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5. Results and analysis 

5.1 General 

This chapter shows the results obtained for the individual objectives, based on the results 

obtained the analysis has been carried out. The chapter is divided into six sections, each section 

contains the results obtained for the specific objective. 

5.2 Results and analysis 

1. Objective: To demonstrate a comparative assessment of discrepancy in the hydrological 

behaviour of the DEMs in terms of terrain representation at the catchment scale. 

i. Visual Comparison: 

Streams comparison 

When the delineated streams are overlaid over high-resolution imagery, the Cartosat-generated 

network is much closer to the actual river network followed by the SRTM-derived drainage 

network as shown in Figure 5.1. It has been observed that the drainage network delineated by 

ASTER is highly misleading. Moreover, sinks around the actual river have considerably 

contributed to the deviation of ASTER DEM- and SRTM DEM-derived streams. 

Watershed comparison 

The area enclosed by the watershed generated by SRTM and ASTER is comparatively much 

larger than that generated by Cartosat as shown in Figures 5.2 and 5.3. The area of the 

watershed delineated by Cartosat is 1289.4 km2, whereas the area of the watershed delineated 

by ASTER is 1624.8 km2 (26% larger). Moreover, the SRTM-based watershed area is 2026.3 km2, 

which is 56% larger than the Cartosat boundary. The perimeter of the watershed delineated by 

Cartosat is 279.44 km, whereas the perimeter of the watershed delineated by ASTER is 315.4 

km (50.26% larger). Moreover, the SRTM-based watershed perimeter is 294.9 km, which is 

40.5% larger than the Cartosat watershed perimeter. 

Ridge line inspection over relief map 

The relief map used in the Cartographic relief depiction shows the shape of the terrain in a 

realistic fashion and also demonstrates the three-dimensional surface that is illuminated from 

a point light source. Moreover, the watersheds overlaid over the relief map and satellite imagery 

show that the watersheds delineated by ASTER and SRTM could not follow the ridgeline and 

hence they have encompassed the Dhadhar river in them. As shown in Figure 5.4, the 

highlighted yellow circles show the locations where the ASTER watershed and the SRTM 

watershed encompass the Dhadhar river. Clearly, it can also be observed that the Cartosat-

derived boundary follows the actual ridgeline. In the flow-direction process, a depressionless 
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DEM is considered to be the desired input. An erroneous flow-direction raster may be resulted 

in the presence of sinks. Moreover, there may be legitimate sinks in the data in some of the 

cases. By taking into consideration the flow networks associated with each type of elevation 

data, the cause of the difference in the watershed boundaries can be found. It has been 

observed that the flow networks generated from the ASTER- and SRTM-based DEM had several 

errors. Map algebra was used to find where the Fill tool had filled the sinks in order to determine 

the cause of the errors in the streams network. As shown in Figure 5.5 (a)–(c), it was found that 

the errors in the stream network occurred where filling of sinks along the actual river have had 

occurred. The deviation of ASTER DEM- and SRTM DEM-derived streams from the actual stream 

show a large number of sinks around the actual river have considerably contributed to the 

deviation of the generated stream network. Such error indicates that there were probably 

residual and artifactual anomalies that most certainly degraded the overall accuracy of ASTER 

and SRTM DEMs. As a result of underestimating the elevation at certain points, pits, and 

depressions are considered false in the Fill method as mentioned above. Therefore, the 

depressions are filled, and thus raising the elevation until it reaches the lower neighbour. As a 

result, the larger the number of continuously affected pixels, the more the result of the flow-

direction assignment is affected. Figure 5.5 (a)–(c) shows that ASTER data contain a large 

number of depressions or pits followed by the SRTM data, whereas the Cartosat data contain 

the least amount of depressions or pits. 

Slope Gradients Classes 

Moreover, six classes of slope were established for a better understanding of terrain as shown 

in Table 5.1. As shown in Figure 5.6 and Table 5.1, the slope values were classified according to 

the Brazilian Agricultural Research Corporation standards. According to the SRTM and Cartosat, 

the result showed that the maximum area in watershed belongs to flat relief with a declivity 

value (in %) between 0 and 2.99. According to the ASTER, however, the maximum area belongs 

to smooth relief with a declivity value (in %) between 3 and 7.99. 

Table 5.1: Slope classification as per Brazilian agricultural research corporation standards. 

Declivity (%) Relief classes 
ASTER 

AREA(Km2) 
Cartosat 

AREA(Km2) 
SRTM 

AREA(Km2) 

0 – 2.99 Flat 252.58 687.16 638.32 

3 –7.99 Smooth 677.55 481.20 600.01 

8 – 19.99 Corrugated 335.48 89.73 38.94 

20 – 44.99 Heavily Corrugated 16.07 20.05 5.15 

45 – 74.99 Mountainous 2.18 4.78 1.56 

< 75 Steepest 1.39 2.34 1.26 
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Figure 5.1: Map showing ASTER, SRTM, and Cartosat derived river deviation from the actual 
river.  
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Figure 5.2: Delineated watershed boundaries from ASTER, SRTM and Cartosat data. 

       

Figure 5.3: Area and perimeter of delineated watersheds.  
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Figure 5.4: Visual Inspection of Watersheds derived from ASTER, SRTM, and Cartosat over the 

Shaded Relief map and Satellite imagery. 
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Figure 5.5: (a) Filled sinks in ASTER (b) Filled sinks in Cartosat (c) Filled sinks in SRTM. 

 

Figure 5.6: Slope Classes of ASTER, SRTM and Cartosat. 



69 
 

ii. Statistical Comparison: 

In order to provide evidence of the statistical significance of the results, the amount of data 

(274476 pixels) from all three DEMs is used. The accuracy and quality of the reference data 

should be at least one order better as compared to the data to be evaluated. Based on the above 

observations of the DEMs, Cartosat DEM exhibited better results, hence taken as reference data 

for further analysis. The absolute difference between the mean value of SRTM and Cartosat is 

1.55 m, and of ASTER and Cartosat is found to be 5.38 m as shown in Table 5.2. The standard 

deviation showed that the Cartosat dataset was less spread out as compared to the other two 

datasets, which was also confirmed by the difference between the upper and lower quartiles 

(interquartile range). For the samples, the positive value of skewness showed that the 

distributions of the data were positively skewed or skewed right, i.e., the right tail of the 

distribution was longer as compared to the left tail of the distribution. For ASTER, the value of 

kurtosis was 0.02, which showed that the distribution is leptokurtic, i.e., its tails are longer and 

fatter. For SRTM and Cartosat, the negative value of kurtosis showed that the distribution is 

platykurtic, i.e., its tails are shorter and thinner. 

Table 5.2: Statistics for ASTER, SRTM, and Cartosat derived elevation. 

Statistic ASTER SRTM Cartosat 

Mean (meters) 45.82  52.75  51.2  

95% Confidence 
Interval for Mean 

Lower Bound 
(meters) 

45.78  52.72  51.18  

Upper Bound 
(meters) 

45.85  52.78  51.23  

5% Trimmed Mean (meters) 45.52  52.39  50.87  

Median (meters) 45  51  50  

Variance (meters) 73.78  64.12  47.5  

Std. Deviation (meters) 8.59  8.01  6.89  

Minimum (meters) 13  34  18  

Maximum (meters) 83  81  90  

Range (meters) 70  47 m 72  

Interquartile Range (meters) 12  12  10  

Skewness (Dimensionless) 0.52  0.64  0.64  

Kurtosis (Dimensionless) 0.02  -0.24  -0.07  

In addition, the normality test is conducted over the datasets. The Kolmogorov–Smirnov (K–S) 

sample test is a nonparametric test with the null hypothesis, which demonstrates that the data 

were obtained from a normal distribution as shown in Table 5.3. The criteria used to reject or 

accept the null hypothesis is that if the p-value is smaller than the significance level α = 0.05, 

the null hypothesis is rejected. Moreover, there are sufficient pieces of evidence that the data 

are not normally distributed. For instance, the null hypothesis was rejected (the significance 

level is 0.05) in all the above three cases. The p-value (0.00) of less than 0.05 showed that there 
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is not enough evidence to prove that the data are normal. The histograms of the ASTER, SRTM, 

and Cartosat sample data are shown in Figure 5.7 (a) to (c), respectively.  The normal quantile-

quantile (Q–Q) plot and the detrended normal Q–Q plot are also drawn to support or refute the 

claim of normality. The quantile-quantile plot is shown in Figure 5.7 (d)–(f), which compares the 

observed quantiles of the data with those of the normally distributed data. The observed 

quantiles of the data are depicted as circles, whereas the quantiles of data that we would expect 

to see if the data were normally distributed are depicted as a solid line. The data are 

approximately normally distributed, if the points are on or close to the line. Similarly, the sample 

data are not normally distributed if the points are not clustered on the 45° line or they, in fact, 

follow a curve. Moreover, the detrended normal Q–Q plot Figure 5.7 (g)–(i) provides the same 

information as the normal Q–Q plot, but in a different way. In the detrended plot, the horizontal 

line at the origin represents the quantiles if the data were normally distributed, whereas the 

dots represent the magnitude and direction of deviation in the observed quantiles. Each dot is 

calculated by subtracting the expected quantile from the observed quantile. The related-sample 

Wilcoxon signed rank test is conducted (significance level 0.05) by using the null hypothesis: the 

median of differences between Cartosat and SRTM equals 0 and the decision of the test is to 

retain the null hypothesis as the p-value (1.00) was more than 0.05. Likewise, the same test was 

also conducted by using the null hypothesis: the median of differences between Cartosat and 

ASTER equals to 0 and the decision of the test is to reject the null hypothesis as the p-value 

(0.00) was less than 0.05. The results also showed that 9.12% and 65.65% data in ASTER and 

SRTM, respectively, have more elevation than the Cartosat data, the 86.69% and 23.34% data 

in ASTER and SRTM, respectively, have less elevation than the Cartosat data, and 4.19% and 

11.01% data in ASTER and SRTM, respectively, have the same elevation as the Cartosat data. 

Figures 5.8 (a) and (b) and Table 5.4 demonstrate the corresponding results. 

In order to assess the level of correlation between the DEMs, the correlation scatter-plots were 

drawn as shown in Figure 5.9 (a) and (b). It was difficult to create a scatter plot from each pixel 

in a DEM as each DEM contains over a million pixels. However, a total of 274,476 pixels were 

used for the analysis. As shown in Table 5.5, the correlation coefficient of 0.83, 0.94, and 0.85 

was obtained by Pearson's correlation analysis between the ASTER and Cartosat, SRTM and 

Cartosat, and ASTER and SRTM, respectively (correlation is found to be significant at the level of 

0.01). For instance, the correlation value of 0.94 indicates a strong positive linear correlation 

between SRTM and Cartosat. Similarly, the simple linear regression analysis is demonstrated by 

means of scatter-plots. In this case, the analysis of the determination coefficient (R2) of the 

regression line shows that the Cartosat DEM is considered adequate for describing the ASTER 
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DEM by 68.9% and the SRTM DEM by 87.9%. Considering Cartosat as the reference DEM, the 

RMSE calculated was used for evaluating the vertical accuracy of the ASTER DEM and the SRTM 

DEM. For ASTER the calculated RMSE is found to be 7.21 m, whereas for SRTM it is 3.24 m. Error 

maps for ASTER and SRTM were produced by subtracting their elevation values from the 

respective Cartosat values as shown in Figure 5.10 (a) and (c). For the ASTER error map, the 

mean value and standard deviation were found to be 5.39 m and 4.79 m, respectively. The 

corresponding frequency histograms indicate that the ASTER elevation data were highly 

underestimated as shown in Figure 5.10 (b). For the SRTM error map, the mean value and 

standard deviation were found to be –1.55 m and 2.85 m, respectively. The corresponding 

frequency histograms indicate that the SRTM elevation data were slightly overestimated as 

shown in Figure 5.10 (d). 

Table 5.3: Normality test results. 

Table 5.4: Wilcoxon signed ranks test assuming the median of differences between Cartosat and 

ASTER, and Cartosat and SRTM equals 0. 

Wilcoxon Signed 
Ranks Test 

Cartosat - ASTER Cartosat - SRTM 

Negative Ranks 25033a 180203d 

Positive Ranks 237924b 64039e 

Ties 11519c 30234f 

Total 274476 274476 

a. Cartosat< ASTER d. Cartosat < SRTM  
b. Cartosat > ASTER e. Cartosat > SRTM  
c. Cartosat = ASTER f. Cartosat = SRTM  

 

Table 5.5: Correlation coefficients for ASTER, SRTM, and Cartosat derived elevation. 

