Variable scope: All procedures, variables, constants, etc. have a 

particular scope. This scope determines when and from where one can 

access the procedures, variable, or constants which depends upon where 

and how one declares it. Following variables are generally required in the 

development of a program. 

a. Procedure variables: Variables that are only available within the 

procedure in which they are declared are called local or procedure 

variable. One may declare such a variable using either the Static or 

Dim keyword. 

b. Module variables: The availability of variables that declared at 

module level depends upon how they are declared. If one declares 

variables with Dim or Static keyword then the scope of that variable 

is within that module. If variables are declared with Public key word 

then they are available in all procedures. 

c. Global Variables: If one needs variable declared in a module to be 

accessible within the whole application, one can use Public keyword. 

These variables are then available to every module and procedure 

within the application. 

VB is based upon an event-driven paradigm, in which each feature 

included within the program is activated only when the user responds 

to a corresponding object (i.e., an icon, a check box, option button, a 

menu selection, etc.) within the user interface. The program’s response 
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to an action taken by the user is referred to as an event. The group of 

basic commands that brings about this response is called as event 

procedure. 

6.2.2 Benefits of Using VB Environment 

 Programming with VB is accomplished visually. While writing the 

program, programmer can see how his program will look during run 

time. This is a great advantage over other programming languages.  

 Programmer is free to change and experiment with his design until 

he is satisfied with features like color, size and images based on 

requirements. 

 VB supports several types of modules that contain declarations; 

event procedures and various supporting information for their 

respective forms and controls. 

 VB also supports sub procedures, function procedures, and 

property procedures.  

 The immediate window is very useful when debugging a project. By 

entering a variable or expression within this window, one can see 

the corresponding value immediately. 

 

6.3 VB.NET AS PROGRAMMING ENVIRONMENT  

Visual Basic .NET provides the easiest, most productive language and tool 

for rapidly building Windows and Web applications. It basically comes with 

enhanced visual designers, increased application performance, and a 

powerful integrated development environment (IDE). In addition to these 

features, it also consists with a powerful new forms designer, an in-place 

menu editor, and automatic control anchoring and docking. VB.NET also 

delivers a new productivity features for building more robust applications 

easily and quickly. With an improved and a significantly reduced startup 



 

133 

 

 

time, VB.NET offers fast, automatic formatting of code. By using VB.NET one 

can create Web applications using the shared Web Forms Designer and the 

familiar "drag and drop" feature. One can double-click and write code to 

respond to events. VB.NET comes with an enhanced HTML Editor for 

working with complex Web pages. 

6.3.1 General Features of VB.NET 

1. Form:  Form is a window, in which one can add different elements in 

order to create a complete application. Every application is based on 

development of form. Some features of form are: border, title bar caption, 

control menu, minimize and maximize button. 

2. MDI form: Using MDI option, all of the windows are contained within a 

single resizable parent window. One can easily switch between the two 

modes simultaneously. 

3. Button: It is used to execute all the events. One can start the coded event 

by clicking the command button. 

4. Text box: Generally each and every VB project consist of a text box 

control, which are commonly used for accepting user input for entering 

data. 

5. Label: A label is a control similar to a text box in which both  display text. 

The main difference is that, it displays read-only text as far as the user is 

concerned even though one can alter the caption at a run-time.  

6. Radio Button: Option button control is also called radio buttons used to 

allow the user to select only one from a group of options. Usually all 

option buttons are grouped together within a frame control. 

7. Check box: A check box control is similar to an option button. But, the 

fundamental difference between check box and option button is that the 

check box allows multiple selections in a single form or frame. 

8. Timer: The timer is one of the few controls which is always hidden at 

run time. It checks the system clock and acts accordingly. 



 

134 

 

 

9. Frame control: This has a effect of grouping the number of controls, 

such as radio buttons and check boxes. When the frame is moved, the 

other controls move simultaneously. 

10. The Menu Strip: It displays application commands and option groups by 

functionality. 

In VB.NET, the tool box contains the tools that can be used to place various 

controls on forms. It displays all the standard Visual Basic Controls plus any 

custom controls and objects that are added to project with the Custom 

Controls dialog box and there are a number of basic tools in the Toolbox that 

can be also used to create user interfaces.  

6.3.2 Connection of VB.6/.NET with MATLAB 7.4 

Basically, a database consists of one or more large complex files that store 

data in a structured format and VB is ideal for managing data, since it has 

built-in database engine. Data stored by VB can also be used by other 

applications like Microsoft Access or Word. 

VB’s database library is called ADO.net. It uses a disconnected data model. 

This means that the database connection is only used when retrieving or 

updating data. Operations like navigating through the data, or even adding 

and changing records, can all be done without going back to the source 

database.  

(A)  Working with Access: VB and Microsoft Access make excellent 

partners. User can use Access to created databases, set up validation 

rules, and do interactive editing, while using visual basic to develop a 

packaged application. A Microsoft Access database file, which has an 

extension of .mdb, contains tables, queries, forms, reports, pages, 

macros, and modules, which are referred to as database objects.  

Forms, reports, pages, macros, and modules are generally concerned 

with letting users work with and display data. 
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(B) Working with Client Server: VB supports several database 

technologies, including ADO.NET, OLEDB and ODBC. ODBC stands 

for open database connectivity. To connect to a particular database, 

one needs a suitable ODBC driver. Most major database managers 

have suitable drivers, like Oracle to open-source alternatives like SQL. 

User can connect to server database systems like SQL Server, Oracle 

or DB2. This is the most complex type of database programming, but 

is necessary for good performance on large networks. 

6.3.3 Benefits of VB.NET Framework 

1. VB.NET provides managed code execution that runs under the Common 

Language Runtime, resulting in robust, stable and secure applications. 

All features of the .NET framework are readily available in VB.NET.  

2. VB.NET is totally object oriented which is a major additional feature. 

3. The .NET framework comes with ADO.NET, which follows the 

disconnected paradigm, i.e. once the required records are fetched the 

connection no longer exists. It also retrieves the records that are 

expected to be accessed in the immediate future. This enhances 

Scalability of the application to a great extent.  

4. VB.NET uses XML to transfer data between the various layers in the 

DNA Architecture i.e. data are passed as simple text strings.  

5. Error handling has changed in VB.NET. A new Try-Catch-Finally block 

has been introduced to handle errors and exceptions as a unit, allowing 

appropriate action to be taken at the place the error occurred thus 

discouraging the use of ON ERROR GOTO statement.   

6. Another important feature added to VB.NET is free threading against 

the VB single-threaded apartment feature. In many situations 

developers need spawning of a new thread to run as a background 

process and increase the usability of the application. VB.NET allows 

developers to spawn threads wherever they feel like, hence giving 

freedom and better control on the application.  
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7. Security has become more robust in VB.NET. In addition to the role-

based security in VB 6, VB.NET comes with a new security model, Code 

Access security. For example one can set the security to a component 

such that the component cannot access the database.   

8. The CLR takes care of garbage collection i.e. the CLR releases resources 

as soon as an object is no more in use. This relieves the developer from 

thinking of ways to manage memory. CLR does this for them. 

 

6.4  MATLAB AS NUMERICAL AND GRAPHICAL PROCESSOR 

MATLAB is a high performance computing environment which allows easy 

matrix manipulation, plotting of functions, data implementation of 

algorithm, creation of user interface and interfacing with programs in other 

language. Using Matlab one can work out simulation and modeling for 

verifying experimental results. It also facilitates graphical displays having 

one of the best GUI facility. 

MATLAB is an interactive system whose basic data element is an array that 

does not require dimensioning. This allows one to solve many technical  

computing problems, especially those with matrix and vector formulations, 

in a fraction of the time it would take to write a program in a scalar non 

interactive language such as VB 6, VB.NET, C, C++ or Fortran.  

 

6.4.1 Connection of VB 6/.NET with MATLAB 7.4 

The development of compatibility condition in IFM is carried out using 

Matlab software. It requires Matlab interfacing in VB.Net environment for 

further numerical work. Thus, linking or integrating techniques helps in 

development of separate working library for accessing Matlab functionalities. 

Linking of VB6 with Matlab is feasible by following two approaches. 

 

a. COM Approach:  In this approach Matlab expresses itself as integral 

part of a COM Automation Server. In running coding line of VB6, Matlab 
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is considered as object. By clicking reference of the project button of 

main menu, different linking library can be seen from which Matlab 

Automation Server Type Library is selected using check box. Thus, the 

connection between VB6 and Matlab is established generated which can 

be seen using Figs. 6.2 and 6.3. 

 

Fig. 6.2 Main Menu Showing Reference of VB 6 

 

            Fig. 6.3 Clicking of Matlab Automation Server Type Library 

By clicking view of main menu as per Fig 6.4 of the given project work, for 

an object browser, MLapp is selected for Matlab Application purpose, which 

is referred as Matlab.Application. 
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                       Fig 6.4 Selection of MLApp for Matlab Application  

 

Once the connection is ready using clicking above features, the Matlab being 

considered as server is enabled by handle object on matlab screen i.e. by 

typing h = actxserver(‘Matlab.Application’) as shown in Fig. 6.5. It gives 

separate matlab command window on which by typing ‘enable 

service(‘Automation Server’) gives number 1 as response of valid connection 

procedure, as depicted in Fig. 6.6. 

 

Fig 6.5 Handling Procedure Matlab in COM Application 
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Fig 6.6 Enabling service of Automation Server 

b. DDE Approach: The Dynamic Data Exchange is quite powerful service 

of the Windows based applications which enables the communication 

and exchange of data. It is the ancestor of the whole COM application. 

Here also the client is considered as .NET program and the server as 

the DDE Server, which communicates.  The DEE communication is 

made with the service name, like Matlab or WinWord, about a topic of 

discussion, like system or Engine and based on the exchange of data 

elements called items. The main limitation of the DDE Exchange is the 

data types are of the Window Clipboard data types. 

 

6.4.2 Autogeneration of Compatibility Conditions 

The Compatibility Conditions (CCs) are the backbone of the IFM based 

analysis of indeterminate structures. LIUT based mathematical procedure for 

selecting coefficients of deformations vector { }, which gives [C]{ } = 0  

irrespective of size or problem is the main core concept of IFM based 

procedure. In LIUT technique mathematically out of all the coefficients 

required few of them are kept constants and by using trial and error 

procedure others are modified till the product of developed coefficients [C] 
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and deformation vector { } equals to zero. This procedure is repeated 

depending upon requirement of number of compatibility conditions which 

makes the complete global equilibrium matrix [B] a square one by 

concatenating force based compatibility conditions at the bottom. The 

complete procedure is readily developed through Matlab based programming 

module named as “mtechexamplemod(B)”, where [B] is the equilibrium 

matrix to be supplied based on which the [C] matrix is to be generated. This 

procedure is illustrated here with help of an example. 

1. Open Matlab Command window and change the directory CCPROG for 

desktop position, where the module “mtechexamplemod” is available 

as shown in Fig. 6.7. 

 

Fig 6.7 Open Matlab Command Window for Changing Directory 

2. Supply [B] matrix of size 3 x 4 at command prompt in Matlab window 

as shown in Fig. 6.8. 

 

Fig. 6.8 Entering [B] Matrix of Size 3 x 4 

3. Type z = mtechexamplemod(B) at command prompt which asks for 

number of conditions required.  Out of four number of unknowns  1, 
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 3 and  4 are selected and denoted as “codeindB” as independent and 

 2 as “codedepB” as dependent unknown as shown in Fig. 6.9. 

 

Fig. 6.9 CodeindB and CodedepB 

4. Figure 6.10 shows number of compatibility conditions required, thus, 

it gives “alphadep” as coefficient of  2 and “alphaind” as coefficients of 

 1,  3,  4. 

 

Fig 6.10 Coefficients of alphadepB and alphaind 

5. Figure 6.11 shows [C] matrix of size 1 x 4 which is a coefficient matrix 

of deformation vector { } and is named as z.cMatrix.  The mathematical 

verification of null property is done by multiplication of [C] with [B]T 

and is worked out as z.cTransposeB in Matlab.  

 

Fig 6.11 [C] matrix and its Verification 
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6.4.3 Development of Shape function using Matlab 

Consider a Beam element having length L with two displacement degrees of 

freedom at each end. The displacement function w(x) is expressed in terms of 

generalized coordinates as follows 

w(x) = α1 + α2x + α3x2 + α4x3                                       … (6.1) 

which is converted to matrix form as 

        w(x) = [1 x x2 x3 ]  

  
  
  
  

  = [A] {α}                                                   … (6.2) 

Complete [A1] matrix is developed by substituting values of x = 0 and x = L in 

w(x) and w’
(x). The further mathematical operations are developed directly in 

Matlab Command Editor as shown in Figs. 6.12~6.15. 

 

Fig. 6.12 Defining Variables x, y and L 

 

            

          Fig. 6.13 Coefficient Matrix [A1] of size 4 x 4 
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   Fig. 6.14 Calculation of [A2] = [A1]-1  

 

 

Fig. 6.15 Development of Shape Function [N] 

 

6.4.4 Development of 2D Moments Contours 

A simply supported plate 4000 mm x 4000 mm is considered here for 

illustration purpose. The left bottom quadrant is selected for drawing moment 

contours, which is discretized into total 25 numbers of elements with 36 

nodal points as depicted in Fig 6.16. The moments are calculated at each 

node and expressed here as value calculated in the box of the given mesh 

gridlines as shown in Fig. 6.17. i.e. along line AB being simply supported 

edge all moments are zero, along line EF the values are (0.0, 101.446, 

175.55, 219.382, 236.958, 231.931) and so on.  
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Fig 6.16 Numbering of Nodes and Elements of 5x5 Discretization 

0 0  0 0 0 0 

0 101.446 175.5593 219.382 236.958 231.931 

0 175.559 320.8282 412.512 451.312 445.074 

0 219.382 412.516 552.758 620.634 722.00 

0 236.958 451.312 620.634 739.736 765.284 

0 231.931 445.07 722.00 765.284 783.438 

 

Fig. 6.17 Corresponding Position of Nodal Moments 

Following are the steps for plotting of moments contours: 

1. Using mesh grid function on Matlab editor, grid for total 36 nodes is 

developed by using function given in Fig. 6.18.  

 

                             Fig. 6.18 Development of Mesh Grid 
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2. Nodal moments indicated in Fig. 6.19 are directly taken to form [Z] 

matrix of size 6x6 from MS Excel sheet, which are moment values in 

terms of z ordinates at grid points at an interval of 0.4m as depicted  in 

Fig 6.20 

 

Fig. 6.20 [Z] Matrix 

3. To generate contours, type [c, h] = contour(x, y, z, 10) where c stands 

for contour, h for handle function of matlab, while (x, y, z, 10) denotes 

all three dimensional cartesian coordinates with total 10 number of 

contours ranging from min and max values of [Z] matrix as  depicted in 

Fig. 6.21. 

 

 

                               Fig. 6.21 Contour Plot for Moment 
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4. The labeling procedure is carried out by command “clabel (c, h)” as 

depicted in Fig. 6.22.  The labeling along x-x and y-y axis is carried 

out by executing few functions from Tools of the Matlab editor.   

 

Fig. 6.22 Contour Plot for Moment 

6.4.5 Plotting of 3D Deformation Pattern   

The procedure for plotting 3D deflection pattern is illustrated here for a 

quarter plate depicted in Fig 6.17.  Following 2 steps are required for plotting 

the elastic curve. 

1. [Z] matrix for nodal deflection values at each node is generated and 

copied on matlab editor as depicted in Fig. 6.23.   

 

Fig. 6.23 [Z] Matrix For Deformed Shape   
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2. Type surf(x, y, -z) on matlab editor to plot deflection pattern of quarter 

plate  as shown in Fig. 6.24 for nodal deflection values specified in [Z] 

matrix. 

 

Fig. 6.24 Deflected Shape for Quarter Plate 
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CHAPTER 7 

STATIC ANALYSIS OF FRAMED STRUCTURES 

7.1 COMPUTER IMPLEMENTATION OF IFM 

Computer implementation of force based IFM and displacement based DIFM 

methods are carried out using VB.NET and Matlab software. All the steps 

required for finding the solutions are programmed using systematic GUI 

based forms and procedures. Various forms are developed for supplying 

input data related to loading and geometrical information. Elemental 

equilibrium matrix [B] and Global flexibility matrix [G] are developed and 

saved in text file for use in further calculations. Special .m file is created for 

generating the compatibility conditions, based on equilibrium conditions, 

using MatLab software’s having inbuilt LIUT (Linear Independent Unknown 

Technique) function. The global compatibility conditions are developed by 

carrying out the product of compatibility matrix [C] and Global Flexibility 

Matrix [G]. Concatenation of basic equilibrium matrix and the global 

compatibility matrix gives the global equilibrium matrix which is managed 

here using Matlab based command window directly.  The load vector {P} is 

developed and called using text file. Solution of IFM based generated 

equations provides internal unknown matrix {F} which is carried out using 

direct inv module of Matlab. The nodal displacements are calculated by 

taking necessary matrices from VB.NET and Matlab command window 

directly. The final answer can be viewed on one of the forms created using of 

VB.NET.  

The complete solution procedure for IFM is illustrated here with the help of a 

continuous beam example through graphical screen shots. 

 

A three span prismatic continuous beam having three spans as 3m, 4m and 

5m respectively as shown in Fig. 7.1 is loaded with uniformly distributed 
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loading of 10kN/m throughout. Calculate internal moments and nodal 

displacements by using value of EI as 1666.67 kN-m2. 

 

 

 

 

 

                     Fig.7.1Three Span Continuous Beam Example 

Step1: Considering MDI Parent1 as main menu in that structure category is 

selected as Beam as shown in Fig. 7.2 

 
      Fig. 7.2 Main Menu for Selecting Type of Structure 

 

Step 2:  In geometry menu as shown in Fig. 7.3 number of spans is entered 

as 3 and in screen shot depicted in Fig. 7.4 length of the members is 

entered as 3m, 4m and 5m. 

 

 

                Fig.7.3 Numbers of Span 

10kN/m 

 3m  4m  5m 

 VA  VB  VC 

 VD  MD 
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Fig.7.4 Length of Individual Span in m 

 

Step 3:   By clicking Ok button geometry of beam is drawn with four nodes 

and individual members as 1-2, 2-3 and 3-4 as shown in Fig. 7.5. 

 

Fig.7.5 Geometry of Beam 

Step 4: By clicking support condition in second sub menu a number of 

options for selecting the support condition for first three supports from left 

to right three hinged supports are selected and for right most end fixed 

support is selected (Fig.7.6).  

 

                                     Fig. 7.6 Support Conditions 
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Step 5: Selecting individual support conditions by clicking button the 

complete beam geometry can be drawn as shown in  Fig. 7.7. 

 

Fig 7.7 Support Conditions of Beam 

 

Step 6: By clicking loading option in main menu different loading type is 

selected with its magnitude and other necessary details as depicted here in 

Figs. 7.8 and 7.9. 

                      

                                     Fig.7.8 Load Selection 

 

                             Fig. 7.9 Continuous Beam with UDL 

Step 7: After supplying the necessary input data connection of VB.NET with 

Matlab is established  by enabling externally (Chapter 6) and activating COM 

server library in which at front end Matlab is considered as object, while the 

solution obtained using object browser is considered as string. The coding on 

connection to VB.Net of Matlab is depicted here in Fig. 7.10. 
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                     Fig. 7.10 Matlab Code in VB.Net in Main Menu 

 

By clicking the Main menu of VB.NET, one can click object browser to select 

MLApp which shows various operations as depicted in Fig. 7.11.       

 

Fig. 7.11 Various Operations under MLApp Object. 

 

Step 8:   By following the operation given in Step 7, Matlab command 

window can be obtained using VB.Net form which a number of Matlab 

mathematical operations can be executed easily. It is depicted in Fig.7.12. 

Fig. 7.12 Matlab Command Window 
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Step 9:  The equilibrium matrix based on joint displacements can be seen 

with two rows corresponding to nodal displacements and columns 

corresponding to internal moments as depicted in Fig.7.13. 

 

Fig. 7.13 Equilibrium Matrix in Matlab Command Window 

Step10: By changing path to the folder named as “CCPROG”, 

mtechexamplemod.m file is connected to command window of Matlab, which 

gives the necessary compatibility conditions required for making the global 

equilibrium matrix [S] from rectangular to square. The compatibility matrix 

consists of random distribution of dependent unknowns and independent 

unknowns which are known as ‘codedepB’ and ‘codeindB’ respectively. Thus 

out of total five moment unknowns the coefficients of M1 and M3 are 

categorized as dependent while the rest as independent as depicted in Fig 

7.14. 

 

Fig.7.14 CodedepB and CodeindepB. 
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Step11: By selecting 3 conditions in Fig. 7.14, one can get complete 

equation as solution1, solution2 and solution3 with individual distribution of 

codedepB and codeindepB as depicted in Fig. 7.15, while the  matrix named 

as z.cMatrix can be seen and product of [B]matrix and Transpose (z.cMatrix) 

can be checked for null value to verify the IFM based formulation as depicted 

in Fig.7.16. 

 

Fig. 7.15 Solution1, Solution2 and Solution3 

 

 

                                  Fig.7.16 Z.cMatrix and Null Matrix 
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Step12: Normalized global compatibility conditions (GlobalCC) can be 

worked out by finding product of z.cMatrix and global flexibility matrix 

Gmatrix i.e.   = [G]{M}. The global equilibrium matrix (Smatrix) is obtained 

by just concatenating three rows of GlobalCC into two rows of basic 

equilibrium matrix [B], thus it becomes a square matrix as can be seen in 

Fig. 7.17  

 

                              Fig.7.17 GlobalCC and Smatrix 

Step13: The inverse of Smatrix is calculated directly by typing inv(Smatrix) 

at the command prompt. The respective numerical values and any variables 

like a, b c, L x … must be predefined as procedure i.e. syms x y a b…. .The 

loading vector {P} corresponding to nodal rotational displacement can be 

written of size 5 x 1 as depicted in Fig. 7.18. After multiplying Sinv with 

loading matrix {P}, the initial moments are calculated and by adding 

equivalent joint loads final moments are calculated as shown in Fig. 7.19. 

Result for nodal displacements is depicted in Fig. 7.20. 

                            

                                  Fig.7.18 Sinv and {P} Vector 
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Fig.7.19 Final Moments in kN-m 

                               

Fig.7.20 Nodal Displacements 

 

7.2 COMPUTER IMPLEMENTATION OF DIFM 

As DIFM is mathematically modified form of IFM it gives identical solution.  

The programming of the total solution procedure is done using VB 6, in 

which Matlab is not required for the development of compatibility conditions. 

Different elemental level matrices such as Equilibrium matrix [Be], Flexibility 

matrix [Ge] and Dual matrix [De] are directly developed using basic input as 

geometrical parameters of framed structures. Depending upon possible free 

joint displacements, different global matrices are generated using 

programming procedure based on standard stiffness assembly procedure. By 
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calling inverting routine, nodal displacements {δ} are calculated and finally 

the moments are calculated.  

 

A two span prismatic continuous beam is analysed here as an illustrative 

example of DIFM to find internal moments and nodal displacements by 

assuming value of EI as 1666.67 kN-m2 (Fig. 7.21). 

 

 

 

  

 

 

Fig. 7.21 Key Diagram for Continuous Beam Example 

 

Step1: Through MDI Parent1 initial form structure category is selected as 

beam as shown in Fig. 7.22. 

 

      Fig. 7.22 Selection of Type of Structure 

 

Step 2:   The number of span with their individual length and flexural 

rigidities are entered through form depicted in Figs. 7.23 and 7.24. 

                                  

                                     Fig. 7.23 Number of Spans 

10kN/m 

 4m  2m 

50 kN 

 2m 

 MA 

 VA  VB 
 VC 
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Fig.7.24 Member Properties 

Step 3: Once details of Fig.7.24 are accepted, form for selecting the type of 

support can be opened as shown in Fig. 7.25. 

 

 

Fig. 7.25 Option for Support Conditions 

 

Step 4:  Once next form of Fig. 7.26 is clicked the type of loading can be 

selected. Once the selection is made it shows the beam. 
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            Fig. 7.26 Key Diagram with Option for Support Conditions 

Step 5:  Various elemental matrices are calculated with coding written on 

double click of the command buttons, which represents all the necessary 

matrices. All the matrices are depicted in MSFlexgrid as shown in Fig. 7.27.  

 

                       Fig.7.27 Different Elemental Matrices 

Step 6:  The next form as shown in Fig. 7.28 can be  seen by  double click 

on form4 (Fig. 7.27). The Visual basic code is scripted for the event at 

double click of the same form. 
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Fig. 7.28 Various Global Matrices 

Step 7:  The primary nodal rotational displacements can be calculated by 

clicking command button Displacement whereas internal moments can be 

calculated by clicking command of Moments as Fig. 7.29.  

                        

                        
           

                    Fig. 7.29 Primary and Secondary Unknowns 

 

 

7.3 EXAMPLE OF STATIC ANALYSIS OF BEAM 

A three span continuous beam as shown in Fig. 7.30 is analysed here by 

assuming equals to 1666.67 kN-m2 for all the spans. 
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Fig.7.30 A Continuous Beam Example 

 

Step 0 – Solution strategy: The beam has two degrees of statically 

indeterminate. It is discretized into three elements. Each beam has two 

moment unknowns and hence whole beam has 4 moment unknowns (n) as 

shown in Fig. 7.31 and 2 intermediate rotational displacements as 

unknowns (m). The extreme ends are simply supported which reduces 

directly number of unknowns and size of matrices by omitting the end 

moments for being zero. 

 

 

 

 

                                Fig. 7.31 Three Element Discretization 

Step 1 – Formulate the equilibrium equations: The EE can be written 

along two rotational displacement directions as follows:  

Along  B,   M1 – M2 = -2.76                          … (7.1) 

Along  C,   M3 – M4 = 2.58                                           … (7.2) 

In matrix notation ([B] {F} = {P}), Thus the Equilibrium Equations (EEs) can 

be written as  

 2m 

 VA  VB  VC  VD 

 1m  2m  3m  2m  1m 

 10 kN  10 kN  10 kN 

1 

M2 

 

M1 

 

( – M1)/3 

 

(-M1 )/3 

 
2 

3m 

M4 

 

5 

(M3 – M2)/5 

 
6 

M2 

 

4 3 

M3 

 

(M2 – M3)/5 

 

 5m  3m 

( – M4)/3 

 

( – M4)/3 

 

A B C D 
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  =  

     
     
    
    

                                             … (7.3)  

Steps 2 – Derive the deformation displacement relations: The 

Displacement Deformation Relations are  obtained as ({} = [B]T {δ}). 

B4B3C2C1 θβandθβ,θβ,θβ 

                

… (7.4) 

Step 3 – Generate the compatibility conditions: The CC for the 

problem can be obtained using ‘mtechexamplemod’, which is .m file for 

calculating compatibility conditions based on [B] matrix. 

              
    
       

 

 
 
 

 
 
 
 

 
 

 
 

 
  
 
 

 
 

 = [C]{ }                                            … (7.5) 

Correctness of CC can be verified from its null property ([B] [C] T= [0]). 

Step 4 – Formulate force deformation relations: Substituting each   

in terms of end moments for beam member and writing in terms of 

internal moments,  

 i = 
 

   
         ,  j = 

 

   
                                                     … (7.6) 

Formulating above equations for all the three members, one can write 

 1 = 
 

   
                          2 = 

 

   
     +     

 3 = 
 

   
     +        and  4 = 

 

   
             … (7.7) 

Arranging above Eq. (7.7) in matrix form, one can write 
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                                             … (7.8) 

Substituting { } from Eq. (7.8) into Eq. (7.5) and concatenating the same 

matrix from bottom side of [B], one can write  

              

     
        

                   
                  

  

  

  

  

  

   

     
     
    
    

                                   … (7.9) 

or [S]{M} = {P}          

Solving above equations, one can get values of internal moments as 

             

  

  

  

  

   

       
      
      
       

                      … (7.10) 

Corresponding correcting vector of moments due to loading is obtained as  

           

   

   

   

   

   

     
    
    
     

                                                                         … (7.11) 

Thus adding above moment vectors, the final moments are 

           

  

  

  

  

   

      
      
      
      

  kN-m                                          … (7.12) 

The nodal displacements {δ} can be calculated form [J][G]{M}, where [J] = [S-

1]T, [G] = Global flexibility matrix and {M} represents values calculated from 

Eq. (7.10). Thus substituting all related matrix into the above relation, one 

can have rotation at B and C ends as -0.0012 and 0.0011 radians 

respectively. 
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7.4 EXAMPLE OF STATIC ANALYSIS OF PLANE TRUSS 

A plane truss with total six members is depicted in Fig. 7.32.  The length of 

vertical and horizontal members is considered as 2m with cross sectional 

dimensions of each member as 0.01m x 0.01m. The truss is made of mild 

steel having Young’s modulus of elasticity E as 2.01 x 108 kN/m2. Calculate 

the internal forces and nodal displacements. 

 

 Fig. 7.32 Plane Truss Example  

Step 0 – Solution strategy: The truss is statically indeterminate to two 

degree. Each member has one internal axial force (F1, F2….F6) as unknown 

(n) and total four free nodal displacements (m).     

Step 1 – Formulate the equilibrium equations: The EEs can be written in 

terms of internal forces at joint 3 and 4 along horizontal and vertical 

displacement direction as follows:  

At joint ‘3’ in [δch] direction,    

-F1 – F2cos450 + 10 = 0       

At joint ‘3’ in [δcv] direction,                                              

     -F3 – F2cos450 = 0 

                                                         

 2m 

 

 B 

 

1 

  2 

 
 

3 

 

 C 

 

 D 

 

 4 

 
 5 

 

 6 

 

 2m 

 

10 kN 

 10 kN 

 

 A 
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Similarly, one can write the equations at joint ‘4’.  The equilibrium equations 

(EEs) can be written as 

   

          
             
            
          

 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 =  

     
    
    
     

                           

Step 2 – Derive the deformation displacement relations: The DDRs are 

obtained from ({} = [B]T{δ}) as 

1 CH DH

2 CH CV

3 CV

4 DV DH

5

6 DV

β

β 0.707 0.707

β

β 0.707 0.707

β 0

β

  

   

 

   



 
                                                     

 Step 3 – Generate the compatibility conditions: The CC for the 

problem can be obtained using ‘mtechexamplemod’, which is .m file for 

calculating compatibility conditions based on [B] matrix.

          
                               
                                  

     = [C]{ }        

Correctness of CCs can be verified from its null property ([B][C]T) which is 

worked out to be  

          1.00 x 10-14 
                            
                              

                

Step 4 – Formulate Force Deformation Relations: The force 

deformation relation for individual member can be written in terms of 

axial rigidities, which is as follows: 

1 = F1L1/A1E1, 2 = F2L2/A2E2 ……  n = FnLn/AnEn      …(7.13) 
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Substituting the lengths and axial rigidities in Eq. (7.13) and writing in a 

matrix form one gets 

         

 
  
 

  
 
 
 

 
 

 
 

 
 

 
 

 
  
  
 

  
 

  
 

           

 
 
 
 
 
 
                        

                        
                

                 

        
     

 
 
 
 
 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

             … (7.14) 

Substituting { } from Eq.(7.14) into Step 3, after normalization, the complete 

IFM matrix is obtained as   

             

 
 
 
 
 
 

          
             
            
          

                                      
                                       

 
 
 
 
 

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 

 
 
 

 
 
     
    
    
     
    
     

 
 

 
 

                                          

Solving above equations, one can get the values of internal forces as 

            

 
 
 

 
 
  
  
  
  
  
   
 
 

 
 

 

 
 
 

 
 
       
       
       
       
    

         
 
 

 
 

                                               … (7.15)  

The nodal displacements {δ} are obtained as follows: 

{δ} =  

δ  
δ  
δ  
δ  

    

       
      
       
       

             

7.5 EXAMPLES OF STATIC ANALYSIS OF PLANE FRAMES 

7.5.1 Hinged Footed Plane Frame Example  

A one bay two storey plane frame having total six members is shown in Fig. 

7.33.   The length of vertical members is considered as 4m whereas length of 

horizontal members is considered as 6m with area of cross section of each 
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members as 0.01m x 0.01m. Considering E as 2.01 x 108 kN/m2 calculate 

the internal forces and nodal displacements.                    

             

Fig.7.33 Hinged Footed Plane Frame Example 

Step 0 – Solution strategy: The plane frame is having total ten internal 

moments (n = 10). Further, the portal frame being symmetrical it will have 

only rotational degrees of freedom (m = 4).  

Step 1 – Formulate the equilibrium equations: The EEs can be written in 

terms of internal forces at joint 2, 3, 4 and 5 along moment direction only 

which are as follows:  

At joint ‘2’ in [ 2] direction    

M1 – M2 + M3 = -18                          … (7.16) 

writing similar condition at each joint in rotational direction in matrix 

notation, the equilibrium equations (EEs) can be written as 

 

   

           
           
           
            

 

 
 
 
 
 

 
 
 
 
  

  

  

  

  

  

  

  

    
 
 
 
 

 
 
 
 

 =  

      
      
     
     

      … (7.17) 
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Step 2 – Derive the deformation displacement relations: The DDRs are 

expressed as ({} = [B] T {δ}) 

   1 =   ,  2 = -  ,   3 =   ,  4 = -  2,  5 =  2,  6 =  3, 

   7 =  3,  8 = -  4,  9 =  4 and  10 = -  4                                           … (7.18) 

Step 3 – Generate the compatibility conditions: The CCs for the 

plane problem are obtained by using ‘mtechexamplemod’, which is .m 

file in which a complete [B] matrix is supplied through input file for 

calculating the compatibility conditions based on LIUT concept.

 

            

 
 
 
 
 
 
           
            
           
            
          
           

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
   
 
 
 
 
 

 
 
 
 
 

 = [C]{ }                           … (7.19) 

Correctness of CC can be verified from its null property ([B] [C]T).  