 ASTER SRTM Cartosat 

ASTER 1.00   

SRTM 0.85 1.00  

Cartosat 0.83 0.94 1.00 

Null Hypothesis Test Sig. Decision 

The distribution of ASTER elevation is 
normal with mean 45.82 and standard 

deviation of 8.590. 

One-Sample 
Kolmogorov-Smirnov 

Test 

.0001 
Reject the null 

hypothesis. 

The distribution of SRTM elevation is 
normal with mean 52.75 and standard 

deviation of 8.008. 

One-Sample 
Kolmogorov-Smirnov 

Test 

.0001 
Reject the null 

hypothesis. 

The distribution of Cartosat elevation is 
normal with mean 51 and standard 

deviation of 6.892. 

One-Sample 
Kolmogorov-Smirnov 

Test 

.0001 
Reject the null 

hypothesis. 

Asymptotic significances are displayed. The significance level is .05. 
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Figure 5.7: (a) Histogram of ASTER data (b) Histogram of SRTM data (c) histogram of Cartosat 

data (d) Quantile-Quantile Plot of ASTER data (e) Quantile-Quantile Plot of SRTM data (f) 

Quantile-Quantile Plot of Cartosat data (g) Detrended Normal Q-Q Plot of ASTER data (h) 

Detrended Normal Q-Q Plot of SRTM data (I) Detrended Normal Q-Q Plot of Cartosat data. 



73 
 

 

Figure 5.8: (a) Related-Samples Wilcoxon Signed Rank Test for ASTER (b) Related-Samples 

Wilcoxon Signed Rank Test for SRTM.  

 

Figure 5.9: (a) Scatterplot showing linear regression of ASTER derived elevation vs Cartosat 

derived elevation (b) Scatterplot showing linear regression of SRTM derived elevation vs Cartosat 

derived elevation. 
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Figure 5.10: a) Error map for ASTER (b) Histogram of error map of ASTER (c) Error map for SRTM 

(d) Histogram of error map of SRTM. 
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2. Objective: To develop an approach to analyze Sentinel–2 satellite data using traditional and 

principal component analysis based approaches to create land use and land cover map, which 

is a prerequisite for developing the curve number. 

Principal component analysis was used for data compression of Sentinel-2 multispectral data to 

statistically maximise the amount of information from the original data (bands) to a smaller 

number of components, called principal components. The first few principal components 

possess most of the variability of the data. The first principal component band derived from the 

first eigenvector had the maximum amount of the total variance of the Sentinel–2 data set 

containing bands 2–8, 8A, 11 and 12. The first three principal component bands accounted for 

97.92% of eigenvalues. The variances percentage of the remaining principal component bands 

decreased in order of the corresponding eigenvalues. The variance of the PCA bands 4 to 10 is 

small and mostly had noises; thus the bands were removed from the analysis.  The eigenvalues 

and accumulative percentage of eigenvalues in PCA bands 2–8, 8A, 11 and 12 are given in Table 

5.7.  

A loading plot shows how strongly each band influences a principal component. It ranges from 

-1 to 1. Loadings close to -1 or 1 indicate that the band strongly influences the component. 

Loadings close to 0 indicate that the band has a weak influence on the component. Figure 5.11 

shows the loading plot of the bands. It can be seen that bands 6-8A have large positive loadings 

on component 1. While, bands 2-5 and 11-12 have large positive loadings on component 2. 

Factor loading shows how much each band has contributed to the factor. Rescaled factor 

loadings of the principal components from the original (raw) image data are shown in Table 5.8 

using component matrix. Bands 6-8A (Vegetation Red Edge and near infrared bands are highly 

correlated, Table 5.6) loaded highly in the first principal component, bands 2-5 and 11-12 (highly 

correlated), loaded highly (positively) in principal component 2 and Band 2-5 marginally loaded 

onto principal component 3.  

Principal component 4-10 can be termed as noise components since no factor loading is 

prominent. It has been observed that deciduous plants have a sharp order-of-magnitude 

increase in leaf reflectance between approximately 700 to 750 nm wavelength and healthy 

vegetation reflects highly in near infrared band. Principal component 1 can be called as healthy 

vegetation component as it has the highest factor loading of 0.99 from band 7 and band 8A. 

However, principal component 2 and principal component 3 can’t be generalised as loading is 

scattered across the spectrum. PCA transformed the correlated Sentinel–2 dataset into a 

substantially smaller set of uncorrelated variables representing most of the information present 

in the original dataset. Figure 5.12 (a-c) shows the PCA bands derived from the Sentinel–2 data 
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and Figure 5.12 (d-f) shows the frequency distribution of corresponding principal component 

bands. The total range (maximum value - minimum value) of PCA band 3 is greater than the PCA 

band 1 and PCA band 2. However, most of the pixels fall in a small range around the mean of 

6486.13, which shows information loss in PCA band 3.  

The frequency distribution reveal that the variance of the first principal component is the 

highest, followed by the second and then by the third. The calculated values of variance for PCA 

bands 1, 2 and 3 were 395879.55, 284229.30, and 45254.05, respectively. The image produced 

from PCA band 1 data resembles original image and it contains most of the pertinent 

information inherent to the scene due to high variance.  

Adjacent bands in a multispectral remotely sensed image are often highly correlated and often 

convey almost the same information about the object. A high correlation meaning thereby that 

the bands are not statistically independent. A low degree of correlation was observed among 

the PCA bands 1, 2, and 3 (Figure 5.13 (a-c)). The correlation values between PCA bands 1 and 

2, 1 and 3, and 3 and 2 were 0.01, –0.01, and 0.25, respectively. Non-structured appearance of 

the scatter plots and low correlation values confirm that there is no relationship among the PCA 

bands. High Correlation in stack 1 shows (Table 5.6) that there is redundancy of information and 

if this redundancy can be reduced, then information can be compressed. The correlation 

between the bands which exist in the original data has disappeared in the principal components. 

So, the PCA was able to reduce correlation significantly. The components are new uncorrelated 

bands created by linearly combining original data, keeping as much information as possible from 

the original data. In this way, a classification using the first few principal components can be 

better than one performed by means of the original dataset. If we compare the PCA band 1, PCA 

band 2 and PCA band 3 images, PCA band 1 has higher brightness values for the pixels than PCA 

band 2 and PCA band 3, and PCA band 1 shows a higher degree of contrast than PCA band 2 and 

PCA band 3. 
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Figure 5.11: Loading plot of PCA component 1, 2 and 3.  

Table 5.6: Covariance (Correlation) matrix of sentinel–2 bands. 

Sentinel

-2 Bands 
Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 

8A 

Band 

11 

Band 

12 

Band 2 
40426.

8 (1.00) 

43694.

4 (0.98) 

63465.1 

(0.95) 

45236.

1 (0.88) 

6071.1 

(0.08) 

-8485.5 

(-0.08) 

-9932.3 

(-0.10) 

-14377.9 

(-0.12) 

42030.1 

(0.53) 

55946.5 

(0.68) 

Band 3 
43694.

4 (0.98) 

49362.

7 (1.00) 

70250.5 

(0.95) 

52331.

9 (0.92) 

15490.6 

(0.19) 

1389.2 

(0.01) 

360.7 

(0.00) 

-3597.5 

(-0.03) 

52797.9 

(0.60) 

63910.7 

(0.71) 

Band 4 
63465.

1 (0.95) 

70250.

5 (0.95) 

111007.

2 (1.00) 

78097.

1 (0.92) 

-1973.4 

(-0.01) 

-32521.7 

(-0.19) 

-35057.0 

(-0.20) 

-42296.8 

(-0.22) 

84124.7 

(0.64) 

111431.

2 (0.82) 

Band 5 
45236.

1 (0.88) 

52331.

9 (0.92) 

78097.1 

(0.92) 

65216.

5 (1.00) 

23153.8 

(0.24) 

6455.0 

(0.05) 

3933.8 

(0.03) 

3102.1 

(0.02) 

77195.9 

(0.76) 

86156.7 

(0.83) 

Band 6 
6071.1 

(0.08) 

15490.

6 (0.19) 

-1973.4 

(-0.01) 

23153.

8 (0.24) 

141140.

0 (1.00) 

189019.

7 (0.97) 

179641.

9 (0.93) 

209046.

3 (0.96) 

55332.7 

(0.37) 

-1619.9 

(-0.01) 

Band 7 
-8485.5 

(-0.08) 

1389.2 

(0.01) 

-32521.7 

(-0.19) 

6455.0 

(0.05) 

189019.

7 (0.97) 

270417.

6 (1.00) 

256318.

7 (0.96) 

298626.

5 (0.99) 

47352.7 

(0.23) 

-34947.6 

(-0.16) 

Band 8 
-9932.3 

(-0.09) 

360.7 

(0.01) 

-35057.0 

(-0.20) 

3933.8 

(-0.20) 

179641.

9 (0.93) 

256318.

7 (0.96) 

265932.

9 (1.00) 

286099.

6 (0.96) 

47354.6 

(0.23) 

-33365.4 

(-0.16) 

Band 8A 
-

14377.

9 (-

0.12) 

--

3597.5 

(-0.03) 

-42296.8 

(-0.22) 

3102.1 

(-0.22) 

209046.

3 (0.96) 

298626.

5 (0.99) 

286099.

6 (0.96) 

336385.

7 (1.00) 

58667.2 

(0.26) 

-37889.3 

(-0.16) 

Band 11 
42030.

1 (0.53) 

52797.

9 (0.60) 

84124.7 

(0.64) 

77195.

9 (0.64) 

55332.7 

(0.37) 

47352.7 

(0.23) 

47354.6 

(0.23) 

58667.2 

(0.25) 

157985.

6 (1.00) 

142013.

0 (0.88) 

Band 12 
55946.

5 (0.69) 

63910.

7 (0.71) 

111431.

2 (0.83) 

86156.

7 (0.83) 

-1619.9 

(-0.01) 

-34947.6 

(-0.16) 

-33365.4 

(-0.16) 

-37889.3 

(-0.16) 

142013.

0 (0.88) 

166130.

1 (1.00) 
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Table 5.7: Total Variance Explained. 

 Extraction Sums of Squared Loadings 

 Raw 

Number of Principal 

Component Bands 
Eigen Value 

Percent of Eigen 

Values (%) 

Accumulative (%) of Eigen 

Values 

1 1005312.99 62.68 62.68 
2 494281.26 30.82 93.49 
3 70972.23 4.42 97.92 
4 16477.60 1.03 98.94 
5 6189.42 0.39 99.33 
6 5111.35 0.32 99.65 
7 1953.55 0.12 99.77 
8 1663.12 0.10 99.87 
9 1542.72 0.10 99.97 

10 500.84 0.03 100.00 
 

Table 5.8: Factor loading component Matrix. 

 Component Matrix 
Raw (Rescaled) 

Sentinel
-2 Bands 

Principal Components 

1 2 3 4 5 6 7 8 9 10 

Band 2 -18.35 
(-.09) 

167.20 

(.83) 
103.98 

(.52) 
5.49 

(.03) 
-12.10 

(-.06) 
17.20 

(.09) 
18.63 

(.09) 
18.41 

(.09) 
0.70 

(.00) 
12.77 

(.06) 

Band 3 1.76 
(.01) 

192.55 

(.87) 
107.16 

(.48) 
8.57 

(.04) 
 1.93 
(.01) 

15.36 

(.07) 
12.13 

(.05) 
5.46 

(.02) 
-0.73 

(.00) 
-17.60 

(-.08) 

Band 4 -64.03 
(-.19) 

304.89 

(.92) 
111.57 

(.33) 
-1.53 

(.00) 
-21.95 

(-.07) 
10.56 

(.03) 
-17.89 

(-.05) 
-23.79 

(-.07) 
-2.44 

(-.01) 
3.50 

(.01) 

Band 5 13.67 
(.05) 

240.77 

(.94) 
60.90 

(.24) 
-9.04 

(-.04) 
43.60 

(.17) 
-25.95 

(-.10) 
-20.07 

(-.08) 
14.97 

(.06) 
8.16 

(.03) 
1.06 

(.00) 

Band 6 364.50 
(.97) 

60.92 

(.16) 
32.36 

(.09) 
-33.49 

(-.09) 
35.78 

(.10) 
-15.52 

(-.04) 
18.50 

(.05) 
-14.92 

(-.04) 
-17.56 

(-.05) 
2.69 

(.01) 

Band 7 516.58 
(.99) 

-7.86 

(-.02) 
23.99 

(.05) 
-36.34 

(-.07) 
-22.32 

(-.04) 
-18.02 

(-.03) 
7.19 

(.01) 
-4.80 

(-.01) 
26.65 

(.05) 
-0.84 

(.00) 

Band 8 503.62 
(.98) 

-11.11 

(-.02) 
6.98 

(.01) 
109.94 

(.21) 
5.31 

(.01) 
-1.64 

(.00) 
-2.38 

(.00) 
-2.14 

(.00) 
-0.06 

(.00) 
1.12 

(.00) 

Band 8A 576.95 
(.99) 

-13.39 

(-.02) 
-17.32 

(-.03) 
-39.76 

(-.07) 
-18.38 

(-.03) 
18.95 

(.03) 
-17.01 

(-.03) 
14.46 

(.02) 
-15.98 

(-.03) 
-1.44 
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Figure 5.12: Visual comparison of the principal component bands derived from the Sentinel–2 

data (a) PCA band 1 (b) PCA band 2 (c) PCA band 3 and (d) Frequency distribution of principal 

component band 1 (e) Frequency distribution of principal component band 2 (f) Frequency 

distribution of principal component band 3.  
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Figure 5.13: Non-structured appearance of the scatter plots leads to the conclusion that there 

is very low relationship among the PCA bands (a) Scatter plot between PCA band 1 and 2 (b) 

Scatter plot between PCA band 1 and 3 (c) Scatter plot between PCA band 2 and 3.  