Step 4 – Formulate force deformation relations: The force 

deformation relation for individual member can be written in terms of 

bending rigidity EI. In the matrix form it can be written as  

      

 
 
 
 
 
 

 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
   
 
 
 
 
 

 
 
 
 
 

  
 

  

 
 
 
 
 
 
 
 
 
 
            
               

             
            

       
      

         
        

     
     

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
  

  

  

  

  

  

  

  

    
 
 
 
 

 
 
 
 

         …(7.20) 
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Substituting { } and after concatenating the matrix into [B] matrix from 

bottom side, the basic IFM relation is obtained as   

 

 
 
 
 
 
 
 
 
 
 

           
              
           
            

                                                          
                                                           

                                                      
                                                            
                                                           
                                                             

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 
 
  

  

  

  

  

  

  

  

    
 
 
 
 

 
 
 
 

 

 
 
 
 
 

 
 
 
 
   
   
  
  
 
 
 
 
  
 
 
 
 

 
 
 
 

                                                                               … (7.21) 

or  [S]{M} = {P}                     

Solving above set of equations one can get values of internal nodal moments. 

After adding corresponding correction moments in M2, M5, M6 and M9, the 

final moments are found as, 

          

 
 
 
 
 

 
 
 
 
  

  

  

  

  

  

  

  

  

    
 
 
 
 

 
 
 
 

 

 
 
 
 
 

 
 
 
 
       
      
        
        
        
        
        
        
      
        

 
 
 
 

 
 
 
 

                                                            … (7.22) 

The solution obtained in terms of all the joint moments using STAAD.pro v8i 

are found in good agreement with maximum difference of 1.75%.  
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The nodal displacements {δ} can be worked out by using [J][G]{M} and are  

found as  

{δ} =  

  
  
  
  

    

       
       
       
       

  radians                                … (7.23) 

7.5.2 Two Bay Two Storey Plane Frame Example  

 A plane Frame having two bay and two storey having total ten members is 

shown in Fig. 7.34.  Considering cross sectional dimension of each member 

as 0.01m x 0.01m, modulus of elasticity E as 2.01 x 108 kN/m2. Calculate 

the internal forces and nodal displacement. 

             

                       Fig. 7.34 Free Body Diagram for Half Structure 
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The plane frame has total 24 internal moments (M1 to M24) and total eight 

free rotational nodal displacements (ɵ1 to ɵ8). Thus total 16 compatibility 

conditions are developed using Matlab based .m file ‘Mtechexamplemod’. The 

solution obtained by IFM based formulation for the displacements is 

compared with stiffness based STAAD.pro solution shown in Table 7.1 

whereas the solution for internal moments is compared with modified 

flexibility technique (MFT) and STAAD.pro solution in Table 7.2.  

Table 7.1 Solution of Nodal Displacements Fixed Footed Portal Frame 

Joint 
Rotation 
(radians) 

IFM 
STAAD.pro 

v8i  

ɵ2 -0.000770 -0.000792 

ɵ5 -0.000544 -0.000564 

ɵ8 0.000544 0.000564 

ɵ9 0.000770 0.000792 

ɵ3 -0.00071 0.00075 

ɵ4 -0.00049 0.00053 

ɵ7 0.00049 0.00053 

ɵ10 0.00071 0.00075 

 

Table 7.2 Comparison of End Moments  

Moments 
(kN-m) 

Integrated 
Force 

Method 
(IFM) 

Modified 
Flexibility 
Technique 

(MDT) 

STAAD.pro 
v8i  

M1 -2.731 -2.63 -2.67 

M2 -6.672 -6.43 -6.55 

M3 3.940 -3.81 -3.98 

M4 -3.834 -3.74 -3.85 

M5 -3.834 -3.74 -3.85 

M6 -5.362 -5.61 -5.65 

M7 -2.082 -2.18 -1.988 

M8 2.113 2.00 2.32 

M9 -8.765 -8.94 -8.97 

M10 2.356 2.00 2.132 
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M11 -3.641 -3.43 -3.465 

M12 -3.641 -3.43 -3.465 

M13 -2.032 -2.18 -2.21 

M14 -2.113 -2.00 -2.32 

M15 -4.887 -4.83 -4.89 

M16 -4.887 -4.83 -4.89 

M17 -5.362 -5.61 -5.65 

M18 -3.834 -3.74 -3.85 

M19 -3.834 -3.74 -3.85 

M20 3.9404 3.81 3.98 

M21 -8.665 -8.94 -8.97 

M22 -6.6721 -6.43 -6.55 

M23 2.856 2.00 2.13 

M24 -2.7316     -2.63 -2.67 

 

7.5.3 Examples of Considering Axial Deformation  

(i) IFM based Solution  

A bent having two members is shown in Fig. 7.35. Calculate the internal 

forces and nodal displacements by considering axial deformation. Consider 

modulus of elasticity E as 2.01x108 kN/m2 and cross sectional dimensions 

as 0.1m x 0.1m for each member. 

   

Fig.7.35 A Two Member Plane Frame (IFM) 
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Step 0 – Solution strategy: The plane frame has two axial forces P1 and P2 

and four internal nodal moments as M1, M2, M3 and M4. Thus, there are total 

six unknowns. Due to axial deformation in the members total three 

displacements are possible at intermediate joint. As there is no sway, three 

compatibility conditions are required. 

Step 1 – Formulate the equilibrium equations: The EEs can be written at 

joint ‘2’ as  

   
       
       
       

 

 
 
 

 
 
  
  
  

  

  

   
 
 

 
 

 =  
    
    
      

                                  … (7.24)  

The Displacement Deformation Relations can be written as  

               1 = δH,              2 = δV,              3 = -δV,    

              4 = -   + δV,       5 = δH +  , and  6 = - δH                                          

Step 3 – Generate the compatibility conditions: Calculation of the 

compatibility conditions is based on LIUT concept and can be written 

as 

 
          

       
       
       

 

 
  
 

  
 
 
 

 
 

 
 

 
 

 
 

 
  
  
 

  
 

 = [C]{ }                                          … (7.25) 

Step 4 – Formulate Force Deformation Relations: The force 

deformation relation for individual member can be written in terms of 

axial and bending rigidities as  
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          … (7.26) 

Substituting { } from Eq. (7.26) into Eq. (7.25), and after normalizing the 

matrix and concatenating into [B] matrix, the basic IFM relation can be 

written as  

                

 
 
 
 
 
 

       
         
       

                          
                             
                              

 
 
 
 
 

 
 
 

 
 
  
  
  

  

  

   
 
 

 
 

 

 
 
 

 
 

   
   
     
   
   
    

 
 

 
 

   … (7.26) 

Solving above equations, one can get values of internal axial forces and 

moments. After adding corresponding correction values to M1 and M2, the 

final values are found as follows: 

          

 
 
 

 
 
  
  
  

  

  

   
 
 

 
 

 

 
 
 

 
 
      
       
       
      
      
        

 
 

 
 

                                                                     

The result for displacements is found as follows: 

      {δ} =  
δ 
δ 
 

    
       
       

          
  x 10-4                                 

The above results obtained using IFM are found to exactly match with 

stiffness based solution.  
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(ii) DIFM Application to Plane Frame Example 

A bent having two members is shown in Fig.7.36.  The cross sectional 

dimensions of each one as 0.01m x 0.01m. All the internal forces and nodal 

displacements by considering axial deformation are worked out using the 

Dual Integrated Force Method (DIFM). Use E = 2.01x108 kN/m2. 

 

 

 

      

 

 

 

 

 

                    

 

Step 0 – Solution strategy: Three element discretization with local and 

global displacement numbering is shown in Fig.7.36(B). It indicates that the 

frame has three numbers of axial forces (P1, P2 and P3). There are total six 

internal moments (M1 to M6). As problem is solved using displacement based  

 1 

 

 1 

 

 2 

 

 3 

 

 4 

 

 5 

 

 6 

 

 2 

 

 1 

 

 2 

 

 3 

 

 4 

 

 5 

 

 6 

 
 3 

 

 1 

 

 2 

 

 3 

 

 4 

 

 5 

 

 6 

 

 u1 

 

 w1 

 

 ɵ1 

 

 u2 

  ɵ2 

 

 w2 

 

 1m 

 

B. 3 Element Discretization with Local and 

Global Displacement Numbering 

 

 1 

 

 4 

 

 2 

 

 1m 

 

(A)  Key Diagram Diagram 

 

 2m 

 

 1m 

 
 3 

 

10kN 

Fig. 7.36 A Two Member Plane Frame (DIFM) 



 

176 

 

 

DIFM approach all the equations are basically converted into mathematical 

form where global displacements (u1, w1, ɵ1, u2, w2, ɵ2) are the prime 

unknowns. Using these the internal moments are calculated. 

Step 1 – Develop Elemental Matrices: Following are the major elemental 

matrices: (i) Basic Equilibrium Matrix [Be] which is of size (m x n) where m is 

the number of local displacement degrees of freedom while n is the local 

internal unknowns per element, (ii) Basic Flexibility Matrix [Ge] which is of 

size (n x n) where n is the number of local internal unknowns per element 

and (iii) Elemental Pseudo stiffness Matrix [D]difm(e). The basic detail about 

calculation of these matrices is already given in Chapter 4. For example, for 

element 1 all the matrices are worked out by substituting a = 0.5m, EI = 

0.1675 kN-m2 and AE = 20100 kN as follows.  

 

                

 
 
 
 
 
 
   
   
    
    
    
    

 
 
 
 
 

          
             

         
          

       … (7.27) 

The Pseudo Stiffness matrix [D]difm(1) is of size 6 x 6 which is as follows. 

                     

 
 
 
 
 
 
             
                           

                       
      

                

       
 
 
 
 
 

  … (7.28) 

Similarly, matrices are worked out for the elements 2 and 3. 

Step 2 – Develop Dual Matrix [D]difm: The dual matrix [D]difm which is of size 

6 x 6 is formulated from the elemental matrices following the process quite 

similar to regular stiffness approach.  

Step 3 – Calculate unknowns: The DIFM equation based on stiffness 

analogy is given by  
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          [D]difm {δ} = {P}                                                             … (7.29) 

Where [D]difm is the global pseudo stiffness matrix of size 6 x 6 along global 

displacement degrees of freedom at joints 2 and 3,  {δ} is the unknown 

displacement vector of size 6 x 1 and {P} is the load vector of size 6 x 1.  

After substituting all the necessary matrices into Eq. (7.29) and solving for 

displacements gives   

          

  
  

   

   
           
          
           

                                                    … (7.30) 

The solution obtained is matching with stiffness based approach [92]. Once 

the displacement vector is available, the internal moments are worked out 

using either global matrix approach or individual element approach using 

the following equation: 

{F} = [G]-1[B]T{δ}                                                           … (7.31) 

The internal actions at right joint of element 2 are as follows  

          
  
  
  

   
        
      
      

  

7.6 EXAMPLES OF STATIC ANALYSIS OF GRIDS 

7.6.1 Grid Example 1 

A grid structure consisting of two members 1-2 and 2-3, subjected to a 

point load 10kN at the junction, as shown in Fig. 7.37 is considered here 

with flexural and torsional rigidities (EI and GJ) equal to1666.67 kN-m2 for 

each member.   

                             

1 5 kN 
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A. Key Diagram 
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                                    B. Free Body Diagram  

 

 

Step 0 — Set up Equilibrium Equations By referring Fig. 7.37 three 

equilibrium equations can be written in matrix form as [B]{F} = {P}. 
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Step 1 — Relate deformation to displacements: The displacement 

deformation relation { } = [B]T{δ} can be formulated by using equilibrium 

matrix [B]. There are three displacements {δ}: two rotations and one 

translation. The eight deformations { } are induced by eight unknown 

moments (M1, T1, M2, T2, M3, T3, M4 and T4). The displacement deformation 

relation can be written as 
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Step 2— Generate Compatibility Conditions Five relations between the 

eight deformations can be obtained by eliminating three displacements from 

the DDR as follows.        
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Step 3 — Write force deformation relation: Force deformation relation can 

be written in terms of [G] matrix for bending moments Mi, Mj and for 

twisting moments Ti, Tj respectively. 

    i =
EI6

L (2Mi + Mj),         j  =
EI6

L ( 2Mj + Mi)  

 

 i =  
GJ

TiL ,                      j = 
GJ

TjL  

From the above relation the flexibility matrix [G] can be written as  
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Step 4 — Express Compatibility in terms of Forces The compatibility 

conditions are expressed in terms of forces by eliminating the deformations. 
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Step 5 — Calculate Unknowns: The equilibrium equations and 

compatibility conditions can be coupled to obtain the unknowns. 
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Solution of above set of equations gives results for internal bending and 

twisting moments which are reported in Table 7.3. 

Table 7.3 Internal Moments 

Moments M1 T1 M2 T2 M3 T3 M4 T4 

IFM 
(kN-m) 

-9.375 3.125 -3.125 3.125 -3.125 3.125 -9.375 3.125 

                 
The nodal displacements at joint 2 are calculated using  [J][G]{M} and are 

found as follows: 

        

M
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     

                                                                      

… (7.37) 

 

7.6.2 Grid Example 2  

A grid structure is subjected to UDL of 10 kN/m is shown in Fig. 7.38. 

Considering for both the members EI and GJ = 1666.67 kN-m2, calculate the 

internal moments and nodal displacements.  

                          

Fig. 7.38 Key diagram for Grid Example 2 
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Following the procedure outlined in the previous example, the solution 

obtained for internal moments presented in Table 7.4 and is compared with 

the stiffness based solution. 

 Table 7.4 Joint Moments  

 
 
 

 
 

 
 
 

 
 

 

Solution for the nodal displacements is as follows: 
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                                                            … (7.38) 

 

7.7 EXAMPLE OF STATIC ANALYSS OF SPACE TRUSS 

A pin jointed space structure consisting of eight members subjected to point 

loads of 10 kN at the two top most points of the truss is shown in Fig.7.39 

Considering axial rigidity (AE) as 2.01 x 106 kN the axial force in each 

member is worked out. 

 

                                 Fig. 7.39 Space Truss Example 
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Step 1— Set up equilibrium Equations:  Six three equilibrium equations 6 

free displacements can be written in matrix form as      
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Step 2— Relate deformation to displacement: The displacement 

deformation relation ({ } = [B]T{x}) can be written by using equilibrium matrix 

[B]. There are three displacements at each free joint. The eight deformations 

{ } induced in 8 members can be related to six joint displacements and the 

DDR can be written as  
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… (7.40) 

Step 3 — Generate compatibility conditions: Two relations between the 

six deformations can be obtained by eliminating six displacements from the 

DDR as follows:           
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Step 4 — Write force deformation relation: Force deformation relation to 

define [G] can be written in terms of L, A and E as FL/AE. 

Step 5 — Express compatibility of in terms forces: The compatibility 

conditions are expressed in terms of forces by eliminating the deformations 
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as under. 

     510 x  
 
 

0.6984 -0.6984 -0.6984 0.6984 0.7755 -0.7755 -0.7755 0.7755

0.1723 -0.1723 -0.1723 0.1723 0.7755 -0.7755 -0.7755 0.7755

 

  
 
 
  

         … (7.42)
 

Step 6 — Calculate unknowns: The equilibrium equations and 

compatibility conditions can be coupled to obtain the unknowns as follows 
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The internal forces in different members of the space truss obtained by IFM 

are found to be matching with those obtained by flexibility and stiffness 

methods and are as follows   

              [-4.33 4.33 -4.33 4.33 -4.33 4.33 -4.33 4.33]T                  … (7.44) 

The nodal displacement at joints 7 and 8 are found as follows: 

 

           

 
 
 

 
 
   
   
   
   
   
    

 
 

 
 

 

 
 
 

 
 

    
    

        
    
    

        
 
 

 
 

                                         … (7.45) 

 

7.8 EXAMPLE OF STATIC ANALYSIS OF SPACE FRAME 

7.8.1 Space Frame Example 1 

A rigid jointed space frame structure consisting of three members orthogonal 

to each other is subjected to two point loads of 10 kN each at the junction of 

members as shown in Fig. 7.40. Considering axial rigidity (AE), bending 
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rigidity (EI) and torsional rigidity (GJ) as 1.578 x 106 kN, 986.65 kN-m2 and 

758.953 kN-m2 respectively, evaluate the internal forces developed in each 

member and nodal displacements.  

 

 

 

 

 

 

 

 

 

 

 

 

                                Fig. 7.40 Space Frame Example 

 

Step 0 – Solution strategy: The space frame has 6 numbers of axial forces 

i.e. P1 to P6, 6 numbers of torsional moments i.e. T1 to T6 and total 12 

flexural moments. At joint 4 as there are total six possible displacements, 

which is of lateral and rotational along each x-x, y-y and z-z directions. Thus 

the problem needs total 18 compatibility conditions to solve the complete 

problem using IFM based formulations.  

Steps 1 – Formulate the equilibrium equations: The six EEs can be 

written in terms of internal forces at joint 4 along all the displacement 

direction, which can be written as  
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Fig. 7.41 Free Body Diagram 
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Using .m file total 18 compatibility conditions are developed. These are 

converted into the force deformation relation by multiplying by global 

flexibility which is of size (24 x 24). After normalizing the major components 

[C] matrix is concatenated to [B]matrix which yields a global equilibrium 

matrix [S]. Inverting [S] matrix using Matlab and solving for the unknowns 

one gets the solution for internal actions as reported in Table 7.8. 

Table 7.8 Internal Forces 

P1 (kN) P2 P3 P4 P5 P6 

0.00315 0.00315 9.9954 -9.9954 -9.9954 -9.9954 

T1(kN-m) T2 T3 T4 T5 T6 

0.0016 0.0016 0.0008 0.0008 -0.0008 0.0008 

M1(kN-m) M2 M3 M4 M5 M6 

0.0072 0.0051 0.0008 0.0051 0.0072 0.0051 

M7(kN-m) M8 M9 M10 M11 M12 

0.0042 0.0021 0.0042 0.0021 0.0008 0.0051 

                                                      

Finally, the nodal displacement vector {δ} is worked out by using [J][G]{F}, 

which is as follows: 

 

 
  
 

  
 
δ  
δ  

δ  
   
   

    
  
 

  
 

  

 
 
 

 
 
               
               
              
                 
                 
                  

 
 

 
 

  

7.9  CONSIDERATION OF SECONDARY EFFECTS USING IFM 

Deformation {}i in the structure on account of the secondary effects such as  

temperature change, support settlement and prestrain effect can be easily 

included on the right side of the compatibility conditions of IFM through the 

effective initial deformation vector {R}.  

Such deformations, when due to thermal effects, represent temperature 

strains, which can be written as the product of coefficient of thermal 

expansion ‘’ and the temperature change ‘T’ for the element length L as 
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{}i = LT                                                                                  … (7.48) 

Initial deformation {}i due to support settlement ‘Δ’ can be  calculated from 

{}i = – {Br} Δ                                   … (7.49) 

where {βr} represents transpose of row of equilibrium matrix related to 

reaction R at the point of support settlement. 

The prestrain effect in the truss member can be tackled in the manner 

analogous to the temperature effect with the difference that the deformation 

term corresponding to temperature effect (LT) is replaced now by extra 

length ‘e’ of the member.  

An example of pin jointed structure is included here to demonstrate how 

temperature and prestrain effects are considered in IFM based methodology. 

7.9.1 Illustrative Example of Temperature Effect  

A three bar truss is subjected to temperature T1, T2 and T3 in the three bars 

respectively in addition to nodal point loads as shown in Fig. 3. The truss is 

made of steel and has modulus of elasticity E = 2  105 N/mm2 and 

coefficient of thermal expansion  = 6.0  10-6/ o C. The area of the three 

bars AD, BD and CD is respectively 500 mm2, 400 mm2, 400 mm2. For 

finding the forces in the members of the truss the steps are as follows:   

                                      

     Fig. 7.42 Three Bar Truss Example 
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Step 1 – Equilibrium equations: Two EE for the problem can be obtained 

by force balance condition at the node D. In matrix notation ([B] {F} = {P}) can 

be written as  

 



















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








80

30

F3

F2

F1

0.610.707

0.800.707  

Step 2 – Find the deformation displacement relations: The DDRs are 

obtained as  

({} = [B] T {δ}) where 1 = -0.707δ 1 + 0.707 δ2,   

 2 = δ2 and 3 = 0.8 δ 1 + 0.8δ2. 

Step 3 – Generate the compatibility conditions: The CC for the 

problem can be written as [C] {} = {0}   where   [C] = [0.8    -0.98     0.707] 

Step 4 – Formulate force deformation relations: The FDR for the 

bars of the truss can be written as   = FL/AE . In matrix notations the 

FDR can be written as  


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
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Step 5 – Express the compatibility conditions in terms of forces:  

Thermal analysis requires the inclusion of additional vector {R} on the 

right side of CC i.e {R} = – [C] {}i where {}i is the deformation vector 

corresponding to the thermal effect induced in the bars of the truss  and it 

can be written as  

 {}i  
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  and hence {R} = – [0.8 -0.98   0.707]  
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with  T1 = T2 = T3 = 80oc,  

{R} = – [0.8   -0.98  0.707]  6.0  10-6  80

















5.0

3.0

4.24

= – 0.0019.  

The compatibility conditions in terms of force variables can be written 

as 

   0.0019
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83783577846
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 ...  

Steps 6 – Couple the Equilibrium equations and compatibility 

conditions: Coupling of EE and CC provides the following set of 

equations to solve for unknowns. 
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The solution of set of equation provides bar forces as FAD = 29.64 kN, FBD = 

65.827 kN and FCD = -11.305 kN which is found to match exactly with the 

solution obtained using Stiffness method of analysis.  

 

7.9.2  Illustrative Example of Prestrain Effect 

In above example, if the member AD is shorter than its actual length by 3 

mm (e = 3 mm), then all other steps being the same FDR, can be written now 

as  

 {R} = – [0.8    -0.98   0.707]  
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The CC in terms of FDR can be written as 
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Coupling FDR with EE leads to 
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Solution of above equations gives forces in different members as FAD = 

25.531 kN, FBD = 70.911 kN and FCD = -14.931 kN. Forces in different 

members of the truss are oufn tomach exactly with those obtained with the 

stiffness method of analysis. 

7.10 DISCUSSION OF RESULTS 

 Solution of continuous beam problems in terms of joint and support 

moments as primary unknowns and nodal displacements as secondary 

unknowns is found in close agreement with those obtained using other 

matrix methods. 

 For the beam members subjected to point load, it is preferable to 

discretize into two elements, to simplify generation of the load vector. 

Also, it is possible for simply supported extreme end to set reacting 

moment directly equals to zero and thus in a matrix corresponding row 

and column can be removed to reduce the size of matrix 

 The Dual Integrated Force Method (DIFM) is mathematically modified 

version of IFM, in which nodal displacements are calculated first and 

then after substituting the displacements in basic equation internal 

forces are worked out. The solution for any problem using IFM and 

DIFM is always identical. The mathematical characteristics of dual 

matrix [D]difm, which is used in DIFM, are same as that of conventional 

displacement based stiffness matrix.  

 Mathematical validity of [C]{β} = 0 is easy to check using the code 

developed as “ mtechexamplemod(B)”. 

 As the results for pin-jointed structures are worked out directly in global 

displacement directions, the need of transformation of axis from local to 

global is not required. The solution obtained for internal forces and 
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nodal displacements is found to match with the solution obtained by 

using Stiffness method.  

 A plane frame structure is attempted by considering and neglecting 

axial deformation. In both the cases, solution obtained using IFM are 

found to match with those obtained using stiffness method of analysis. 

 In case of IFM the shearing force can be represented as the ratio of the 

net moment and length of the member to reduce the numerical work. 

 The use of concept of symmetry which has been successfully 

demonstrated with the help of a plane frame example is applicable to all 

types of framed structures. 

 IFM based solutions for the grid, pin-jointed and rigid jointed space 

structures are found to match with the solutions available in the 

literature. 

 Results obtained for 3 member truss under temperature and prestrain 

effects are found to match exactly with the results obtained using 

stiffness method. 

 Matlab based module named as “mtechexamplemod(B)”,  which calculates 

the coefficients corresponding to each deformation of each force variable 

using LIUT technique, gears up the total numerical work independent of 

sparsity of large size equilibrium matrix. The provision of auto selection 

of dependent and independent coefficients is also found advantageous 

for maintaining the overall accuracy of the solution.   
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CHAPTER 8 

DYNAMIC ANALYSIS OF FRAMED STRUCTURES 

8.1 SCREEN SHOTS OF COMPUTER IMPLEMENTATION 

A preprocessor is developed in VB6 to facilitate data input through a number 

of forms developed for the dynamic analysis of different types of framed 

structures. Using menu editor and multiple display interface one can link 

different forms by hiding and un-hiding operations depending upon logic of 

the program. After invoking the preprocessor the first step is selection of type 

of structure out of the group of framed structures i.e. Beam, Plane Truss, 

Plane Frame, Grid, Space Truss and Space Frame. Once the structure is 

selected by the user, input data is supplied using Labels, Textboxes which 

are linked to different forms. The geometrical and material properties are 

supplied using various text boxes. Support conditions are selected by 

assigning property through the next form. Visual feedback is provided for 

each user action. The next form highlights the key diagram which enables 

the complete geometry of the structure.  

 

By clicking the command button “Development of Matrices”, various 

necessary properties are transferred from Form 1 to Form 3 and Form 2 to 

Form 3. This command button develops basic equilibrium matrix [B] and 

necessary global flexibility matrix [G] depending upon the basic unknowns 

‘m’ and ‘n’, which are free nodal displacements and internal unknowns  

nodal moments respectively. Coding is written for development of text file 

which enables us to supply both the matrices named as IFM_FRAME.txt and 

Gmatrix.txt. The lumped mass matrix [M] is directly written in the main 

processor.  The connection between VB 6 and Matlab is done through COM 

approach by linking an automation server in the given program.   

Once the major matrices are developed the mathematical and matrix based 

operations are carried out in the main processor part of the software. Matlab 
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facilitates a temporary command window which is developed by using 

interface procedure. The basic matrices [B] and [G] are activated by calling a 

text file. The lumped Mass matrix [M] is directly typed using command 

window. The Matlab in-built editor enables various types matrix based 

operations at the command prompt i.e. matrix addition, multiplication, 

transpose, inverse and eigen operator. 

   

The step-by-step procedure followed for the dynamic analysis is illustrated 

here with the help of an example of a propped cantilever beam. 

A mild steel propped cantilever beam having two elements is separated by 

lumped mass Mo = 10 kN-Sec2/m. Each element is of 1m length having 

flexural rigidity EI as 1666.67 kN-m2 as shown in Fig. 8.1. 

 

 

 

                                     Fig. 8.1 Propped Cantilever Beam 

Step1: From MDI form 1 main menu the type of structure is selected as 

beam as depicted in Fig. 8.2. 

 

Fig.8.2 Selection of Type of Structure 

 

Step 2: From beam option which displays different types of beams by using 

check box button propped cantilever case is selected. Length and flexural 

rigidity of each span are entered as shown in Fig. 8.3.              

1m 1m 

Mo 

2 4 3 2 1 1 
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   Fig. 8.3 Geometrical and Flexural Properties of Beam 

 

Step 3: Once the entered data is accepted it depicts on screen the next form 

related to boundary conditions. The desired support condition is selected as 

depicted in Fig. 8.4. Selection of plot button draws the beam on the screen 

and clicking next button lead to the next form.  

 

                          Fig. 8.4 Beam with Boundary Conditions 

 

 

Step 4: Form 3 shows the button for drawing key diagram of the beam in 

addition to button for the calculation of the different matrices such as Basic 
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Equilibrium Matrix [B], Global Flexibility Matrix [G] and Mass Matrix [M] as 

shown in Fig. 8.5. In the same form clicking next button connects VB6 to 

Matlab using COM procedure as shown in Fig. 8.6. 

 

                    Fig.8.5 Key Diagram with Lumped Mass 

 

 

 

                    Fig.8.6 Connection of Visual Basic with Matlab 

 

Step 5: Once Matlab command window is depicted the main processor starts 

and matrices are called using text file named as IFM_FRAME.txt, 

Gmatrix_Frame.txt and Mass.txt respectively as can be seen in Fig. 8.7. 

 



 

196 

 

 

 

                          Fig.8.7 [Gmatrix] and [M] Matrix 

 

Step 6: In the command window by changing path to folder named as 

“CCPROG” which is available at desktop, connection is established between 

a .m file which is Matlab based program for developing compatibility 

condition using LIUT technique. Thus by typing z = mtechexamplemod (B) in 

command window, one can enter number of compatibility conditions 

required. The dependent unknown codedepB and independent unknown 

codeindepB is auto selected for further calculation. The complete problem 

having three moment unknowns ‘n’ and having two free displacements at 

intermediate joint ‘m’ requires one compatibility condition which is named as 

z.cMatrix in matlab code. The screen shot of development of compatibility 

conditions is depicted in Fig. 8.8. 
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              Fig. 8.8 Development of Compatibility Conditions 

 

Step 7: Once ‘z.cMatrix’ is available it is checked for its null property by 

multiplying z.cMatrix with [B] matrix. Thus by typing ‘z.cTransposeB’ the 

null property check can be satisfied as depicted in the Fig. 8.9. Secondly, 

normalized global compatibility condition is also calculated by multiplying 

z.cMatrix with Gmatrix. The global equilibrium matrix [Smatrix] is developed 

by concatenation of [B] with the ‘CCmatrix’. The inverse can be calculated by 

typing inv(Smatrix) in command window, which is named as ‘Sinv’. The 

Jmatrix which is m rows of [Smatrix-1]T is also worked out using the same. 

The complete  procedure related to each operation is  depicted in Fig. 8.9.  
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                           Fig. 8.9 Different Matrix Operations  

Step 8: Next, eigen value analysis is carried out using the inbuilt module. 

Product of [Mmatrix], [Jmatrix] and [Gmatrix], named as [MJGmatrix], is 

calculated directly. By typing directly on command window [M_modes, 

Omega] = eig(Smatrix, MJG) the  necessary operation is carried out. Here 

Omega is a diagonal matrix of size (n x n), having possible values of 

frequencies along diagonal terms. Next, by substituting each value of ‘ω’ in 

matrix, the possible modes are calculated which is known as modal moment 

vector. It is named as M_modes corresponding to each value of frequency 

and calculated directly using Matlab software. Figure 8.10 depicts the 

natural frequency value (ω = 47.8091 rad/sec) calculated in last line which 

is found to match with the exact solution 47.8091 rad/sec based on 
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standard dynamics approach. The first column of M_mode matrix represents 

internal moments corresponding to value of M1 = 1, for which M2 and M3 are 

worked out.   

 

            Fig. 8.10 First Frequency and Moment Modal Values 

Step 9: The first modal deflection values corresponding to first modal 

moments are calculated using standard IFM based formula i.e. {δ} = 

[Jmatrix]*[Gmatrix]*[M_modes]. Next, after normalizing the deflection value  

to unity the rotational value corresponding to that is calculated as depicted 

in Fig. 8.11. 

                     

                         Fig. 8.11 First Modal Displacement Vector 
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8.2 EXAMPLES OF DYNAMICS ANALYSIS OF BEAMS 

8.2.1 Simply Supported Beam Example  

A mild steel beam which is simply supported at extreme ends has two 

segments of 1m each on either side of lumped mass Mo equal to 10 kN-

Sec2/m at centre as shown in Fig. 8.12. with EI = 1666.67 kN-m2.  

 

 

Fig. 8.12 Simply Supported Beam Example 

Step 0 – Solution strategy: The beam has two segments on either side of 

the lumped mass (Mo). It has four internal moments (M1, M2, M3 and M4) out 

of which two extreme moments are zeros. The given problem has internal 

unknown moments as two (Fig. 8.13) and nodal displacements at 

intermediate joint as two. Thus the problem becomes statically determinate. 

  

 

                                 

                                        Fig. 8.13 Free Body Diagram 

Steps 1 – Formulate the equilibrium equations: The EEs are written in 

terms of unknown moments at the intermediate joint i.e. at lumped mass 

along vertical displacement δ23 and rotational displacement  23 follows.  

              
    
    

  
  

  
  =  

 
 
                                                                 

or [B]{M} = {P}                                                    … (8.1) 

Step 2 – Derive the deformation displacement relations: The DDR is 

obtained in the form {} = [B]T{δ} and is written as  

M2 
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M3 

 

1m 1m 

Mo 2 4 3 2 1 1 
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2 4 3 2 1 1 
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  =  
   
     

  
   
    

                                                                   … 

(8.2) 

Step 3 – Formulate force deformation relations: Force deformation 

relation for a beam problem is already derived in the previous illustrative 

example. The FDR in this case will be in terms of [G] matrix which is of size 

n x n. For end moments Mi and Mj, the FDR can be written as 

                                          … (8.3) 

Formulating above equations for two elements, one has 

     2 = 
 

   
         3 = 

 

   
                                                                   … (8.4) 

In matrix form, the same can be expressed as  

                
 
 

 
 

    
 

   
 
  
     

  
  

  
                                                          … (8.5) 

Step 4 – Derive the lumped mass matrix: The Lumped mass matrix is 

directly written as given below. 

                =  
   
   

                                                                          … (8.6) 

Step 5 – Calculate natural frequency: IFM based frequency equation is as 

follows: 

[S]{F} =  [J][G][M]{F}                                                     … (8.7) 

In case of beam bending problem the {F} vector represents internal moments 

{M}, while the same for pin jointed structures represents internal forces {F}. 

[S] is the global equilibrium matrix which is equal to [B] in this problem, [G] 

is the flexibility matrix, [M] is the mass matrix and   =    is known as eigen 

operator for frequency analysis.  

and 
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Substituting all the above matrices in Eq. (8.7) and solving directly using 

Matlab eigen operator, the value of   is found as 31.6227radians/sec, which 

is found to be matching with the standard dynamics formula of  
    

   
 = 

31.6228 radians/sec.  

Step 6 – Calculate modal moments: Substituting the value of frequency 

obtained in Eq. (8.7) and calculating the modal moments, one gets 

          
  

  
    

 
 
                                                                … (8.8) 

Step 7 – Calculating nodal displacements: The nodal displacements can 

be calculated by substituting the values of moments into formula given 

below. 

  
   
   

                  =           
  

     
                          … (8.9) 

It shows that the deflection value is maximum where slope equals to zero. 

8.2.2 Fixed Beam Example:  

A fixed mild steel beam as per Fig. 8.14 has two segments of 1m each on 

either side of the lumped mass Mo equal to 10 kN-Sec2/m at centre. The 

beam has EI = 1666.67 kN-m2.  