Land use and land cover classes were selected based on knowledge about the specific study 

area. Seven major land use and land cover classes were identified, viz., Water, Built-up, Mixed 

forest, Cultivated land, Barren land, Fallow land with Vertisols dominance, and Fallow land with 

Inceptisols dominance. The classifications were conducted using Sentinel–2 original bands 

(traditional approach) and PCA-based approach. Prediction performances of the three classifier 

algorithms, MLE, RF, and SVM, were evaluated to reveal the efficiency of two different land use 

and land cover classification approaches with training data of less than 1000 pixels per class. 

Training data for each land use and land cover class were collected as a group of pixels. Stratified 

random sampling was used to obtain the testing data. The classification performed on the 

original Sentinel–2 bands led to an unacceptable outcome with a classification overall accuracy 

of 22% for MLE. However, 60% and 64% classification overall accuracy was achieved with RF and 

SVM classifiers, respectively. The classification results of RF and SVM are acceptable as the 

training data were limited to less than 1000 pixel per class. In the PCA-based classification 

approach, the same training polygons were used to avoid the optimistic bias in classification. 

PCA based approach significantly improved the overall classification accuracy of all the three 

classifiers. The overall classification accuracy varied considerably among the classifiers. The 

overall classification accuracy of MLE classifier was increased from 22% to 41% (19% increase) 

in the PCA based approach. The overall accuracy RF classifier was increased by 10% reaching 

70%, whereas SVM classifier outperformed both the classifiers with 76% overall accuracy 

(increased by 12%). Spectral response curve is the curve showing the variation of reflectance or 

emittance (in terms of Digital numbers) of a material with respect to wavelengths. Figure 5.14 
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(b) and 5.15 (b) show the variation of responses of the land use and land cover classes in Stack 

1 and Stack 2 respectively. Classes having similar responses are hard to separate. It was also 

observed that as the spectral distance (or separability) of the classes Water and Built-up in Stack 

1 and Stack 2 (Figure 5.14 (b) and 5.15 (b)) in relation to other classes was more, that is why 

the user’s accuracy (UA) and producer’s accuracy (PA) for water and Built-up classes are high, 

for both traditional and PCA-based classification approaches. Kappa coefficient showed a similar 

trend as that of the overall accuracy. Overall accuracy is calculated by the proportion of the 

correctly classified pixels to the total number of pixels. Highest Kappa coefficient values were 

obtained with SVM in PCA based approach followed by the RF. Comparative visual analysis of 

both the approaches with all the three classifiers are shown in Figure 5.16 (a-f) and 5.17, and 

the results of accuracy assessment are given in Table 5.9. 

Table 5.9: Accuracy assessment of traditional and PCA based approach for LULC classification 

using MLE, RF, and SVM classifiers. 

 

Sentinel-2 Bands 

 

PCA Bands 

 

MLE RF SVM MLE RF SVM 

LULC 

 

Sub classes of LULC 

 

PA UA PA UA PA UA PA UA PA UA PA UA 

Water Water 0.78 1.00 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 1.00 1.00 

Cultivated land  

Cultivated land Crop 1 0.00 0.00 0.60 0.60 0.80 0.57 0.60 0.33 0.60 0.60 0.80 0.57 

Cultivated land Crop 2 0.00 0.00 0.80 0.47 0.60 0.55 0.60 0.60 0.90 0.64 0.60 0.67 

Sparsely vegetated 0.00 0.00 0.47 0.50 0.53 0.56 0.41 0.78 0.65 0.69 0.88 0.88 

Barren land Barren land 0.00 0.00 0.50 0.25 0.50 0.27 0.33 0.40 0.50 0.27 0.50 0.43 

Fallow land  

(Vertisols 

dominance) 

Fallow land 1 Vertisols 

dominance 
0.00 0.00 0.60 0.75 0.70 0.64 0.00 0.00 0.30 1.00 0.60 0.86 

Fallow land 2 Vertisols 

dominance 
0.33 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.60 

Fallow land   

(Inseptisol 

dominance) 

Fallow land 1  Inseptisol 

dominance 
0.00 0.00 0.75 0.75 0.75 0.75 0.00 0.00 0.75 0.75 1.00 0.67 

Fallow land 2 Inseptisol 

dominance 
1.00 0.14 0.13 1.00 0.50 1.00 0.00 0.00 0.63 1.00 0.75 1.00 

Mixed forest Mixed forest 0.00 0.00 0.17 0.50 0.17 0.50 0.00 0.00 0.17 0.25 0.33 0.25 

Builtup 

Builtup 0.00 0.00 1.00 1.00 1.00 1.00 0.17 1.00 1.00 0.86 1.00 0.86 

Mixed builtup 1 0.14 0.08 0.86 0.60 0.71 0.71 1.00 0.19 0.86 1.00 1.00 1.00 

Mixed builtup 2 0.56 0.24 0.33 0.43 0.44 0.44 0.89 0.35 0.89 0.62 0.56 1.00 

 Kappa coefficient 0.15 0.56 0.60 0.35 0.67 0.74 

 Overall Accuracy (%) 22.00 60.00 64.00 41.00 70.00 76.00 

Note: UA-User’s accuracy, PA-Producer’s accuracy, MLE- Maximum likelihood estimation, RF- Random forest tree, SVM- Support vector 

machine 
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Figure 5.14: (a) Sentinel–2 bands visualized in natural colors composite (Stack 1) (b) Spectral 

response curves of LULC classes in Sentinel–2 bands. 

 
Figure 5.15: (a) The first three principal components visualized in false colors composite (Stack2) 

(b) Response curves of LULC classes in PCA bands.  
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Figure 5.16: Comparative visual analysis of classification using traditional approach in (a) MLE 

(b) RF (c) SVM classifiers and PCA based approach in (d) MLE (e) RF (f) SVM classifiers.  

 

Figure 5.17: Classification accuracies obtained by the parametric (MLE) and non-parametric 

(SVM and RF) classifiers for traditional and PCA based approach.  

The observed difference in classification accuracies obtained by the parametric (MLE) and non-

parametric (SVM and RF) classifiers are similar to the other reported studies (Yang et al., (2011); 

Huang et al., (2002)). Nonetheless, little difference was also observed between the prediction 

performances of the SVM and RF machine learning algorithms. The land use and land cover 

2
2

%

6
0

%

6
4

%

4
1

%

7
0

% 7
6

%

M L E R F S V M

OVERALL ACCURACY (%)

Sentinel-2 Bands PCA Bands



84 
 

classification results showed some diversity due to the low number of training data, yet the 

global performance of both the classifiers were very similar for both the approaches. Hec-

GeoHMS was used to create the Curve Number for the antecedent moisture condition II, 

generated using traditional approach and PCA based approach. Figure 5.18 shows the Curve 

Number II maps generated by both the approaches and statistics is shown in Table 5.10. It is 

evident from the results that land use and land cover map influence the Curve Number Map 

significantly. 

 

Figure 5.18: Curve number for antecedent moisture condition II generated from traditional 

approach (a) MLE (b) RF (c) SVM classifiers and PCA based approach in (d) MLE (e) RF (f) SVM 

classifiers.  

Table 5.10: Resulted Curve Number II statistics using traditional and PCA based approach 

classification. 

 
Sentinel-2 Bands PCA Bands 

 
MLE RF SVM MLE RF SVM 

Minimum 71 36 36 36 36 36 

Maximum 100 100 100 100 100 100 

Mean 85.75 84.38 84.04 87.85 83.51 82.39 

Median 87 88 88 89 87 88 

Standard deviation 6.53 9.11 9.54 7.36 10.75 11.56 
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For the further analysis Curve Number II map generated with the help of the SVM classified 

(Figure 5.18 (F)) land use and land cover map using PCA based approach was used because of 

its highest accuracy.  The calculated Curve Number is also termed as CN II for AMC II (Antecedent 

Moisture Condition II). The calculated Curve Number are adjusted to dry moisture conditions 

(called as AMC I) and high moisture conditions (called as AMC III) by using adjusting factors (Eq. 

(5.1 and 5.2)) (Subramanya, (2013)). The CN I, CN II and CN III values varied from 19 to 100, 36 

to 100 and 56 to 100, respectively for the study area (Figure 5.19). Lower numbers indicate low 

runoff potential while larger numbers indicate an increased runoff potential.  

AMC-I 𝐶𝑁𝐼 =
𝐶𝑁𝐼𝐼

2.281 − 0.01281 𝐶𝑁𝐼𝐼
 5.1 

AMC-II 𝐶𝑁𝐼𝐼𝐼 =
𝐶𝑁𝐼𝐼

0.427 − 0.00573 𝐶𝑁𝐼𝐼
 5.2 

 

Figure 5.19: Curve number maps for antecedent moisture condition I, II and II generated from 

SVM classified LULC using PCA based approach. 

3. Objective: To perform Morphometrical analysis of Vishwamitri watershed and prioritization of 

sub-watersheds for assessing the flood influencing characteristics of the sub-watersheds of the 

Vishwamitri watershed. 

Watershed morphometry reveals lumped or semi-distributed watershed features. Watershed 

hydrology is highly influenced by its morphometry. Runoff potential is directly related to a 

variety of morphometrical parameters including drainage density, drainage frequency, mean 

bifurcation ratio, drainage texture, and elongation ratio (i.e., the greater the values of these 

parameters, the greater the watershed's runoff potential and vice versa). Morphometric 

parameters were directly calculated from the Cartosat-1 30m DEM by using Arc-hydro tools. 

Morphometry of Vishwamitri watershed and sub-watersheds (Figure 5.20), and its hydrological 

importance are discussed in detail below. 
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Figure 5.20: Sub watersheds of Vishwamitri watershed.  

I. Basic parameters: 

The basin length (Lb) is the longest length of the watershed from the head waters to the point 

of confluence. The basin length determines the shape of the watershed. High basin length 

indicates an elongated watershed. The computed Lb for the Vishwamitri watershed using Arc-

hydro tool is 66.232 km. Another significant parameter is the area of the watershed (A), the 

computed Vishwamitri watershed area is 1289.39 km2. Perimeter of watershed (P) is the outer 

boundary of the watershed that enclosed its area. The computed perimeter for the Vishwamitri 

watershed is 279.44 km. Basin length, Area and Perimeter of the watershed are used as a 

watershed shape and size indicator.  

II. Linear, aerial, and relief morphometric parameters: 

Stream order (Su): Stream ordering is a method of assigning a numeric order to links in a stream 

network. It is defined as a measure of the stream’s position in the hierarchy of tributaries. There 

are different systems available for ordering streams. Based on the Strahler, (1964) system of 

stream ordering, the watershed has been designated as a fifth order watershed in Figure 5.21. 

The stream order increases when streams of the same order intersect. Therefore, the 

intersection of two first-order links will create a second-order link, the intersection of two 
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second-order links will create a third-order link, and so on. The intersection of two links of 

different orders, however, will not result in an increase in order. For example, the intersection 

of a first-order and second-order link will not create a third-order link but will retain the order 

of the highest ordered link (Omran et al., (2016)). The highest frequency is seen in the first-order 

streams in this study. (Table 5.11). The research area's hilly section has a higher number of first-

order streams, indicating that the topography is dense and the bedrock lithology is compacted. 

 

Figure 5.21: Drainage network map showing stream order of the Vishwamitri watershed.  

Stream Length (Lu): The total length of individual stream segments of each order is the stream 

length of that order. Generally, the total length of stream segments is the maximum in first-

order streams and decreases with an increase in the stream order (Pande & Moharir, (2017)). 