 

 

Fig. 8.14 Fixed Beam Example 

Step 0 – Solution strategy: The given problem has four internal unknown 

moments (M1, M2, M3 and M4) and two nodal displacements at intermediate 

joint. Thus the problem is statically indeterminate (Fig. 8.15). 

  

 

                             M2 

 

M1 

 

M3 

 

1m 1m 
Mo 

2 4 3 2 1 1 

1m 

1m 

Mo 

2 4 3 2 1 1 

M4 
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Fig. 8.15 Free Body Diagram 

Step 1 – Formulate the equilibrium equations: The EEs are written in 

terms of unknown moments at the intermediate joint i.e. at lumped mass 

along vertical displacement δ23 and rotational displacement  23 as  

              
      
      

  

  

  

  

  

  =  
 
 
                                                                 

         [B]{M} = {P}                                                                     … (8.10) 

Step 2 – Derive the deformation displacement relations: The DDR is 

obtained as {} = [B] T {δ}. 

        

 
 
 

 
 
 
 

 
 

 
 

 
  
 
 

 
 

 =  

   
   
    
  

  
   
    

                                                                 … 

(8.11) 

Step 3 – Generate the compatibility conditions: The two 

compatibility conditions can be expressed using Matlab code as  

  
     
      

 

 
 
 

 
 
 
 

 
 

 
 

 
  
 
 

 
 

 =  
 
 
                                           … (8.12) 

         Or [C]{    = {0} 

Step 3 – Formulate force deformation relations: For end moments Mi 

and Mj, the FDR can be written as  

            … (8.13) 

Writing above equations for the two members leads to                                           

and 
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                                           … (8.14) 

Step 4 – Derive the lumped mass matrix: The Lumped mass matrix can 

be directly written as given below. 

                =  

     
    
    
       

                                                             … (8.15) 

Steps 5 – Calculate natural frequency: Calculate global normalized 

compatibility conditions by multiplying [C] matrix and Global Flexibility 

matrix [Gmatrix]. By concatenating into basic equilibrium matrix [B], a 

global equilibrium matrix [S] is developed.  The basic IFM based equation 

now can be written by substituting all the related matrices into Eq. (8.7) as 

 

      
     
               
                  

  

  

  

  

  

   

  

       
 

     
    
    
       

  

                  
                
                       

                            

  

    
    
    
       

          … (8.16) 

Solving above equations one can get the solution as                  , 

which is found to be matching with the exact solution of 63.2456 

rad/seconds.  

Step 6 – Calculate modal moments: Substituting the values of frequency 

calculated in Eqn.(8.16) the internal nodal moments can be calculated which 

is as  

            

  

  

  

  

    

   
    
    
   

                                                                     … (8.17) 

Steps 7 – Calculate Modal Moments (Internal Moments) 
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Substituting the values of nodal moments into Eq. (8.8) the nodal moments 

are calculated which is as below 

  
   
   

  =          
  

     
                                                      … (8.18) 

8.2.3 Continuous Beam Example  

A two span continuous beam having two extreme ends as fixed is shown in 

Fig. 8.16. It is to be analysed considering four segments of 1m each on both 

sides of two lumped mass ‘Mo’. Consider EI as 666.67 kN-m2. 

 

 

Fig. 8.16 Two Span Continuous Beam Example 

Following three possibilities are considered here: (i) Direct Lumping of  

Constant Mass at given nodes (ii) Lumped Mass calculated based on basis of 

mass per unit length and number of members meeting at a joint [LMcase] 

and   (iii) Consistent Mass which is again based on mass per unit length and 

number of members meeting at a joint [CMcase]. Solutions obtained based 

on different mass criteria are verified here by Stiffness based eigen value 

analysis.  

(i) DNLM Case 

Step 0 – Solution strategy:  The continuous beam is analysed by 

considering four segments with lumping mass of Mo equals 10kN at the 

centre of each span. Each beam segment has internal moments (M1, M2). 

Thus, the complete problem has total eight internal unknown moments (n) 

and total five possible free joint displacements (m) as shown in Fig. 8.17. 

Thus the problem has 3 degrees of static indeterminacy. 
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                               Fig. 8.17 Free Body Diagram 

Step 1 – Formulate the equilibrium equations:  The EEs are written in 

terms of unknown moments at the intermediate joints i.e. at lumped masses 

and at intermediate junctions corresponding to vertical displacements δ23, 

δ67 and rotational displacements  23,  45, and  67. In matrix form  

            

 
 
 
 
 
          
          
         
          
          

 
 
 
 

 
 
 
 

 
 
 
  

  

  

  

  

  

  

   
 
 
 

 
 
 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 

 
 
 

                      

Which can be seen as [B]{M} = {P} or [S]{M} = {P].                                          

Step 2 – Derive the deformation displacement relations: The DDR is 

obtained as {} = [B] T {δ}. 

           

 
 
 
 

 
 

  =     

 
 
 

 
 
δ  
   
   
δ  
    

 
 

 
 

                                                                         

Step 3 – Generate the compatibility conditions: The three 

compatibility conditions for the beam problem can be worked out by 

using .m file of Matlab which is named as mtechexamplemod. 

  
           
         
         

     =                     

Which can be written in the form [C]{    = {0} 

Step 4 – Formulate force deformation relations:  For end moments Mi 

and Mj, the FDR can be written as 
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Formulating above equations for all the three members and arranging 

in a matrix form one can write,  

               

 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  
 
 
 
 

 
 
 
 

   
 

   

 
 
 
 
 
 
 
 
        
        
        
           
        
        
        
         

 
 
 
 
 
 
 

 
 
 
 

 
 
 
  

  

  

  

  

  

  

   
 
 
 

 
 
 

                             

Step 5 – Derive the mass matrix for DNLM Case: The lumped mass 

matrix can be is directly written as  

 

                = 

 
 
 
 
 
      
     
     
         
      

 
 
 
 

                                                        

Step 6 – Calculate natural frequency: The global normalized compatibility 

conditions are obtained by multiplying [C] matrix by Global Flexibility matrix 

[Gmatrix] and then concatenating into basic equilibrium matrix [B], a global 

equilibrium matrix [S] is developed.  

The governing IFM based equations are developed by substituting all the 

required matrices in Eq. (8.7).  After solving the equations using matlab 

based eigen module ‘eig(a,b)’. The calculated frequencies based on DNLM 

case are as follows; 

  
ω 
ω 
  =  
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In which first natural frequency is matching with value of propped cantilever 

case while second one is matching with the fixed case. As the mass is on 

both the side, a mechanism is developed at intermediate joint such that it 

works as a propped cantilever beam where moment equals to zero, with 

possible rotational value. On the other hand, whenever both the masses 

during motion are on one side of the beam the same joint having zero 

rotation with reacting moment values is considered as second mode of 

vibration.  

Step 7 – Calculate modal moments: Substituting the above values of 

frequencies into basic equation of IFM, the internal nodal moments can be 

calculated. For the first natural frequency, the moments are  

           

 
 
 
 

 
 
 
  

  

  

  

  

  

  

   
 
 
 

 
 
 

  

 
 
 
 

 
 
 
     
     
     
    
    
      
      
     

 
 
 

 
 
 

                                                                       

Step 8 – Calculate nodal displacements: Substituting the values of nodal 

moments calculated above into Eq. (8.9), the nodal displacements for first 

mode moments are found as 

 

 
 
 

 
 
δ  
   
   
δ  
    

 
 

 
 

= 

 
 
 

 
 
       
     
   

      
      

 
 

 
 

                                            

(i) Considering  Lumping Mass Criteria ( LM Case) 

In this case, the contributory mass is considered at each node as per the 

number of members meeting at a junction corresponding to lateral deflection 

direction only. Considering mass per unit length of each member as 1kN/m, 

the lumped mass matrix for each member written as   

 

1           2           3          4 
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[  ] = [  ] = [  ] = [  ] =    

      
    
      
       

                                 

After assembly, the global lumped mass matrix corresponding to vertical 

displacement based contributory criteria at joints (2-3) and (6-7) can be 

written as  

      = 

 
 
 
 
 
     
     
     
        
      

 
 
 
 

                                                               

(ii)   Considering  Consistent Mass (CM Case) 

In this case, actual contributory mass is calculated at each node as per 

number of members meeting at junction, where contribution corresponding 

to rotation is also considered in addition to that corresponding to lateral 

displacement. Considering mass per unit length of each member as 1kN/m, 

Thus for all the beam members of 1m length the consistent mass is found as 

[  ] = [  ] = [  ] = [  ] = 2.389 x 10-3  

       

   
       
           

             

After assembly, the global consistent mass matrix is found as   

      = 

 
 
 
 
 
      
           

                     
                 
                  

 
 
 
 

                 

By following the steps given above, the frequencies are worked out based on 

LM and CM cases. By substituting the frequencies, the internal forces and 

nodal displacements are calculated for the first frequency.  The frequency 

values are checked using Standard stiffness based eigen value analysis. The 

1          2         3       4       5 

1                2              3                4 

     1                                   2                      3                              4                     5 
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comparison is presented in Table 8.1. The corresponding moments for the 

first natural frequency value are given in Table 8.2. 

 

                    Table 8.1 Natural Frequencies for Continuous Beam 

 Natural Frequency   (ω)  Radians/Second 

Lumped Mass Consistent Mass 

IFM Stiffness Method IFM Stiffness Method [93] 

151.188 151.187 158.881 158.879 

200.001 200.00 232.11 232.10 

596.11 596.11 

836.66 836.66 

1558.33 1558.33 

 

                    Table 8.2 Moments and Nodal Displacements 

Based on Lumped Mass Based on Consistent Mass 

Internal 
Moments 

Nodal 

Displacements 
(δ) x 10-3 

Internal 
Moments 

Nodal 

Displacements 
(δ) x 10-3 

M1 = -1.0 δ           M1 = -1.0  δ           

M2 = 0.83          M2 = 1.00              
M3 =  0.83          M3 =  -1.00             
M4 = 0.00 δ         M4 =-1.00  δ           
M5 = 0.00          M5 = 1.00               
M6 = -0.83 

 

M6 = 1.00 

M7 = -0.83 M7 = -1.00 

M8 = 1.00 M8 = 1.0 

 

8.3 EXAMPLES OF DYNAMIC ANALYSIS OF PLANE TRUSS 

Two examples of plane truss are solved here using IFM based formulation by 

considering (1) Direct Nodal Lumped Mass of 10kN at nodes under 

consideration (2), Lumped mass criteria as per members meeting at joints 

and (3) Consistent mass criteria. The solution obtained is compared with the 

stiffness based Eigen values analysis [93]. 

8.3.1 Three Member Truss Example 
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A three member truss shown in Fig. 8.18 has three joints out of which two 

are loaded with direct nodal lumping of mass (Mo) equals to 10 kN-Sec2/m. 

The members have axial rigidity as 2.01 x 106 kN. The truss is to be analysed 

under different mass criteria by considering unit weight as 1 kN/m.    

 

 

 

 

 

 

                                         

                      Fig. 8.18 Three Member Plane Truss Example 

The complete methodology being same, the necessary changes in the 

derivation of mass matrices for different cases are discussed here. 

(i) Direct Nodal Lumping of Mass (DNLM Case) 

Three possible nodal displacements in the truss are  δ  , δ   and δ   as 

shown in Fig. 8.18. Hence there are three possible frequencies 

corresponding to each nodal displacement with three internal force 

unknowns. Thus, the problem is having basic equilibrium matrix [B] which 

directly become a square global equilibrium matrix [S] as it does not require   

compatibility conditions. The nodal lumping mass matrix for Mo can be 

written as  

                =  
    
    
    

                                                                  

After deriving all the necessary matrices and substituting in Eq. (8.16), the 

values of natural frequencies are calculated and are compared with the 

 2H          2V           3H          
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stiffness method based eigen values analysis in Table 8.3.  After 

substituting each IFM based frequency value in same Eq. (8.16) relative 

internal force in each member is calculated by considering F1 equals to 1, 

using Matlab software. By substituting the relative internal forces of each 

member the corresponding nodal displacements are calculated. The relative 

internal forces as well as nodal displacements obtained for first natural 

frequency are reported in Table 8.4.   

Table 8.3 Natural Frequencies (DNLM Case) 

Natural Frequency (ω) rad/sec  

IFM Stiffness Based [93] 

194.855 194.833 

448.33 448.33 

613.36 613.33 

 
                    Table 8.4 Internal Forces and Nodal Displacements 

Internal Forces 

(F) 

Nodal 
Displacements 

(δ) x 10-6 

F1 = -1.0 δ               

F2 = 0.232 δ            

F3 =  0.232  δ           

 

(ii) Considering  Lumping Mass Criteria ( LM Case) 

In this case, actual contributory mass is calculated at each node as per the 

number of members meeting at the joint. The mass matrix for each member 

can be written as   

[  ] = [  ] = [  ] =    

      
      
      
         

                                        

 The transformation from local to global direction is carried out by  

[ML] = [T]T[M1][T]                                                                         

1             2            3            4 
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Where [T] is the transformation matrix for a plane truss member and is given 

by  

[T] =  

 
 
 
 
 
      

       

      
           

 
 
 
 

                                  

Next, the global lumped mass matrix is calculated, which is as follows 

      =  
          

       
        

                                                   

After deriving all the necessary matrices and substituting in Eq. (8.16), the 

values of natural frequencies are calculated and are compared with those 

obtained using stiffness based eigen value analysis (Table 8.5). Relative 

internal force in each member is also calculated by considering F1 equals to 

1. Finally, the corresponding nodal displacements are calculated. Results 

obtained for the the relative internal forces as well as nodal displacements 

for first natural frequency are presented in Table 8.6.   

Table 8.5 Natural Frequencies for Plane Truss 

Natural Frequency (ω) rad/sec 

IFM Stiffness Method [93] 

560.85 560.83 

1290.5 1290.4 

1765.4 1765.3 

                      

 

Table 8.6 Internal Forces and Nodal Displacements 

Internal Force 

(F) 

Nodal Displacements 

(δ) x 10-5 

0.8111 0.1879 

0.8111 0.0434 

1.000 0.0434 

 

(iii) Considering  Consistent Mass Criteria (CM Case) 

      2H                   2V                     3H           



 

214 

 

 

In this case, actual contributory mass is calculated at each node as per the 

number of members meeting at junction. Thus for all the members of the 

plane truss the lumped mass matrix is as under. 

[  ] =  
      

 
  

    
    
    
       

          and,   [  ] =  
       

 
  

    
    
    
       

                                                            

The global consistent mass matrix is as follows 

      =  
          

          
                

                                                    

After deriving all the necessary matrices and substituting in Eq. (8.16), 

values of natural frequencies are calculated and are verified by stiffness 

based eigen analysis as depicted in Table 8.7 whereas results obtained for 

the relative internal forces as well as nodal displacements for the first 

natural frequency value are depicted in Table 8.8.   

Table 8.7 Natural Frequencies for Plane Truss  

Natural Frequency (ω) rad/sec  

IFM Stiffness Method 

204.03 204.0 

507.71 507.69 

749.47 749.413 

 

 

              Table 8.8 Internal Forces and Nodal Displacements 

Internal 
Force 

(F) 

Nodal Displacements 

(δ) x 10-5 

-0.7868 0.1812 

-1.00 0.0391 

0.9273 0.0498 

 

8.3.2 Eleven Member Truss Example 

1           2       3        4 

     2H                    2V                  3H           
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A 11- member truss having four joints loaded with direct nodal lumping of 

mass (Mo) equals to 10 kN-Sec2/m. The axial rigidity is constant for all the 

members and is equal to 2.01 x 106 kN.  The frequency analysis is to be 

carried out for lumped and consistent mass criteria by considering weight as 

1 kN/m.    

                 

                    Fig. 8.19 Eleven Member Plane Truss Example 

(i) Considering Direct Nodal Lumping Mass (DNLM Case) 

There are total eight possible nodal displacements in the truss. Hence there 

are eight possible frequencies corresponding to each displacement while 

there are eleven internal force unknowns. The basic equilibrium matrix [B] is 

of size 8 x 11. Thus, the problem is three degree statically indeterminate as 

per IFM procedure. 

The mass matrix Mo can be written by referring Eq. (8.6) as  

 

                = 
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After deriving all the necessary matrices and substituting in Eq. (8.16), 

values of natural frequencies are calculated and are verified by stiffness 

based eigen value analysis (Table 8.9). After substituting each IFM based 

frequency value in same Eq. (8.16), the relative internal forces in each 

member are calculated by considering F2 equals to 1. In this case as member 

one is constrained at support in both the direction, there is no internal force 

developed in it. By substituting the relative internal force of each member 

into Eq. (8.8) and using Matlab, corresponding nodal displacements are 

calculated. The relative internal forces as well as nodal displacements for 

first natural frequency are depicted in Table 8.10. 

Table 8.9 Natural Frequencies 

Natural Frequency (ω) rad/sec 

IFM Stiffness Method 

104.665 101.04 

312.9164 308.33 

350.038 325.44 

611.7482 589.33 

643.8708 643.08 

770.7261 748.19 

789.6878 774.65 

910.3956 874.34 

 

 

 

Table 8.10 Internal Forces 

Internal 
Forces 

(F) 

Nodal 
Displacements 

(δ) x 10-6 

F1 = 0.00 δ               

F2 = 1.00 δ              
F3 = 0.5049 δ          

F4 =  -0.5049 δ          
F5 = -1.00 δ               
F6 = 0.00 δ              

F7 =  0.3305 δ          
F8 = 0.00 δ          

F9 = -0.3650  



 

217 

 

 

F10 =  0.3650 

F11 = -0.3305 

 

 
(i) Considering  Lumping Mass Criteria ( LM Case) 

 

The global is found as  

     = 

 
 
 
 
 
 
 
 
             

            
           

          
         

            

       
       

 
 
 
 
 
 
 

  Following 

the procedure used in previous example, results obtained for natural 

frequencies, internal forces and nodal displacements are reported here in 

Table 8.11 and Table 8.12.   

Table 8.11 Natural Frequencies for Plane Truss  

Natural Frequency (ω) rad/sec  

IFM Stiffness Method 

240.44 231.68 

688.911 650.068 

703.41 678.89 

1357.11 1238.9 

1368.44 1339.4 

1550.11 1553.83 

1550.11 1553.83 

1944.44 1864.55 

 

 Table 8.12 Internal Forces and Nodal Displacements 

Internal Force 
(F) 

Nodal Displacements 
(δ) x 10-5 

F1 = 0.00 δ                

F2 = 1.00 δ             

F3 = 0.5513 δ             
F4 =  -0.5513 δ            
F5 = -1.000 δ              
F6 = 0.00 δ             
F7 =  0.2950 δ            

 2H                      2V                   3H               3H                 4H                  4V                 5H                  5V             
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F8 = 0.000 δ            
F9 = -0.3273 

 F10 =  -0.3273 

F11 = -0.2950 

(ii) Considering  Consistent Mass Criteria ( CM Case) 

Based on consistent mass criteria, the global consistent mass matrix is 

found as follows  

      = 

 
 
 
 
 
 
 
 
                            

                           
               

              
              

                 

       
       

 
 
 
 
 
 
 

                                                  

Natural frequency results are presented in Table 8.13 along with the 

comparison with solution obtained based on stiffness method of analysis 

whereas the results obtained for internal forces and nodal displacements 

are reported here in Table 8.14.  

Table 8.13 Natural Frequencies for Plane Truss  

Natural Frequency (ω) rad/sec  

IFM 
Eigen Analysis 

(Stiffness Based) 

257.994 247.4 

720.41 709.01 

916.041 850.7 

1723..11 1648.44 

1368.44 1690.01 

1799.11 1846.88 

2073.50 2057.01 

2602.22 2494.88 

 
                    Table 8.14 Internal Forces and Nodal Displacements 

Internal Forces(F) 
Nodal Displacements 

(δ) x 10-5 

F1 = 0.00 F8 = 0.000 δ               

F2 = 1.00 F9 = 0.3310 δ              

F3 = 0.6188 F10 =  -0.3310 δ             

 2H                 2V               3H                      3V                   4H               4V               5H                       5V             
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F4 =  -0.6188 F11 = 0.2726 δ             
F5 = -1.000 

 

δ               
F6 = 0.00 δ              
F7 =  -0.2726              ,                  

8.4 EXAMPLE  OF DYNAMIC ANALYSIS OF PLANE FRAME 

A fixed footed portal frame is considered here with direct nodal lumping of 

mass (Mo) equals to 10 kN-Sec2/m at the centre of beam as depicted in Fig. 

8.20. The members have EI equals to 1666.67 kN – m2.  The frequency 

analysis is carried out for lumped and consistent mass criteria by 

considering unit weight of each member as 1kN/m.   

 

                     

1. Considering Direct Nodal Lumping Mass (DNLM Case) 

The problem is having following five possible nodal displacements: (1) 

Horizontal displacement (Lateral sway) of beam member δ23H. (2) Rotational 

displacement at junction of members 1-2 ɵ12,(3) Rotational displacement at 

junction of member 2-3 ɵ23 ,(4) Rotational displacement at joint 3-4 ɵ34 and 

(5) Vertical displacement at lumped mass δ23V. Hence there are five possible 

frequencies one corresponding to each displacement. Eight internal 

moments are as shown in Fig. 8.20. The problem has basic equilibrium 
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Fig. 8.20 Plane Frame Example with Free Body Diagram 
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matrix [B] of size 5 x 8 and hence the problem is three degree statically 

indeterminate as per IFM. 

The nodal lumping mass matrix can be written by referring Eq. (8.27)  as  

 

                = 

 
 
 
 
 
     

    
    

     

  
 
 
 
 

                                                     

Following the procedure used in the previous example, IFM and stiffness 

method based frequencies are worked out and are given in Table 8.15. After 

substituting IFM based first natural frequency value in basic equation of 

IFM formulation all the internal moments are worked out which are depicted 

in Table 8.16.  

Table 8.15 Natural Frequencies (DNLM Case) 

Natural Frequency (ω) rad/sec  

IFM Stiffness Method [93] 

52.9151 52.9150 

126.4912 126.4911 

 

          Table 8.16 Internal Moments and Nodal Displacements 

 

 

(ii) Considering  Lumping Mass Criteria ( LM Case) 

Internal 
Moments 

(F) 

Nodal 
Displacements 

(δ) x 10-3 

M1 = 1.00 δ              

M2 =-0.75            
M3 = -0.75 δ             
M4 =  0.00           
M5 = 0.00             
M6 = 0.75 

M7 =  0.75 

M8 = -1.00 

 δ23H      ɵ12        δ23V       ɵ23       ɵ34    
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Considering mass per unit length of each member as 1kN/m and after 

suitable transformation the global lumped mass matrix is obtained as  

 

                   = 

 
 
 
 
 
       

    
     

  
  
 
 
 
 

                                                          

Results obtained for natural frequencies, internal force and nodal 

displacements are reported in Table 8.17 and 8.18.  

Table 8.17 Natural Frequencies (LM Case)  

Natural Frequency (ω) rad/sec  

IFM Stiffness Method 

159.2038 159.2038 

221.5824 221.5824 

 

                    Table 8.18 Internal Forces and Nodal Displacements 

Internal 

Moments 
(M) 

Nodal 

Displacements 
(δ) x 10-3 

M1 = 1.00 δ               

M2 = -0.6788             

M3 = -0.6788 δ             
M4 =  -0.5833           
M5 = -0.5833              
M6 = 0.6768 

M7 =  0.6768 

M8 = -1.00 
 

(iii) Considering  Consistent Mass Criteria ( CM Case) 

The global consistent mass matrix by following the procedure outlined 

earlier is found as  

 δ23H        12      δ23V       23    34    

 δ23H                12                         δ23V                         23                    34    
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      = 

 
 
 
 
 
                      

                      
               

                   

        
 
 
 
 

                                               

Results obtained considering consistent mass criteria are reported here in 

Tables 8.19 and 8.20.  

Table 7.19 Natural Frequencies for Plane Frame  

Natural Frequency (ω) rad/sec  

IFM  Stiffness Method 

152.88 152.00 

208.11 208.1 

1152.13 1152.0 

2420.01 2420.0 

11100.54 11100.0 

 

                 Table 7.20 Internal Moments and Nodal Displacements 

Internal 
Moments 

(M) 

Nodal 
Displacements 

(δ) 

M1 = -0.5159 δ                

M2 = 0.2457            

M3 = 0.3218 δ              
M4 =  1.00            
M5 = -1.00             
M6 = -0.3218 

M7 =  -0.2457 

M8 = 0.5081 

 

8.5 DYNAMIC ANALYSIS OF A GRID STRUCTURE 

A grid structure with four members orthogonal to each other is shown in 

Fig. 8.21. Each member has flexural rigidity (EI) and torsional rigidity (GJ) 

equals to 1666.67 and 758.89 kN-m2 respectively. It also has mass polar 

moment of inertia (     and polar moment of inertia (J) about centroidal axis 

as 1250 kN-m2 and 9.8174 x 10-6 m4 respectively. The frequency analysis is 

to be carried out for direct nodal lumping of mass (Mo) equals to 10 kN-
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Sec2/m.  It is also analysed for lumped and consistent mass criteria by 

considering unit weight of each member as 1kN/m.   

                          

  

 

(i) Considering Direct Nodal Lumping Mass (DNLM Case) 

The grid problem has total three possible nodal displacements at meeting 

point of all members i.e. Vertical displacement (δv), Bending rotation ( M) 

and Torsional rotation ( T). As there are total sixteen internal unknowns in 

terms of bending and torsional moments as shown in Fig. 8.22, the 
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Fig. 8.22 Free Body Diagram 
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problem will have equilibrium matrix [B] of size 3 x16. Thus, the problem 

becomes thirteen degree statically indeterminate as per IFM. 

The nodal lumping mass matrix can be written by referring Eq. (8.27) as  

                =  
    
   
   

                                                                      

Based on the IFM the natural frequency of grid structure is found as 59.076 

rad/sec, whereas using stiffness method the natural frequency is found as 

59.073 rad/sec. Results obtained based on IFM for internal moments and 

nodal displacementare reported in Table 8.21.  

 

Table 8.21 Internal Moments and Nodal Displacements 

 

 

 

(ii) Considering  Lumping Mass Criteria (LM Case) 

Considering mass per unit length of each member as 1kN/m, based on 

lumping mass criteria the global lumped mass matrix can be calculated as 

      =  
      

       
      

                                                       

After deriving all the necessary matrices and after substituting in various 

equations the frequency values are found as reported in Table 8.22. After 

Flexural 

Moments 
(M) 

Torsional 

Moments 
(T) 

Nodal 

Displacements 
(δ) x 10-3 

M1 = 1.00 T1 = 0.00 δ           

M2 =-0.7106 T2 =-0.0659          
M3 = 0.7106 T3 = 0.0659           
M4 =  -1.00 T4 =  0.00 

M5 = -0.6118 T5 = 0.0329 

M6 = 0.4671 T6 = 0.00 

M7 =  0.6118 T7 =  -0.0329 

M8 = -0.4671 T8 = 0.00 

 δv        M       T    

 δv               M            T    
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substituting each IFM based frequency value in eigen equation, the relative 

internal forces in each member are calculated using Matlab software. Once 

the internal moment in each member are calculated the relative nodal 

displacements are obtained as reported in Table 8.23.  

 

Table 8.22 Natural Frequencies for Grid Structure 

Natural Frequency (ω) rad/sec  

IFM  Stiffness Method [93] 

2.1463 2.1412 

2.4363 2.4343 

122.4798 122.4768 

 

Table 8.23 Internal Moments and Nodal Displacements 

 

 

 

 

 

 

 

 

 

(iii)     Considering  Consistent Mass Criteria ( CM Case) 

Based on consistent mass concept, the global consistent mass matrix is as 

follows 

      =  
        

       
      

                                                     

Frequency analysis provides results as per Table 8.24. Moments are 

calculated using Matlab based module and are reported in Table 8.25.  

Table 8.24 Natural Frequencies for Grid  

Flexural 
Moments 

(M) 

Torsional 
Moments 

(T) 

Nodal 
Displacements 

(δ) x 10-4 

M1 = 1.00 T1 = 0.00 δ        

M2 =-1.00 T2 =-0.00            
M3 = 1.00 T3 = 0.00            

M4 =  -1.00 T4 =  0.00 

M5 = 0.234 T5 = 0.00 

M6 = -0.234 T6 = 0.00 

M7 =  0.234 T7 =  -0.00 

M8 = -0.234 T8 = 0.00 

 δv               M            T    
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Natural Frequency (ω) rad/sec  

IFM Stiffness Method 

2.6288 2.6210 

2.949 2.942 

142.11 142.11 

 

                 Table 8.25 Internal Moments and Nodal Displacements 

 

 

 

 

 

 

 

8.6 DISCUSSION OF RESULTS 

Using IFM for frequency analysis and getting force mode shapes is one of 

the unexplored area in vibration theory of structural mechanics. After 

substituting each frequency value the relative internal forces are worked out 

and then the relative displacements are worked out by substituting the 

corresponding internal forces into IFM based equations. Thus, by utilizing 

the concept of force mode shape a direct design is feasible for the structural 

members which preferably vibrate under controlled frequency constraints. 

Some of the important observations of this chapter are as follows: 

 Eigen value analysis is carried out by attempting various types of beam 

problems with varying boundary condition. In all the cases fixed central 

point mass is considered to enable comparison with the standard cases. 

By keeping same span, flexural rigidity and vibrating mass for all the 

cases the overall behavior in terms of maxima/minima frequency values, 

Flexural 
Moments 

(M) 

Torsional 
Moments 

(T) 

Nodal 
Displacements 

(δ) x 10-4 

M1 = 1.00 T1 = 0.00 δ          

M2 =-1.00 T2 =-0.00            
M3 = 1.00 T3 = 0.00            

M4 =  -1.00 T4 =  0.00 

M5 = 0.234 T5 = 0.00 

M6 = -0.234 T6 = 0.00 

M7 =  0.234 T7 =  -0.00 

M8 = -0.234 T8 = 0.00 



 

227 

 

 

relative moments and nodal displacements are studied. For the same 

relative internal moment values the nodal displacements in simply 

supported beam are found to be higher compared to fixed one under 

first modal pattern. A propped cantilever beam which exhibits behavior 

between the two cases indicates approximately average values in 

moments and nodal displacement with non zero value of slope at centre 

of beam. A continuous beam with two equal span length having extreme 

ends as simply supported is also studied under same criteria. Using IFM 

based formulation two frequency values are worked out. In the first 

case, whenever the vibrating mass is on one side of the beam base line, 

the frequency value of propped cantilever beam and first modal 

frequency is found to be matching. Thus, a good agreement is found 

with respect to structural vibration theory. During the second vibratory 

motion when the both masses are on the opposite side of beam base 

line, the frequency value of simply supported beam case and the second 

modal frequency values are found equal. The values for internal 

moments and nodal displacements are also found to match with the 

standard theory of vibration.  

 All the skeletal framed structures are studied under various types of 

mass calculations keeping all other properties identical such as: (1) 

Direct Nodal Lumping Mass (DNLM) where constant intensity of 10kN is 

lumped at necessary joints, (2) Lumped Mass (LM) is calculated as per 

its mass per unit length as 1kN/m for all the structural members and 

(3) Consistent Mass (CM) is calculated as per same mass per unit 

length. The frequency values for lumped mass criteria are higher than 

the frequency values calculated using consistent mass criteria. Relative 

values of internal moments and nodal displacement are also worked out 

for the first frequency values under LM and CM cases.  

 Two pin jointed structures are solved for frequency analysis. One is 

having three members triangulated panel and other is of eleven 
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members having two rectangular panels. Both the structures are 

analysed for eigen values under all the three categories of mass. IFM 

based analysis for triangulated type panel truss structure is found to 

give frequency values higher than the conventional stiffness based eigen 

value approach. Second structure with rectangular panel behaves very 

rigidly in its own plane and hence requires large amount of inertial force 

to yield higher natural frequencies.  

 For fixed footed portal frame two natural frequency values are found to 

be matching with the standard stiffness based eigen values 

corresponding to two lateral displacements for the DNLM and LM Cases. 

While considering consistent mass criteria, total five values of natural 

frequencies are calculated by including mass corresponding to rotation 

in the mass matrix. The relative values of moments and nodal 

displacements, for all the cases, are also verified for approximate shape 

of deflection pattern as per the frame vibration criteria as per sequential 

number of frequencies.   

 In case of frequency analysis of unsymmetrical grid structure, all the 

values corresponding to three displacements are found matching with 

the stiffness based solutions.  
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CHAPTER 9 

STATIC ANALYSIS OF 2D CONTINUUM STRUCTURES 

9.1 COMPUTER IMPLEMENTATION OF SOLUTION STEPS 

Pre- and main-processors are developed in Visual Basic to facilitate analysis 

of continuum structures based on integrated force method. Most of post-

processing part is carried out using the Matlab software. Selection of type 

problem i.e. Plane stress, Plane strain or Plate bending  is facilitated 

through a main menu which also has provision for selecting the various sub 

menus as per the requirement. Once the selection is done, next screen 

depicts Form 1, which is developed for giving an input data related to 

structural geometry using different GUI features. The selection of material is 

done by user through a menu in which provision is made for entering the 

value of Modulus of Elasticity (E) and Poisson’s ratio ( ). Once geometrical 

and material input is over it is depicted on form2 with various command 

buttons in addition to option button to enter the type of discretization 

scheme. Depending on discretization pattern, number of elements and 

number of nodes are calculated automatically and Key Diagram is plotted 

using first command button named as “Key Diagram”. Global degrees of 

freedom are then calculated. Once the various operation related to form2 

are over, control of the program is transferred to the form3 which is 

developed for selecting the type of load. On the next form i.e, form 4 two 

command buttons are provided in which first one is used to draw the figure 

of selected element. The other things related to elemental degrees of freedom 

are automatically plotted using graphical commands of VB 6 with Matlab 

7.4 using COM connection, which initiates active command window on 
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which various further necessary operations are carried out. Before 

connection, following matrices are externally developed using Matlab editor 

facility:  

 

1. Shape function matrix [N].  

2. Strain displacement matrix [Z] by differentiating [N] which is directly 

carried out using “diff (N, x)” of Matlab command. 