Streams of relatively short length represent areas of steep slopes and finer texture, while longer 

stream lengths are generally indicative of low gradients. Total stream length of each stream 

order is tabulated in Table 5.11. 

Table 5.11: Computed stream order, stream number, stream length and bifurcation ratio. 

Stream order 
(Su) 

Stream number 
(Nu) 

Stream Length (Km) 
(Lu) 

Bifurcation Ratio  
Rb 

1 85 294.5 2.1 

2 39 124.7 1.3 

3 30 88.1 3 

4 10 33.0 2 

5 5 16.7  

Total 169 557.1 Mean 2.1 
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Bifurcation Ratio (Rb): The bifurcation ratio is the ratio of the number of stream segments of 

given order Nu to the number of streams in the next higher order (Nu+1). Rb is an important 

parameter to affect peak of the runoff hydrograph. High Rb values indicate instantaneous 

discharge and possibility of flash flooding during extended rainy hours (Rakesh et al., (2000)). 

However, Rb does not precisely remain constant between stream orders because of variations 

in watershed geometry, lithology, and tectonics. Flat terrain has a low Rb value, whereas 

mountainous or highly dissected terrain has values from 3 to 5 (Horton, (1945); Strahler, (1957)). 

In the present study, mean bifurcation ratio (Rbm) for the overall watershed is 2.12. The low Rb 

value for Vishwamitri watershed suggests delayed hydrograph peak. The lower value of Rb is an 

indicator of the watersheds, which have undergone fewer or less structural disruptions and the 

drainage pattern has not been distorted because of structural disturbances (Nag, (1998)). The 

higher value of Rb indicates highly dissected terrain, mature topography with a higher degree of 

drainage integration, and higher discharge potential (Eze & Efiong, (2010)). In particular, high Rb 

value of sub-watershed SW I indicates an early hydrograph peak with high potential for flash 

flooding during storm events amongst all the sub-watersheds. It is usual to use the weighted 

mean Rb value to characterize a watershed using more representative values in situations when 

the values of Rb differ for sequential stream orders (Moges & Bhole, (2015)). For this reason, the 

weighted mean Rb of the study watershed was calculated as follow. 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑚𝑒𝑎𝑛 𝑏𝑖𝑓𝑢𝑟𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (𝑊𝑅𝐵) =
𝑅𝑏1𝑁(𝑢1) + 𝑅𝑏2𝑁(𝑢2) + 𝑅𝑏3𝑁(𝑢3) + 𝑅𝑏1𝑁(𝑢4)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠
 5.3 

Where, 
𝑅𝑏1 = bifurcation ratio between 1st and 2nd order 
𝑅𝑏2 = bifurcation ratio between 2nd and 3rd order 
𝑅𝑏3 = bifurcation ratio between 3rd and order 
𝑅𝑏4 = bifurcation ratio between 4th and 5th order 

𝑁(𝑢1) = total number of streams involved in 𝑅𝑏1 computation 
𝑁(𝑢2) = total number of streams involved in 𝑅𝑏2  computation 
𝑁(𝑢3) = total number of streams involved in 𝑅𝑏3 computation 
𝑁(𝑢4) = total number of streams involved in 𝑅𝑏4 computation 

 

The weighted mean bifurcation ratio (WRB) for the watershed of Vishwamitri is 3 and indicates 

that geological structures (tectonic activity) exert very low influence on the pattern of streams. 

Drainage density (Dd): Drainage density of the watershed is calculated by dividing the total 

length of streams of all orders by the drainage area of the watershed to indicate the closeness 

of spaces between channels. In other words, it provides the quantitative value for the average 

length of all channels for the whole watershed. The measurement of drainage density provides 

a numerical measurement of landscape dissection and runoff potential (Reddy et al., (2004)). 

The Dd of Vishwamitri watershed is 0.43 km/km2. The Dd of sub-watersheds range from 0.35-

0.5. Drainage density has been classified with the following value ranges (km/km2), i.e., very 
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coarse (<2), coarse (2-4), moderate (4-6), fine (6-8), and very fine (>8) (Sukristiyanti et al., 

(2018)). A high value of Dd indicates a relatively high density of streams, high runoff, a quick 

stream response, and consequently, a low infiltration rate. By contrast, low drainage density of 

a watershed implies low runoff and takes longer time to peak. Low class of Dd shows a poorly 

drained watershed with a slow hydrologic response. In addition to this, low class of Dd has a 

resistant permeable subsurface material, dense vegetation cover and low relief. 

Drainage frequency (Fs): Drainage frequency is defined as the total number of streams of all 

orders per unit area. The result (Table 5.12) shows that Fs is maximum in sub-watershed SW III 

(0.19/km2 ), followed by SW II and SW V (0.15/km2 ), SW IV (0.14/km2 ) and SW I (0.10/km2 ). 

The discharge from SW I takes longer to peak because of low runoff rates due to lesser number 

of streams.  Overall, the results of Fs reflect early peak discharge for sub-watersheds in order of 

their decreasing drainage frequency value, resulting in flash floods. Fs for Vishwamitri watershed 

is 0.13/km2. 

Drainage Texture (Rt): Drainage texture is defined as the total number of stream segments of 

all orders in a river watershed to the perimeter of the watershed. According to Smith, (1950), 

drainage texture has been classified into very coarse (<2), coarse (2–4), moderate (4–6), fine (6–

8), and very fine (>8). According to this classification, Vishwamitri watershed has very coarse 

drainage texture (0.6 km-1). Also, The Rt value for Vishwamitri sub-watersheds ranges from 0.14-

0.35. The result (Table 5.12) shows that Rt is maximum in sub-watershed SW IV (0.35/km), 

followed by SW II (0.22/km), and SW V (0.21/km), SW I(0.20/km) and SW III (0.13/km).  

Hydrologically very coarse texture watersheds have large basin lag time periods (Altaf et al., 

(2013)). 

Relief ratio (Rr): The relief ratio is called the maximum relief of the horizontal distance parallel 

to the main drainage line along the longest dimension of the watershed. It is a good indicator of 

the intensity of water flows from a catchment slope. It is the measurement of the overall 

steepness of a watershed. The high Rr implies shorter lag time and the watershed attains higher 

peak discharge and flow velocities. With increasing relief, steeper hill slopes and higher stream 

gradients, the time of concentration of runoff decreases, thereby increasing flood peaks (Bhatt 

& Ahmed, 2014). The Rr for Vishwamitri watershed is 0.01, indicating overall nearly flat terrain 

or lower slope values. The Rr values for sub-watersheds range between 0.00-0.02. The SW III, 

SW IV and SW V have 0 Rr indicating flat terrain with longer basin length and their influence on 

flood is much less. While, sub-watersheds SW I and SW II have relatively high values of Rr and 

contribute more water in a short period of time and cause floods in the lower region of the 

watershed. 
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Ruggedness number (Rn): The ruggedness number is expressed as the product of watershed 

relief and drainage density. High Rn occurs in those watersheds which have steep and long slopes 

and fine texture, thus, is highly susceptible to erosion and increased peak discharge. Slope is 

another important indicator of runoff, which provides general representation of relief 

ruggedness within the watershed. The calculated Rn value of Vishwamitri watershed is 0.32. The 

low Rn value of Vishwamitri watershed due to low relief and lesser degree of terrain complexity, 

causing less water flow. In the upper Vishwamitri watershed, SW I and SW II have relatively high 

Rn values, indicating that they have high relief, fine texture, and possibilities of high surface flow 

(Table 5.12). Moreover, these sub- watersheds are susceptible to erosion and producing 

increased peak discharge. The SW III, SW IV and SW V have the lowest Rn values because of low 

relief and lesser degree of terrain complexity causing less water flow. 

Form factor (Ff): Form factor is the ratio of the area of the watershed and square of the 

watershed length. Ff represents the shape or outlines of a watershed and is useful in predicting 

the flow intensity of a catchment and has a direct link to peak discharge. High Ff values occur in 

watersheds having potential to produce high peak flows in short duration and low Ff values are 

vice versa. For a perfectly circular watershed, the form factor value would always be greater 

than 0.78. The smaller the value of form factor, more elongated will be the watershed. The low 

Ff value of 0.29 of Vishwamitri watershed reveals that the shape of the watershed is elongated, 

it has less side flow for shorter duration and high main flow for longer duration. Ff of sub-

watersheds of the Vishwamitri watershed is given the Table 5.12. The Ff values for sub-

watersheds range between 0.1-0.3, and indicate elongated shape of sub-watersheds. 

Circularity ratio (Rc): Circularity ratio is the ratio between the area of a watershed to the area 

of the circle having the same circumference as the perimeter of the watershed. The Rc values 

can attain a maximum of 1.0 where the outline of the watershed is approaching near circularity. 

A numerically low Rc indicates an elongated shape, while higher values are an expression of 

approach to near circularity. Elongated watersheds are characterised by longer lag times and 

lower peak discharge. In the study area, the overall Rc value of Vishwamitri watershed is 0.21 

and, for sub-watersheds it ranges from 0.07-0.2. The Rc values suggest the elongated shape of 

the Vishwamitri watershed and its sub watersheds. 

Elongation ratio (Re): It is defined as the ratio of diameter of a circle with the same area as that 

of the watershed to the maximum basin length. The Re values vary from 1 for circular watersheds 

and 0 for elongated watersheds. High Re values occur for circular watersheds, considered as 

highly hazardous, because they yield peak flow in a short period of time compared to low Re in 

elongated watersheds (Masoud, (2016)). These values can be grouped into three categories, 
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namely, circular (>0.9), oval (0.9–0.8), less elongated 0.8–0.7) and elongated (<0.7) (Lama & 

Malti, (2019)). The overall Re value of Vishwamitri watershed is 0.61 and, for sub-watersheds it 

ranges from 0.37-0.62.  

Length of overland flow (Lg): Length of overland flow is the length of water over the ground 

before it gets concentrated into certain stream channels. There are three classes of Lg i.e., low 

value (< 0.2), moderate value (0.2 – 0.3), and high value (>0.3). The low Lg value shows high relief 

and short flow paths, which are more susceptible to flash flooding. Meanwhile, a high Lg value 

implies gentle slopes and long paths of flow. Lg value for overall watershed is 1.43 and, for sub-

watersheds it ranges from 1-1.43. The SW I has the lowest value of Lg, which means it is more 

susceptible to flash flooding. 

III. Hypsometry Analysis: 

The hypsometry and the hypsometric integral (HI) are used in classical conceptual 

geomorphometric models of landscape evolution as follows: i) for HI above 0.60 the area is 

considered young; ii) for HI ranging between 0.35 - 0.60 the area is in a steady state balance or 

mature phase and iii) HI below 0.35 characterizes a Monadnock phase in landscape evolution. 

Vishwamitri watershed is certainly indicative of a marked old stage in the basin’s evolution 

(Figure 5.22), meaning that the watershed has reached the equilibrium in the longitudinal 

profiles of the river. This is further attested by the very low hypsometric integral (HI = 0.04). Low 

value of HI occurs in terrain characterized by isolated relief features standing above extensive 

level surfaces (Pike & Wilson, 1971). 

The hypsometric analysis is important to analyze as an erosional process directly affects the 

morphometric of the watershed. Based on the hypsometric analysis the Vishwamitri watershed 

is stable or in the old stage of the erosional process, the computed flood influencing parameters 

and calculated compound value of the watershed will hold true until there is a major structural 

disturbance that occurred due to tectonic activity. If the HI value were high, the computed flood 

influencing parameters and calculated compound value of the Vishwamitri watershed would 

need to be calculated again to compensate for the changes that occurred due to the erosional 

process of the young watershed. 
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Figure 5.22: Hypsometry curve of Vishwamitri watershed showing Monadnock phase in 

landscape evolution.  

IV. Compound value and weightage: 

Single or limited parameters cannot present a comprehensive picture of the flood hazard 

potential of any sub-watershed, and hence, each of the linear, aerial, and relief morphometric 

parameters along with curve number is taken into consideration for assessing the flood 

influencing characteristics of the five sub-watersheds of the Vishwamitri watershed (Table 5.12), 

as these parameters have a direct but variable relationship with flood runoff. Therefore, 

influencing value or rank (highest weightage 5 and least 1) is given to each sub-watershed based 

on the nature of the selected parameter (Table 5.13). Prioritization was achieved through the 

allocation of weights to the individual indicators contributing to flood runoff and a compound 

value (Cv) was calculated for final prioritization. Cv is derived by calculating the average of ranks 

assigned to the individual parameters. The sub-watershed with highest Cv contributes most to 

flood runoff and as a result needs highest priority for flood mitigation measures, whereas the 

sub-watershed with lowest Cv is contributing least to flood runoff thereby has low priority. Thus 

an index of high, medium and low priority was produced. Based on the integration of each flood 

influencing parameter and calculated compound value, the SW I and IV areas of Vishwamitri 

watershed have been categorized into high priority, SW II and V into moderate priority, and SW 

III into low priority. In order to mitigate floods, it is proposed that there is a significant need to 

create a flood spill channel that can take up to one-third of the total flow of the Vishwamitri 

river. Moreover, to prevent floods in the downstream agricultural areas and settlements, an 

additional reservoir must be created in SW I. Along with this, mitigation measures such as, check 

dams, nala bunds, gully plug, bundhis (local name in India), percolation tanks, etc. can be 

constructed in a planned and systematic manner in SW I, II and IV to create water buffers within 

the catchment, which will help reducing vulnerability to seasonal variations in rainfall. Nala 
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bunds and percolation tanks are structures built across or closer to nalas (streams) to increase 

water percolation, increase the moisture regime of the soil, and restrict silt flow. 

Table 5.12: Flood influencing characteristics of the five sub-watersheds of the Vishwamitri 

watershed. 

Sub-watershed ID I II III IV V 

Form factor (Ff) 0.166 0.154 0.108 0.304 0.208 

Circulatory ratio (Rc)s 0.159 0.141 0.067 0.199 0.106 

Elongation ratio (Re) 0.459 0.442 0.371 0.622 0.515 

Drainage density (Dd) 0.500 0.403 0.497 0.418 0.349 

Drainage texture (Rt) 0.203 0.228 0.139 0.353 0.217 

Relief ratio (Rr) 0.017 0.020 0.001 0.002 0.001 

Ruggedness number (Rn) 0.362 0.293 0.015 0.024 0.011 

Weightd bifurcation ratio (WRB) 3.643 2.119 3.155 3.213 3.205 

Length of overland flow (Lg) 1.000 1.240 1.005 1.195 1.431 

Drainage frequency (Fs) 0.102 0.150 0.189 0.138 0.151 

Curve number (CN) 81.972 83.060 81.197 81.846 83.607 

Table 5.13: Prioritization of sub-watersheds based on compound value. 

Sub-watershed 

ID 

Ff Rc Re Dd Rt Rr Rn WRB Lg Fs CN sum Cv 

I 3 4 3 5 2 4 5 5 5 1 3 40 3.64 

II 2 3 2 2 4 5 4 1 2 3 4 32 2.91 

III 1 1 1 4 1 2 2 2 4 5 1 24 2.18 

IV 5 5 5 3 5 3 3 4 3 2 2 40 3.64 

V 4 2 4 1 3 1 1 3 1 4 5 29 2.64 

 

4. Objective: To identify potential runoff storage zones based on the various physical 

characteristics of the Vishwamitri watershed using a GIS-based conceptual framework that 

combines through analytic hierarchy process using multi criteria decision-making method.  

Rainfall analysis 

Based on past 56 years (1961 to 2016) rainfall data analysis of rain gauge stations across 

watershed, it was determined that the SPI indicates extremely dry years 1.8 % of the time, 

moderately dry years 10.7 % of the time, moderately wet years 3.6 % of the time, near normal 

years 73.2 % of the time, very wet years 7.1 % of the time and extremely wet years 3.6 % of the 

time. Classification of annual rainfall of the study area based on SPI is shown in Table 5.14. The 

result therefore suggests that the overall drought events between these years were not severe. 

The precipitation analysis suggests that the water shortage in the region may be overcome by 

identification of suitable sites for water storage. The computed average annual rainfall for 
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Vadodara, Savali, Padra and Waghodia rain gauge stations are 928.96 mm, 891.56 mm, 883.85 

mm and 854.53 mm respectively. The seasonal distribution of the precipitation in the study area 

varies and falls mostly as rain in monsoon season (June to September). Thiessen polygon of rain 

gauge stations are shown in Figure 5.23. Promoting rain water harvesting in areas receiving less 

than 100 mm/year or more than 1000 mm/year of rains is not recommended (Kahinda et al., 

(2008)). Water based activity are not feasible in areas that receive less than 100 mm/year of 

rain, also, there is no incentive to implement rain water harvesting schemes in areas with annual 

rains in excess of 1000 mm/year. Rainfall analysis of Vishawmitri watershed shows potential to 

carry out water based activity in the area. 

 
Figure 5.23: Thiessen polygon of rain gauge stations for Vishwamitri watershed.  

Table 5.14: Classification of annual rainfall based on SPI. 

Classification Years 

Dry extreme years 2008 

Moderately dry years 1972, 1974, 1986, 1987, 1999,2000 

Moderately wet years 1983, 1994 

Near normal years 

1961, 1962, 1963, 1964, 1965, 1966,  1967, 1968, 1969, 1971, 1973, 
1975, 1977, 1978, 1979, 1980, 1981, 1982, 1984, 1985, 1988, 1989, 
1990, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 2001, 2002, 2003, 
2004, 2007, 2009, 2011, 2012, 2014, 2015, 2016 

Very wet years 1976, 2006, 2010, 2013 

Wet extreme years 1970, 2005 
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Topography wetness index (TWI) 

High values of the TWI are found in converging and flat areas and are expected to have much 

water accumulation and low slope. In contrast, steep locations and diverging areas receive a 

small index value and have relatively lower water accumulation. Consequently, the index is a 

relative measure of the hydrological conditions of a given location in the landscape. Figure 5.24 

shows the calculated TWI for the Vishwamitri watershed. 

 

Figure 5.24: Spatial variation of topography wetness index across Vishwamitri watershed.  

Generation of slope map using Topography Position Index (TPI) 

Positive TPI values indicates that the target point location is higher than the average of its 

surroundings, as defined by the neighbourhood (ridges). TPI for the study area is shown in Figure 

5.25 and Figure 5.26 shows conversion of elevation values to TPI along the cross section (shown 

in red colour in TPI map). Negative TPI values represent locations that are lower than their 

surroundings (valleys). TPI values near zero are either flat areas (where the slope is near zero) 

or areas of constant slope (where the slope of the point is significantly greater than zero). Slope 

classification was done as suggested by Weiss, (2001) and Jenness, (2006). Slope plays a 

significant role in the amounts of runoff and sedimentation, the speed of water flow and the 

amount of material required to construct a dyke (the required height)(Ammar et al., (2016)). 

Results shows (Table 5.15 and Figure 5.27) that maximum area belongs to flat class (35.45%), 

flat areas are never strictly horizontal, also, flat slopes lead to a decrease in the surface runoff 
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velocity, which results in a longer period of time for the runoff to drain; there are gentle slopes 

in a seemingly flat area. Ponds are suitable for small flat areas with slopes 5%, 0.15 % belongs 

to middle slope, nala bunds are suitable on moderate slopes of 5–10%, 12.49 % area belongs to 

upper slope, terracing is suitable for steeper slopes of 5–30%. Ridges and upper slope together 

forms 30.79 % of the area, they indicate least potential for rainwater harvesting because higher 

sloping land is inappropriate for constructing water storage structures. Valley and lower slope 

together constitutes for 33.58 % of the area, small dams or check dams like structures are 

preferable on such sites. 

Table 5.15: Slope classifications using TPI as basis of landform classification for the study area. 

Class Description Breakpoints Area (km2) 

Valley TPI ≤ -4.6 255 

Lower Slope - 4.6< TPI ≤ -2.3 178 

Flat Slope -2.3 < TPI <  2.3,   Slope ≤ 5° 457 

Middle Slope --2.3 < TPI < 2.3,   Slope > 5° 2 

Upper Slope 2.3 < TPI ≤ 4.6 161 

Ridge TPI > 4.6 236 

 

 

 

Figure 5.25: Variation of topography position index across the Vishwamitri watershed.  
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Figure 5.26: Comparison between the original DEM and TPI along the cross-sectional profile 

(red line).  

 

Figure 5.27: Resulted Slope map of the study area using TPI as basis of landform classification.  
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Land use/land cover 

The land use/land cover map of the study area is shown in Figure 5.28, which reveals that there 

are seven major types of land use/land cover namely Waterbodies, Builtup, Mixed forest, 

Cultivated land, Barren land, Fallow land with vertisols dominance and Fallow land with 

inceptisols dominance. Major portion of the study area (about 35%) is Agricultural land 

(cultivated land, fallow land with vertisols dominance and fallow land with inseptisol 

dominance) followed by Sparsely vegetated (19%), Mixed forest (14%), Builtup (12%), Barren 

land (5%) and Water bodies (2%). Land-use classes such as barren land and sparsely vegetated 

land are generally recommended for water storage zones/structures.  

Soil texture 

According to the classification based on soil texture, seven types of soils are found in the 

Vishwamitri watershed (Figure 5.29). Typic Ustifluvents and Fluventic Haplustepts correspond 

to HSG group A, Udic Haplustepts corresponds to HSG group B, Chromic Haplusterts and Typic 

Haplustepts correspond to HSG group C, and Lithic Haplustepts and Vertic Haplustepts 

corresponds to HSG group D. The most dominating soil, Chromic Haplusterts (HSG group C), 

covers 48.94% of the total watershed area. HSG-A has the lowest runoff potential (typically 

contains more than 90% sand and less than 10% clay), HSG-B has moderately low runoff 

potential (typically contains between 10 to 20% clay and 50 to 90% sand), HSG-C has moderately 

high runoff potential (typically contains between 20 to 40% clay and less than 50% sand) and 

HSG-D has high runoff potential (typically contains more than 40% clay and less than 50% sand)( 

Ross et al., (2018)).  

Stream order 

Suitable zones/sites for surface water storage structures, all the1st, 2nd and 3rd order streams 

were extracted from the drainage network map and a stream-order buffer map was developed 

with a buffer distance of 50 m on both sides of the streams. It can be seen from the drainage 

network map (Figure 5.21) that the study area has a fifth order drainage network, with a good 

drainage network in the eastern portion. Length of the first order streams in the study area is 

nearly 294.5 km (about 52.9% of total length of drainage). The second and third order streams 

have also considerable drainage lengths, 124.7 km (22.4%) and 88.1 km (15.8%), respectively. 

The fourth order stream contributes to drainage with a length of 33.0 km, which accounts for 

5.9% of the total drainage length. Mainly, the Vishwamitri River is a fifth order stream having a 

drainage length of 16.7 km (3.0%).  
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Figure 5.28: Land use/land cover map of the Vishwamitri watershed. 

 

Figure 5.29: Soil data based on soil texture collected from (NBSS & LUP).  
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Curve number (CN) 

Curve Number considers the relationship between land use/land cover and hydrologic soil 

group, which together make up the curve number.The Curve Number value varied from 36 to 

100 for the study area (Figure 5.30) with mean value of 82.39 and standard deviation of 11.56, 

lower numbers indicate low runoff potential while larger numbers indicate an increased runoff 

potential. A CN value of 100 represents a condition of zero potential maximum retention that 

suggests an impermeable catchment having maximum runoff-generation capability. On the 

other hand, a CN value of 0 suggests an infinitely abstracting catchment having zero runoff-

generation capability (Jha et al., (2014)). With this approach, the suitable locations for surface 

water storage zones/structures were located in areas with the highest capacity for runoff 

generation and nearby to existing drainage lines.  

Height above nearest drainage (HAND) 

Low-lying land adjacent to streams is more susceptible to be flooded than higher land. HAND 

values for the study area varies from 0 to 749 m. HAND raster was prepared for the 4th and 5th 

order streams of Vishwamitri watershed as they are highly susceptible to flooding. On suitability 

scale, lower values were assigned for HAND values ranging from 0-2 meters as these areas are 

more prone to flooding and it is not recommended to build water storage structure on such 

zones. Also, lower values were assigned on suitability scale for extremely high HAND values 

(greater than 48 meters) because higher HAND value means point moves away from the river. 

Figure 5.31 shows the Height above nearest drainage (HAND) map of the study area. 
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Figure 5.30: Variation of curve number across the Vishwamitri watershed for AMC II condition. 