3. Stress linking matrix [Y] can be directly typed where the rows of the 

matrix correspond to number of stress components for the given 

problem and columns of the matrix correspond to the number of 

unknowns per element which represents directly internal forces.  

4. The basic elemental Equilibrium matrix [Be] is worked out by 

integration of product of [z]T and [Y] using “int (function, lower limit, 

upper limit, with respect to x or y)” of Matlab command button.   

5. The elemental flexibility matrix [Ge] is also worked out using same 

integration function. The matrix is obtained by multiplication of [Y]T, 

material matrix [D] and [Y].  

6. The assembly procedure for global equilibrium and flexibility matrices 

is carried out as per IFM based simplified concatenated approach. 

Once these matrices are assembled, they are transferred into notepad 

using .txt extension, which are directly called by Matlab command by 

giving proper path. 

7. The load matrix {P} is directly developed or read from .txt file using 

note pad.            

The analysis procedure is demonstrated here with the help a deep cantilever 

beam having span of 1m with cross-sectional dimensions as 0.015m x 

0.15m as shown in Fig. 9.1. It is subjected to a point load of 10 kN at free 

end. Considering mild steel as material with Modulus of elasticity (E) and 
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Poisson’s ratio ( ) as 2.01x108 kN/m2 and 0.3 respectively, it is analysed 

here using 1 x 2 discretization. 

            

                             

                            Fig 9.1 A Deep Cantilever Beam Example  

Step1: Using MDI form the type of problem is selected from the provisions 

made for Plane stress, Plane strain and Bending of plates. Figure 9.2 

depicts a selection of deep cantilever beam from the Plane stress option.      

 

                           Fig 9.2 Main Menu for Type of Structure 

 

Step 2:  Once the type of structure is selected, control is transferred to next 

form in which geometrical dimensions are entered and material type 

selection is done by using option button and text box facility as depicted in 

Fig. 9.3. 
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                         Fig. 9.3 Selection of Geometry and Material  

Step 3:  A diagram is depicted as shown in Fig. 9.4 by pressing key 

diagram command button. Element numbering and node numbering is 

carried out  and total eight global degrees of freedom are also shown in 

figure. 

Fig 9.4 Key Diagram of Deep Cantilever Beam 

 

Step 4: Next, by clicking any point on the form3, a form4 is depicted on 

screen which shows a rectangular element with five independent forces (F1 

to F5) and eight displacement degree of freedom (Fig. 9.5).   
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Fig 9.5 RECT_5F_8D 

Step 5: Once basic element is depicted, VB program is interfaced with 

Matlab using COM automation server. By clicking the command button, 

Matlab command window editor can be seen on the form4 as depicted in 

Fig. 9.6. 

                                 

                             Fig. 9.6 Matlab Command Window 

Step 6: Matlab command window is used to carry out the mathematical 

operations. By writing proper path the assembled equilibrium matrix [B] 

and global flexibility matrix [G] are called in the matlab editor as shown in 

Fig. 9.7. 
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                      Fig. 9.7 [B] and [G] Matrices on Matlab Editor 

 

Step 7: Once Matlab command window is available, all the matrix 

operations are carried out on the command prompt. By writing proper path 

for the .m file it is connected to folder “CCPROG” on the desktop. Operating 

the module of “mtechexamplemod(B)” demands number of compatibility 

conditions for making the global equilibrium matrix  square as depicted in 

Fig. 9.8.  Thus, out of the total 10 unknowns, 2 unknowns are selected as 

“CodedepB” while the rest as “CodeindepB” as per the LIUT procedure.  

 

 

Fig. 9.8 Operations Related to Compatibility Conditions 

 

Step 8:  ‘z.cMatrix’ of size 2 x 10 is generated which consists of the 

coefficients of the { } vector. The null property CCs is checked by using the 
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module ‘z.cTransposeB’. Checking of the developed matrix is depicted in 

Fig. 9.9.  

            

            Fig. 9.9 [C] Matrix and Null Property Check for [C] and [B]T 

Step 9: The multiplication of [C] matrix with global flexibility matrix [G] 

gives a matrix with force coefficients, which is concatenated into [B] matrix. 

It makes the global equilibrium matrix after normalization a square one.  It 

is  is denoted as [Smatrix] and is depicted in Fig.9.10. 

 

            Fig. 9.10 Global Equilibrium Matrix [Smatrix] 

Step 10: Sinv as the inversion of [Smatrix], and Jmatrix as the transpose of 

Sinv are calculated.  The load vector is multiplied with the Sinv to calculate 

{F} vector as also depicted in Fig. 9.11.  
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          Fig. 9.11 Loading Vector [Pmatrix], [Jmatrix] and Vector {F} 

Step 11: The nodal displacement vector {δ} is worked out by multiplication 

of [Jmatrix], [Gmatrix] and {F} vector as depicted in Fig. 9.12.   

 

Fig 9.12 Nodal Displacement Vector {δ}Step 12:  

Step 12: The support reactions are calculated by direct multiplication of  

corresponding portion of globa lequilibrium matrix [Smatrix] and 

components of {F} vector as shown in Fig. 9.13. 

 

   Fig 9.13 Support Reactions {R} 

With finer discretization the values of nodal deflections and internal stresses 

are found to converge to exact solution [94]. Results of the convergence to 

the exact study are reported in Table 9.1. 

Table 9.1 Convergence of Maximum Stress and deflection 
 

Discretization Pattern 
σ      

σ        
 

δ        

δ          
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0.755 0.9414 

 0.833 0.9669 

 0.912 0.9898 

 0.991 0.9988 

 

9.2 DIFM BASED ANALYSIS OF A DEEP CANTILEVER  

The same problem is analysed (Fig.9.1) now by using the Dual Integrated 

Force Method (DIFM) by using the following steps: 

Step 0 – Solution strategy: The problem is divided into two RECT_5F_8D 

elements, thus each element is having five internal unknowns i.e. F1 to F5 

for element number 1 and F6 to F10 for element number 2 which 

corresponds to internal stress components Nx, Ny and Nxy.  The problem has 

total 8 displacement degrees of freedom (u1, v1, u2,v2………v4) and 10 force 

degrees of freedom.   

Step 1- Development of Elemental Matrices: The elemental equilibrium 

matrix [Be] and elemental flexibility matrix [Ge] are calculated by 

substituting values of a and b as 0.25m and 0.075m respectively and are 

obtained as   

       

 
 
 
 
 
 
 
 
                  
                     

                  
                  

                
                  

                  
                     

 
 
 
 
 
 
 

                        

                                                               

 
 
 
 
 
          
         

     
     

    
 
 
 
 

            

The Dual matrix [D]difm for both the elements will be same due to the same 

geometrical dimensions and is worked out using the following formula  

1 2 

1 2 3 

1 3 2 4 

1 3 2 4 5 
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 [D]difm(e) = [Be][Ge]-1[Be]T   

Substituting necessary matrices in above equation for the element 1 the 

complete matrix is as follows 

                  

 
 
 
 
 
 
 
 
                                                  
                                            

                                      
                             

                        
                      

            
       

 
 
 
 
 
 
 

  

 

Similarly [D]difm is calculated for element – 2. 

Step 2 – Solution of equations: The basic DIFM equation based on 

stiffness analogy is given by  

          [D]difm {δ} = {P}    

Where [D]difm is the global pseudo stiffness matrix, {δ} is the unknown vector 

of size 8 x 1 i.e. {u1, v1, u2……v4}  and {P} is the load vector of size 8 x 1. 

After substituting all the necessary matrices into above equation and solving 

for displacements, one gets      

                   

 
 
 
 

 
 
 
  
  
  
  
  
  
  
   
 
 
 

 
 
 

 

 
 
 
 

 
 
 
       
       
       
       
       
       
       
        

 
 
 

 
 
 

    

The solution obtained using DIFM for nodal displacements is fully matching 

with solution obtained by IFM approach. 

Step 3 – Solution of equations: Once the displacement vector is available, 

the internal forces moments are worked out using either global matrix 

approach or individual element approach using the following equation 
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{F} = [G]-1[B]T{δ}                                                            

Thus, the internal unknown force vector {F} is found as  

         

 
 
 
 
 

 
 
 
 
  
  
  
  
  
  
  
  
  
    

 
 
 
 

 
 
 
 

 

 
 
 
 
 

 
 
 
 

    
      
    
    
      
    
      
    
    
       

 
 
 
 

 
 
 
 

      

                                                    

9.3 A PLANE STRESS PROBLEM OF PURE BENDING OF BEAM  

A 2D plane stress example of pure bending of beam is considered here with 

dimensions as of 228.6 mm x 152.4 mm (9” x 6”) and thickness as 25.4 mm 

(1”), E = 30 x 106 N/mm2, 0.3 = ע and subjected to a force with a maximum 

intensity of 1000 N/mm2 as shown in Fig. 9.14. Because of the symmetry 

and antisymmetry about the y and x axes respectively only the shaded 

quadrant of the beam is considered for the analysis. Fig. 9.15 depict a key 

diagram of discretized continuum with necessary details 

 

                        Fig. 9.14 Pure Bending of Beam 
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Following the steps outlined above given above results obtained for nodal 

displacements using IFM are compared with the exact [96] and FEM 

solutions [96] in Table 9.2. 

                   

                Fig. 9.15 (2 x 2) Discretization for Hatched Portion 

Following the steps outlined above results obtained for nodal displacements 

using IFM are compared with the exact [96] and FEM solutions [96] in Table 

9.2.  

Table 9.2 Comparison of Nodal Displacements  

 

Node 
Horizontal /Vertical 
Displacement (mm) 

IFM EXACT FEM 

A 

 

Horizontal 0.003759 0.00381 0.0034581 

Vertical -0.003073 -0.003238 -0.002949 

B 
Horizontal 0.000922 0.0009525 0.0008844 

Vertical -0.000767 
-

0.0008095 
-0.0007457 

 

9.4 A PROPPED CANTILEVER STEEL PLATE EXAMPLE  

A 2D plane stress example is considered here with the dimensions of plate 

as 750mm x 500mm x 15mm, E = 2.01 x 108 KN/m2,  = 0.25. It is 

subjected to a nodal force of 50 kN as shown in Fig. 9.16. 
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                Fig. 9.16 Propped Cantilever Steel Plate Example 

The propped cantilever plate example is solved here by using two different 

types of 2D plane stress elements i.e. (1) Triangular Element and (2) 

Rectangular Element.   

The triangular element has six displacement degrees of freedoms (u and v at 

each node) and three number of independent internal unknowns (F1, F2 and 

F3). The plate problem has total twelve force unknowns (F1 to F12) and seven 

displacement unknowns. Thus the complete problem requires five 

compatibility conditions. Discretized continuum with necessary details for 

triangular type of element is shown in Fig. 9.16.  

Table 9.3 shows the values of internal force unknowns corresponding to in-

plane stresses in each element, while Table 9.4 shows the displacement 

values at nodes 2, 3 and 5. 

Table 9.3 Internal Force Unknowns (TRI_3F_6D) 
 

Element Number Values of Internal Unknowns 

1 F1 = 54.33, F2 = 13.58 , F3 = 13.48 

2 F4 = 145.66, F5 = 15.27 , F6 = 29.48 

3 F7 = 21.83, F8 = -15.67 , F9 = 13.78 

4 F10 = 178.11, F11 = -38.90 , F12 = 29.17 

 
Table 9.4 Nodal Displacements (TRI_3F_6D) 

1 3 

50 kN 

1 

375 mm       

2 4 

2 

3 4 

v1 

u1 

v2 = 0 

u2 

v3 

u3 

v4 

u4 

375 mm        

5
0
0
 m

m
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Displacement (m) x 10-4 IFM FEM 

u2 -0.0178 -- 

u3 0.566 0.5366 

v3 -0.166 -0.1182 

 

Rectangular element RECT_5F_8D is also used here for the solution. As the 

domain has globally seven displacement degrees of freedom and ten force 

degrees of freedom, three compatibility conditions are sufficient for solving 

the problem. 

Table 9.5 shows the values of internal unknowns while Table 9.6 shows 

the displacement ratio between IFM based values and available FEM 

solution [97] at node 2 and 3. 

                     Table 9.5 Internal Force Unknowns (RECT_5F_8D) 

Element 

Number 
Values of Internal Unknowns 

1  F1 = 100.0, F2 = 44.427 , F3 = 19.64, F4 = -5.40, F5 = 37.86 

2 F6 = 100.0, F7 = 214.80 , F8 = -34.16, F9 = -48.95, F10 = 37.86 

 
Table 9.6 Nodal Displacement Ratio (RECT_5F_6D) 

Displacement IFM FEM 

u2 -0.163 -- 

u3 0.5720 0.5366 

v3 -0.136 -0.1182 

 

9.5 A CURVED BEAM  EXAMPLE  

A cantilever curved member shown in Fig. 9.17 clamped at α = 0o is 

subjected to a moment equals to 600 kN-m at α = 90o. The cross section of 

beam is 1m x 2m with an inner radius Ri = 10m and outer radius Ro = 12m. 

with E = 21x107 kN/m2 and υ = 0.3. 
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4 
C 

1m 

v4 

u4 

Cross – Section of Beam 

2
m

 R0 = 12m 
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                             Fig 9.17 A Curved Beam Example 

Step 0 – Solution strategy: The curved beam which is subjected to a pure 

bending moment is attempted using rectangular element having two 

opposite edges (1-2, and 3-4) as curved and the remaining two (1-4, 2-3) as 

straight. Polar coordinate system (r, α) is used here. The basic element has 

eight displacement degrees of freedom.  Deducting three rigid body 

rotations, five independent unknowns are considered here and therefore the 

element is named as CURV_5F_8D.  

The problem has total eight displacement degrees of freedom (u1, v1……u4, v4) 

and ten force degrees of freedom (F1, F2…..F10). Two additional compatibility 

conditions are developed using matlab based module named as 

“mtechexamplemod(B)”. Following the standard IFM procedure [Smatrix] is 

generated , inverted and multiplied by the {P} vector to get the stresses and 

using the same the nodal displacements are calculated. Stresses σr amd σα    

are calculated at point C while nodal displacements δu and δv are worked 

out at point A. Results are compared in Table 9.7 with the exact solution 

available in the literature [98].  

Table 9.7 Stress and Displacement Ratio 
 

Point 
Stress Or 

Displacement 

 
   

     
 

2 

1 

2 3 

A 

B 

R
i 
=
1
0
m

 

v3 

u3 

u2 

v2 

u1 

v1 

Mo = 600 kN-m 
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C 
σr 0.913 

σα 0.933 

A 
δu 0.973 

δv 0.966 

 

9.6 A PLANE STRAIN EXAMPLE OF BOX CULVERT  

A culvert shown in Fig. 9.18, is now analysed by using plane strain criteria 

for its major principal stress and maximum displacement. The modulas of 

elasticity E =  210 Gpa and Poisson’s ratio      .    

                                            

                  

                           Fig 9.18 A Plane Strain Culvert Example 

Due to symmetry only half of the problem is discretized into 10 rectangular 

elements as shown in Fig. 9.18. It results in total 38 global displacement 

degrees of freedom and 50 force degrees of freedom. The change in 
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formulation is due to material matrix [D], which is required in calculation of 

flexibility matrix.   

The elemental flexibility matrix is obtained by discretizing the 

complementary strain energy. 

 [Ge
ps]=∫s[Y]T[Dps][Y]dxdy                                                                       … (9.1) 

 

where [Y] is the force interpolation function matrix and [Dps] is the material 

property matrix which for a plane strain condition is given below. 

 

      = 
     

 

 
 
 
 
  

 

   
 

 

   
  

  
  

    
 
 
 
 

                     … (9.2) 

 

Where           are the  modulus of elasticity and Poisson ratio respectively.  

The solution procedure requires development of elemental matrices, 

development of global matrices, solution of equations and calculation of 

nodal displacement from forces. 

The major principal stress is under point load in element number 1. 

Comparing with FEM solution [83], the ratio of IFM/FEM is found as 1.11. 

Nodal displacements of element 1 are reported in Table 9.8.  

 

Table 9.8 Nodal Displacements for Element 1 

 

 

 

 

 

 

9.7 STRATEGY ADOPTED FOR PLATE BENDING PROBLEMS 

Displacement IFM (m) 

u1 9.36E-06 

v1 0.0002 

u35 -9.8E-06 

v35 -0.00019 

v36 -0.00021 

v37 -0.00021 
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Various types of rectangular plate bending problems are solved here by 

changing support and loading conditions. Simply supported and fixed plate 

problems are considered under different loading conditions i.e. Central point 

load (CPL), Uniform pressure loading (UPL), Patch loading (PL) and 

Uniformly varying pressure loading (UVPL). Nodal displacements and 

internal moments are calculated at different points in plate domain. Use of 

symmetry is made in IFM based analysis. After convergence study, 5 x 5 

discretization is considered for solving most of the problems.  RECT_9F_12D 

having nine force and 12 displacement degrees of freedom is employed here 

for finding the solution. The element has important element properties such 

as no shear locking, full row rank and repeatating component behavior in 

each column at equal interval.  All the necessary matrices are derived using 

direct integration technique available in matlab module as “int(function, 

lower limit, upper limit, with respect to x or y )” in element domain ((-a,-b) to 

(a, b)). The necessary compatibility conditions are worked out by using 

Matlab Auto compatibility condition development program. These CCs are 

concatenated into [B] matrix to make it a square matrix.  After inverting the 

[S] matrix, the {F} vector and internal moments (Mx, My and Mxy) are worked 

out followed by the calculation of nodal displacements. Finally, by using 

matlab 2D moment contours and 3D deformed shapes are drawn.   

 9.8  SQUARE PLATE BENDING EXAMPLES 

Total four examples of mild steel plate bending are considered here to 

validate the proposed formulation. Two examples of simply supported plate 

and others of clamped boundary condition are considered under CPL and 

ULP cases as shown in Figs. 9.19 and 9.20.  Each plate is subjected to 

point load of 1kN and uniformly distributed loading of 1kN/m2. The 

geometrical dimensions of isotropic plate are considered as 4000 mm x 4000 

mm x 200 mm with E = 2.01 x 1011 N/m2 and   = 0.23. 
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           Fig 9.19 A Simply Supported Plate Example(SQR_SS_PTL) 

 

                       

               Fig 9.20 A Clamped Plate Example (SQR_CLAMPED_UDL)  

Due to two way symmetry only left bottom most quadrant ABCD is analysed 

by considering appropriate boundary conditions at symmetry lines.  

Convergence study for deflection at the centre of the plate is carried out for 

SQR_SS_PTL case with 2 x 2, 3 x 3, 4 x 4 and 5 x 5 discretization schemes. 

Fig. 9.21 depicts 2 x 2 discretization with possible displacements. 
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   Fig 9.21 A 2 x 2 Discretization Scheme For SS Plate 

 

Step 0 - Solution Strategy: The square plate with simply supported 

boundary condition is divided into four main elements 1, 2, 3 and 4 as 

depicted in Fig 9.20. The quadrant 1 is discretized into four sub-elements 

such as 11, 12, 13 and 14 as depicted in Fig 9.21. The discretized domain 

has total 12 non zero displacements (  ,   …δ5……   12). As RECT_9F_12D 

element has total twelve displacement and nine force degrees of freedom, 

the problem needs total 24 compatibility conditions for solution.  

 

Step 1-Development of elemental matrices:  By referring rectangular 

element (RECT_9F_12) formulation given in Chapter5,   elemental 

equilibrium matrix [Be] and elemental flexibility matrix [Ge] are calculated 

by substituting values of a and b equal to 0.5m as   

Fig b Nodal 

displacement 
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Step 2- Development of Global Matrices: The compatibility matrix for the 

four elements is obtained from the displacement deformation relations 

(DDR) i.e.   = [B]T{δ}. In the DDR, 36 deformations which correspond to 36 

force variables are expressed in terms of 12 displacements (ɵ1, ɵ2……δ5……ɵ12). 

The problem requires 24 compatibility conditions [C] that are obtained by 

eliminating the 12 displacements from the 36 DDR’s, which are calculated 

by using auto-generated matlab based computer program by giving input as 

upper part of global equilibrium matrix [B]. 

The Global Flexibility matrix for the problem is obtained by diagonal 

concatenation of the four elemental flexibility matrices as 
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[G] = 

 
 
 
 
   

   
   

    
 
 
 

 

Step 3 Calculations of forces {F}: By multiplying compatibility matrix [C] 

and global flexibility matrix [G] the bottom most part of the global 

equilibrium matrix is obtained. Assembling both gives complete [S] matrix of 

size 36 x 36, which comprises of EEs and CCs. The internal forces 

corresponding to first sub-element number 11 are obtained by using 

MatLab’s inverting procedure and are found as follows: 

{F} = [15.41 30.87 30.87 61.74 15.41 30.87 30.87 61.74 60.4522]T   

After substituting the values of all internal unknowns in moment equations  

(Fig 9.22),  one can calculate moments at corners A, E, H and I by 

substituting values of coordinates. These moments are compared with the 

standard small deflection theory of plate results [99]. A good agreement is 

found.  

 

 

 

 

 

 

 

 

 

 

 

 

            Fig. 9.22 Moment Values at Corners A, E, I, H of Element 1 
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Step 4 Calculation of displacements {δ}: The nodal displacements are 

calculated by using relation {δ} = [J][G]{F}, where [J] = m rows of matrix [[S]-

1]T. Values obtained using are compared with those given by the standard 

classical plate theory [99]. A comparison of those given vertical 

displacement is presented in Table 9.9.                      

Table 9.10 Comparison of Results of Nodal Displacements 

 

 

 

 

After convergence study (Fig 9.23), all the related plate bending examples 

are solved using finer discretization as depicted in Fig. 9.24.  

                   

                                           Fig. 9.23 Plot for Convergence  

 

 

 

 

 

 

 

 

 

Displacement (m) IFM Exact 

δ3 0.8879 x 10-7 0.8144 x 10-7 

δ5 1.3911 x 10-6  1.1843 x 10-6 

δ6 0.8879 x 10-7 0.8144 x 10-7 

δ10 0.6911 x 10-7 0.6616 x 10-7 
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    Fig 9.23 Numbering of Nodes and Elements of (5x5) Discretization 

 

Using matlab software, 2D moment contours and 3D deflected shape are 

drawn using the values of nodal moments Mx and Mxy and  and deflections 

at all the 36 nodes of the left bottom most quadrant as shown in Figs 9.24, 

9.25 and 9.26 respectively. 

 

            Fig. 9.24 Moment Contours for Mx in SS plate (CPL Case) 
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            Fig. 9.25 Moment Contours for Mxy in SS plate (CPL Case) 

 

              Fig. 9.26 3D Deflected Shape for Square Plate Under CPL Case 

Next, a square plate with simply supported boundary condition is analysed 

under UDL of intensity 1kN/m2. The IFM based displacement values are 

obtained and compared with those given by the standard classical plate 

theory [99] in (Table 9.11). 

Table 9.11 Comparison of Results of Nodal Displacements 

 

 

 

Displacement (m) IFM Exact 

δ3 5.681 x 10-6 5.345 x 10-6 

δ5 7.887 x 10-6   7.581 x 10-6 

δ6 5.681 x 10-6 5.345  x 10-6 

δ10 4.104  x 10-6 3.909 x 10-6 
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Using matlab software 2D moment curves and 3D deflected shape are drawn 

by calculating the values of nodal moments and deflections at all the 36 

nodes of the left bottom most quadrant for 5 x 5 discretization  as shown in 

Figs 9.27, 9.28 and 9.29.  

 

          Fig. 9.27 Deformed Shape of SS Quarter Plate Subjected to UDL  

 

            Fig. 9.28 Moment Contours for Mxx in SS Plate Under UDL  

     

Fig. 9.29 Moment Contours for Mxy in SS Plate Under UDL 
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Following the same steps a square plate with clamped boundary conditions 

is analysed for Central Point Load (CPL) of 1kN and UDL of intensity 

1kN/m2 by considering 5 x 5 discretization scheme.  

Displacement values at the centre of plate are obtained and are compared 

with those given by the standard classical plate theory. The deflection ratio 

(IFM/Exact) is found as 1.101 for CPL and 1.09 for UDL. The moment 

contours for Mxx are depicted in Fig. 9.30. 

 

Fig. 9.30 Moment Contours for Mxx in Clamped Plate Under UDL 

 

9.9  RECTANGULAR PLATE BENDING EXAMPLES 

Total four examples of rectangular plate are considered here to validate the 

proposed method. Two examples are of simply supported and others are of 

clamped boundary conditions (Fig.9.31).  Each plate is subjected to a point 

load of 10kN and uniform distributed loading of 10kN/m2. The geometrical 

dimensions isotropic steel plate are considered as 6000 mm x 3000 mm x 

200 mm with E as 2.01 x 1011 N/m2 ande,   =  0.23.  
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 (a) Simply Supported Plate                       (b) Fixed Plate 

                       Fig. 9.31 Rectangular Plate Bending Examples 

Using two way symmetry with 5 x5 discretization for quarter plate IFM 

based solutions for rectangular plate problems are obtained. Three 

dimensional plots for deformed shape and two dimensional plots for 

moment contours are included here for simply supported plate under CPL 

and UPL cases in Figs 9.32 to 9.33. 

 

         Fig. 9.32 Deformed Shape of SS Quarter Plate Under CPL  

                  

               Fig 9.32 Moment Contour for Mx for SS plate under CPL  
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               Fig 9.33 Moment Contour for Myy in SS plate under CPL  

                Fig. 9.35 Moment Contours for Mxy in SS plate under CPL  
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Fig. 9.36 Deformed Shape of SS Quarter Plate under UPL 

 

 

           Fig. 9.37 Moment Contours for Mx in SS Plate Under UPL  
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        Fig 9.38 Moment Contoura for Myy for SS Plate Under UPL  

 

        Fig 9.39 Moment Contours for Mxy for SS Plate Under UPL  

Next, solutions for the clamped rectangular plate subjected to CPL and UPL 

type of loading are obtained by using IFM based formulation. The internal 

moments and deflections for UPL case at the nodal points  starting from A to 

C of AC line (δAC1, δAC2……. δAC5)  of Fig 9.23 for the 5x5 discretization 



 

260 

 

 

scheme are calculated and compared with the Ritz method [100] based on 

doubly cosine curve series. Table 9.12 depicts the Nodal Deflection Ratio 

(NDR) and Nodal Moment Ratio (NMR) for the clamped CPL case. 

           Table 9.12 Nodal Deflection and Nodal Moment Ratio (CPL) 

 

The results obtained by IFM for a fixed rectangular plate problem under ULP 

case are included here in Table 9.13 

               Table 9.13 Results for Clamped Plate under ULP 

 

 

 

 

 

 

9.10  PLATE UNDER PATCH LOADING EXAMPLES 

A simply supported square plate of size 4000 mm x 4000 mm x 200 mm is 

studied under a central patch loading of intensity 10 kN/m2 over an area 

1600 mm x 1600 mm as shown in Fig 9.40.  Due to two way symmetry, 

only quarter of the plate is analysed by discretizing into 5 x 5 mesh. Results 

are presented in terms of nodal deflection ratio (NDR) for w and nodal 

moment ratio (NMR) for Mx, My and Mxy in Table 9.14.   The contours of 

Mx and deflection profile are included here in Figs. 9.41 and 9.42 

respectively.  

Point 

   

    
      (NDR) 

 (Nodal Deflection Ratio) 

   

    
      (NMR) 

 (Nodal Moment Ratio) 

Mxx Myy Mxy 

AC1 1.034 1.021 1.034 1.083 

AC2 1.046 1.025 1.054 1.087 

AC3 1.076 1.045 1.063 1.089 

AC4 1.091 1.066 1.069 1.092 

AC5 1.106 1.091 1.088 1.105 

Values at ‘C’ IFM 

δ(m) 9.897 x 10-06 

Mxx (N-m) 110.55 

Myy (N-m) 357.665 

Mxy (N-m) 3.522 
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        Fig. 9.38 Plate under Patch Loading 

             Table 9.14 Nodal Deflection and Nodal Moment Ratios 

Node 
IFM/EXACT [101] 

NDR NMR 

AC1 0.924 0.988 

AC2 0.980 0.998 

AC3 0.956 0.987 

AC4 0.983 0.989 

AC5 0.988 0.990 

 

 

             Fig. 9.41   Contours of Mx for Plate under Patch Loading 

L 
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       Fig. 9.42 Deflection Profile of Quarter Plate under Patch Loading 

Next, a rectangular plate of size 6000 mm x 4000 mm x 200 mm simply 

supported along all edges is considered under patch loading of intensity of 

10kN/m2 over a size 2400 mm x 1600 mm. Results obtained in terms of 

NDR and NMR for w displacement and moment Mx at centre are presented 

in Table 9.15. Variation of deflection w along the centre line of the quarter 

rectangular and square plates is depicted in Fig. 9.42. 

Table 9.15 Deflection and Moment Ratios For Rectangular Plate 
 

Node 

    

     
 

NDR NMR 

AC1 0.869 0.950 

AC2 0.828 0.985 

AC3 0.888 0.993 

AC4 0.911 0.988 

AC5 0.919 0.994 

                

              Fig. 9.43 Variation of Deflection (w) Along Central Line 
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9.11  PLATE UNDER HYDROSTATIC LOADING EXAMPLES 

A simply supported square plate of size 4000 x 4000 x 200 mm subjected to 

a hydrostatic loading (uniformly varying lateral load) of intensity 10 kN/m2 

is analysed now. Due to one way symmetry, only half of the plate is 

analysed by discretizing it into 10 x 5 grid. Results are presented in Table 

9.16 in terms of nodal deflection ratio and nodal moment ratio for lateral 

displacement w and moment Mx at the nodes lying on the symmetry line 

from the centre of the plate.  Moment Mx contours are depicted in Fig. 9.44 

whereas deflection profile is shown in Fig 9.45.                                                                     

Table 9.16 Deflection and Moment Ratios for Square Plate 

Node 
IFM/EXACT [101] 

NDR NMR 

1 1.00 1.00 

2 0.969 0.970 

3 0.968 0.969 

4 0.962 0.983 

5 0.972 0.989 

6 0.971 0.986 

7 0.940 0.996 

8 0.971 0.992 

9 0.972 0.993 

10 0.969 0.986 

11 1.00 1.00 

 

 

Fig. 9.44   Contours of Mx for Square Plate Under Hydrostatic Loading 
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Fig. 9.45 Deflection Profile of Half Plate Under Hydrostatic Loading 

Finally, a rectangular plate of size 6000 x 4000 x 200 mm is solved under a 

linearly varying load intensity 10kN/m2 in the x direction. One way 

symmetry is used to discretize into 6000 mm x 2000 mm portion of the 

plate into 10 x 5 grid. Some of the results obtained using IFM are compared 

in terms of NDR and NMR in Table 9.17.  The values of lateral deflection w 

and moment Mx reported in the table are for nodes 1 to 11 lying on the 

central line of the plate in the x direction. Also, variation of deflection w 

along the centre line is depicted in 

Fig. 9.46 for square and rectangular plates having aspect ratio as 1.0 and 

1.5 respectively. 

 

              Table 9.17 Nodal Deflection and for Rectangular Plate 

Node 
IFM/ EXACT [101] 

NDR NMR 

1 1.00 1.00 

2 0.9588 0.967 

3 0.9577 0.980 

4 0.957 0.968 

5 0.958 0.960 

6 0.958 0.976 

7 0.966 0.942 

8 0.961 0.967 

9 0.956 0.979 

10 0.955 0.969 

11 1.00 0.0000 
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Fig. 9.46 Variation of Displacement w Along Central Line 

               

9.12  DISCUSSION OF RESULTS 

 For the deep cantilever beam problems results obtained for nodal 

deflections and maximum stresses are found to converge towards the 

exact solution with finer discretization. The discretization with 5 

elements is found to give exact solution thus no further discretization is 

required for similar problems. 

 Pure bending example of beam is solved using symmetry and 

antisymmetry in which only upper right quadrant is considered.  

Results obtained using IFM are compared with those obtained using the 

exact method and finite element method. The IFM based solution is 

found more closer to the exact solution compared to the FEM solution.   

 A propped deep cantilever beam subjected to horizontal point load is 

solved using two different IFM based Elements i.e. RECT_5F_8D and 

TRI_3F_6D. Stress variation seems to be appropriate but could not be 

compared because of the non availability of the solution. Results for 

nodal displacements using TRI_3F_6D and RECT_5F_8D are found in 

good agreement with those available in the literature based on finite 

element method.  

 IFM is also successfully applied to a curved beam problem using 

CURV_5F_8D element having five internal forces and eight nodal 
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displacement degrees of freedom. With two element discretization results 

for nodal displacements at A and Stresses at C are compared with the 

results of theory of elasticity; a good agreement is indicated. 

 Various types of plate bending problems are attempted using IFM based 

RECT_9F_12D. Simply supported and clamped, square and rectangular 

plate bending problems are attempted under Central Point Load (CPL) 

and Uniform Lateral Pressure (ULP). By using dual symmetry only lower 

left quadrant is discretized. Convergence study indicated  5 x 5 

discretization result  quite close to the exact value 

 At junction ‘I” of the elements 11, 12, 13, and 14 (Fig. 9.21) the values of 

moments Mx and My are found same from all the elements in magnitude 

and nature. These moments  are calculated by taking respective values 

of internal unknowns with their applicable nodal distance from the 

centre of the elements.  

 Node and Element numbering is done in anticlockwise direction starting 

from left bottom most point and reaching to the centre of the domain 

with 25 number for 5 x 5 discretization. The displacement numbering is 

also done in the same manner. Thus, maximum possible numerical 

values are oriented along diagonal direction of the global equilibrium 

matrix of size 75 x 225. This helps in developing relevant global 

compatibility conditions which depends upon proper input value of [B] 

matrix in “mtechexamplemod(B)” file of matlab. The other numbering 

patterns for elements and nodal ddofs may produce more sparsity in 

global equilibrium matrix which sometimes may lead to singular matrix 

and thus one cannot find the solution in such cases.  

 Use of 2 x 2 discretization gives higher values of deflections compared 

to exact values for square plate under point load and uniformly 

distributed loading cases. While the moments for the same shows an 

increasing nature from lower values to higher with coarser to finer 

discretization patterns. With 5 x 5 discretization, for the plate under 

both types of loading, the results are found quite close to the exact 
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solution. Results for clamped rectangular plate subjected to uniform 

lateral pressure are also found in good agreement with the energy 

based Ritz approach results. 

 Special cases of loading i.e. patch loading and hydrostatic loading could 

be easily tackled by IFM for square and rectangular plate cases. Two 

dimensional moment contours and three dimensional deformed shape 

included for different example gives an immediate glimpse of the 

variation of moments and deflection.  
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CHAPTER 10 

DYNAMIC ANALYSIS OF RECTANGULAR PLATE PROBLEMS 

10.1 COMPUTER IMPLEMENTATION 

Software development of plate bending problems is mainly collaborative 

work between Visual Basic 6 (Programming tool) and Matlab 7.4 

(Mathematical tool). Forms are developed using an advanced GUI based 

facility of VB to facilitate interactive input. First of all the plate geometry, 

square or rectangular shape, is selected by using the option button. Once 

selection is done of shape, by using text box facility other geometrical 

parameters and material properties are supplied and accepted. After that, 

control of the program is transferred to the next form to select the types of 

boundary conditions are through check box facility. Next, discretization 

pattern is to be selected by user thru next form depicted on screen.  Once it 

is done, discretized continuum is visible on the screen for left-bottom 

quadrant of the plate or bottom half of the plate depending upon the type of 

symmetry of the problem. Clicking of the accept button transfers the control 

to the next form where IFM based RECT_9F_12D is shown with its degrees 

of freedom. Next, the following operations are carried out:  

1. By using Hermitian shape functions, strain linking matrix [Z] of size 3 

x12 is developed for rectangular element of size 2a x 2b.  

2. Stress linking matrix [Y] is directly written in terms of x and y which is of 

size 3 x 9, where the rows of the matrix correspond to number of moment 

components and columns of the matrix correspond to the number of 

unknown internal moments per element.   

3. The elemental equilibrium matrix [Be] of size 12 x 9 is worked out by 

direct integration of product of [z]T and [Y] using “int (function, lower 

imit, upper limit, with respect to x or y)” command of Matlab. 
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4. The elemental flexibility matrix [Ge] of size 9 x 9 for the rectangular 

element is worked out. The calculation of matrix requires multiplication 

of [Y]T, material matrix [D] and [Y] and the numerical integration with 

respect to x and y. 

5. The assembly procedure to get the global equilibrium and flexibility 

matrices is carried out. It gives the global equilibrium matrix [B] of size 

12 x 36 and global flexibility matrix [G] of size 36 x 36 for a 2 x 2 

discretization scheme. Once these matrices are assembled, they are 

transferred into notepad files using .txt extension, which are directly 

called by matlab command by names RECT_9F_12D_B.txt and 

RECT_9F_12D_G.TXT through proper path.  

6. The lumped mass matrix [M] which is of size 12 x12 is directly read from 

a .txt file named as RECT_9F_12D_M.txt.           

Once all the above steps are performed the connection between VB and 

Matlab is established using COM Automation server facility where Matlab 

acts as a mathematical server to continue the remaining procedure required 

for the calculation of unknowns.  

 

10.2  ILLUSTRATIVE EXAMPLE WITH SOLUTION STEPS 

Frequency analysis of a simply supported plate having dimension of 2m x 

2m x 0.01m is carried out by considering dual symmetry. Bottom left 

quadrant is discretized into 2 x 2 grid and lumped mass approach is 

considered. Using E and   as 2.01x108 kN/m2 and 0.3 respectively, the 

results are obtained in terms of natural frequencies, normalized moments, 

and nodal displacements as follows.                  

 Step1: Using MDI feature of VB 6 different basic forms are attached with a 

menu editor, where user can select dynamic as a sub-menu from the main 

menu of Plate analysis as depicted in Fig. 10.1. 
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Fig. 10.1 Main Menu with option for Dynamic Analysis 

Step 2:  Once dynamic analysis is selected, the control is transferred to the 

next form where shape of the plate is selected and dimensions and material 

properties are entered as depicted in Fig. 10.2. 

 

Fig. 10.2 Form for Geometry and Material Properties 

Step 3:  The boundary condition of plate is selected using check box facility 

in the next form in which for each side of the plate a provision is made to 

specify separate condition as shown in Fig. 10.3. 

 

Fig.10.3 Form for Boundary Conditions 
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Step 4: Depending upon the specified boundary conditions, single or double 

symmetry are auto selected with appropriate boundary conditions. The 

discretization pattern is then selected from the available options as shown 

in Fig. 10.4.  

 

Fig. 10.4 Discretization Scheme 

Step 5: Clicking button of Basic element in the next form a rectangular 

plate bending element having total nine internal unknowns and twelve 

displacement degrees of freedom is drawn as depicted in Fig. 10.5. 

Connection between Visual basic and Matlab is then established by using 

COM automation server as explained earlier in Chapter 6 and a Com based 

matlab command window is depicted on screen as shown in Fig. 10.6. 

 

Fig. 10.5 Rectangular Plate Element (RECT_9F_12D) 
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Fig. 10.6 Com Based Matlab Command Window 

Step 6: Using the matlab command editor the necessary mathematical 

operations are carried out. The assembled global equilibrium matrix [B] is 

depicted in Fig. 10.7. 

 

                      Fig. 10.7 [B] Matrix in Matlab Command Window 

Step 7: The global flexibility matrix is also developed with Matlab editor 

using sub-matrix function, where a basic flexibility matrix for the given 

element [Ge] is directly called and using concatenation of zero matrix of size 

(9 x 9) at position other than the diagonal a complete global matrix is 

formulated. The element matrix is shown in Fig. 10.8 whereas the global 

matrix is depicted in Fig. 10.9. 

 

Fig. 10.8 Elemental Flexibility Matrix [Ge1] 
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                        Fig.10.9 Global Flexibility Matrix [G] 

Step 8: The global lumped mass matrix is lumped diagonally which 

presently include components of rotary inertia [100] as shown in Fig. 

10.10. The terms of mass matrix [M] are worked out by multiplying mass 

per unit area by tributary area of each element under consideration. 

 

                     Fig. 10.10 Global Lumped Mass Matrix [G] 

Step 9: Next, the change directory operation is performed and matlab server 

is connected to folder named as “CCPROG”, which consists of a program for 

auto-generation of compatibility conditions. Thus by using “z= 

mtechexamplemod(B)”, the complete [B] matrix is read by the .m file of 

matlab. The number of the compatibility conditions is specified to make the 

global equilibrium matrix a square matrix which for the present problem of 

is of size 24 x 24 , (Fig. 10.11). 
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   Fig. 10.11 Development of CC using .m File (“mtechexamplemod(B))” 

Step 10: Once the number of compatibility conditions is specified as 24 to 

matlab editor, it depicts a complete compatibility matrix (z.cMatrix) of size 24 

x 36 on screen as shown in Fig. 10.12. 

   

                                 Fig. 10.12 The Compatibility Matrix 

Step 11: Once “z.cMatrix” is ready its null property is readily checked in the 

module named as ‘z.cTransposeB’, which actually represents product of [C] 

and [B]T.(Fig. 10.13).                    

 

         Fig. 10.13 [C] Matrix and Null Property Check for [C] and [B]T 
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Step 12: The multiplication of [C] matrix with global flexibility matrix [G] 

gives a global compatibility matrix with the coefficients which converts the 

compatibility condition into forces. It is concatenated into [B] matrix from 

bottom side where no normalization is needed. The numerical coefficients of 

z.cMatrix and [G] matrices are modified after multiplication and there is no 

need of normalization. The CCmatrix and Smatrix are depicted in Figs. 

10.14 and 10.15 respectively. 

 

           Fig. 10.14 Global Compatibility Matrix [CCmatrix] 

                    

Fig 10.15 Global Equilibrium Matrix [Smatrix] 

Step 13: The [Sinv] matrix is worked out by inverting the [Smatrix]. It is 

depicted in Fig. 10.16. The transpose the [Sinv] matrix is named as 

[Jmatrix]. 

 

                          Fig. 10.16 Inversion of [Smatrix] 
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Step 14: The global mass matrix [M] is developed as per free displacement 

degrees of freedom while for multiplying the same matrix with [Jmatrix] and 

[G], two null sub-matrices are concatenated towards right and from bottom 

side. Thus, the complete compatible Mass matrix [M1] becomes of size 36 x 

36. A part of it is depicted in Fig. 10.17. 

 

                           Fig 10.17 Mass Matrix 

Step 15: The product of global modified mass matrix [M1], [Jmatrix] and 

Global flexibility matrix [G] is named as MJG. it is the denominator part of 

the eigen analysis (Fig. 10.18). 

 

 

Fig. 10.18 [MJG] matrix 

Step 16: The frequency analysis is carried out by writting the eigen form at 

command prompt of Matlab editor as “[Fmatrix, Freq11] = eig(Smatrix, 

MJG)”, in which Freq11 represents a diagonal matrix of size ( 36 x 36 ) 

having 12 possible values corresponding to each displacement degrees of 

freedom as depicted in Fig 10.19. After having square root [Freq11] matrix, 

a diagonal matrix of FREQUNCY is developed which is of the same size, 

while [Fmatrix] is a square matrix of size 36 x 36 (Fig. 10.29), in which each 

column represents values of internal unknowns {F1, F2, F3……F36}, obtained 
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after substituting value of each frequency in a IFM based eigen 

equation.(Fig.10.21)  

Fig. 10.19 Freq11matrix 

 

Fig. 10.20 FREQUENCY matrix 

 

                            Fig. 10.21 Internal Unknowns [Fmatrix] 

Step 17: The nodal displacements {δ} are worked out by the direct product 

of [Jmatrix], Global flexibility matrix [G] and coefficients corresponding to 

internal moments i.e., [Fmatrix]. Figure.10.22 depicts the nodal 
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displacements corresponding to each frequency value. The normalization 

procedure is carried out for calculating the relative or corresponding values  

only possible displacement degrees of freedom shows the possible values of 

frequency while all other 24 values are fully restrained.  

 

                           Fig. 10.22 Nodal Displacements {δ} 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 10.23 Bottom Left Quadrant of Plate (1-2-3-4) 

Table 10.1 shows the Frequency Ratio of IFM based natural frequency and 

exact solution [99, 100] available for the first four modes.  

                                 Table 10.1 Frequency Ratio  

Mode Number First Second Third Fourth 

            0.841 1.432 1.432 1.035 

B 
A 

C D 

  

E 

F 

G 

H 

0.5m 

0.5m 

0.5m 

0.5m 

1 2 

4 
3 

ɵ1 
ɵ2 

δ3 

ɵ4 

ɵ11 

δ5 

ɵ8 
ɵ7 

δ6 

ɵ9 

ɵ12 

δ10 

I 

Symmetry Line 



 

279 

 

 

In Fig. 10.21, fourth column represents all the internal unknowns from F1 

to F9 for the Element 1, F10 to F18 for Element 2, F19 to F27 for Element 3 and 

F28 to F36 for Element 4 for the lowest frequency value respectively. 

Substituting all the values of corresponding internal unknowns in Mx, My 

and Mxy one can calculate the moments. Normalized moments with respect 

to values at point F (Fig. 10.23) for the fundamental first frequencies are 

given in Table 10.2. The normalized nodal displacements (Fig.10.22) are 

reported in Table 10.3. 

      Table 10.2 Normalized Moments For (ω1=64.1478rad/seconds) 

Normalized 

Moments 

Element 1 

At Point I 

Element 2 

At Point F 

Element 3 

At Point C 

Element 4 

At Point G 

Mxx 0.6612 1.0 1.438 0.9612 

Myy 0.6912 1.0 1.497 1.0406 

Mxy 2.414 1.0 0.414 -1.000 

 

                    Table 10.3 Normalized Nodal Displacements 

ɵ1 ɵ2 δ3 ɵ4 δ5 δ6 ɵ7 ɵ8 ɵ9 δ10 ɵ11 ɵ12 

1.1 1.58 0.7 1.00 0.7 0.7 1.1 1.58 1.1 0.5 0.79 0.79 

 

Convergence study is also carried out. Figure 10.24 shows that the first 

fundamental frequency converges towards the exact solution [100].  

                

                                  Fig. 10.24 Plot for Convergence 

2 x 2          3 x 3                     4 x 4                              5 x 5  

Exact = 76.3173 rad/sec 

( Disretized Scheme ) 
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The remaining problems are attempted using 5 x 5 discretization scheme 

(Fig.10.25) where in total 25 elements with 225 internal force components  

are considered as primary unknowns. The global displacement degrees of 

freedom for the 5 x 5 discretization are 75. Thus, for making the global 

equilibrium matrix square, one needs 150 compatibility conditions. Eigen 

value analysis is carried out only for the first four frequencies out of the 

total 75 values. The unknown force vector [Fmatrix] is of size (225 x 1) 

which is readily available from the matlab based matrix operation, where 

the moments and nodal displacements are calculated along the points lying 

on the diagonal line by considering element numbers as 1, 17, 25 21 and 9 

for the first lowest frequency value.   

 

 

 

 

 

   

 

 

 

 

 

Fig. 10.25 Discretization Scheme 5 x 5 

 

Table 10.4 shows the values of normalized moments (Mx) and vertical 

deflection with respect to value corresponding to unity at the centre of plate 

i.e. at Node F. Deformed shapes for the full plate based on the results 

obtained for the first four frequencies are drawn using Matlab facility and 

are depicted here in Figs. 10.26 to 10.28. 
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            Table 10.4 Normalized Nodal Moments and Deflections 

Points Mx Mxy 
Vertical 

Deflection 

F 1.00 1.00 1.00 

E 0.947 1.016 0.984 

D 0.792 1.087 0.852 

C 0.642 1.187 0.532 

B 0.231 1.277 0.221 

A 0.00 1.311 0.00 

 

      

                        Fig. 10.26 First Mode Deformation Pattern (ω11)  

                    

   Fig. 10.27 Second and Third Mode Deformation Pattern (ω12 or ω21) 

 

             Fig. 10.28 Fourth Mode Deformation Pattern (ω22) 
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Consistent mass approach is also used here for frequency analysis of simply 

supported plate problem where the basic consistent mass matrix for an 

element is of size 12 x 12. Using standard stiffness based assembly 

procedure a global mass matrix of size 75 x 75 is generated. IFM based 

eigen value analysis is carried out by replacing the lumped mass matrix by 

consistent mass matrix. The  Frequency ratios (FR) worked out based on the 

consistent mass are reported in Table 10.5 for the first four modes. 

                               Table 10.5 Frequency Ratio  

Mode Number First Second Third Fourth 

            0.882 0.911 0.911 0.998 

 

10.3 CLAMPED SQUARE PLATE EXAMPLE 

A clamped square plate of the same dimensions and material properties is 

now considered for the frequency analysis by considering dual symmetry 

and discretizing the left most quadrant into 5 x 5 mesh pattern by using 

lumped mass approach. Table 10.6 shows frequency ratios for first four 

mode based on lumped and consistent mass approaches. 

                     Table 10.6  Frequency Ratio 

Mode Number                                 

First 0.9122 0.925 

Second 0.9517 0.966 

Third 0.9517 0.966 

Fourth 0.9828 0.992 

 

Table 10.7 shows the normalized nodal moments, and deflections 

corresponding to unit value at the centre of the plate.  

Table 10.7 Normalized Nodal Moments and Deflections 

Points Mx Mxy Vertical Deflection 

F 1.00 1.00 1.00 

E 0.843 0.944 0.766 

D 0.622 0.846 0.611 

C 0.387 0.288 0.411 

B 0.102 0.122 0.218 

A -0.002 0.006 0.000 
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Figs. 10.29 to 10.31 depict the deformation patterns for different modes. 

 

              Fig. 10.29 First Mode Deformation Pattern (ω11)  

 

    Fig. 10.30 Second & Third Mode Deformation Pattern (ω12 or ω21) 

 

                Fig. 10.31 Fourth Mode Deformation Pattern (ω22) 

10.4 S-C-S-C SQUARE PLATE EXAMPLE 

A square plate with two opposite edges (AB and CD) simply supported  and 

the other two (BC and AD) clamped having same dimensions and material 

properties is considered now by discretizing bottom-left quadrant into 5 x 5 

mesh under lumped and consistent mass criteria. The frequency results are 

summarized Table 10.8 whereas results for normalized moments and nodal 
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displacements given in Table 10.9. Figs. 10.32 to 10.35 show the 

deformation patterns for different modes.    

                Table 10.8   Comparison of Frequency Values 

Mode 

Number 

ω(L) rad/sec ω(C) rad/sec 

IFM EXACT IFM EXACT 

First 100.01 111.741 105.09 111.741 

Second 191.20 211.872 197.463 211.872 

Third 249.98 267.532 257.08 267.532 

Fourth 421.394 429.521 424.36 429.521 

 

Table 10.9 Normalized Nodal Moments and Deflections 

Points Mx My Mxy 
Vertical 

Deflection 

F 1.00 1.00 1.00 1.00 

E 0.744 0.665 0.722 0.836 

D 0.533 0.511 0.622 0.633 

C 0.288 0.218 0.651 0.311 

B 0.155 0.093 0.677 0.112 

A -0.091 0.000 0.721 0.000 

 

  

               Fig. 10.32 First Mode Deformation Pattern (ω11)  

 

       Fig. 10.33 Second Mode Deformation Pattern (ω12) 



 

285 

 

 

 

       Fig. 10.34 Third Mode Deformation Pattern (ω21) 

 

         Fig. 10.35 Fourth Mode Deformation Pattern (ω22) 

 

10.5 S-F-S-F SQUARE PLATE EXAMPLE 

A square plate with two opposite edges (AB and CD) simply supported and 

other two (BC and AD) free having same dimensions and material properties  

is analysed now considering 5 x 5 mesh for quarter plate. The frequency 

results are summarized in Table 10.10 whereas results for normalized 

moments and nodal displacements are reported in Table 10.11. 

Deformation patterns for first four modes are depicted in Figs. 10.36 to 

10.39.  

                  Table 10.10 Comparison of Frequency Values 

Mode 
Number 

ω(L) rad/sec ω(C) rad/sec 

IFM EXACT IFM EXACT 

First 27.6417 38.1581 32.4725 38.1581 

Second 50.6077 62.3478 58.1081 62.3478 

Third 128.897 152.632 146.679 152.632 

Fourth 160.968 180.640 178.472 180.640 

 

 

 

 



 

286 

 

 

Table 10.11 Normalized Nodal Moments and Deflections 

Points Mx My Mxy 
Vertical 

Deflection 

F 1.00 1.00 1.00 1.00 

E 0.655 0.881 0.922 0.944 

D 0.411 0.744 0.729 0.833 

C 0.193 0.411 0.898 0.518 

B 0.091 0.199 0.787 0.421 

A 0.00 0.000 0.488 0.000 

 

Fig. 10.36 First Mode Deformation Pattern (ω11) 

 

Fig. 10.37 Second Mode Deformation Pattern (ω12) 

 

Fig.10.38 Second Mode Deformation Pattern (ω21) 

 

Fig. 10.39 Fourth Mode Deformation Pattern (ω22) 
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10.6 RECTANGULAR PLATE EXAMPLES 

A rectangular plate having dimensions as 4m x 2m x 0.01m is considered 

now for frequency analysis. Due to symmetry, only quarter of the plate is 

discretized in 5 x 5 grid. Following the same procedure with same material 

properties internal moments and nodal displacements are calculated. 

Results are obtained for simply supported and clamped plate, frequency 

values are compared to the exact values are reported in Table 10.13 

whereas moments and deflections for two cases are reported here in Table 

10.14.  

                  Table 10.13 Comparison of Frequency Values 

Mode 

Number 

Simply Supported Plate Clamped Plate 

                                                                

First 0.9122 0.832 0.8812 0.941 

Second 0.9517 0.891 0.8991 0.932 

Third 0.9517 0.899 0.9012 0.961 

Fourth 0.9828 0.903 0.9312 0.988 

 

Table 10.14 Normalized Nodal Moments and Deflections 

Point 
Mx My Mxy 

Vertical 
Deflection 

SS CL SS CL SS CL SS CL 

F 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

E 0.897 0.612 0.998 0.885 1.017 0.831 0.921 0.836 

D 0.722 0.422 0.822 0.781 1.051 0.522 0.844 0.533 

C 0.553 0.199 0.612 0.410 1.219 0.298 0.421 0.429 

B 0.164 -0.102 0.221 0.320 1.322 0.102 0.198 0.103 

A 0.00 -0.104 0.00 -0.095 1.412 0.001 0.00 0.000 

 

Again deformation patterns for different modes can be drawn using matlab 

facility. Here these are included for the simply supported rectangular plate 

only in Figs. 10.40 to 10.43.                              
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                  Fig. 10.40 First Mode Deformation Pattern (ω11) 

              

               Fig. 10.41 Second Mode Deformation Pattern (ω12) 

 

                   Fig.10.42 Third Mode Deformation Pattern (ω21) 

 

             Fig. 10.43 Fourth Mode Deformation Pattern (ω22) 

 

10.7 DISCUSSION OF RESULTS 

 Convergence study of the first natural frequency under lumped mass 

criteria is carried out for simply supported plate by discretizing the 

quarter plate in 2 x 2, 3 x 3, 4 x 4 and 5 x 5 mesh. Continuous 

improvement is indicated. 5 x 5 discretization is found to give quite 

good results and hence the same mesh is used for solving the rest of 

the problems.  
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 With 2 x 2 discretization for simply supported plate the Frequency 

Ratio for the first frequency is found lower bound while for the other 

three it is upper bound. But with 5 x 5 discretization FR for the first 

four frequencies is found lower bound.  For all other plate problems 

also with 5 x 5 discretization FR is found lower bound. 

 In general, frequency calculated based on consistent mass criterion is 

found more nearer to the exact solution compared to that based on 

lumped mass criterion..  

 The deformation pattern for the plate for first four frequencies are 

drawn using surface plotting module of Matlab named as “surf(x,y,z)”. 

Square plate problems, with the symmetrical boundary condition, 

show fully up or down deformation with respective values of half 

waves (m and n) along the x and y axis. The first modal deformation 

pattern shows maximum normalized values at the centre of plate, 

second and third modal deformed patterns depict maximum value at 

the centre of left half and centre of right half with zero value along 

centre line in any one direction, while for fourth mode, having 

repetition of first mode values are depicted with opposite sign into 

respective quadrant. 
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CHAPTER 11 

STATIC ANALYSIS OF ORTHOTROPIC PLATE PROBLEMS 

11.1 GENERAL REMARKS 

A special case of anisotropy in which the material properties are different in 

two orthogonal directions is called orthogonal anisotropy or orthotropy. 

From the plate bending analysis point of view there are two types of 

orthotropy namely material orthotropy (Fig.11.1) and structural orthotropy 

(Fig.11.2). Material orthotropy is due to the physical structure of the 

material itself, while structural orthotropy is developed by special technique 

by which different members are fabricated as per the structural stiffness 

requirement. Practical examples of material orthotropy are wood, and 

certain crystals and fiber reinforced plastics. Stiffened plates and plates 

with ribs with varying rigidities in a direction parallel and perpendicular to 

the stiffeners or ribs are the examples of structural orthotropy.  These plates 

are analytically modeled as equivalent orthotropic plates with elastic 

properties equal to the average properties of various components evenly 

distributed across the plate, which provides good approximation of measure 

of overall stiffness.  

 

 

 

 

                                            

Fig 11.1 Examples of Material Orthotropy 

 

(a) Wooden Planks 
(b) Glass Fiber Reinforced Plastic Plate 

X axis 

Z axis 

Y axis 
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                   (a) Corrugated Sheet                                      (b) Stiffened Raft Slab  

 

                                                   

                                                                  (C) Precast Floor Slab  

                     Fig 11.2 Examples of Structural Orthotropy 

The analysis procedure for both depends upon actual calculation of 

rigidities in respective directions which  totally depends upon values of 

modulus of elasticity (E), shear modulus (G) and Poisson’s ratio (ν). For 

material orthrotropic cases it is easy to work out these material properties 

while for the structural orthotropic cases it is bit difficult and one may have 

to perform experiment to evaluate rigidities in two major directions. 

As per the Kirchhoff’s small deflection theory of isotropic plates, the 

numbers of independent elastic constants required are two i.e. E,  . If the 

principal orthogonal direction of orthotropy coincides with the X and Y 

coordinate axis, it is evident that elastic constants Ex, Ey,  x, and  y are 

required for representing the material matrix [Dortho] of size 3 x 3. Strain 

stress relationship for materially orthotropic plate can be written as  

                
  

  
    y 

  

  
 ,              

  

  
    x 

  

  
   and       

   

   
            … (11.1) 
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In a matrix form, one can write the same as  

   

  
   
   

  = 

 
 
 
 
 
 

  

   

  
 

    

  

 

  
 

  
 

    
 
 
 
 

 

  
   
   

  = [Dortho][σ]             … (11.2) 

As far as solution of orthotropic plate problems is concerned, IFM requires 

the same steps as used for isotropic plates. The only change is in flexibility 

matrix which is now calculated based on [Dortho] matrix discussed above.  

A variety of examples of orthotropic plates are solved in the subsequent 

sections under different loading and support conditions using IFM based 

methodology. Where possible results are compared with the exact solution 

[99,103] available in the literature. 

11.2 SIMPLY SUPPORTED ORTHOTROPIC PLATE EXAMPLE 

A Glass Reinforced Plastic Plate having simply supported edges all over with 

dimensions as 2m x 2m x 3mm is shown in Fig. 11.3. Static analysis is 

carried out by considering dual symmetry and discretizing quadrant 

number 1 into 5 x 5 mesh with total 25 elements for:  (i) Central Point Load 

(CPL) of 10kN and (ii) Uniform Lateral Pressure (ULP) of 10kN/m2.  The 

orthotropic plate has following elastic properties: Ex = 40kN/mm2, Ey = 

8kN/mm2, Gxy = 4kN/mm2 and  x = 0.25 [102].  

                                                    

                      Fig 11.3 A Square Orthotropic Plate Bending Example 

2000 mm 
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The basic steps and all the matrices are same as used for static analysis of 

isotropic plate bending problems. The development of global flexibility 

matrix [G] which is of size 225 x 225 is generated now using [Dortho] for 

orthotropic material given in Eq. (11.2) instead of [D] for isotropic material. 

Following are the concise notations used for easy recognizing of the different 

cases included here. If edges AB, BC, CD and DA are simply supported then 

S_S_S_S with central point load is considered as S_S_S_S_CPL while for ULP 

the CPL is replaced by ULP. Similarly, C is used for clamped and F for free 

edge conditions respectively. Results obtained for moment and central 

displacement at the centre of plate i.e. at point E are compared with the 

exact solution in terms of Central Moment Ratio (CMR) and Central 

Deflection Ratio (CDR) and are reported here in Table 11.1. Various plots 

for 3D deformed shape and 2D moment contours which are developed in 

Matlab using proper modules are depicted in Figs. 11.4 and 11.5. 

Table 11.1 Deflection and Moment Ratios 

Type of Loading 
Central Deflection 

Ratio (CDR) 
        /           

Central Moment Ratio(CMR) 
        /           

Mx My Mxy 

CPL 0.872 0.889 0.841 0.883 

ULP 0.902 0.932 0.872 0.904 

 

 

(i)  Deformed Shape of Simply Supported Plate  

Point of Contraflexure line Point of Contraflexure line 
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(ii) Mxx Contours 

 

(iii) Myy Contours 

    

(iv) Mxy Contours 

 

Fig.11.4 Various Plots of SS Square Plate under CPL 
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(i) Deformed Shape of Simply Supported Plate 

 

(ii) Mxx Contours 

 

(iii)    Myy Contours 
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(iv) Mxy Contours 

Fig. 11.5 Various Plots of SS Square Plate under ULP 

 

11.3 CLAMPED ORTHOTROPIC PLATE EXAMPLES 

Considering all the edges of square plate as clamped with all other 

parameters are same, results are obtained for the moments and central 

displacement at the centre of plate and are compared with the exact 

solution in terms of Central Moment Ratio (CMR) and Central Deflection 

Ratio (CDR) in Table 11.2. Plots for 3D deformed shape and 2D moment 

contours are depicted in Figs. 11.6 and 11.7.  

Table 11.2 Deflection and Moment Ratios 

Type of Loading 
Central Deflection 

Ratio (CDR) 
        /           

Central Moment Ratio(CMR) 
        /           

Mx My Mxy 

CPL 0.893 0.885 0.851 0.891 

ULP 0.922 0.904 0.877 0.892 

 

 

(i) Deformed Shape of Clamped Plate 

Point of Contraflexure line Point of Contraflexure line 
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(ii) Mxx Contours 

 
 

(iii) Myy Contours 

 

(iv) Mxy Contours 

                Fig. 11.6 Various Plots of Clamped Square Plate under CPL 

Point of Contraflexure line 

Point of Contraflexure line 
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(i) Deformed Shape of Clamped Plate 

 

(ii) Mxx Contours 

         

(iii)  Myy Contours 

           

(iv) Mxy  Contours 

     Fig. 11.7 Various Plots of Clamped Square Plate under ULP 

x 10-3 m 

Point of Contraflexure line 

Point of Contraflexure line 
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11.4 C_S_C_S ORTHOTROPIC SQURE PLATE EXAMPLE 

Considering AB and CD edges of square plate shown in Fig. 11.3 as 

clamped and remaining two as simply supported results are obtained by 

discretizing quarter plate in 5 x 5 mesh. Various plots for 3D deformed 

shape and 2D moment contours developed using Matlab software and 

depicted in Figs. 11.8 and 11.9. Moment and central deflection obtained 

using IFM are compared with the exact solution in Table 11.3. 

Table 11.3 Non-Dimensional Parameters at Centre of Plate 

Type of Loading Central Deflection Ratio 
(CDR) 

                    /           

Central Moment Ratio(CMR) 
        /           

Mx My Mxy 

CPL  0.853 0.902 0.892 0.806 

ULP 0.916 0.941 0.909 0.894 

 

     

(i)  Deformed Shape for C_S_C_S Plate 
 

 
                    

(ii) Mxx Contours 

x 10-3 m 
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(iii) Myy Contours 

Fig. 11.8 Various Plots for C_S_C_S Square Plate under CPL 

 

(i) Deformed Shape for C_S_C_S Plate  
 

 

(ii) Mxx Contours 
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(iii) Myy Contours 

Fig 11.9 Various Plots for C_S_C_S Square Plate Under ULP 

 

11.5 S_C_S_S ORTHOTROPIC PLATE EXAMPLES 

With AB, AD and DC edges as simply supported and BC as clamped (Fig. 

11.3) due to one way symmetry only half of the plate is analysed 

considering 10 x 5 discretization. There are total 50 elements with 450 

internal unknown moments. The global equilibrium matrix is developed of 

size 136 x 450 in which 214 compatibility conditions are required for 

complete solution. The global flexibility matrix is of size 450 x 450. Various 

plots for 3D deformed shape and 2D moment contours for CPL and ULP 

loading conditions are developed in Matlab using proper modules as 

depicted in Figs. 11.10 and 11.11.  Moment and central displacement at 

centre of plate are compared with the in Table 11.4.  

              Table 11.4 Non-Dimensional Parameters at Centre of Plate 

Type of 

Loading 

Central Deflection Ratio 

(CDR) 
                    /           

Central Moment Ratio (CMR) 
                    /           

Mx My Mxy 

CPL 0.829 0.927 0.858 0.804 

ULP 0.953 0.911 0.903 0.872 
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(i) Deformed Shape for S_C_S_S Plate 

     

(ii) Mxx Contours 

 

        
 

(iii) Myy Contours 

 

(iv) Mxy Contours 

 

Fig. 11.10 Various Plots for S_C_S_S Square Plate Under CPL 

x 10-3 m 
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(i) Deformed Shape for S_C_S_S Plate 

       

(ii) Mxx Contours 

                           

(iii) Myy Contours 

 

                                 

(iv) Mxy Contours 

                         Fig. 11.11 Various Plots for S_C_S_S Square Plate Under CPL    

11.6 S_F_S_S ORTHOTROPIC PLATE EXAMPLE 

Considering AB, AD and DC edges as simply supported and BC as free (Fig. 

11.3) half of the plate is discretized into 10 x 5 grid leading to 50 elements 

x 10-3 m 
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and 450 internal unknown moments. The global equilibrium matrix is of 

size 151 x 450 which requires 249 compatibility conditions for complete 

solution. The global flexibility matrix will be of size 450 x 450. Based on the 

results various plots for 3D deformed shape and 2D moment contours are 

developed in Matlab which are depicted in Figs. 11.12 and 11.13.  

Moments and central displacement at the centre of plate are compared with 

the exact solution in Table 11.5.   

Table 11.5 Deflection and Moment Ratios at Centre of Plate 

Type of 
Loading 

Central Deflection Ratio 
(CDR) 

                    /           

Central Moment Ratio (CMR) 
                    /           

Mx My Mxy 

CPL 0.869 0.884 0.833 0.871 

ULP 0.974 0.903 0.911 0.891 

       

(i) Deformed Shape for S_F_S_S Plate 
              

 

(ii) Mxx Contours 
 

Point of Contraflexure line 
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(iii) Myy Contours 
 

  
                                 

(iv) Mxy Contours 
 

         Fig. 11.12 Various Plots for S_F_S_S Square Plate Under CPL   

 

(i) Deformed Shape for S_F_S_S Plate 

                                      (ii)   Mxx Contours 

Point of Contraflexure line 

Fully – Straighten Non Warping Zone 
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(iii) Myy Contours   

 

(iv) Mxy Contours   

        Fig 11.13 Various Plots for S_F_S_S Square Plate Under ULP    

 

11.7 F_S_F_S ORTHOTROPIC PLATE EXAMPLE  

If AB and CD edges are free while other two are simply supported (Fig. 

11.3), the problem can be analysed considering dual symmetry. A (5 x 5) 

discretization scheme will have total 36 nodes in which 20 nodes are with 3 

ddofs, 9 nodes are with 2 ddofs and 7 nodes are with one ddof. Thus, there 

are total 85 displacement degrees of freedom with 225 force degrees of 

freedom. Hence it requires 140 numbers of compatibility conditions for 

making the global equilibrium matrix square. Results are reported here in 

the form of plots for 3D deformed shape and 2D moment contours as 

depicted in Figs. 11.14 and 11.15. Moments and displacement at the 

centre of plate are compared with exact solution and are reported here in 

the form of ratios in Table 11.6. 