 

Figure 5.31: Height above nearest drainage (HAND) map of the Vishwamitri watershed.  
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Determining criteria weights using AHP 

AHP provided a systematic approach to conduct MCDM. To derive suitability maps for potential 

runoff storage zones, the criteria maps have to be related to the result of the AHP. The AHP pair-

wise matrix for the criteria used in this study is presented in Table 5.16. For all the five spatial 

layers the relative importance is derived. Thus, a common scale (0 % to 100 %) is obtained from 

AHP procedure. As seen in Table 5.16, the most important criterion for decision-making is Slope 

(22.50%), followed by LULC (21.20%), Curve number (14.80%), HAND (14.50%), Stream order 

(14.40%) and TWI (12.60%). Calculated principal eigenvector is 6.47, which is computed with the 

square reciprocal matrix of pairwise comparisons between criteria. Since the AHP may have 

inconsistencies in establishing the values for the pairwise comparison matrix, it is important to 

calculate this level of inconsistency using the consistency ratio (CR) (Rincón et al., (2018)). The 

CR of the pair-wise matrix is 7.5% (which is less than 10 %) and thus the judgments made and 

compiled in the pair-wise matrix of Table 5.16 are acceptable. This implies that the comparisons 

were performed with good judgment, weightage for each criterion is suitable to weighted 

overlay. 

Table 5.16: Resulting weights for the criteria based on pairwise comparisons. 

 Slope 
Based 
on TPI 

TWI LULC 
Curve 

number 
Stream 
order 

HAND Priority Rank 

Slope 
Based on 

TPI 
1 2 0.5 2 2 2 22.50% 1 

TWI 0.5 1 1 1 1 0.5 12.60% 6 

LULC 2 1 1 1 2 1 21.20% 2 

Curve 
number 

0.5 1 1 1 0.5 2 14.80% 3 

Stream 
order 

0.5 1 0.5 2 1 1 14.40% 5 

HAND 0.5 2 1 0.5 1 1 14.50% 4 

 

Weighted Overlay Process (WOP) within GIS 

Potential runoff storage zones of the study area (Figure 5.32) was generated by integrating the 

thematic layers of slope, LULC, curve number, HAND, stream order and TWI using weighted 
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overlay process (WOP) within GIS. Resulted raster was classified into four classes namely (a) 

Not suitable (b) Marginally Suitable (c) Moderately Suitable (d) Optimally Suitable. Result shows 

that 17 % of the area is optimally suitable, 33.2% of the area is moderately suitable, 33.1 % of 

the area is marginally suitable and 18.7% of the area is not suitable for water storage 

zones/structures. Sixteen suitable sites on such zones (optimally suitable class) have also been 

identified for water storage structures, as shown in Figure 5.33. Criteria of selection of these 

sites are: first, proximity of the sites to the agricultural fields. Second, sites should be on unused 

or barren land. Third, narrow cross-section of the valley with high shoulders to minimise the 

amount of construction material needed for building the small dams or check dams, nala bunds, 

gully plug and bundhis. Results are also confirmed by the already built water storage structures 

in derived potential runoff storage zones which are in optimally suitable class (Figure 5.34). 

 

Figure 5.32: Potential runoff storage zones of the study area.  
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Figure 5.33: Identified sites for water storage structures on potential runoff storage zones.  



105 
 

 

Figure 5.34: Already built water storage structures on the derived potential runoff storage 

zones.  
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5. Objective: To develop an approach for operational flood extent mapping using Synthetic 

Aperture Radar (SAR) and preparation of flood inundation map for data scarce region using 2D 

flow modelling using rain on grid model.  

A. Speckle filtering 

The performance efficiency of filters in speckle suppression, feature preservation, and 

preventing the loss of meaningful data was evaluated using Mean square error (MSE), 

Equivalent Number of Looks (ENL), Speckle suppression index (SSI), Speckle Mean Preservation 

Index (SMPI), examination of mean, standard deviation, and also by close visual assessment.  

The MSE value indicates the amount of error present in a filtered image. It allows the 

comparison of the pixel values of a filtered image to the degraded image before filtering. It is 

observed that for study area Kerala (window size 3×3) Frost, Gamma map, and Lee sigma filters 

showed very low MSE, indicating their effectiveness in feature preservation. Median filter 

showed the highest MSE values indicating poor performance in terms of feature preservation. 

Boxcar and Lee filters performed moderately. For Kerala (window size 5×5) and Assam (window 

size 3×3 and 5×5), Frost and Lee sigma showed low MSE, Median filter showed the highest MSE 

and moderate performance was observed for Boxcar, Gamma map and Lee (Figure 5.35). The 

high value of MSE depicts a greater difference between the original test image and despeckled 

image which concludes the significant speckle reduction but at the cost of feature loss. 

Lower SSI and SMPI values (Figures 5.36 and 5.37) were obtained for Median filter (3×3 and 

5×5) in both the study areas indicating high efficiency in speckle suppression. Moderate values 

were obtained for Gamma map, Lee and Boxcar indicating medium proficiency in the reduction 

of speckle. None of the filters produced value 0 and 1. A value of 0, indicates complete mean 

preservation and 100 % noise reduction. Whereas, a value of 1 indicates 0 % speckle reduction. 

It was observed that as the window size increased from 3×3 to 5×5, the SSI values reduced for 

all the filters, indicating superior speckle suppression with an increase in the size of the moving 

window. The lowest SSI values, as well as SMPI values, corresponds to Median filter (3×3 and 

5×5) indicating high efficiency in speckle suppression. 

For both the study areas Median filter (3×3 and 5×5) had high ENL values (Figure 5.38) 

indicating a higher efficiency in smoothing speckle noise over homogeneous areas, which shows 

enhanced capacity to distinguish the distinct gray levels within the image. For constant flat areas 

where the sample variance is null, ENL becomes ∞, this will repute highly blurred data as 

excellent. According to ENL, SSI and SMPI values, Gamma map (3×3 and 5×5), Lee (3×3 and 

5×5) and Boxcar (3×3 and 5×5) filters showed moderate performance for both the study areas. 
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The application of filters should ideally not bring about any change in the mean of target image 

while it should reduce the standard deviation. The filter, Median (3×3 and 5×5) for both the 

study areas was most effective in increasing the standard deviation but also changed the mean 

value considerably thereby implying that the filters reduced speckle but also caused 

considerable loss of meaningful data. The median filter is better than the Boxcar filter in terms 

of preserving the edges between two different features, but it does not preserve single pixel-

wide features, which will be altered if speckle noise is present. Median filter preserves the 

texture information very well for small window size (3×3) but does not retain the mean value at 

an acceptable level. Since the median is less sensitive than the mean to extreme values 

(outliers), those extreme values are more effectively removed. On the contrary, Boxcar (3×3 

and 5×5) for both the study areas, made the least change in the mean, while reducing the 

standard deviation moderately. However, Lee filter (3×3 and 5×5) provided a fair balance by 

reducing the standard deviation without drastically affecting the mean (Figures 5.39 and 5.40; 

Tables 5.17 and 5.18).  

The Median filter performed well in terms of ENL, SSI, and SMPI values; however, its 

performance in terms of speckle reduction and feature preservation was far inferior compared 

to the Boxcar and Lee filter. However, since the objective of the speckle filtering was to use 

these SAR images for inundation mapping, the performance of the filters on a water body in 

terms of reduction of standard deviation while preserving the mean of the original image was 

the most important. The performance of Boxcar and Lee filters was far better in feature 

preservation in the filtered images followed by Gamma map. Although quantitative measures 

are often employed to compare different speckle suppression filters, it has been noted by Raouf 

& Lichtenegger, (1997) and others that visual inspection probably provides the best assessment 

of the performance of a speckle filter. Visual assessment is an easy and efficient way to 

investigate both the capability of a filter to suppress speckles and its effectiveness in preserving 

image details. Lee et al., (1994) stated that, in general, filters using small windows (such as 3 × 

3) preserve texture information better. Visual examination was, therefore, carried out and it 

was observed that the filters which reduced speckles effectively also resulted in considerable 

loss of meaningful data (Figures 5.41 (a)-(m) and 5.42 (a)-(m)). Lee sigma, and Gamma map 

clearly resulted in the loss of edges and details. It was difficult to grade Boxcar, Frost and Lee 

filter visually, since the variation was not perceivable. However, it was observed that point 

scatters were over filtered, transformed to spread targets and sharp edges were generally 

blurred in Boxcar filter (Figure 5.43). 
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Hence, Lee filter was chosen for further analysis as it had low MSE, SSI and SMPI values 

compared with frost filter, and a higher percentage change in standard deviation compared to 

the Boxcar and frost filter for most of the cases. 

The raw SAR data in VH and VV polarization acquired during the crisis events on 21 August 2018 

and 14 Jul 2019 for study areas Kerala and Assam are shown in Figure 5.44 (a) and (b), and Figure 

5.45 (a) and (b), respectively. The multi-looked, calibrated, filtered (Lee) data of the VH and VV 

are shown in Figure 5.44 (c) and (d), and Figure 5.45 (c) and (d), respectively. Multi-looked, 

calibrated, filtered (Lee) SAR data were not projected on the map coordinates of each pixel. The 

pixel was in the original coordinate position of data (rows/columns) in the field of ground range. 

In the orthorectified imageries, each of the pixels that were corrected and projected using the 

Range-Doppler terrain correction appeared at the actual position. The Range-Doppler terrain 

corrected pixels and their respective histograms for Kerala and Assam regions are shown in 

Figures 5.44 (e)-(h) and 5.45 (e)-(h), respectively. 

 

Figure 5.35: Mean Square Error.  

 

Figure 5.36: Speckle Suppression Index.  
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Figure 5.37: Speckle Mean Preservation Index. 

 

Figure 5.38: Equivalent Number of Looks. 

 

Figure 5.39: Percent change in mean.  
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Figure 5.40: Percent change in standard deviation.  

 

Figure 5.41: Visual comparison of de-noising methods on VV polarization over Kerala test data (a) 

Boxcar 3×3 (b) Frost 3×3  (c) Gamma map 3×3  (d) Lee 3×3  (e) Lee sigma 3×3  (f) Median 3×3  (g) 

Boxcar 5×5  (h) Frost 5×5  (i) Gamma map 5×5  (j) Lee 5×5  (k) Lee sigma 5×5  (l) Median 5×5  and 

(m) Unfiltered test image in VV polarization.  
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Figure 5.42: Visual comparison of de-noising methods on VV polarization over Assam test data 

(a) Boxcar 3×3 (b) Frost 3×3 (c) Gamma map 3×3  (d) Lee 3×3  (e) Lee sigma 3×3  (f) Median 3×3 

(g) Boxcar 5×5 (h) Frost 5×5 (i) Gamma map 5×5 (j) Lee 5×5 (k) Lee sigma 5×5 (l) Median 5×5 and 

(m) Unfiltered test image in VV polarization.  

 
Figure 5.43: Point target scattering on (a) Boxcar 3×3 (b) Lee 3×3 (c) Boxcar 5×5 and (d) Lee 

5×5.  
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Table 5.17: Quantitative evaluation of the filters over Kerala. 

 Kerala 

 MSE SSI SMPI ENL 
Percent 

Change – 
Mean 

Percent 
Change – 
Standard 
Deviation 

Filters 3×3 5×5 3×3 5×5 3×3 5×5 3×3 5×5 3×3 5×5 3×3 5×5 

Frost 0.005 0.004 0.937 0.983 0.930 0.979 0.120 0.109 0.825 0.396 7.05 2.138 

Gamma map  0.007 0.006 0.503 0.361 0.503 0.359 0.417 0.812 0.100 0.609 49.71 64.14 

Lee sigma  0.007 0.113 0.986 0.979 0.963 0.974 0.109 0.110 2.636 0.554 3.99 2.651 

Lee  0.094 0.124 0.505 0.386 0.505 0.386 0.414 0.708 0.055 0.142 49.51 61.41 

Boxcar  0.095 0.129 0.507 0.350 0.507 0.351 0.411 0.860 0.004 0.009 49.31 64.95 

Median 0.124 0.148 0.248 0.165 0.221 0.142 1.712 3.883 12.58 15.77 78.28 86.11 

 

Table 5.18: Quantitative evaluation of the filters over Assam. 