 

 

Fully – Straighten Non Warping Zone 
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Table 11.6 Displacement and Moment Ratios at Centre of Plate 

Type of 

Loading 

Central Deflection Ratio 

(CDR) 
                    /           

Central Moment Ratio (CMR) 
                    /           

Mx My Mxy 

CPL 0.887 0.86 0.851 0.885 

ULP 0.892 0.876 0.889 0.842 

 

                              

(i) Deformed Shape for F_S_F_S Plate 

 

(ii) Mxx Contours 

 

(iii) Myy Contours 
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(iv) Mxy Contours 

Fig 11.14 Various Plots for F_S_F_S Square Plate Under CPL    
 

 

(i) Deformed Shape for F_S_F_S Plate 

 

 

(ii) Mxx Contours 
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(ii)  Myy Contours 

Fig 11.15 Various Plots for F_S_F_S Square Plate Under ULP 

            

11.8 F_C_F_C ORTHOTROPIC PLATE EXAMPLES  

Considering AB and CD edges as free with other two as clamped, the plate is 

analysed considering double symmetry with 5 x 5 discretization scheme. 

There are total 36 nodes in which 20 nodes are with 3 ddofs, 9 nodes are 

with 2 ddofs.  Thus, there are total 78 displacement degrees of freedom with 

225 force degrees of freedom. Plots for 3D deformed shape and 2D moment 

contours are included here in Figs 11.16 and 11.17 whereas moments and 

central displacement at the centre of plate are included in Table 11.7 

Table 11.7 Frequency and Moment Ratios at Centre of Plate 

Type of 
Loading 

Central Deflection Ratio (CDR)  
        /           

Central Moment Ratio (CMR) 
                    /           

Mx My Mxy 

CPL 0.833 0.89 0.878 0.8 

ULP 0.902 0.903 0.87 0.889 
 

        

(i) Deformed Shape for F_C_F_C Plate 
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(ii) Mxx Contours 

 

(iii) Myy Contours 

Fig 11.16 Various Plots for F_C_F_C Square Plate Under CPL 

 

(i) Deformed Shape for F_C_F_C Plate 
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(ii) Mxx Contours 

      

(iii) Myy Contours 

Fig 11.17 Various Plots for F_C_F_C Square Plate Under ULP 

 

11.9 S_F_S_C ORTHOTROPIC SQUARE PLATE EXAMPLE 

With AB and CD edges as simply supported, BC as free and AD as clamped, 

considering one way symmetry, half of the plate (1m x 2m) is divided into 50 

elements with 5 x 10 discretization scheme. Based on the IFM based results 

3D deformed shape and 2D moment contour plots are included here in Figs. 

11.18 and 11.19, whereas moment and displacement values obtained at 

the centre of plate are reported in Table 11.8. 
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Table 11.8 Comparison of Results 

Type of 

Loading 

Central Deflection Ratio (CDR)  
        /           

Central Moment Ratio (CMR) 
                    /           

Mx My Mxy 

CPL 0.896 0.904 0.855 0.831 

ULP 0.907 0.955 0.911 0.885 

 

 

(i) Deformed Shape for S_F_S_C Plate 

 
(ii) Mxx  Contours 

 

(iii) Myy  Contours 
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(iv) Mxy Plot 

Fig 11.17 Various Plots for S_F_S_C Square Plate Under CPL 

 

(i) Deformed Shape for S_F_S_C Plate 

 

(ii) Mxx Contours 

 

(iii) Myy Contours 
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(iv) Mxy Contours 

Fig 11.18 Various Plots for S_F_S_C Square Plate Under ULP 

11.10   RECTANGULAR ORTHOTROPIC PLATE EXAMPLES 

Linear static analysis is also carried of GFRP rectangular plate bending 

problems by considering aspect ratio (AR) as 1.5 and 2 with plan 

dimensions as 2m x 3m and 2m x 4m respectively.  Analysis is to be carried 

out under central point loading (CPL) as well as under uniform intensity of 

lateral pressure (ULP) using RECT_9F_12D IFM based element. Results 

obtained for central deflection and moments at the centre of the plate for 

simply supported and clamped plate orthotropic plates are reported here in 

Tables 11.9 and 11.10 respectively. 

Table 11.9 Results for Simply Supported Rectangular Orthotropic Plate 

LOAD 
Aspect  
Ratio  
(AR) 

Central Deflection Ratio  
(CDR) 

Central Moment Ratio (CMR) 

Mx
 My

 Mxy
 

CPL 
1.5 0.903 0.854 0.853 0.884 

2.0 0.787 0.827 0.843 0.855 

ULP 
1.5 0.878 0.933 0.996 0.931 

2.0 0.889 0.917 0.993 0.876 

 

Table 11.10 Results for Clamped Rectangular Orthotropic Plate 

LOAD 
Aspect 
Ratio 
(AR) 

Central Deflection Ratio  
(CDR) 

Central Moment Ratio 
(CMR) 

Mx
 My

 Mxy
 

CPL 
1.5 0.932 0.861 0.897 0.957 

2.0 0.872 0.752 0.904 0.875 

ULP 
1.5 0.931 0.917 0.95 0.811 

2.0 0.893 0.884 0.82 0.808 
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11.11   AN EXAMPLE OF STRUCTURAL ORTHOTROPY 

A RCC slab with equi-distance rib along one direction is shown in Fig. 11.9. 

It is analysed here as simply supported orthotropic plate problem of 4000 

mm x 4000 mm size with thickness of rib is 500 mm. Static analysis is 

carried out by considering dual symmetry and discretizing the bottom left 

quadrant into 2 x 2 mesh under Central point load (CPL) of 10 kN.  The slab 

is considered with properties: Econc = 2.23 x 104 N/mm2, and   = 0.24.  

       

                                               

  

All the necessary matrices are same, except the  global flexibility matrix [G] 

which is of size 36 x 36 where [D] matrix of size 3 x 3 is replaced by [Dortho] 

for structural orthotropic material. For the given slab problem material 

matrix [Dortho] is calculated as follows: 

 

1. The effective width (bf) is calculated based on RCC  T-beam theory as  

bf = 
  

  
          =  925mm (approximately) 

4000 mm 

4000 mm 

1 
2 

3 4 

A B 

C D 

E F 

G 

H 

I 

Total Span = 4000 mm (4 x 1000 mm) 

X Axis 
Y Axis 

Continue along x diren 

1000 mm 

120 mm thk Slab 

5
0
0
 m

m
 

230 mm 
Z Axis 

Fig. 11.19 RCC Slab Bending Example 
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where, Lo = 4000mm which is span of slab, bw =  230 mm which is width 

of RCC rib and d = 120 mm which is  depth of slab.  

2. The flexural rigidity (Dx) along x-x direction of slab (neglecting rib 

contribution) is calculated as per plate formula based on the elastic and 

geometrical properties (E,   and d) of RCC slab and is equal to 3.4074 x 

10 9 N-mm2.  

3.  The flexural rigidity (Dy) along y-y direction including rib and 

reinforcement contribution of approximate area (750mm2) on both side of 

slab is calculated as follows 

Dy = Dx + 
    

 
 = 5.6411 x 1013 N-mm2. 

4. The average torsional rigidity (Dxy) is worked out as 9.06 x 1011 N -mm2.  

Using the above rigidities, one can develop moment curvature relations 

from which by inverting finally [Dortho] is worked out which is as follows. 

 [Dortho] =   
                                
                            

               

         … (11.3) 

Now the element flexibility matrix [Ge] is worked out by the formula as 

 [Ge] =                      
  

  

  

  
                                        … (11.4) 

where [Y] is the stress interpolation matrix for rectangular plane stress 

element of size (3 x 9)         

Step 0 - Solution strategy: A problem of square plate with simply 

supported boundary condition is divided into four quadrants 1, 2, 3 and 4. 

The quadrant 1 is descretized such as 11, 12, 13 and 14 in anticlockwise 

direction as depicted in Fig. 11.20.  With 4 element discretization of quarter 

plate, it has total 12 displacement degrees of freedom (ɵ1, ɵ2……δ5……ɵ12). IFM 

based RECT_9F_12D FE element is used. 

 

  

Fig b Nodal 

displacement 

 



 

317 

 

 

 

 

 

 

 

 

 

 

 

 

                

                 Fig.11.20 2 x 2 Discretization of SS Orthotropic Plate 

Step 1-Development of elemental matrices:  The element equilibrium 

matrix [Be] and elemental flexibility matrix [Ge] are calculated by 

substituting values of a and b as 0.5m. Thus,  

         

 
 
 
 
 
 
 
 
 
 
 
 
                        

                             
                           
                         
                         
                          
                           
                        
                         
                         

                          
                           

 
 
 
 
 
 
 
 
 
 
 

                        

The nonzero components for [Ge1] matrix are as follows 

Ge(1,1) =  3.114 x 10-10,  Ge(2,2) =  0.26 x 10-10,    Ge(4,4) = Ge(3,3) = Ge(2,2) 

Ge(5,5) =  1.8 x 10-14,      Ge(6,6) =  1.5 x 10-15,      Ge(7,7) =  Ge(6,6) , 

 Ge(8,8) = 1.3 x 10-16,      Ge(9,9) =  6.0 x 10-13 ,     Ge(1,5) =  -0.18 x 10-10 

Ge(2,6) = -0.062 x 10-10,  Ge(3,7) =  -0.062 x 10-10,Ge(4,8) =  -5.18 x 10-13 

Ge(5,1) = -4.514 x 10-15,  Ge(6,2) =  -3.77 x 10-16 ,  Ge(7,3) = Ge(6,2)  & Ge(8,4) = Ge(6,2) 
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Step 2- Development of Global Matrices:  The compatibility matrix for the 

four elements is obtained from the displacement deformation relations 

(DDR) i.e.   = [B]T{δ}. In the DDR, 36 deformations which correspond to 36 

force variables are expressed in terms of 12 displacements. The problem 

requires 24 compatibility conditions [C] that are obtained by eliminating the 

12 displacements from the 36 DDRs. These are generated by using auto-

generated matlab based computer program by giving input as upper part of 

the global equilibrium matrix [B]. The global flexibility matrix for the 

problem is obtained by diagonal concatenation of the four elemental 

flexibility matrices as 

[G] = 

 
 
 
 
   

   
   

    
 
 
 

 

Where, all the above sub matrices are calculated as described in Step 1. 

Step 3 Calculations of Forces {F}: The internal forces in element 13 are 

obtained by using Mat Lab’s inverting procedure, which are found as follows 

Table 9.9 Internal Forces in Element 13 

 

F19 F20 F21 F22 F23 F24 F25 F26 F27 

1012 2871 2596 4364 13021 17673 10218 21736 -640 

 

After substituting the values of internal unknowns in moment equations, 

one can calculate moments at the corner I by substituting values of 

coordinates considering origin of coordinate at the centre of the element as 

shown in Fig. 11.21.   

 

 

 

 

 1m 

1m (0,0) 

A E 

H 
I 

(-0.5, -0.5) (0.5, -0.5) 

(-0.5, 0.5) (0.5, 0.5) 

11 12 

13 14 

Mx = 4836.55 N-mm 
My = 32400.52 N-mm 

Mxy = - 640 N-mm 

Fig. 11.21 Sub-Elements of Element Number 1 
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Finally, the nodal displacements for the quarter plate are found as follows: 

Table 11.12 Nodal Displacements x 10-07 mm or radians 

ɵ1 ɵ2 δ3 ɵ4 δ5 δ6 ɵ7 ɵ8 ɵ9 δ10 ɵ11 ɵ12 

-1.2 -50 -47 -4 -94.1 -65 40 50 20 -52.2 -3.2 -1.1 
 

11.12 DISCUSSION OF RESULTS 

 In all the plate examples, the deflection at the centre of plate is found 

less in case of central point loading compared to that of uniform lateral 

pressure. It is because of CPL is considered as 10 kN whereas ULP is 

considered as 10 kN/m2. However, the effect of concentrated load can 

be clearly seen in the deflection profile by the rate of change of 

deflection near the centre of the plate irrespective of the boundary 

conditions. 

 Moment contours included for Mx, My and Mxy also indicates higher 

values for plate subjected to uniform lateral pressure compared to 

concentrated point load acting at the centre of the plate. 

 In all the orthotropic plate examples, the values of Mxx is found 

greater than Myy which clearly indicates the effect of higher modulus 

in the x direction (Ex = 40 kN/m2) compared to the modulus of 

elasticity in y direction (Ey = 8 kN/m2). 

 A variety of boundary conditions could be easily handled by integrated 

force based methodology. The effect of change of boundary conditions 

could be easily visualized through the deflection profiles provide for 

fully simply supported and fully clamped plates. The impact of making 

one of the edges of the as free also could be easily visualized. 

 Moment contours drawn based on the values of moments obtained by 

using IFM also clearly indicated the effect of the boundary conditions 

on the analysis results. It may be noted here that in IFM bilinear 

variation of moments is assumed.  

 From the results provide for central deflection and moments at the 

centre of all the plates it is clear that the result obtained for the case of 
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ULP are more nearer to the exact solution compared to the results 

obtained in case of CPL. 

 The warping of the plate and changing from sagging moment to 

hogging moments could also be easily visualized from the moment 

contours included for the square plate examples. 

 Fully simply supported and fully clamped boundary condition plate 

problems analysed by changing the plate aspect ratio from 1.0 to 1.5 

and 2.0 also clearly indicated the effect of change of aspect ratio on the 

central deflection and on the values of moments at the centre of the 

orthotropic plate. 
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CHAPTER 12 

DYNAMIC ANALYSIS OF ORTHOTROPIC PLATE PROBLEMS 

12.1 STRATEGY ADOPTED  

Frequency analysis is carried out in the present chapter of GFRP (Glass 

Fiber Reinforced Plastic) orthotropic plate. Total five problems are 

considered here to demonstrate the applicability of IFM based formulation 

under different boundary conditions. The formulation of different matrices, 

development of software, strategy adopted for finding solutions using IFM, 

use of Matlab software etc are already discussed in detail in the previous 

chapters. Either 5 x 5 or 10 x 5 discretization is used depending upto the 

type of symmetry exhibited by the problem. Only first four modes are 

considered for the development of deformation pattern for each problem 

using IFM based eigen value analysis. Using first modal frequency value, the 

internal unknowns (F1, F2…..Fn) are taken for further calculations based on 

the number of elements. Using these values internal moments are 

calculated using stress polynomials by substituting the corresponding the 

coordinate values for each element. Normalized moments are worked out 

and are reported in respective tables. Nodal displacements are also worked 

out for first mode of vibration. After normalizing the value with respect to 

value at the centre of plate, other values are worked out and are reported in 

tabular form for all the examples included in this chapter. Steps required for 

finding the solution are explained here with reference to an example given in 

next section. 

12.2 DYNAMIC ANALYSIS OF ORTHOTROPIC PLATE 

A simply supported GFRP square plate having dimensions as 2m x 2m x 

0.005m is shown in Fig. 12.1. Frequency analysis is carried out by 

considering dual symmetry and discretizing the bottom left most quadrant 

into 5 x 5 discretization pattern (Fig. 12.2) by considering lumped mass 

criteria. Considering Ex, Ey and Gxy as 40kN/mm2, 8 kN/mm2 and 4 kN/mm2 
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respectively  x as 0.25 and material density for the plate as 1850 kg/m3, 

results are obtained and summarized in terms of Frequency value and are  

comparing the values with the exact solution available in literature [99]. 

Normalized moments, and nodal displacements are also worked out with 

respect to the centre of plate.  

                                     

                   Fig. 12.1 A Square Plate Bending Example 

 

 

 

 

 

 

 

               

                         Fig. 12.2 Discretization Scheme (5 x 5) 

Step 0 – Solution strategy: Due to two way-symmetry, the quarter of the 

simply supported plate is discretized into 5 x 5 meshing using 

RECT_9F_12D elements. After discretization the complete problem has has 

total 225 force unknowns and 75 displacement degrees of freedom.                              
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Step 1- Development of Elemental Matrices: Different matrices such as 

elemental equilibrium matrix [Be] of size 12 x 9, elemental flexibility matrix 

[Ge] of size 9 x 9, Lumped mass matrix [ML] of size 12 x 12 are developed by 

using the procedure given in earlier chapters by substituting values of a and 

b as 0.1m considering mass per unit area    equals to 9.25 kg/m2. 

Depending upon tributary area at each node, the mass is calculated 

corresponding to the lateral and rotational degree of freedom using finite 

element based grid analogy technique.  

Step 2 - Development of Global Matrices: The assembled equilibrium 

matrix [B] will be of size 75 x 225. The global flexibility matrix [G] is 

diagonally concatenated and is of size 225 x 225. Total 150 compatibility 

conditions are developed by using the Matlab based file named as 

“mtechexamplemod (B)”.  The multiplication of compatibility matrix and 

global flexibility matrix [G] gives the global compatibility matrix named as 

[CCmatrix]. Thus, concatenation of [CCmatrix] after normalizing with 

respect to maximum number of [B] matrix gives a global equilibrium matrix 

[S], which is basically a square matrix. The global lumped mass matrix is 

developed by concatenating necessary rows and columns of zeros from right 

and bottom side so as to have a square matrix of 225 x 225 size.     

Step 3 – Calculation of Natural Frequencies: The frequency vector is 

worked out by carrying out eigen value analysis using two major matrices 

i.e. [S] which is the global equilibrium matrix and MJG which is a product of  

Mass matrix [M], [Jmatrix] and [G] matrix which is the global flexibility 

matrix. Using Matlab command window by typing [Fmatrix, Freq] = eig(S, MJG) 

further work is carried out. 

Step 4 – Calculation of normalized moments and nodal displacements:  

The internal unknowns of [Fmatrix] are auto-calculated by substituting 

each frequency value in IFM based eigen equation. By taking each element 

and its coordinates all the internal moments are calculated. Then along a 

diagonal line of (Fig. 12.2) all the moment values are normalized with 
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respect to unit value at point F. The nodal displacement matrix [Disp] of size 

75 x 225 is worked out and is normalized with respect to unit value at the 

centre of the plate. Table 12.1 shows the IFM based natural frequency and 

exact solution [99] available for the first four mode.  

                          Table 12.1 Comparison of Frequency 

Frequency Number  ω IFM(L) (rad/sec) ω EXACT(rad/sec) 

First 0.0190 0.0197 

Second 0.0334 0.0372 

Third 0.0648 0.0686 

Fourth 0.0742 0.0788 

 

Table 12.2 shows the normalized nodal moments and deflections 

corresponding to unit value at the centre of plate for first frequency value.   

Table 12.2 Normalized Nodal Moments and Deflections 

Point Mx My Mxy 
Vertical 

Deflection 

F 1.00 1.00 1.00 1.000 

E 0.655 0.422 1.015 0.855 

D 0.591 0.398 1.255 0.732 

C 0.428 0.211 2.055 0.4239 

B 0.202 0.102 2.633 0.287 

A 0.000 0.00 2.8321 0.000 

 

From the results obtained for 1st quadrant, results are obtained for the three 

remaining quadrants using concept of symmetry. Finally, deformed shapes 

drawn for the first four frequencies using the Matlab software are depicted 

in Figs. 12.3-12.6. 

 

Fig. 12.3 First Mode Deformation Pattern (ω11) for SS Plate 

x 10-4  
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Fig. 12.4 Second Mode Deformation Pattern (ω12) SS Plate 

 

Fig. 12.5 Third Mode Deformation Pattern (ω21) SS Plate 

 

Fig 12.6 Fourth Mode Deformation Pattern (ω22) SS Plate 

12.3  DYNAMIC ANALYSIS OF S_C_S_C ORTHOTROPIC PLATE 

For a square plate with two opposite edges AB and CD simply supported 

and other two BC and AD as clamped, frequency analysis is carried out by 

considering dual symmetry and discretizing the left most quadrant into 5 x 

5 mesh by considering lumped and consistent mass criteria. Following the 

same steps, total five displacement degrees of freedom for the clamped edges 

are restrained while five displacement degrees of freedom are made free 

along simply supported edges. As per these changes all the major and minor 

matrices are modified. Table 12.3 shows the IFM based natural frequency 

and exact solution available for the first four modes.  

                       Table 12.3 Comparison of Frequency  

Mode Number ω IFM(L) (rad/sec) ω EXACT(rad/sec) 

First 0.342 0.0393 

Second 0.045 0.0508 

Third 0.095 0.1056 

Fourth 0.1074 0.1129 

x 10-4 

x 10-4  
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Table 12.4 shows the normalized nodal moments and deflections 

corresponding to unit value at the centre of the plate under the first mode of 

vibration. Also, deformation pattern are drawn for the first four modes as 

depicted in Figs. 12.7 – 12.10. 

Table 12.4 Normalized Moments and Deflections 

Point Mx My Mxy Vertical Deflection 

F 1.00 1.00 1.00 1.00 

E 0.833 0.553 0.722 0.932 

D 0.621 0.421 0.832 0.721 

C 0.321 0.198 0.733 0.419 

B 0.103 0.003 0.421 0.311 

A -0.083 -0.002 0.188 0.000 

 

 

Fig. 12.7 First Mode Deformation Pattern (ω11) for S_C_S_C Plate 

 

Fig. 12.8 Second Mode Deformation Pattern (ω12) for S_C_S_C Plate 

 

Fig. 12.9 Third Mode Deformation Pattern (ω21) for S_C_S_C Plate 

 

x 10-3 
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Fig 12.10 Fourth Mode Deformation Pattern (ω22) for S_C_S_C Plate 

12.4 DYNAMIC ANALYSIS OF S_S_S_C ORTHOTROPIC PLATE 

A square plate with three edges AB, BC and CD simply supported and AD as 

clamped is now considered for the frequency analysis by considering one 

way symmetry and discretizing the bottom half portion in 10 x 5 mesh by 

considering a lumped mass criteria.  Table 12.5 shows the Frequency Ratio 

first four modes under lumped mass criterion, where as Table 12.6 shows 

the normalized nodal moments and deflections for the first mode of 

vibration. Deformed shapes are drawn for the first four natural frequencies, 

using Matlab facility, which are depicted in Figs. 12.11-12.14. 

Table 12.5 Frequency Ratio for S_S_S_C Plate 

Mode Number  
ω        

ω      
 

First 0.8213 

Second 0.8677 

Third 0.889 

Fourth 0.9015 

 

Table 12.6 Normalized Moments and Deflections 

Points Mx My Mxy Vertical Deflection 

F 1.00 1.00 1.00 1.00 

E 0.855 0.622 1.012 0.855 

D 0.642 0.532 0.944 0.743 

C 0.422 0.322 0.924 0.488 

B 0.174 0.109 0.988 0.215 

A -0.012 0.000 0.943 0.000 

 

 

   Fig. 12.11 First Mode Deformation Pattern (ω11) for S_S_S_C Plate  

x 10-3 
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  Fig. 12.12 Second Mode Deformation Pattern (ω12) for S_S_S_C Plate 

 

   Fig. 12.13 Third Mode Deformation Pattern (ω21) for S_S_S_C Plate 

   

Fig. 12.14 Fourth Mode Deformation Pattern (ω22) for S_S_S_C Plate 

12.5 DYNAMIC ANALYSIS OF C_C_C_S  ORTHOTROPIC PLATE  

Frequency analysis of square plate with three edges AB, BC and CD 

clamped and AD simply supported is now carried out by considering one 

way symmetry and dividing bottom half portion into 10 x 5 mesh by 

considering a lumped mass criteria.  The results are summarized in Tables 

12.7 and 12.8 and deformation plots are included in Figs. 12.15 -12.18.  

   Table 12.7 Frequency Ratio for C_C_C_S Plate 

Mode Number  
ω        

ω      
 

First 0.8891 

Second 0.895 

Third 0.9092 

Fourth 0.9177 

 

x 10-3 

x 10-3 

x 10-4 
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Table 12.8 Normalized Moments and Deflections 

Point Mx My Mxy Vertical Deflection 

F 1.00 1.00 1.00 1.00 

E 0.844 0.488 1.017 0.811 

D 0.605 0.311 0.885 0.736 

C 0.388 0.288 0.633 0.461 

B 0.211 0.102 0.322 0.204 

A -0.04 -0.01 0.022 0.000 

 

Fig. 12.15 First Mode Deformation Pattern (ω11) for C_C_C_S Plate 

Fig. 12.16 Second Mode Deformation Pattern (ω12) for C_C_C_S Plate 

 

Fig. 12.17 Third Mode Deformation Pattern (ω21) for C_C_C_S Plate 

 

Fig. 12.18 Fourth Mode Deformation Pattern (ω22) for C_C_C_S Plate 

12.6 DYNAMIC ANALYSIS OF ORTHOTROPIC PLATE  

The last example considered here is that of fully clamped square plate.  

Frequency analysis is carried out by considering dual symmetry and 

discretizing the bottom left quadrant into 5 x 5 mesh by considering lumped 

x 10-3 
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mass criteria. The results are summarized for Frequency Ratio in Table 

12.9 and for normalized moments, and nodal displacements in Table 

12.10. Deformation patterns for first four modes are depicted in Figs. 

12.19-12.22.   

                Table 12.9 Frequency Ratio for Clamped Plate 

Mode Number  
ω        

ω      
 

First 0.9022 

Third 0.9133 

Fourth 0.9033 

Fourth 0.9155 

             

Table 12.10 Normalized Nodal Moments and Deflections 

Point Mx My Mxy 
Vertical 

Deflection 

F 1.00 1.00 1.00 1.00 

E 0.533 0.422 0.421 0.722 

D 0.329 0.244 0.231 0.514 

C 0.166 0.105 0.188 0.311 

B 0.098 0.084 0.091 0.094 

A -0.114 -0.094 0.011 0.000 

 

 

Fig. 12.19 First Mode Deformation Pattern (ω11) for Clamped Plate 

 

Fig. 12.20 Third Mode Deformation Pattern (ω12) for Clamped Plate 
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Fig. 12.21 Third Mode Deformation Pattern (ω21) for Clamped Plate 

 

Fig. 12.22 Fourth Mode Deformation Pattern (ω22) for Clamped Plate 

 

12.7 DISCUSSION OF RESULTS 

 In case of simply supported orthotropic plate, out of total 75 

displacement degrees of freedom (one for each frequency) only first 

four frequencies are considered for comparison purpose. Frequency 

values are found to differ 4% to 10% from the exact solution. The 

nodal displacements are normalized with respect to the value at the 

centre of plate for the first vibration. The maximum value is found at 

the centre and zero value at the edges with variation as per deflection 

curve. The moment values along x-x direction (Mxx) are found higher 

than the y-y direction (Myy). The warping moment (Mxy) is found to 

have higher values at edges due to torsional curvature. The mode 

shapes drawn using Matlab module show that the first mode has 

maximum convex or concave deflected pattern. Because of the 

variation in elastic properties in x and y directions, nodal 

displacements are uneven which reflects orthotropic behavior. The 

next frequency having higher values leads to two half waves along x 

direction and one along y direction. It shows nearly half the 

displacement values compared to the first one with lesser warping 
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behavior, which is found to repeat for third mode of vibration. The 

fourth mode having two half waves in both direction shows still lesser 

values of deflections compared to the first about one i.e. one fourth of 

first mode central deflection.  

 In case of S_C_S_C support condition, the frequency values are found 

in good agreement with the exact values. Due to mix boundary 

condition at the corners of the plate a very small value of hogging 

moment along x-x and y-y direction is indicated. The first modal 

central displacement is found to reduce by approximately 50% 

compared to the previous example due to the fixity of edges. The 

remaining second and third modes of vibration also show warping 

behavior with undulated surface due to orthotropic behavior of plate.  

 In case of S_S_S_C square orthotropic plate due to one way symmetry, 

total 50 elements were considered with 225 internal unknown 

moments. Using Eigen value analysis first four frequencies values are 

compared with the exact solution and are found to differ by about  

10% to 18%. As usual values of Mx are found higher compared to My 

due to orthotropic behavior while at the corner some hogging moment 

is also developed along x-x direction and zero values along y-y due to 

simply supported ends. The torsional moment shows dual behavior 

after normalizing all the values with respect to centre. The mode 

shapes show approximately the same behavior as S_S_S_S plate 

problem with slightly reduced nodal values. The problem also depicts 

non uniform undulation due to orthotropic behavior in all the modal 

behavior. 

 In case of C_C_C_S orthotropic plate the frequency values are found 

to differ by about 8% to 12% from the exact solution. The first modal 

deformation pattern shows maximum normalized value at the centre 

of the plate, second and third modal deformation patterns depict 

maximum value at centre of left half and centre of right half with zero 
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along centre line. While for the fourth mode repetition of first mode 

with opposite sign into four quadrants is observed. 

 For the last problem of clamped boundary condition all around, first 

four frequencies are found within 10% to those of exact values. Due to 

clamp condition at A, the values of moments Mx and My are found of 

hogging nature. The mode shapes clearly indicated the effect of fixity 

of all edges on the behavior of the plate. 
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CHAPTER 13 

CIRCULAR AND ANNULAR PLATE BENDING PROBLEMS 

13.1 GENERAL REMARKS 

Geometrically, circular plate is a 2D continuum problem having thickness 

much smaller than least plan dimension. If one is interested in the response 

of plate for which deformations are not axially symmetric, for example, the 

problem may be of a sector of a plate or the axial symmetry of geometry may 

be lost by presence of unsymmetrical loading, one is forced to treat it as a 

2D problem. However, if plate is symmetrically loaded, its axisymmetric 

character allows it to model it as a one dimensional problem.  

Circular plated structures subjected to arbitrary loading         can be 

analysed by applying the governing basic differential equation to the 

bending form of deformed circular plate surface which is given by  

                    
       

 
                                                                … (13.1) 

Where            
  

   
 

 

 

 

  
 

 

  
  

   
  is a biharmonic operator. 

In the present chapter, to deal with axisymmetric plate problem, a two 

noded line element is developed with two force and four displacement 

degrees of freedom, which is named as CIRC_2F_4D. Different matrices are 

derived by discretizing the expressions for potential and complimentary 

strain energies. Steps required for finding the solution based on IFM are 

described. Simply supported and clamped plate problems are analysed 

under central point load and uniform lateral pressure. Results obtained for 

moments and deflections are compared with the available solutions.  
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13.2  DEVELOPMENT OF IFM BASED FORMULATION 

13.2.1 Governing Equations 

The IFM equations are obtained by coupling the ‘m` number of equilibrium 

equations and r = n – m compatibility conditions. The m equilibrium 

equations (EE) are written as  

[B] {F} = {P}                           … (13.2) 

 

and the’ r’ compatibility conditions are written as 

[C] [G] {F} = {δR}                                                                       … (13.3) 

 

These conditions are combined to obtain the IFM governing equations as  
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Or [S] {F} = {P}                                        … (13.4) 

 

After knowing the forces {F}, displacements {δ} are calculated using the 

following equation 

{δ} = [J] {[G] {F} + { 0}                                                              … (13.5) 

 

where [J] = m rows of [[S]-1]T, [B] is equilibrium matrix of m x n size which is 

sparse and unsymmetrical, [G] is a symmetrical flexibility matrix; it is a 

block-diagonal matrix where each block represents the element  flexibility 

matrix for an element,  [C] is the compatibility matrix of size r x n, {δR} = -[C] 

{ } 0 is the effective deformation vector with { }0 being  the initial deformation 

vector of dimension ’n’, [S] is the unsymmetrical matrix of size n x n and  [J] 

is the m x n size deformation coefficient matrix which is back-calculated 

from [S] matrix. 

 

In IFM, the equilibrium matrix [B] links internal forces to external loads, 

compatibility matrix [C] governs the deformations and flexibility matrix [G] 

relates deformations to forces. Both the equilibrium and compatibility 
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matrices of the IFM are unsymmetrical whereas the material constitutive 

matrix and the flexibility matrix are symmetrical. 

 

13.2.2 Element Equilibrium Matrix [Be] 

The elemental equilibrium matrix written in terms of forces at grid points 

represents the vectorial summation of ‘n’ internal forces {F} and ‘m’ external 

loads {P}. The nodal EE in matrix notation can be stored as rectangular 

matrix [Be] of size m x n. The variational functional is evaluated as a portion 

of IFM functional which yields the basic elemental equilibrium matrix [Be] in 

explicit form as follows: 

          

rdr  2π
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                                               … (13.6)           

 

               ε}da{M
D

T

                                                            … (13.7) 

 where {M}T = (Mr, M ,) are the internal moments and {Є}T=  
r

w

r

1

r

w
2

2

∂

 ∂




  

represents the curvatures corresponding to each internal moment. 

 

Consider a two-noded, 4 ddof (δ1 to δ4) line element of thickness t with 

length as ‘a’ along the radial direction as shown in Figs. 13.1 and 13.2.    

 

Fig. 13.1 Line Element                        Fig. 13.2 Degrees of Freedom 

The force field is chosen in terms of two independent forces F1 and F2. 

Relations between internal moments and independent forces are written as  

                         and                                                               

Arranging in matrix form,     

r 

a 
1 2 

δ2 (ɵ1) 

δ1 (w1) 

a 

δ4 (ɵ2) 

δ3 (w2) 

r1  r2 

θ 
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Or      
{M} = [Y]{Fe}                                                                             

… (13.8)
      

 

Displacement function by considering r1 and r2 as radius of extreme points 

of the element can be written as

    

  

         δ     δ     δ     δ      δ                                       … (13.9)                   

where        
       

        
 
 

     
       

        
         

       

        
 
 
               

                   
       

        
 
 

     
       

        
          

       

        
 
 
             

where [N] is a shape function matrix and {δ} is a displacement vector. By 

arranging all force and displacement functions properly, one can discretize 

the Eq. (13.6) to obtain the element equilibrium matrix as follows. 

   Ue = {X}T[Be]{F}                                                    ... (13.10) 

Where, [Be] = 2 ∫s [Z] T[Y]rdr                                                          ... (13.11) 

where again [Z] = [L][N]; [L] is the x differential operator matrix with respect 

to r, [N] is the displacement interpolation function matrix and  [Y] is the force 

interpolation function matrix. After calculating [Z] matrix and [Y] matrix and 

integrating, the equilibrium matrix [Be] is obtained using Eq. (13.10). For 

element 1, for example, with r1 = 0 and r2 = a, the [Be] matrix will be as 

follows.  