 Assam 

 MSE SSI SMPI ENL 
Percent 

Change – 
Mean 

Percent 
Change – 
Standard 
Deviation 

Filters 3×3 5×5 3×3 5×5 3×3 5×5 3×3 5×5 3×3 5×5 3×3 5×5 

Frost 0.007 0.004 0.769 0.886 0.763 0.874 0.297 0.224 0.924 1.579 23.82 12.75 

Gamma map 0.011 0.030 0.757 0.593 0.756 0.590 0.306 0.499 0.122 0.539 24.38 41.00 

Lee sigma 0.004 0.003 0.964 0.953 0.968 0.976 0.189 0.193 0.292 2.155 3.28 2.63 

Lee 0.011 0.030 0.757 0.594 0.757 0.592 0.306 0.498 0.062 0.270 24.34 40.79 

Boxcar 0.011 0.031 0.757 0.593 0.757 0.593 0.307 0.499 0.000 0.001 24.30 40.70 

Median 0.015 0.043 0.668 0.431 0.625 0.379 0.394 0.945 7.085 13.26 37.95 62.60 
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Figure 5.44: Kerala (a) Raw VH amplitude data; (b) Raw VV amplitude data; (c) Multi-looked, 

calibrated, Filtered (Lee) VH data in dB; (d) Multi-looked, calibrated, Filtered (Lee) VV data in dB; 

(e) The Range-Doppler terrain corrected VH data; (f) The Range-Doppler terrain corrected VV 

data; (g) Histogram for Sigma0 VH in dB, and (h) Histogram for Sigma0 VV in dB. 
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Figure 5.45: Assam (a) Raw VH amplitude data; (b) Raw VV amplitude data; (c) Multi-looked, 

calibrated, Filtered (Lee) VH data in dB; (d) Multi-looked, calibrated, Filtered (Lee) VV data in dB; 

(e) The Range-Doppler terrain corrected VH data; (f) The Range-Doppler terrain corrected VV 

data; (g) Histogram for Sigma0 VH in dB, and (h) Histogram for Sigma0 VV in dB.  
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Table 5.19 and 5.21, and Figure 5.46 and 5.47 show the comparison of classification results of 

random forest classifier and support vector machine classifier for VV and VH polarization. The 

training data were kept the same for both the classifiers to avoid optimistic bias in the 

classification. For the study area Kerala, the random forest classifier exhibited maximum overall 

accuracy of 88.80% with the kappa coefficient value of 0.72. Both the classifiers obtained better 

accuracy results in VV polarization compared to the VH polarization. The least overall accuracy 

of 82.60% and a kappa coefficient value of 0.63 were observed with random forest in VH 

polarization, which was followed by the support vector machine in VV polarization. RF achieved 

higher classification accuracy than SVM by about 5% in VV polarization. However, both the 

classifiers produced comparable overall accuracies in VH polarization (SVM achieved higher 

classification accuracy than RF by about 1%). The NDWI calculated for the cloud-free extent is 

shown in Figure 5.48 (d). The inundated area in the calculated NDWI over the cloud-free extent 

is 73.88%, which is 41.78 km2. However, it has also been observed (Table 5.20) that the 

inundated area using random forest classification on filtered VV data over the cloud-free extent 

is 71.18%, which is 40.25 Km2. For the study area Assam, the SVM classifier exhibited maximum 

overall accuracy of 92% with the kappa coefficient value of 0.81. Both the classifiers obtained 

better accuracy results in VH polarization compared to the VV polarization. The least overall 

accuracy of 83.60% and a kappa coefficient value of 0.65 were observed with random forest in 

VV polarization, which was followed by the RF in VH polarization. SVM achieved higher 

classification accuracy than RF by about 5.38% in VH polarization. The NDWI calculated for the 

cloud-free extent is shown in Figure 5.49 (d). The inundated area in the calculated NDWI over 

the cloud-free extent is 74.09%, which is 491.47 km2. However, it has also been observed (Table 

5.22) that the inundated area using SVM classification on filtered VH data over the cloud-free 

extent is 62.76%, which is 416.99Km2. To calculate inundation for the entire scene, threshold 

value of -10.96 and -19.58 was selected for Kerala and Assam region respectively after analysing 

the histograms. The calculated inundated area (Figure 5.50) with thresholding technique for 

Kerala was found 204 km2 (2% more than classified VV polarised data using RF algorithm). 

Similarly, the calculated inundated area with thresholding technique for Assam was found 

3368.90 km2 (23.46% more than classified VH polarised data using SVM algorithm). For Assam 

region the variation is very large, a single threshold did not hold well as large swath of a SAR 

image suffers from environment heterogeneity caused by wind-roughening and satellite 

framework parameters. 
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Figure 5.46: Kerala (a) Random forest tree classification on filtered VH; (b) Support vector 

machine classification on VH; (c) Random forest tree classification on filtered VV; (d) Support 

vector machine classification on VV.  
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Figure 5.47: Assam (a) Random forest tree classification on filtered VH; (b) Support vector 

machine classification on VH; (c) Random forest tree classification on filtered VV; (d) Support 

vector machine classification on VV.  
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Figure 5.48: (a) Natural colour composite R-B04 G-B03 B-B02, (b) Green band (c) Near-infrared 

(d) Calculated NDWI over cloud-free extent for Kerala region. 

 
Figure 5.49: (a) Natural colour composite R-B04 G-B03 B-B02, (b) Green band (c) Near-infrared 

(d) Calculated NDWI over cloud-free extent for Assam region. 
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Table 5.19: Comparison of user's accuracy (UA), producer's accuracy (PA), overall accuracy (%), 

and kappa coefficient using random forest tree and support vector machine algorithms for VV 

and VH polarization over Kerala region. 

 VV Polarization VH Polarization 

 RF SVM RF SVM 

 PA UA PA UA PA UA PA UA 

Inundation 0.89 0.96 0.79 0.99 0.78 0.99 0.79 0.99 

Rest 0.88 0.72 0.98 0.60 0.98 0.58 0.98 0.60 

Kappa coefficient 0.72 0.64 0.61 0.63 

Overall Accuracy 
(%) 

88.80% 83.80% 82.60% 83.60% 

Note: UA - User's accuracy, PA - Producer's accuracy VV - Vertical-Vertical, VH - Vertical-Horizontal, RF - Random 
Forest, SVM -Support Vector Machine 

 

Table 5.20: Inundated area statistics of RF and SVM over cloud-free optical data for Kerala 

region. 

 VV Polarization VH Polarization NDWI 

 RF SVM RF SVM - 

Inundated area (Km2) 40.25 34.82 34.17 35.19 41.78 

Rest (Km2) 16.29 21.72 22.38 21.36 14.77 

 
Table 5.21: Comparison of user's accuracy (UA), producer's accuracy (PA), overall accuracy (%), 

and kappa coefficient using random forest tree and support vector machine algorithms for VV 

and VH polarization over Assam region. 

 VV Polarization VH Polarization 

 RF SVM RF SVM 

 PA UA PA UA PA UA PA UA 

Inundation 0.77 1.0 0.82 1.0 0.81 0.99 0.89 0.99 

Rest 1.0 0.62 1 0.69 0.99 0.67 0.99 0.77 

Kappa coefficient 0.65 0.72 0.70 0.81 

Overall Accuracy 
(%) 

83.60% 87.60% 86.60% 92.00% 

Note: UA - User's accuracy, PA - Producer's accuracy VV - Vertical-Vertical, VH - Vertical-
Horizontal, RF - Random Forest, SVM -Support Vector Machine 

 

Table 5.22: Inundated area statistics of RF and SVM over cloud-free optical data for Assam 

region. 

 VV Polarization VH Polarization NDWI 

 RF SVM RF SVM - 

Inundated area (Km2) 363.92 389.21 387.62 416.99 491.47 

Rest (Km2) 300.41 275.12 276.70 247.34 171.86 



120 
 

 

Figure 5.50: (a) Random forest tree classification on filtered VV data (Kerala) (b) Classified 

filtered VV data with threshold value of -10.96 (Kerala) (c) Support vector machine classification 

on filtered VH data (Assam) (d) Classified filtered VH data with threshold value of -19.58 

(Assam).  

B. 2D hydraulic modelling for inundation: 

HEC-RAS 5.0.7 only supports a single representative rainfall record. Consequently, a single 

representative daily rainfall record was created. Thiessen polygon of rain gauge stations are 

shown in Figure 5.23.  For M stations, the average precipitation �̅� is calculated as 

 
�̅� =  ∑ 𝑃𝑖

𝐴𝑖

𝐴

𝑀

𝑖=1

 5.4 
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The ratio 
𝐴𝑖

𝐴
 is called weightage factor for each station. Precipitation data, thiessen weightage 

factor and calculation of thiessen mean for storm event occurred on 30-07-2019 to 03-08-2019 

are shown in Tables 5.23 and 5.24. 

Table 5.23: Precipitation data and Thiessen weightage factor. 

Rain 

gauge 

station 

Thiessen 

polygon 

area 

(Km2) 

Thiessen 

weightage 

factor(fraction 

of total area) 

Station 

reading 

(mm) on 

30-07-2019 

Station 

reading 

(mm) on 

31-07-2019 

Station 

reading 

(mm) on 

01-08-2019 

Station 

reading 

(mm) on 

02-08-2019 

Station 

reading 

(mm) on 

03-08-2019 

Padra 92 0.07 6 78 8 18 27 

Savli 178 0.14 14 36 80 4 88 

Vadodara 504 0.39 37 499 32 34 101 

Waghodia 512 0.40 8 126 12 22 65 

 

Table 5.24: Calculation of Thiessen mean. 

Rain gauge station 

Weighted station 

rainfall  (mm) on 

30-07-2019 

Weighted 

station rainfall 

(mm) on 31-07-

2019 

Weighted 

station rainfall 

(mm) on 01-08-

2019 

Weighted 

station rainfall 

(mm) on 02-08-

2019 

Weighted 

station rainfall 

(mm) on  03-08-

2019 

Padra 0.43 5.57 0.57 1.29 1.93 

Savli 1.94 4.98 11.07 0.55 12.17 

Vadodara 14.52 195.77 12.55 13.34 39.62 

Waghodia 3.18 50.14 4.78 8.75 25.87 

Thiessen mean of 

the station readings 

(P) in mm 

20.06 256.46 28.97 23.93 79.59 

Low CN values indicate low runoff potential while larger numbers indicate an increased runoff 

potential. The calculated curve number is also termed as CN II for AMC II (Antecedent Moisture 

Condition II). The calculated curve number can be adjusted to dry moisture conditions (called as 

AMC I) and high moisture conditions (called as AMC III) by using adjusting factors. The calculated 

weighted curve number of the Vishwamitri watershed for AMC I, AMC II and AMC III are 68.99, 

84.04 and 92.50, respectively. Empirical equations of daily runoff for Vishwamitri watershed for 

AMC I, AMC II and AMC III conditions are: 

 𝑄(mm) =  
(𝑃 − 22.83)2

(𝑃 + 114.16 − 22.83)
 for AMC I 5.5 

 𝑄(mm) =  
(𝑃 − 9.64)2

(𝑃 + 48.23 − 9.64)
 for AMC II 5.6 

 𝑄(mm) =  
(𝑃 − 4.11)2

(𝑃 + 20.59 − 4.11)
 for AMC III 5.7 

Estimated Daily runoff for the period 30-07-2019 to 03-08-2019 using weighted CN is given in 

Table 5.25. Variation of curve number across the Vishwamitri watershed for AMC I, AMC II and 

AMC III conditions are shown in Figure 5.19. 
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Table 5.25: Estimated Daily runoff for the period 30-07-2019 to 03-08-2019 using weighted CN. 

Date 
Cumulative 

time in  
Hrs 

Δt in 
Hrs 

Incremental 
rainfall in 

mm 

Maximum 
potential 

retention (S) in 
mm 

Initial 
abstraction 

𝐼𝑎 = 𝜆𝑆 

Daily runoff (Q) 
in mm 

30-07-2019 24 24 20.06 48.24 9.65 1.85 

31-07-2019 48 24 256.46 48.24 9.65 206.46 

01-08-2019 72 24 28.97 20.60 4.12 13.59 

02-08-2019 96 24 23.93 20.60 4.12 9.71 

03-08-2019 120 24 79.59 20.60 4.12 59.29 

 

ESTIMATION OF FLOOD FREQUENCY AT KALAGHODA BY GUMBEL’S METHOD 

Average of past flood data (�̅�) 

�̅� = Summation of peak flood/ number of peak flood 

      = 4715/18 

      = 261.94 Cumecs 

Standard deviation (σ): 

σ = √
∑(𝑋 − �̅�)2

𝑁 − 1
 

 

5.8 

Where, N = number of peak flood of past year 

 = √
975256.94

17
 

 = 239.51 Cumecs 

For return period T=15 years 

YT=reduced variable, a function of T and is given by 

= − [𝑙𝑛. 𝑙𝑛
𝑇

𝑇 − 1
] 5.9 

 

     = − [𝑙𝑛. 𝑙𝑛
15

15−1
] 

     = 2.67 

The value of reduced mean (YT) and reduced standard deviation (SN) is taken from the Table 5.26 

and Table 5.27 respectively. 
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Table 5.26: Reduced Mean  �̅�𝑛  in Gumbel’s Extreme Value Distribution. 

 

Table 5.27: Reduced Standard Deviation 𝑆𝑛 in Gumbel’s Extreme Value Distribution. 