   [Be]= 

 
 
 
 
 
   

  
  

 

  

   
   

  
 
 
 
 

                                                                      … (13.12) 

13.2.3 Elemental Flexibility Matrix [Ge]  

The basic elemental flexibility matrix is obtained by discretizing the 

complementary strain energy which gives 
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[Ge] = 2 ∫s[Y]T[D][Y]rdr                                                           …  (13.13) 

 

where [Y] is force interpolation function matrix and [D] is material property 

matrix of size (2 x 2). Substituting values in Eq.(13.13)  and integrating 

radially, it yields the symmetrical flexibility matrix [Ge] which for the first 

element is as follows.  

                 
   

   
 

 

  
  

 

  
  

 

  
  

 

 
  
                                                               …  (13.14)      

 

13.2.4 Global Compatibility Matrix [C] 

The compatibility matrix is obtained from the deformation displacement 

relation ({ } = [B]T{δ}), using directly [B] matrix as input for LIUT based 

matlab module.  In DDR all the deformations are expressed in terms of all 

possible nodal displacements and the ‘n - m’ compatibility conditions are 

developed in terms of internal forces.The concatenating or global 

compatibility matrix z.cMatrix, which is compatibility matrix [C] is evaluated 

by multiplying the coefficients of the compatibility conditions and the global 

flexibility matrix [G]. 

 

13.3 CIRCULAR PLATE BENDING EXAMPLES 

Total four examples of mild steel circular plate are considered here to 

demonstrate the applicability of the proposed formulation. Centrally loaded 

and uniformly loaded plates with simply supported and clamped circular 

edges are considered. Each plate is subjected to a central point load (CPL) of 

10 kN and Uniformly Lateral Pressure (ULP) of 10 kN/m2. The diameter of 

the plate is taken as 6000 mm with thickness of plate as 100 mm. The 

modulas of elasticity of steel material is considered as 2.01 x 1011 N/m2. 

whereas Poisson’s ratio is considered as 0.3. Fig. 13.3 shows a clamped 

circular plate under two different loading conditions. With reference to a 

clamped plate, the steps for finding the solution are as follows: 
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 Fig. 13.3 Clamped Plate showing Discretization including Loading 

 

Step 1: A two-noded line element having length ‘a’ with 2 fdof and 4 ddof is 

used for discretizing the problem into three elements. The [Be] matrix is 

obtained by substituting a = 1m in Eq. (13.12).  After assembly, the size of 

global equilibrium matrix will be 5 x 6. 

Step 2: The compatibility matrix for the three elements is obtained from the 

displacement deformation relations (DDR) i.e.   = [B]T{δ}. In the DDR, 6 

deformations which correspond to 6 force variables are expressed in terms 

of 5 displacements. The problem requires only one compatibility condition 

[C]; which is obtained by eliminating the 5 displacements from the 6 DDRs. 

It is auto-generated using Matlab based computer program by giving input 

as upper part of the global equilibrium matrix. 

Step 3: The flexibility matrix for the problem is obtained by diagonal 

concatenation of the three elemental flexibility matrices of size 2 x 2 

calculated as per Eq. (13.14).                                                                                                                    

Step 4:  By multiplying compatibility matrix [C] and global flexibility matrix 

[G], bottom most part of the global equilibrium matrix is obtained. 

Assembling both gives the complete [S] matrix of size 6 x 6, which comprises 

P kN 

1 

  a       a        a 

2 3 4 

Case 1: Central Point Load 
o 

qo kN/m
2

 

 Case 2: Uniform Lateral Pressure 

x 

y 

Fig b Nodal 

displacement 

 



 

340 

 

 

of EE and CC. The forces {F} are obtained by using Matlab’s inverting 

routine. 

Step 5: The displacements are obtained by using the relation ({δ} = [J][G]{F}), 

where [J] = m rows of matrix [[S]-1]T.  

Following the above steps, analysis is carried of the circular plate problems 

by changing loading and boundary conditions. Figs. 13.4 and 13.5 

respectively show variation of lateral deflection and rotation along a radial 

direction of the plate for different loading and the boundary conditions. Fig. 

13.6 shows the deformed shape of a simply supported circular plate under 

uniform lateral pressure whereas Fig. 13.7 shows the same for clamped 

plate under central point load.  

                   

Fig.13. 4 Plot of Deflection along a Radial Line 

 

Fig. 13. 4 Plot of Deflection along a Radial Line 
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                Fig. 13.6 Deformed Shape for SS Circular Plate under ULP 

 

        Fig. 13.7 Deformed Shape for Clamped Circular Plate under CPL 

Table 13.1 shows the comparison of results for nodal deflection whereas 

Tables 13.2 and 13.3 show comparison of results obtained for moments Mr 

and M. For simply supported plates, IFM results are compared with those 

given by Timoshenko [103] whereas for clamped plates the results are 

compared with those reported by Chandrasekhar [99,101]. Figs 13.8 and 

13.9 show respectively the contours for Mr and M  for a simply supported 

circular plate under uniform lateral pressure. These contours are depicted 

for a top right quarter of the plate and are drawn using the Matlab software. 

                  Table 13.1 Comparison of Lateral Deflection 

Dist 
from 

centre 
(m) 

Lateral Deflection x 10-5 (m) 

SS - ULP SS - CPL 
Clamped –  

ULP 
Clamped - 

CPL 

IFM Exact IFM Exact IFM Exact IFM Exact 

0.0 270.06 281.73 23.25 24.83 66.17 69.10 9.23 9.78 

1.0 233.49 243.58 18.99 19.68 53.28 54.60 5.96 6.30 

2.0 133.59 140.36 9.62 10.27 20.42 21.32 1.90 1.91 

3.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Distance along x axis (m) Distance along y axis (m) 
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Table 13.2 Comparison of Moments for Simply Supported Plate 

 
Table 13.3 Comparison of Moments for Clamped Plate 

 

         

Fig. 13.8 Contours of Mr (kN-m) for SS Circular Plate under ULP 

Dist 
from 

centre 
(m) 

SS - ULP SS - CPL 

Mr (kN-m) M  (kN-m) Mr (kN-m) M  (kN-m) 

IFM Exact IFM Exact IFM Exact IFM Exact 

0.0 18.00 18.56 18.00 18.56 -8 x106 ∞   -9x107 ∞ 

1.0 15.82 16.50 16.66 17.38 -1.11 -1.13 -1.82 -1.86 

2.0 9.90 10.31 13.24 13.81 -0.41 -0.42 -1.12 -1.14 

3.0 0 0 7.55 7.87 0 0 -0.71 -0.72 

 Dist 
from 

centre  
(m) 

Clamped - ULP Clamped - CPL 

Mr (kN-m) M  (kN-m) Mr (kN-m) M  (kN-m) 

IFM Exact IFM Exact IFM Exact IFM Exact 

0.0 7.07 7.31 7.07 7.31 -0.75 -0.79 -0.23 -0.24 

1.0 5.08 5.25 5.92 6.12 -0.32 -0.34 0.85 0.90 

2.0 -0.91 -0.94 2.48 2.56 0.35 0.37 0.17 0.18 

3.0 -1.09 -1.12 -3.26 -3.37 0.75 0.79 -0.23 -0.24 
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    Fig. 13.9 Contours of Mθ (kN-m) for SS Circular Plate under ULP 

13.4 ANNULAR PLATE BENDING EXAMPLES 

Annular plate is a plane geometry with circular plan having a circular hole 

at the center with dimensions as per practical applications, i.e. pressure 

vessels, automotive and large machinery components etc. If the thickness of 

circular plate is not greater than one tenth of the diameter, one needs not to 

model it as a 3D continuum and simple 2D plate theory can be applied to 

calculate the deformation and stresses. Further, if the plate is 

axisymmetrically loaded instead of asymmetrically loaded, its axisymmetric 

behavior allows one to treat it as a 1D problem.  

For the analysis of annular plates also CIRC_2F_4D having two force and 

four displacement degrees of freedom is used. After calculating [Z] matrix 

and stress interpolation matrix [Y] and integrating, the equilibrium matrix 

for annular geometry [Be] is obtained for element 1 with inner radius r1 = b 

and outer radius r2 = (a + b). The [Be] matrix will be as follows: 
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   [Be] = 

 
 
 
 
 
 
  

 

 
   

  
  

 
 
  

 

   
 

 

   
   

  
 
 
 
 
 
 

                                                           … (13.15) 

The basic elemental flexibility matrix is obtained by discretizing the 

complementary strain energy which gives: 

[Ge]= 2       
  

  
       r dr                                    … (13.16) 

where [Y] is moment interpolation function matrix and [D] is material 

property matrix of size 2 x 2. Substituting values in Eq. (13.16) and 

integrating, it yields the symmetrical flexibility matrix [Ge] which for the first 

element is as follows: 

                     …  (13.17)      

The data assumed for numerical study of axisymmetrically loaded annular 

plates is as follows. A Uniform Lateral Pressure (ULP) q of 106 N/m2 (1 MPa) 

on total plate surface and Line Loading (LL) p of 1000 N/m at inner or outer 

edge of the annular plate are considered. The outer and inner diameters of 

the plate are taken as 200 mm and 80 mm respectively with thickness of 

plate as 10 mm. E is considered as 2.01 x 1011 N/m2  and   as 0.3.  

 

Using the IFM based procedure, first, a convergence study is carried out to 

decide the suitable number of elements. Fig 13.10 depicts an annular plate 

with necessary details and Fig 13.11 shows the convergence graph for 

deflection at the outer edge for annular plate with clamped condition at the 

inner edge and free at the outer boundary subjected to uniformly lateral 

pressure of 1 MPa. As can be seen from the convergence graph, 

discretization with 5 elements gives results quite close to the exact solution 

and therefore for remaining examples also same scheme is used  
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                      Fig. 13.10 Annular Plate with 5 Elements 

 

Fig. 13.11 Convergence Graph for Deflection at Outer Periphery  

In Table 13.4 and Table 13.5 results obtained for deflection w and 

moments Mr and M  along a radial line at different nodal points are 

compared with the available solution [102,104] for uniform lateral pressure 

q and line loading p for clamped boundary conditions 
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Table 1 Results Obtained for Clamped Annular Plate 

Ex. 

No 
TYPE 

NOD

E 

δ (mm) Mr ( kN-mm) M  ( kN-mm) 

IFM Exact IFM Exact IFM Exact 

1 

 
Clamped 

(Outer) ULP 

 

1 0.0185 0.0199 0.00 0.000 899.14 901.6 

2 0.0081 0.0087 41.32 44.19 596.21 617.3 

3 0.0032 0.0004 89.21 100.5 365.1 394.1 

4 0.0020 0.0003 334.2 339.8 145.12 174.1 

5 0.0001 0.0002 670.4 675.9 59.21 63.11 

6 0.0000 0.0000 998.1 1088 321.14 330.1 

2 

Clamped 

(Outer) LL 

 

1 0.0012 0.002 0.00 0.000 20.14 24.60 

2 0.0014 0.0016 -5.14 -6.01 19.14 24.98 

3 0.0011 0.0013 -9.11 -9.84 19.00 23.66 

4 0.0007 0.0009 -12.0 -12.62 18.11 22.73 

5 0.0003 0.0004 -14.1 -14.81 18.04 21.60 

6 0.000 0.0000 -16.5 -16.58 18.00 20.14 

3 

Clamped (Inner) 

ULP 

 

1 0.000 0.000 -331. -335.7 -92.14 -100 

2 0.032 0.040 -180.0 -183.3 -214.1 -238. 

3 0.101 0.140 345.2 375.0 -294.1 -295. 

4 0.135 0.166 365.1 375.9 -349.1 -357. 

5 0.211 0.243 228.2 241.8 -442.5 -449. 

6 0.322 0.332 0.00 0.00 -568.1 -579. 

4 

Clamped (Inner)  

LL 

 

 

1 0.000 0.00 -50.00 -57.45 -89.12 -92.4 

2 0.0011 0.0014 -30.44 -34.69 -60.75 -68.6 

3 0.0031 0.0033 -19.45 -21.27 -50.14 -56.2 

4 0.0051 0.0055 -11.47 -12.14 -43.14 -47.1 

5 0.0070 0.008 -5.00 -5.36 -38.54 -40.3 

6 0.091 0.108 0.00 0.00 -30.11 -35.1 

 

Table 2 Results Obtained for Annular Plates Simply Supported at Outer Edge 

Ex. 

No. 
TYPE NODE 

δ (mm) Mr (kN-mm) M  ( kN-mm) 

IFM Exact IFM Exact IFM Exact 

1 

SS (Outer & Inner ) 

ULP 

 

 

1 0.00 0.00 0.00 0.00 566.2 597.1 

2 0.018 0.020 -124.3 -127.1 145.3 150.2 

3 0.031 0.032 -345.1 -350.1 -187.2 -195. 

4 0.030 0.034 -487.1 -500.8 -502.5 -515. 

5 0.021 0.024 -700.3 -724.1 -823.5 -837. 

6 0.00 0.00 0.00 0.00 -1021 -1133 

2 

SS ( Outer )  & 

Clamped ( Inner )  

ULP 

 

 

 

1 0.00 0.00 1698 1761 498.2 528.1 

2 0.005 0.005 534.3 567.1 434.1 471.1 

3 0.011 0.014 -312.1 -339.1 302.3 334.5 

4 0.014 0.020 -1093 -1141 -267.2 -285. 

5 0.014 0.017 -1832 -1894 -734.1 -741. 

6 0.00 0.00 -2477 -2652 -1178 -1219 

 

 

p p 

q q 

q q 
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Fig. 13.12  Contours of Mr for Plate Clamped along Inner Edge and  

 Outer Edge under Line Loading 

 

Fig. 13.13   Contours of Mθ for Plate Clamped along Inner Edge and  

 Outer Edge under Line Loading 

p p 

p 
p 
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Fig. 13.14 Deformed shape of annular plate under uniform lateral 

pressure with clamped inner edge 

 

   Fig. 13.15  Deformed Shape of Annular Plate under Uniform Lateral 

 Pressure with Inner and Outer Edges as SS 

13.5 DISCUSSION OF RESULTS 

 Results obtained for simply supported and clamped circular plates under 

central point load and uniform lateral pressure by using just three 

elements in the radial direction are found quite encouraging. Results 

obtained for moments, deflections and rotations are found within 5 

percent, in most of the cases, of those obtained by using classical 

method. Also, moment results are found more accurate than the 

deflection results. The comparison of results obtained for deflections and 

moments using IFM based CIRC_2F_4D element with 5 element 

discretization indicated a good agreement with those based on the 

classical methods for a variety of problems under different boundary 

conditions at inner and outer periphery when the annular plate is 

subjected to uniform lateral pressure or a liner load along inner or outer 

periphery. 
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CHAPTER 14 

BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES  

14.1 GENERAL REMARKS  

In structures where dominant loading is usually static, the most common 

cause of the collapse is a buckling failure. Buckling may occur locally in a 

manner that may or may not trigger collapse of the entire structure.  

Compression members or beams may buckle as individual members, or 

structure as a whole may buckle. Often the buckling of a system can be 

studied by using the stiffness obtained from appropriate load deflection 

characteristics defined by elementary theory.   

In the stiffness based formulation, one has to consider geometric stiffness 

and mechanical stiffness in the buckling analysis of the structure. The 

geometric stiffness purely depends on in-plane loading and length of 

member whereas mechanical stiffness of a member depends upon the 

physical properties i.e. material and area based inertia.  Geometric stiffness 

exists in all structural members; however, it only becomes important if it is 

large compared to the mechanical stiffness. This converts the complete 

problem into eigen value analysis and gives the balancing numerical eigen 

vector.  

Evaluation of buckling strength of truss is an important limit state of 

collapse and design must ensure highest reliability. The buckling load of an 

overall system is conceptually intuitive and simple to evaluate, whenever 

buckling of weakest member in compression causes the instability of 

complete system. But, whenever there is a rigid jointed structure, the 

evaluation of buckling load is more complex as it often involves the 

instability of more than one member at a time. Thus computation of the 

buckling load requires tedious non-linear iterative analysis, which is mostly 

done by utilizing the Finite Element based software packages.  
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In the present chapter, IFM is extended to facilitate buckling analysis of 

various types of skeletal and continuum structures. Different closed form 

matrices are worked out. Eigen operators are used from Matlab software for 

calculating the buckling load, relative internal moments and nodal 

displacements. The critical load is calculated and validated by comparing 

the same with the analytical solution. 

14.2 FORMULATION FOR SKELETAL STRUCTURES  

14.2.1 IFM Based Stability Equations  

In IFM, the element forces {F} and the external load vector {P} are related as  

              
   

      
 {F} =                                             … (14.1) 

 Or                                                                                               … (14.2)  

where [B] is the basic equilibrium matrix of size m x n, [C] is the 

compatibility matrix of size (n - m) x n  and [G] is the concatenated flexibility 

matrix of size n x n, with m being the force degrees of freedom and n being 

the displacement degrees of freedom. 

The nodal displacement vector {} is related to the element force vector {F} as 

follows: 

{δ} = [S-1]T[G]{F}                                                                       …  (14.3) 

The eigen based stability analysis equation is obtained by usual 

perturbation theory.  

 [S]{F} =  [Kg][J][G]{F}                                                              …  (14. 4) 

Or [[S] -  [Sb]]{F}  = {0} 

where [Kg] is the geometric stiffness matrix and   is the stability parameter. 

The matrix [Sb] is referred as the ‘IFM stability matrix’ and [J] consists of 

number of rows taken from [S-1]T matrix. After calculating the eigen vector   
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of size m, each is substituted in Eq. (14.4) for the calculation of {F}. Nodal 

displacements {δ} are worked out for each vector by substituting {F} in Eq. 

(14.3). 

Two different methods are available for modeling the geometric stiffness 

matrix [Kg]. In the first method, the consistent geometric stiffness matrix 

[Kgc] is derived by using the third order polynomial function by neglecting 

the contributions of rotational effect assigned to nodal coordinates whereas 

in the second method, a simplified geometric stiffness matrix [Kgs] is derived 

by using only the first order polynomial function by neglecting the 

contribution due to the rotational effect assigned to the nodal coordinates. 

The second method for developing stiffness matrix with relatively few terms 

ensures full numerical stability. The procedure for deriving the different 

matrices is illustrated below with reference to a beam member. 

14.2.2 Geometric Stiffness Matrix 

Consider a beam member of length L and flexural rigidity EI, subjected to an 

axial force P along its length. It consists of total four nodal displacements, 

two at each node i and j respectively, as shown in Fig. 14.1. 

      
 

 

                         Fig. 14.1 Member under Buckling Load 

Combining all the coefficients for consistent and simplified geometric 

stiffness matrices related to each degree of freedom for uniform beam 

member, one can write the  matrices  [Kgc] and [ Kgs] of size 4 x 4 for each 

member  as follows: 

       
 

   
 

         
           

           
           

         

j 

 

Pcr 

 

L, EI 

 

i 

 

Pcr 
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                                                       ... (14.5) 

Transformation of the element geometric stiffness matrix [Kge] of pin jointed 

structure from the local coordinate to global coordinate system can be done 

by the following formula: 

                      
         , where   

                  

     
      
    
     

               
 

 
 

     
      
    
     

             … (14.6) 

In the transformation matrix [T], c = cos, s = sin, and  is the angle 

between the global and local axes. 

14.2.3 Steps for Buckling Analysis 

Steps required for the buckling analysis are explained here with the help of 

a beam example. A prismatic propped cantilever beam with total span 2L is 

discretized into two elements with length of each element as L as shown in 

Fig. 14. 2.   

 

 

 

 

                                                                    

    

 

Fig. 14.2 Propped Cantilever Beam Example 

Step 1 Develop equilibrium matrix [B]: After discretizing the beam into 

two elements and applying the equilibrium conditions, in the direction of 

M1 

 

1 

M3 

 

M2 

 

C B A 

M3 /L 

 

– M3/L 

 

(M2 – M1)/L 

 

(M1 – M2)/L 

 

4 3 2 

2L, EI 

L L 

Pcr 
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rotation and deflection in terms of internal moments M1, M2 and M3 at point 

B in Fig. 14.2, one can write the equilibrium equations in matrix form as 

                 
 

 
 
 

 
 
 

 

      
  
  

  

  

  = 
 
 
 
                                                          … (14.7) 

which using concise notations can be written as   

                                                                                                … (14.8) 

Step 2 Develop displacement deformation relations (DDR): Considering 

δ1 and δ2 as lateral and rotational nodal displacements at point B 

respectively, which are associated with the three deformations  1,  2 and  3  

corresponding to internal moments M1, M2 and M3 respectively, the 

displacement deformation relationship can be expressed in terms of nodal 

displacements as follows: 

           

 
 

 
 

 
 

  = 

 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
   
 
 
 
 

 
δ 
δ 
      or {   = [B]T{δ}                                       … (14.9)  

Step 3 Develop the compatibility matrix [C]: Writing the above relation in 

equation form,  

 
 
 δ / L,  

 
 =   δ

 
/ L) + δ2 and  

 
   δ

 
     δ                      … (14.10)   

 

Eliminating displacements from the above equation, one can write  

   
 
   

 
   

 
    

                     

Or in a matrix form it can be written as 

       [2   1   1]  

 
 

 
 

 
 

  = {0}                                              … (14.11) 

 

This can be further written in the form as 

 [C]{   = 0                                                 … (14.12) 
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The null property of the matrix [C] can be checked by the product of [B][C]T 

which must be equal to zero for numerical stability of solution in IFM. 

Step 4 Develop global flexibility matrix [G]: The global flexibility matrix is 

worked out using the force deformation relation,     = [G]{F}. For a single 

member having length L, flexural rigidity EI, subjected to M1 and M2 

moment at each end, one can write 

 

  
 
  

 

   
         ,      

 

   
          and  

 
  

 

   
                  

or in matrix form,  

  

 
 

 
 

 
 

  = 
 

   
 
   
   
   

  
  

  

  

                                                … (14.13)  

 

Where, [G] = 
 

   
 
   
   
   

  is known as the global flexibility matrix.  

                                                                                                    … (14.14)                       

The concatenation of third row in the equilibrium matrix [B] can be obtained 

by multiplying compatibility matrix [C] by {  . Thus one can convert all the 

displacement deformation relations (DDRs) into force deformation relations 

(FDRs). Substituting deformation vector {    from Eq. (14.13) into Eq. 

(14.12), one can write 

 

[C][G]{F} = 
 

   
 [5   4   2]  

  

  

  

  = {0}                                   … (14.15) 

 

Step 5 Develop global geometric stiffness matrix [Kgc]: The global 

geometric stiffness matrix is worked out by assembling the two elemental 

matrices. For each element the geometric stiffness matrix in terms of P and 
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L is given by Eq. (14.5). Considering terms corresponding to global 

displacement degrees of freedom X1 and X2, one can write  

 [Kg] =  
   

  
 
   
    

                                                … (14.16) 

 

Step 6 Calculate buckling load: Concatenating Eq. (14.15) into Eq. (14.7) 

gives the global equilibrium matrix [S]. Substituting all related matrices into 

Eq. (14.4) gives the complete global form of IFM based stability equation. 

Considering total span 2L of propped cantilever beam as 2m, cross-sectional 

dimension of beam as 0.01m x 0.01m and E of material as 2.01 x 108 

kN/m2, one can write 

 

 

 
 
 

 
 
 

 

    
  

   

  

   

  

   

  
  

  

  

   
   

  
    

    
     
   

      
 

   
 
   
   
   

    
  

  

  

         … (14.17) 

 

Where  [J] = [S-1]T.  

 

Step 7 Calculate force mode shape: Substituting all the values of Pcr 

calculated from the Eq. (14.17), values of all other internal moments M2 and 

M3 can be worked out by assuming relative value of M1 = 1 kN-m by 

considering any two random equation of moments by direct elimination 

approach.  

 

Step 8 Calculate displacement mode shape: Substituting values of all 

internal moments in Eq. (14.3), the nodal displacements, which depend on 

the moments, can be calculated. 

 

14.3 EXAMPLES OF BUCKLING ANALYSIS OF BEAMS 

Various beam examples are considered here with one or two spans having 

different boundary conditions as shown in Fig 14.3. The length L of each 

element is taken as 1m. The cross sectional dimension of beam is 
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considered as 0.01m x 0.01m with mild steel as basic material having E as 

of 2.01 x 108 kN/m2 [  ]. Results obtained for different types of beam 

problems are reported here in Table 14.1. 

             

                  Fig.14. 3 Different Types of Beam Examples 

Table 14.1 Results for Beam Examples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buckling Load 

(Pcr)  kN Internal 

Moment (M) 

Nodal Disp. 

(δ) IFM Euler’s 

Simply Supported Beam Example 

0.42 0.41 M1  = 1.0 M2 = -1.0 δ1 = 2.00 

Propped Cantilever Beam Example 

0.88 0.83 
M1  = 1.0 M2 = -0.7 δ1 = 1.00 

M3 = 0.8 ɵ2 = 0.08 

Fixed Beam Example 

1.69 1.65 
M1  = 1.0 M2 = -0.87 δ1 = 1.023 

M3= 0.87 M4 = -1.0 ɵ2 = 0.00 

Cantilever Beam Example 

0.11 0.10 M1  = 1.0 M2 = 0.62 δ1 = 1.00 

Hinged – Roller - Roller Beam Example 

1.69 1.68 M1  = 1.0 M2 = -1.0 δ1 = -0.85 

Hinged – Roller – Fixed  Beam Example 

2.10 2.09 M1  = 1.0 M2 = -1.0 δ1 = 0.37 

  M3 = 0.52  
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14.4 EXAMPLES OF BUCKLING ANALYSIS OF TRUSSES 

Two problems of plane truss, one having two members and other having six 

members, are shown in Fig 14.4.  The length L of vertical and horizontal 

members are considered as 1m with cross sectional dimensions of each one 

as 0.01m x 0.01m. The truss is made of mild steel having E as 2.01 x 108 

kN/m2. Using the desired matrices and following the steps outlined above, 

first of all the critical buckling load is evaluated and then other results are 

worked out. For the example of two member truss, the value of critical load 

is found as 14000 kN against 14090 kN based on exact solution and 14142 

based on FEM based solutions [104].  Results obtained for the buckling 

load, internal forces and nodal displacements for the two truss examples are 

reported in Table 14.2. 

                          
                                  Fig 14.4 Plane Truss Examples    

                        

                        Table 14.2 Results for Plane Truss Examples       
 

 
 
 

 
 
 

 
 

 
 
 

 
 

Buckling 

Load 
(Pcr)  x 105 kN 

Internal 

Forces (F) 
(kN) 

Nodal Disp. 
(δ)  

IFM FEM 

Two Member Truss Example 

0.14 0.1414 F1  = 1.0 F2 = 0.0 
  δ1= 2.00 

   δ2 = 0.00 

Six Member Truss Example 

0.018 0.020 

F1  = 1.0 F2 = -0.7 
δ1 = 0.414 

δ2 = 0.000 

F3 = 0.8 F4 = 0.8 
δ3 = 0.002 

δ4 = 0.00 

F5 = 0.8 F6 = 0.8 δ5 = 0.001 
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14.5 EXAMPLES OF BUCKLING ANALYSIS OF FRAMES 

Total four plane frame examples are considered here with   sway and non-

sway conditions. Two frames have pinned connection at each column base 

while the rest two have fixed column bases as shown in Fig. 14.5.  The 

length of each member is considered as 1m with the cross sectional 

dimensions of each member as 0.01m x 0.01m and E as 2.01 x 108 kN/m2.  

These hinged footed and fixed footed frame examples are analysed here 

under sway and non-sway conditions and results obtained are reported in 

Table 14.3. Results are compared with the FEM based solution [104]. 

 

Table14.3. Results for Plane Frame Examples 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 

Buckling 
Load 

(Pcr)  kN 

Internal 
Moment (M) 

 

Nodal Disp. 
(δ)  

IFM FEM 

Non Sway – Hinged - Hinged Frame Example 

2.5 2.45 
M1  = 1.0 M2 = -1.0 ɵ1 = -1.00 

M3  = -1.0 M4 = 1.0 ɵ2 = 1.00 

Non Sway- Fixed – Fixed Frame Example 

4.42 4.4 

M1  = 1.0 M2 = -2.0 ɵ1 = 1.00 

M3 =  2.0 M4 = -1.98 
ɵ2 = 0.08 

M5 = -1.98 M6  = 0.97 

Sway – Hinged – Hinged Frame Example 

0.31 0.305 

M1  = 1.0 M2 = -1.00 ɵ1 = 0.03 

M3 = -0.9 M4 = -0.9 
ɵ2 = -0.02 

δ3 = 0.09 

Sway – Fixed – Fixed Frame Example 

1.27 1.245 

M1  = 1.0 M2 = -2.43 ɵ1 = -0.31 

M3 =  2.43 M4 = -2.42 ɵ2 = -0.29 

M5 = -2.43 M6  = -1.0 δ3 = 1.03 
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(a)  (a) Hinged Footed                     (b) Fixed Footed                   
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Fig. 14.5 Plane Frame Examples 
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14.6 SIGNIFICANCE OF PLATE BUCKLING  

Linear Elastic Stability Analysis (LESA) is generally defined in the literature 

as an approach in which calculation is done for intensity of applied in plane 

loading, which is parallel to neutral plane. The internal distribution of 

orthogonal moment induced and possible nodal displacements at any point 

in the isotropic plate are again considered as independent for secondary 

linear analysis which is carried out after calculation of critical loading. 

Actually, practical aspects associated with the uncertain buckling based 

collapse involve a nonlinear aspect of instability and associated post 

buckling behavior with large amount of inelastic deformation.  However, even 

in connections, LESA thoroughly describes the complete circumstances of 

failure, which are of design importance for number of thin structural forms. 

i.e. Naval and Aeronautical structures. It also furnishes the fundamental 

basis for large technical content of practical aspects of design methodology, 

even where nonlinear phenomena must be taken into account to define 

accurately the magnitude of load that causes failure. Thus, finally the 

complete form of the solution is generally provided by Linear Analysis 

procedure only. Three well-known classical methods by which elastic critical 

load can be calculated are: (i) Equilibrium Method, (ii) Energy Method, and 

(iii) Dynamic Method. In the present chapter, however, integrated force 

method is proposed for the buckling analysis of plates. 

  

14.7 FORMULATION FOR PLATE BUCKLING 

14.7.1 Element Equilibrium Matrix [Be] 

The variational functional is evaluated as a portion of IFM functional which 

yields the basic elemental equilibrium matrix [Be] as follows: 
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where, {M}T = (Mx, My, Mxy) are the internal moments and {Є}T= 

 
   

   
 
   

   
  

   

    
  represents  the curvatures corresponding to each internal 

moment.  

A four noded, 12 displacement and 9 force degrees of freedom rectangular 

element of thickness t with dimensions as 2a x 2b along the x and y is 

considered for modeling the problem. The complete formulation for the 

rectangular plate bending element is already given in the Chapter 5.  

As explained earlier, the element equilibrium matrix is calculated by                                                                        

 [Be] = ∫s [Z] T[Y]ds                                                      ... (14.19) 

 

where [Z] = [L][N] where [L] is the matrix differential operator matrix, [N] is the 

displacement interpolation function matrix and [Y] is the matrix of force 

interpolation function matrix. Substituting necessary matrices and 

integrating gives a non symmetrical equilibrium matrix [Be] of size ddof x fdof.  

The matrix [Be] should have full row rank as mathematical property, which is 

required for further calculations. 

 

14.7.2 Elemental Flexibility Matrix [Ge]  

The basic elemental flexibility matrix for isotropic material is obtained by 

discretizing the complementary strain energy which gives 

[Ge]= ∫s[Y] T[D][Y] dxdy                                                                    … (14.20) 

 

where, [Y] is force interpolation function matrix and [D] is material property 

matrix. Substituting these matrices and integrating provides [Ge] matrix 

which is a symmetrical matrix of size fdof x fdof.  

14.7.3 Global Compatibility Matrix [C] 

 The compatibility matrix is obtained from the deformation displacement 

relation ({ } = [B]T{X}). In DDR all the deformations are expressed in terms of 

all possible nodal displacements and the ‘r’ compatibility conditions are 
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developed in terms of internal forces i.e., F1,------ F2n, where ‘2n’ is the total 

number of internal forces in a given problem. The global compatibility matrix 

[C] can be evaluated by multiplying the compatibility matrix and the global 

flexibility matrix. 

 

14.7.4 Geometric Stiffness Matrix [Kg] 

Figure 14.6 shows a rectangular plate of thickness ‘t’ subjected to inplane 

compressive forces acting along the neutral plane. 

 

 

 

 

 

             

Fig. 14.6 Plate Under In-plane Forces 

The geometric stiffness matrix for the RECT_9F_12D element can be written 

as 

 [Kg
e 

(x-x)] = ∫S  [N’
x]T[N’

x] σxt dxdy                  … (14.21)             

where, N’
x is vector of size (12 x 1) developed by differentiating with respect 

to x, σxt  is the inplane load acting along neutral plane. Integrating within 

2a 

2b 

t 

Nx = σxt 

Ny = σyt 

Y 

X 
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the domain gives the geometric stiffness [Kge] as follows;            

     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

    

 

  

    

    
 

   

    

 

  
 
    

    
 

   

    

 

  

    

    

   

    

 

  
 
    

    

 
   

  
  

 

  

    

  
 

 

  

   

  
 

 

  

   

  
 

   

    
 
    

    
  

   

    

    

    
 

  

   

    

    
  

  

   

   

    
 

 

  
 
    

    

   

    
 

 

  
 
    

    
 

   

    
 

 

  

    

    
   

   
  

 

  

   

  
 

 

  
 
  

  
 

 
   

    

    

    
  

  

   
 
    

    
 

  

   

   

    
 

 

  
 
    

    
 

   

    

 

  
 
    

    
   

   
 

 

  

    

  
 

   
   

    

    

    
 

   

    

   

    

 

  
 
    

    
   

   
 

   

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                                                  ...  (14.22) 

Where, Pcrit = (σxt) = a critical inplane-force considered corresponding to 

buckling of plates. 

14.8 EXAMPLES OF BUCKLING ANALYSIS OF PLATES 

Total seven examples of mild steel plate are considered here to validate the 

proposed method under different boundary conditions i.e., Simply supported 

(S), Clamped (C), Free (F) and their combinations as shown in Fig. 14.7. In 

all problems, the load is considered in x-x direction only. Each plate is 

having geometrical dimensions as 4000 mm x 4000 mm x 200 mm. E =   

2.01 x 1011 N/m2 and   as 0.23. Depending upon the type of symmetry, 

either quarter plate is discretized in 2x2 mesh or half plate is discretized in 4 

x 2 mesh as shown in Fig. 14.7.      
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Fig 14.7 Plate Buckling Problems with Different Boundary Conditions 

Steps for finding the solution to any plate buckling problem are the same. 

Here the steps are explained with reference to a simply supported plate 

subjected to inplane forces in the x-direction only. 

 

Step 1- Develop global equilibrium matrix [B]: A four-noded rectangular 

element (2a x 2b) with 12 ddof and 9 fdof is used for discretizing the problem 

in to four elements. The elemental [Be] matrix is obtained as explained above 

by substituting a = 0.5m, b = 0.5m. An assembled size of global equilibrium 

matrix for quarter plate will be of size 12 x 36. 

 

Step 2- Develop global compatibility conditions [C]: The compatibility 

matrix for all discretized elements is obtained from the displacement 

deformation relations (DDR) i.e.   = [B]T{δ}. In the DDR, 36 deformations 

which correspond to 36 force variables are expressed in terms of 12 

displacements. The problem requires 24 compatibility conditions [C] that are 

obtained by using auto-generated Matlab software by giving input as upper 

part of the global equilibrium matrix. 
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Step 3- Develop global flexibility matrix [G]: The flexibility matrix for the 

problem is obtained by diagonal concatenation of the four element flexibility 

matrices as;  

 























4

3

2

1

e

e

e

e

G

G

G

G

G                                               … (14.38)        

 

Step 4- Develop global geometric stiffness matrix [Kgc]: The global 

geometric stiffness matrix is worked out by assembling the four element 

geometric matrices [Kg
1], to [Kg

4].  Considering standard stiffness based 

assembly procedure a global geometric stiffness matrix is developed having 

number of rows and columns for S-S-S-S case = global DOF for quarter 

symmetry = 12. The remaining rows and columns for [Kgc] are filled by zeros. 

Thus, the complete matrix is of size (36 x 36). 

 

Step 5- Calculate buckling load (Pcrit): The global CC matrix of size 24 x 36 

is obtained after normalizing with respect to components of [Be] of size 12 x 

36. It is developed by multiplying [C] matrix of size 24 x 36 by global 

flexibility matrix of size 36 x 36. Finally by concatenations one can get the 

complete global equilibrium matrix of size 36 x 36. Thus substituting all 

necessary matrices in Eq. (14.4), one can get solution as eigen vector of size 

(12 x 1), corresponding to 12 global displacements of quarter plate of S-S-S-

S case. The critical load is found as 3.681x105 kN against the exact value of 

3.47 x 105 kN [ ]. 

 

Step 6: Calculate force mode shape {F} (Internal moments): The internal 

unknowns are auto calculated in Matlab based eigen value analysis by 

typing [F, Pcrit] = eig (Smatrix, KJG) where [F] is the matrix of size 36 x 36, 

Pcrit is the diagonal matrix of size 36 x 36 in which first 12 elements and 
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KJG is the product of global geometric stiffness matrix [Kg] of size 36 x 36, 

Jmatrix and [G] which is the global flexibility matrix of size 36 x 36. Taking 

sixth column of [F] matrix which is corresponding to minimum critical load 

and substituting in moment equation, all moments at points I, F, C, G are 

worked out as per each segment 1, 2, 3 and 4 (F1 to F9), (F10 to F18) etc., as 

shown in Fig 14.8. The values normalized with respect to point C are 

depicted in Table 14.4. 

 

 

 

 

 

 

 

 

 

 

 

 

              Fig 14.8 Four Element Discretization Scheme 

 

Step 8: Calculate displacement mode shape (δ): Substituting values of all 

internal forces (F1 to F36) for lowest critical buckling load in Eq. (14.3) gives 

the normalized displacements with respect to 5 as follows.  

 

 1 = -0.6651   2 = -1.136  δ3 = 0.992   4 = -0.7718  

δ5 = 1.4313  δ6 = 1.0000   7 = 0.8506  8 = -1.0611  

 9 = -0.7956   δ10 = 0.6553   11 = 0.5076   12 = 0.6377 

 

 

B 
A 

C D 

  

E 

F 

G 

H 

1 m 

0.5m 

1 m 

0.5m 

1 

2 

4 3 

Ө1 
Ө 2 

δ3 

Ө 4 

Ө 11 

δ5 

Ө 8 
Ө 7 

δ6 

Ө 9 

Ө 12 

δ10 

I 

Symmetry Line Pcrit(x-x) 

(F1 ~ F9) 

(F10 ~ F18) 

(F19 ~ F27) 

(F28 ~ F36) 



 

366 

 

 

Table 14.4 Normalized moments for S_S_S_S Case 

Moments Normalized Moments with Respect to node C 

Node I Node F Node C Node G 

Mx 0.2854 0.9935 1.000 0.5862 

My 0.09244 0.6321 1.000 0.6931 

Mxy 0.8668 3.5133 1.000 3.6198 

 

Similarly linear buckling analysis is carried of all other plate problems by 

using either one way or two way symmetry depending on the boundary 

conditions. Table 14.5 shows IFM based critical load and exact solution [99] 

for the plates subjected to uniaxial loading.    

Table 14.5 Buckling Loads for Different Boundary Conditions  

Case 
Buckling Load (Pcr) x 105 kN 

IFM Exact 

C_C_C_C 8.53 8.10 

C_S_C_S 8.00 7.81 

S_C_S_C 6.098 5.89 

C_S_S_S 5.37 5.13 

F_S_S_S 1.31 1.24 

F_S_C_S 1.48 1.46 

 

A simply supported plate subjected to biaxial loading is also considered for 

buckling analysis. Because of two way symmetry only quarter of the plate is 

discretized into 2x2 mesh. Global geometric stiffness matrix is calculated by 

considering Nx and Ny of equal intensity i.e. by considering load ratio   = 1. 

IFM based analysis gives the value of critical load as 1.78 x 105 kN whereas 

the exact value is 1.73 x 105 KN [99].  

14.9 DISCUSSION OF RESULTS 

 Total six problems of beam are solved for calculating the critical 

buckling loading, but only minimum load is considered for further 

calculation of non-dimensional internal moments and nodal 

displacements. With two element discretization for all the problems, 

result for critical load is found in good agreement with Euler’s 
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buckling load. The value for cantilever beam is found slightly higher 

which may be due to flexibility of free end. The non-dimensional 

moments are auto-calculated using Matlab module which provide an 

approximate idea about values of moments at the intermediate points 

with respect to unit value at one point. Non-dimensional nodal 

displacements also worked which give an idea about displacements at 

other points with respect to unit ordinate at far end for the first mode 

of buckled form.  

 Two problems of pin jointed plane truss are attempted in which critical 

load is worked out using buckling form of any one of the sensitive 

members of the pin jointed truss. Result obtained for two member 

truss is found to match exactly with the FEM result whereas the result 

for 6 member truss is found slightly lower than the FEM solution for 

critical load. 

 Two problems of plane frame are considered for calculating the first 

mode buckling load under sway and non sway conditions. Considering 

each member of the frame as one element, results obtained for critical 

load for all the frame problems are found within 2 to 4% to the value 

obtained using displacement based finite element method 

 RECT_9F_12D element which is used to solve 7 plate buckling 

problems under uniaxial loading is found to provide critical load quite 

near to the exact value with 2x2 discretization in case of one way 

symmetry and with 4x2 discretization in case of dual symmetry. In 

case of simply supported plate the moments are calculated for all the 

four elements and are normalized with respect to the value at centre of 

plate. As the in-plane loading is in the x-x direction, the value of Mxx 

are found higher than the values of Myy.  

 In case of a fully simply supported plate subjected to biaxial loading 

also, with 2x2 discretization, the value of critical load found using IFM 

is found quite close to the exact value. 
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CHAPTER 15 

CONCLUSIONS AND CONTRIBUTION 

15.1 SUMMARY 

 The two most fundamental approaches for analysing the discrete structures 

are the force (Flexibility) and displacement (Stiffness) methods. The relative 

merits of these methods were discussed intensively during the early 

evolution of computer automated structural analysis. The displacement 

method won out for computer automation whereas the classical force 

method proved inconvenient to automate and computationally more costly 

than the displacement method. Since then a number of attempts have been 

made to improve the classical force method; the integrated force method is 

the outcome of the one of such attempts. 

The integrated force method was introduced by Patnaik and his team at Ohio 

Aerospace Institute with the aim to make its automation as convenient as 

the displacement method for the analysis of framed structures and to make 

it as versatile as the finite element method for the analysis of continuum 

structures. The same method was further investigated in the present work to 

find its suitability and to look at any possibility of further development. 

 Using the concepts of IFM, formulations were developed for static and 

dynamic analysis of 6 types of framed structures. After the computer 

implementation of the solution steps, results obtained for a variety of 

problems were compared with the known solutions. A dual form of IFM, 

called as DIFM, was also developed and computer implemented. 

Rectangular, triangular and curved elements were then developed to 

facilitate analysis of continuum structures such as plane stress, plane strain 

and plate bending problems. Pre-, Main-and Post-processors were developed 

in VB6 and VB.NET environment using where required the facilities available 
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in Matlab software. Results obtained using these numerical and graphical 

processors for the static and dynamic analysis of rectangular plates were 

than compared with the available solutions. Plates were analysed 

considering variety of loading such as central point load, uniform lateral 

pressure, patch and hydrostatic loading under a variety of support 

conditions such as fully simply supported, fully clamped and their 

combinations. Plotting of moment contours and deflection profile was 

achieved through Matlab software.  

In addition to isotropic plate problems, formulation and programs were also 

developed for linear elastic analysis of orthotropic plates. Dynamic analysis 

of orthotropic plate problems was also carried out and the results were 

compared with the available solutions.  

Also, formulation was developed for IFM based analysis of circular and 

annular plates under lateral pressure and line loading along inner or outer 

periphery of annular plate. Computer implementation of the same was 

validated by comparing with the available solutions. Convergence study was 

also carried out.  

Finally, IFM based formulation was developed for computer aided buckling 

analysis of framed structures and rectangular plates. Results obtained were 

presented in tabular form and the results were compared with the available 

solution. 

15.2  CONCLUSIONS 

1. A visual programming environment provides all features that are 

required to develop a graphical user interface. Here selection of VB6 

and VB.NET environment has helped considerably in developing the 

menu driven programs with provisions for all the symbolic 

manipulations needed for the development of different types of 

matrices along with the capability to provide the output in quite 

attractive form. 
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2. The development of compatibility conditions is the most important part 

of the IFM based formulation. It is generated from displacement-

deformation relation of the original structure without any reference to 

static or kinematic indeterminacy. However, It is always necessary to 

check the compatibility conditions which could be easily verified 

mathematically by [B][C]T resulting in a null matrix. 

3. The IFM is a true force method as it is free from the concepts of 

selecting the redundants and basic determinate structure, due to 

which an automation of the IFM is possible. The methodology adopted 

in IFM is unusual but attractive. The inclusion of secondary effects in 

terms of temperature variation, support settlement and prestrain in 

the analysis is also easy. 

4. For small scale structures involving combination of various rigidities to 

resist different types of forces, finding the solution may be difficult in 

terms of development of CCs. It is simplified in the present work by 

implementing an algorithm for auto-generation of the compatibility 

conditions where all the CCs consisting contributions of all 

deformations based on nodal displacements satisfies [C]{ } = 0. This 

also helps in dealing with sparse matrix effectively. 

5. IFM bestows appropriate emphasis on equilibrium equations and 

compatibility conditions, whereas stiffness method emphasizes only on 

equilibrium equations. Therefore, the results obtained using IFM are 

more accurate, in some of the cases, compared to other displacement 

based numerical methods.  

6. Under transverse loading for beam type of structures two major 

unknowns are shearing forces and moments. In IFM shearing forces 

are directly represented in terms of length of each member, which is a 

numerical constant. Hence the major unknowns are moments only 
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which reduces the computational effort required for finding the 

solution in Integrated Force based methodology.   

7. IFM based procedure for plane framed structures, considering and 

neglecting axial deformation in members, does not require major 

alteration in basic equilibrium matrix [B]. The axial force in element 

matrix contributes only positive or negative values depending upon the 

loading without effecting the number of unknowns and computation 

procedure which has been clearly demonstrated with the help of an 

example. Also, as IFM concentrates on only internal unknowns of the 

members, no transformation is required for inclined members. 

8. Results obtained by using IFM are found to match fully, for most of 

the framed structure problems, with the solutions obtained by 

Flexibility Technique and commercially available STAAD.pro software. 

9. The extension of integrated force method from plane structures to 

space structures is found quite straight forward. Also, as there is no 

need to make any transformation and as some of the internal actions 

are indirectly considered in IFM, the computational effort required for 

finding the solution is less. 

10. The dual form of IFM (DIFM) is analytically equivalent to IFM and 

produces identical results for displacements and internal actions. 

Development of compatibility conditions manually in IFM, is 

cumbersome for being trial-and-error approach. It is totally removed in 

DIFM. Although programming of DIFM is easier compared to IFM, it 

requires some extra matrix operations to get the final solution. 

11. The traditional displacement based finite element approach always 

uses the differentiation of an approximate displacement function to 

calculate stresses; which is totally removed in DIFM. Various 

necessary matrices i.e. Element Equilibrium matrix [Be], and Element 

Flexibility Matrix [Ge] are developed for all types of framed structures. 
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Computer implementation of the same is found to give same results as 

obtained by IFM, and therefore, only some demonstrative examples of 

DIFM were included in the present work.  

12. IFM based formulation is also successfully extended to carry out 

frequency analysis of framed type structures by considering eigen 

values analysis. The complete mathematical procedure is found to be 

very straight forward and easy to understand.  Different types of 

beams are analysed under different loading criteria i.e. Direct Nodal 

Lumping Mass (DNLM), Lumped Mass (LM) and Consistent Mass (CM) 

criteria. The DNLM predicts behavior of structural member under 

constant loading at different frequency values, which are found to 

match fully with the exact solution obtained based on simple Mass-

Stiffness formulas. By using the frequency values internal modal 

moments and nodal displacements are directly obtained using the 

facility available in Matlab. The frequency values for LM and CM cases 

are also compared with the available solution in the literature where a 

good agreement is found. 

13. Solutions for frequency values using DNLM, LM and CM approaches 

are obtained for two plane trusses and for the first frequency value 

internal forces and relative nodal displacements are worked out. Using 

the secondary parameters, one can guess generally the behavior of the 

structural members under the excitational frequency. In two panel 

type truss example the structure is found much stiffer and, therefore 

resulted in higher frequency values.  

14. The solution obtained for fixed footed frame problem, under different 

lumping criteria is found to match fully with the exact solution 

available in the literature. As first frequency is in horizontal direction, 

where axial effect in the beam is neglected, it requires less amount of 

the excitation force. As it is a direct measure of the first modal 

frequency, it indicates that the portal frame is more flexible in 
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horizontal direction compared to the vertical direction. Thus, it gives 

direct insight to lateral stiffness of a multistoreyed building under 

seismic excitation. The values of internal moments and nodal 

displacements are found to match fully with the overall deflection 

pattern of the portal frame under first frequency value. The inbuilt 

procedure provided by Matlab for calculating the internal forces and 

moments based on frequency values is found to be advantageous 

against the development of a separate routine for finding the solution 

of homogeneous equations. 

15. For a four membered grid example, solved for frequency analysis, there 

are two major displacements i.e. vertical displacement and two 

orthogonal rotations corresponding to bending and twisting. The 

vertical direction under excitation proves to be weaker hence smaller 

value of frequency is necessary for developing the first mode. The 

moments and nodal displacement at the central joint and at the end of 

the each member are worked out. The values are found to be 

consistent with the support conditions. 

16. Although IFM formulation provides strong futuristic support to 

flexibility method, it has certain disadvantages such as the approach 

for different types of structures is not the same. Releasing procedure 

for internal forces in a pin jointed structure may cause instability. 

Also, in some of the cases, IFM does not provide symmetric and 

banded matrices.   

17. IFM gives stress based behavior by calculating the internal moments 

rather than the displacements for various types of structures under 

dynamic loading. It also provides an overall idea regarding the time 

dependent stress animation and failure prone zone at higher modes of 

vibration, which is strongly desirable for uncertainty analysis 

particularly for lightweight structures.  
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18. IFM is similar to the Completed Beltrami-Michells Formulation (CBMF) 

in elasticity with the governing equation as [S]{F} = {P} in which 

equilibrium Cauchy operator is analogous to [B] matrix, Compatibility 

operator of St. Venant controls the strain which is analogus to [C]{ } = 

0, and Hooke’s constitutive matrix is related to [G] matrix. Thus, the 

IFM has a capability to obtain the exact stress solution because of 

classical mechanics background.  

19. The generation of CCs by hand calculations is always a trial- and-error 

approach which is not only time consuming but also laborious and 

tedious. Auto–generation of the compatibility conditions using Matlab 

software is facilitated in the present work by developing an algorithm 

and linking it to the programming languages VB6 and VB.NET. The 

generation of field and boundary compatibility conditions for any large 

scale continuum problem with finer discretization may require more 

time, where the suggested scheme may prove very efficient. 

20. When the development of basic equilibrium matrix [Be] and flexibility 

matrix [Ge] is carried out directly using Matlab based 

integration/differentiation technique, it has an advantage of 

minimizing the computer coding. Also, the overall time required for 

finding the solution for complex problems can be minimized by directly 

supplying the equilibrium and flexibility matrices through a text file. 

21. The IFM based plane stress element for deep cantilever beam problem 

shows lower bound convergence for nodal displacements and internal 

stresses with 2, 3, 4, and 5 element discretization schemes. With 5 

elements the nodal displacements obtained using IFM and DIFM are 

found in close agreement to that of the exact displacement.  

22. IFM based RECT_5F_8D element shows good performance in 

calculation of internal stresses as well as nodal displacements under 

plane stress condition. The computation time required compared to 
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the well known Finite Element Method is less for the same degree of 

accuracy. For a propped deep cantilever beam subjected to pure 

bending, with 2 x 2 discretization of quarter plate, IFM gives 

Displacement Ratio as 0.998 with respect to exact value while its value 

is 1.045 with respect to FEM solution. 

23. A triangular element (TRI_3F_6D) is used for finding the solution to a 

deep propped cantilever plate subjected to a point load; after verifying 

the properties of the triangular element in terms of full row rank, 

shear locking criteria etc. The solution obtained is found to be 

matching with the available FEM based solution. Thus, the suggested 

triangular element (TRI_3F_6D) can be safely used for solving similar 

the plane stress problems of similar types 

24. CURV_5F_8D element is developed and checked for its validity using 

curved beam example subjected to a moment at free end. Polar 

coordinate system is explored for the development of the formulation. 

Results obtained for stresses and displacements are found within 6 % 

of that available in the literature.  

25. For a plane strain problem of box culvert which is attempted using 

RECT_5F_8D element with appropriate [D] matrix in the formulation, 

results are found in good agreement with the solution available in the 

literature. 

26. The proposed Airy stress  based functions can handle different types of 

2D continuum problems under different types of loading and support 

conditions. However, improper choice of stress interpolation function 

may make discretized model more rigid or flexible and may provide 

accordingly the lower or upper bound solution. 

27. For large size problems, involving large number of unknowns, if the 

numerical difference between the components of equilibrium and 

compatibility part is more, it may change the displacement to 
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uncertain values. So, before proceeding further a normalization of the 

compatibility conditions is strongly recommended. However, it does 

not make much difference in the calculation of internal force vector {F}. 

28. In IFM, the percentage variation in solution is controlled by 

compatibility conditions rather than equilibrium equations. A minor 

modification in coefficients of compatibility conditions leads to a large 

amount of error which may be lower or upper bound with respect to 

the exact solution.  

29. Static analysis is carried out of square plate bending problems under 

central point loading and uniform lateral pressure for simply 

supported and clamped boundary conditions by using RECT_9F_12D 

element. Considering (2 x 2), (3 x 3), (4 x 4) and (5 x 5) discretization 

schemes for the lower left quadrant, due to dual symmetry, the 

solution for central deflection using IFM based formulation is found to 

converge from the higher side while central moments are found to 

converge from lower side with finer discretization. The 5 x 5 

discretization used for the remaining plate bending problems is found 

to provide quite good results. Values of the moments at the boundaries 

are also found to be consistent with the support conditions. Results 

obtained for rectangular plate bending problems having aspect ratio as 

2 are also found within acceptable limit when compared with the 

available results based on the energy method. Finer discretization is 

required in such cases to get more accurate results.    

30. The Matlab based CC developer gives 24 number of compatibility 

conditions using only 12 equilibrium equations which makes the 

global equilibrium matrix a square matrix. The value of z.cTrasposeB 

is of the order of 10-13 to 10-14 which is almost equal to zero that is very 

much needed in IFM based formulation. Thus, [B][C]T  = 0 is satisfied 

by integrated force based methodology.   
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31. The 2D and 3D graphics capability of Matlab enabled plotting of 

moment contours as well deformation patterns for a variety of plate 

bending problems. The tool option of the matlab graphics module also 

allows to find necessary number of contours required in the specified 

domain. All these features have been found very useful in proper 

representation and interpretation of the results.  

32. For patch and Hydrostatic loadings, with 5 x 5 and 10 x 5 

discretization schemes respectively, results are found in good 

agreement with the available results. Different 2D and 3D plots are 

also included which are also found to satisfy boundary condition of 

plates as well as maxima /minima criteria of the deflection pattern.  

33. Total four square plate bending problems are attempted for IFM based 

frequency analysis by using Lumped and Consistent Mass approaches. 

A force based eigen value approach is used instead of traditional 

displacement frequency calculation. After convergence study for first 

frequency for simply supported plate, 5 x 5 discretization scheme was 

adopted, which is found to give satisfactory results. The internal forces 

based on each frequency are readily obtained by simply typing 

[Fmatrix, ω] = eig(Smatrix, MJG) in Matlab module. The normalized 

nodal displacements with respect to the value at the centre of plate for 

the first frequency provide a general idea about the first modal 

deflection pattern. Matlab based surf module has been successfully 

explored, with necessary built in features, for this particular purpose. 

34. The values of natural frequencies for simply supported plate using 

lumped mass criteria are found to be converging from the lower side 

with respect to analytical solution, while using consistent mass 

concept with same discretization pattern is found to be converging 

from the upper side. Frequency calculation using consistent mass 

includes contribution of rotary inertia in off diagonal terms which gives 
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values more than the lumped mass approach which has only diagonal 

terms with all off diagonal terms being zero. 

35. For a clamped plate with 5 x 5 discretization first frequency is found to 

have higher value due to support constrains against rotation in the 

first four deflection patterns drawn using Matlab based surf module. 

The first modal deflection pattern shows very less value at the centre 

of the plate; which also follows for the rest of the modes. Frequency 

ratio with respect to exact value is found equal to unity. For the first 

modal pattern, moment values and nodal displacements along the 

diagonal lines are normalized with respect to the values at the centre. 

These are also found comparable with respect to deflection pattern 

with hogging nature for the elements nearer to the support. Frequency 

value for the clamped plate under consistent mass is also found to be 

matching with the available result.  

36. Two problems of mixed boundary conditions are attempted using 

lumped mass criteria.  The value of FR is found to differ slightly from 

unity but for higher frequencies it is found to be matching with the 

exact solution. Along x-x axis, being clamped, some resisting moment 

is indicated whereas along y-y axis, for being simply supported edge, 

zero value of moments is indicated.  The second and third mode 

indicate different values compared to the first in the second case 

having simply supported and clamped boundary conditions all over. 

The combination of simply supported and free edges is found more 

flexible hence it required less amount of excitation energy and thereby 

gives lesser value of first modal frequency. The Frequency Ratio (FR) 

shows more deviation with respect to unit value but again for higher 

mode it re-converges to the unit value. This is possible due to each 

nodal mass is having slight deviation except the vertical.  

37. Total ten orthotropic plate problems are analysed under central point 

loading and uniform lateral pressure considering different 
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combinations of boundary conditions. In all the cases, the comparison 

of calculated deflection values and moments indicated a good 

agreement with the available classical solutions. Moment contours and 

elastic curves plotted for all the plate problems are found to help in 

visualizing the behaviour of the plate under different type of support 

and loading conditions.  

38. As the modulus of elasticity Ex of the Fiber Reinforced Composite plate 

is higher than Ey, the values of moment along x-direction are found 

more than the values in the y-direction. However, results for moment 

under uniform lateral pressure are found more closer to the exact 

value compared to the moments obtained under central point loading. 

In all the orthotropic plate problems also moment and deflection 

values are found consistent with the support conditions.     

39. The Matlab based module for CC developer in case of orthotropic 

plates generated 249 compatibility conditions using 151 equilibrium 

equations within few seconds with  null property check giving value 

between 10-12 to 10-14 which is quite remarkable. Plate examples of 

S_F_S_S_CPL and S_F_S_S_ULP show that due to free edge the 

maximum deflection is near the free edge as can seen in 3D plot. Mx 

shows less number of contours nearer to free edge compared to SS 

edge. Plate examples of F_S_F_S_CPL and F_S_F_S_ULP show behavior 

nearly analogous to SS beam having zero value at edges and maximum 

moment and deflection values at the centre of the plate while Mxy due 

to shearing effect show more number of contours near the support. 

F_C_F_C_CPL and F_C_F_C_ULP cases show stiff behavior compared 

to just previous case with lesser deflection values but with large 

number of moment contours.    

40. Total eight problems of rectangular orthotropic plate are solved 

considering aspect ratio as 1.5 and 2.0. Compared to the square plate, 
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results are found less accurate which may be improved by finer 

discretization or by using higher order rectangular element. 

41. The IFM based formulation developed in polar coordinates to deal with 

the axisymmetrically loaded circular plate bending problems is found 

quite effective. A large number of circular and annular plate problems 

are solved; results are found in close agreement with the available 

analytical solution. Deflection profile looks quite attractive particularly 

in case of annular plates subjected to uniform lateral pressure and 

line loading acting along inner or outer periphery of the plate. 

42. The equations of IFM and DIFM are mathematically equivalent hence 

the natural frequencies, forces and displacements obtained by either of 

the methods are identical. Also, by providing minor changes in 

material matrix different types of problems related to different types of 

orthotropy can be easily handled. Results obtained for both static and 

dynamic analysis of orthotropic plates are found in close agreement 

with the available solutions. 

43. The buckling analysis through IFM is facilitated by developing 

Geometric Stiffness matrix [Kg]. Various types of beam-column 

problems are successfully attempted using IFM based formulation 

where the result for critical load is found very close to Euler’s critical 

buckling load.  

44. Two problems of pin jointed plane truss are attempted using IFM 

based formulation to find critical load. In case of two member truss, 

the value of buckling load is found fully matching with the available 

solution whereas in case of six member truss it is found to differ by 

about 10 % from the FEM based solution. 

45. Four problems of 3 member plane frame are considered for calculating 

the first mode buckling load under sway and non sway conditions of 

hinged and fixed footed portal frames considering each member as one 
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element. IFM based results are found in close agreement with those 

obtained using displacement based finite element method. 

46. A number of plate buckling problems are attempted under uniform 

compressive loading in x direction. A variety of support conditions are 

considered. The result for critical buckling load is found to vary from 2 

to 6 % from the exact solution. Thus the correctness of IFM based 

formulation of geometric stiffness matrix for RECT_9F_12D element is 

ascertained. 

 

15.3  CONTRIBUTION 

 For an analysis thru classical force method an auxiliary statically 

determinate structure and a set of redundant forces must be selected. 

To make the process of selection easily adapted to computer 

automation, several attempts have been made. However, all these 

procedures resulted in certain undesired properties which made them 

unattractive and led to the demise of the classical force method. 

Recently, an alternate method, named as Integrated Force Method, has 

been developed in which all independent forces are treated as 

unknown quantities that are calculated by simultaneous  imposition of 

both equilibrium and compatibility conditions. In IFM compatibility 

conditions are generated from displacement deformation relation of the 

original structure without any reference to static or kinematic 

indeterminacy of the structure which is the most attractive but 

difficult part of the IFM formulation. In the present work the 

generation of the compatibility conditions by the use of Linear 

Independent Unknown Technique, which can be readily invoked 

through programming language of Matlab software, was proposed. It is 

found to make not only the complete process automatic but also found 

to develop successfully the required number of compatibility 
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conditions even when the input matrix [Be] is sparse and the values in 

the matrix are randomly placed. Also, through the proposed 

procedure, the necessary condition of null property check is found to 

be satisfied for any feasible framed and continuum structure. For one 

of the examples, in the present work, it has been demonstrated to 

generate successfully 291 compatibility conditions form 151 

equilibrium equations with null property check of the order 1.66 x10-12 

which is almost equal to zero. 

 A variety of examples of skeletal structures included in the thesis has 

clearly demonstrated that IFM  can be effectively  used for the analysis 

of any types of framed structure. Concept of symmetry can be easily 

used. Secondary effects can also be taken into account. The method is 

as versatile as the stiffness method of analysis with an additional 

advantage of no transformation is required for finding the solution. 

Also, a force based frequency analysis of framed structures is achieved 

and a concept of using direct nodal lumping mass is introduced with 

screen shots of computer implementation which is efficiently managed 

in the present work by interlinking VB6 and VB.NET with some of the 

modules of the Matlab software 

 A number of elements are formulated for the analysis of plane stress, 

plane strain and plate bending problems. Steps required for finding 

the solution are computer implemented. The validity of the formulation 

and its computer implementation is confirmed by comparing the 

results obtained with the available classical and/or numerical 

solutions. Because of the stress based approach, it is found to give 

zero moments at the simply supported edges unlike finite element 

method. As the displacement and stress field within the element are 

independently approximated, the user has full control to have desired 

accuracy which is one of the most important points in favour of IFM 
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 A modified form of IFM, called as DIFM, is also formulated and 

computer implemented. Both the methods are found to give identical 

results. DIFM has advantage of being similar to the stiffness method 

for framed structures and displacement based finite element method 

for continuum structures. However, it requires some extra matrix 

operations compared to IFM. 

 A number of plate examples included in the thesis clearly indicated 

that the proposed IFM based element can also be easily used for the 

dynamic analysis of plates by using the suitable mass matrix. 

Versatility of the method is further proved by solving not only the 

examples of static and dynamic analysis of isotropic rectangular plates 

but also of the materially and structurally orthotropic plates. 

 For variety of 1D and 2D elements, most of matrices are explicitly 

derived and a large number of small size problems are manually 

worked out to clearly explain the steps involved in finding the solution 

which will be certainly helpful in popularizing the integrated force 

method among the students and structural engineers. It is indeed the 

need of the hour to see some such developments are carried out for 

wider acceptability of IFM.   

 Plotting of moment contours and deflection profiles based on the IFM 

based results is attempted first time in the thesis by judicious use of 

programming environment and Matlab software. These plots are found 

very useful in interpretation of results. 

 A new element, named as CIRC_2F_4D, proposed in the thesis is also 

found to provide very good results for axisymmetrically loaded circular 

and annular plates under variety of support and loading conditions. 

 Geometric stiffness matrix developed based on the integrated force 

based methodology is also found to provide very good results in case of 

buckling analysis of 1D (framed structures) and 2D (Plate) problems. 
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 Thus, the results presented in the present thesis for a variety of 1D 

and 2D problems, confirm that the integrated force method can be 

used successfully and efficiently in structural analysis and it has good 

potential to become a viable alternative to the displacement based 

stiffness and finite element methods of analysis.  

 

15.4 FUTURE SCOPE 

1. Although a number of 2D elements such as rectangular element, 

triangular element, curved element have been developed to deal with 

plane stress, plane strain and plate bending problems, development of 

higher order elements and their computer implementation is desirable 

for better representation of the problem and to get more accurate 

solution with relatively a coarser mesh. 

2. Similarly development of 3D elements based on IFM is desirable to 

deal with both regular and arbitrary geometry problems of solid 

structures which can not be idealized either as 1D or 2D problems. 

3. In the present work a line element, named as CIRC_2F_4D was 

developed in polar coordinates to deal with axisymmetric circular and 

annular plate problems. Development of a 2D sector element to handle 

asymmetric plate problems of circular geometry will be certainly an 

useful extension of the present work. 

4. In the present work VB6, VB.NET and Matlab were judiciously used 

for numerical and graphical processing. Although Matlab software 

considerably reduced the length of program,  it is desirable to carry 

out the complete processing in the same environment. 

5. Separate program were developed to tackle different types of problems 

in the present work. Development of a general purpose program, 

although difficult, may be tried. 

6. As the equations of IFM and DIFM are mathematically equivalent and 

hence the natural frequencies, forces and displacements obtained by 

either of the methods are identical. Therefore, in the present work, 
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only very few problems were attempted using DIFM. It is however 

desirable to explore it fully to find its merits and demerits against IFM 

and other contemporary methods. 

7. IFM based formulation can be extended to take into account shear 

deformation theory of different order and thus some new elements can 

be developed by proper stress and displacement filed representation. 

8. Materially orthotropic plate problems were handled in the present 

work. By using suitable [D] matrix, the application of IFM can be 

extended to deal with a variety of structurally orthotropic plate 

problems such as idealized stiffened orthotropic plate problems and 

problems of slab reinforced with equidistant ribs and problems of 

corrugated sheets.  

9. In the present work, plate bending formulation was completely based 

on small deflection theory. One may think of development the 

formulation for large deflection analysis of thin plates. 

10. Geometric stiffness matrix was developed in the present work to deal 

with buckling problems. Study of post buckling behavior of arches and 

thin plates may be thought of by extending the IFM based formulation. 

11. The suggested integrated force method can be readily extended to 

steady state, transient and random vibration problems by making 

minor changes in the formulation. Also, it shows future scope for 

stochastic analysis which with direct stress mode facility may prove 

quite attractive. 
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