 

�̅�𝑛 = 0.5202  

𝑆𝑛 =1.0493 

Frequency Factor (K) 

K =
𝑌𝑇 − 𝑌𝑛

̅̅ ̅

𝑆𝑛
 5.10 

K =
2.67 − 0.5202

1.0493
 

K=2.049 

Magnitude of flood (XT) 

 𝑋𝑇 = �̅� + Kσ  5.11 

𝑋15 = 261.94 +  2.049(239.51) 

𝑋15 = 752.69 cumecs 

Due to the unavailability of the cloud free optical data or Synthetic Aperture Radar data and 

discharge data at the outlet of Vishwamitri watershed for the storm event. The validation of the 

inundation map was done by field visits for the Vadodara city. The simulation shows good 

performance when comparing the simulation results with actual field data. Simulated peak flood 

for the storm event at Kalaghoda Bridge is shown in Figure 5.51. The simulated result shows the 

peak flood of 884.729 m3/sec at Kalaghoda Bridge on 01-08-2019. Flood frequency analysis of 

observed flood peak data from (1996 to 2013) Table 5.28 at Kalaghoda Bridge using Gumbel’s 
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method shows that the simulated peak discharge has return period close to 25 years ( 872.69 

m3/sec).  

Table 5.28: Observed peak flow data at Kalaghoda Bridge. 

Sr. No. Year Peak Flow Rate in Cumecs (X) 
1 1996 265 
2 1997 210 
3 1998 425 
4 1999 50 
5 2000 0 
6 2001 160 
7 2002 85 
8 2003 455 
9 2004 200 

10 2005 805 
11 2006 660 
12 2007 85 
13 2008 75 
14 2009 70 
15 2010 500 
16 2011 75 
17 2012 75 
18 2013 520 

The magnitude of flood for different return periods are calculated and shown in Table 5.29. 

Ward numbers 2, 5, 6, 8 were severely affected by the flood and percentage of area inundated 

in these wards varies form 35.69% to 39.86% (Table 5.30 and Figure 5.52), and the average 

depth of inundation in these wards range from 1.66 m-2.66 m. Ward numbers 4, 7, 10, 12 were 

moderately affected by the flood and percentage of area inundated in these wards varies from 

16.34% to 21.92%, and the average depth of inundation in these wards range from 1.85m-

2.75m. Ward numbers 1, 3, 9, 11 were marginally affected by the flood and percentage of area 

inundated in these wards varies form 0.56% to 3.54%, and the average depth of inundation in 

these wards range from 0.62m-1.61m. Flood hazard assessment, by means of flood mapping 

and identification of flood risk areas, is a crucial element in the formulation of any flood 

management strategy. In order to generate categories of flood hazards, the water depth for 

each flood extent was classified according to Japanese criteria by the Ministry of Land 

Infrastructure and Transportation (MLIT) (Table 5.31) (Quiroga et al., (2016)). The criteria 

suggest five categories of flood hazards: H1—very low hazard (water depth < 0.5 m); H2—low 

hazard (water depth between 0.5–1 m); H3—medium hazard (water depth between 1–2 m); 

H4—high hazard (water depth between 2–5 m); H5—extreme hazard (water depth > 5 m) 

(Figure 5.53). According to flood hazards categories (Table 5.31), 55.65% of total flood extent 

are located in the very low hazard class (H1) followed by H4—high hazard class (17.73% of total 

flood extent), H3—medium hazard class (14.69% of total flood extent), H2—low hazard class 

(7.26% of total flood extent), H5—extreme hazard class (4.67% of total flood extent). 
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Figure 5.51: Simulated peak flood for the storm event at Kalaghoda Bridge.  

Table 5.29: Magnitude of flood for different return period calculated using Gumbel’s 

flood frequency method. 

Return Period (years) Flood Discharge (Cumecs) 

15 752.69 

25 872.69 

35 951.73 

50 1033.16 
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Figure 5.52: Inundation map of Vadodara city with sites visit.

 

Figure 5.53: Classification of flood hazards based on MLIT water depth for Vadodara city.  
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Table 5.30: Inundation statistics for the Vadodara city. 

Ward 

no. 

Ward name Ward 

area 

km2 

Min 

depth 

(m) 

Max 

depth 

(m) 

Range 

(m) 

Mean 

Depth 

(m) 

Inundated 

area 

(km2) 

Percentage 

of area 

Inundated    

1 Nyay Mandir 1.12 0.048 2.05 2.00 0.62 0.01 0.56 % 
2 Harni 13.73 0.002 12.26 12.26 1.97 5.46 39.79 % 
3 Waghodia 9.39 0.001 4.05 4.04 1.30 0.13 1.38 % 

4 Pratap Nagar 15.20 0.002 12.06 12.06 2.40 3.33 21.92 % 

5 Raopura 7.08 0.008 11.23 11.22 2.54 2.53 35.69 % 
6 Akota 22.83 0.001 13.00 13.00 1.66 8.59 37.64 % 
7 Fatehgunj 22.47 0.005 13.19 13.19 2.75 3.67 16.34 % 
8 Nagarwada 4.55 0.029 17.25 17.22 2.66 1.81 39.86 % 
9 Ajwa 10.87 0.008 5.10 5.10 1.61 0.39 3.54 % 
10 Subhanpura 9.61 0.001 8.87 8.87 1.85 1.86 19.31 % 
11 Vasna 14.88 0.015 5.09 5.08 1.36 0.20 1.37 % 
12 Makarpura 28.84 0.006 10.42 10.41 1.87 4.86 16.86 % 

  

Table 5.31: Flood hazard classification based on water depth according to the MLIT. 

Flood 
Hazard 

Flood 
Depth 

(m) 

Hazard 
Classes 

Percentage of 
total flood extent 

Hazard Description 

H1 <0.5 Very low 55.65% 
Flood does not pose hazard to people and on-
foot evacuation is not difficult. 

H2 0.5–1 Low 7.26% 

Flood water poses hazard for infants and on-
foot evacuation of adults becomes difficult; 
evacuation becomes more complicated. 

H3 1–2 Medium 14.69% 
Flood depth can drown people; people may be 
safe inside their homes. 

H4 2–5 High 17.73% 

People are exposed to flood hazard even 
inside their homes and evacuate towards the 
roof of their homes is suggested. 

H5 >5 Extreme 4.67% 

Built-up structures like homes may get 
covered by the flood; people may get 
drowned even if they evacuate towards the 
roof of their homes. 

 

6. Objective: To quantify the effects of urban land forms on land surface temperature and 

modeling the spatial variation using machine learning. The models can help to predict land 

surface temperature under temporary cloud cover spots, which are present in the data at the 

time of the acquisition, using neighboring biophysical (cloud-free) independent variables 

relationship with land surface temperature. 

LST distribution over the study area 

The estimated land surface temperatures for the summer and winter seasons are shown in 

Figure 5.54. The urban heat in Vadodara city in the summer and winter is significant because 
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the high temperature zones are generally consistent with the urban built-up areas near the ward 

numbers 3, 9 and northeast of ward number 12, and the densely built-up areas in the ward 

numbers 3, 5, 6 and 12. However, the intensity of land surface temperature in winter is relatively 

low. In summer, the high temperature zone and the extremely high temperature zone occupy 

approximately 13.41% and 16.16% (Table 5.32) of the total study area, respectively. 

Furthermore, in winter, areas with high and extremely high temperatures are approximately 

13.39% and 15.68% of the total study area, respectively. These two temperature classes show a 

0.5% increase in area from winter to summer. 

Table 5.32: Calculated area and percentage of each temperature class for summer and winter. 

Temperature classes Summer 
Area km2 

(%) 

Breakpoint value for 
summer season image 

Winter 
Area km2 (%) 

Breakpoint value for 
winter season image 

Low temperature 
zone 

20.03 
(12.49) LST<39.39 

21.42 (13.35) 
LST<29.95 

Secondary low 
temperature zone 

29.10 
(18.14) 39.39≤LST<40.20 

26.77 (16.69) 
29.95≤LST<30.45 

Medium 
temperature zone 

34.29 
(21.38) 40.20≤LST<41.00 

34.82 (21.71) 
30.45≤LST<30.95 

Secondary high 
temperature zone 

29.55 
(18.42) 41.00≤LST<41.81 

30.74 (19.17) 
30.95≤LST<31.45 

High temperature 
zone 

21.51 
(13.41) 41.81≤LST<42.61 

21.48 (13.39) 
31.45≤LST<31.95 

Extremely high 
temperature zone 

25.92 
(16.16) LST≥42.61 

25.15 (15.68) 
LST≥31.95 

 

 

Figure 5.54: Estimated land surface temperatures for the summer and winter seasons using 

Landsat 8 data. 
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Temperature Variations for Different Land Cover Types 

To understand the relationship between land surface temperature and land use/land cover, the 

investigation of the thermal signature of each land use/land cover form is important. A 

comparison was therefore carried out between land use/land cover and land surface 

temperature. The land surface temperature descriptive statistics of each land use/land cover 

category for both summer and winter in the study area are shown in Figure 5.56.  The mean 

temperature of each landform category was calculated by averaging all consistent pixels of a 

given landform category. The average LST at 11:02:51.19 AM in summer reached up to 41.0 °C, 

whereas in winter it was 30.9 °C. Figure 5.54 shows the spatial distribution of land surface 

temperature in both summer and winter. In addition, LST in summer and winter had an almost 

similar and low coefficient of variation (CV), which indicate that temperature fluctuation in 

winter and summer are not substantial. 

The average land surface temperature values of four land use/land cover types from high to low 

are baresoil > builtup > vegetation > water. The results indicated the highest land surface 

temperature was recorded for baresoil while the lowest was recorded for water bodies for both 

the seasons. In the study period, the city of Vadodara showed lower surface temperatures in 

residential urban areas as compared to the outskirts of the city. It is caused by heat from the 

sun in the surrounding areas that is directly absorbed into the ground, causing it to heat up 

faster than other ground cover ranges. This could be because of the different values of the 

surface albedo and land surface temperature on residential urban areas and baresoil. The 

residential areas in the city are generally painted with light colors which increases the albedo 

value than the baresoil land.  In contrast, asphalt roads, pavements, buildings, concrete and 

other features that make up the urban surfaces tend to slowly release the heat absorbed. A high 

albedo means the surface reflects the majority of the radiation that hits it and absorbs the rest. 

However, black asphalt or roads in the urban areas tend to have high land surface temperature 

and low albedo value due to its thermal characteristic. Black asphalt or roads have a high 

tendency to absorb solar radiation. In other words, builtup areas tend to retain heat longer than 

other classes, such as barren land in the city areas, which does not retain heat for as long. These 

results are consistent with the findings of Kant et al., (2009) which found that areas with baresoil 

and builtup areas had higher land surface temperature levels, while other categories, such as 

water and vegetation, had lower land surface temperature values during the day. The results of 

this study suggest that the wastelands / barren lands have higher temperatures than residential 

urban areas.  



130 
 

Considering the relationship between landforms and thermal signatures is the most efficient 

approach in understanding the effect of different landforms on land surface temperature. 

Spectral indices are the most widely used and applicable method in large-scale research to 

measure the urban surface characteristic. Evidence from the past studies shows the precise and 

significant results in urban surface characteristic computation using spectral indices. To 

investigate the connection of LST with biophysical variables, indices such as NDVI, NDWI and 

DBSI were derived from Landsat 8. The NDVI has been used extensively to define the overall 

vegetation and green area conditions. A higher NDVI shows a higher vegetation likelihood. The 

DBSI can reveal the builtup and barren land of urban areas. High DBSI values generally signify 

areas with baresoil while mid-range values signify intensive urban development. Based on 

reflected near-infrared radiation and visible green light, NDWI enhances the open water 

features. A higher NDWI shows a higher water body likelihood. The relationship between land 

surface temperature and urban surface characteristics was examined using the Pearson 

correlation coefficient. The overall results indicated a statistically significant correlation 

(significant at the 0.01 level (2-tailed)). The NDVI map of Vadodara city with scatter plots are 

illustrated in Figure 5.55-A and Figure 5.57. The value of the NDVI ranged between −0.169 and 

0.519, the areas with high NDVI values can be identified with dark green color. The strong 

negative correlation (r=-0.650) with LST and NDVI (Figure 5.57-A), shows that high areas of 

vegetation are the most likely to regulate the surface heating effect. Results describe the high 

temperature in less dense vegetative areas and low temperature in highly vegetated areas. 

Lower temperatures in vegetation areas are due to processes like transpiration and 

evapotranspiration. DBSI values ranged between −0.052 and 0.255, the DBSI value over baresoil 

and builtup classes showed a positive correlation with LST (Figure 5.57 B-C). It was found that 

the baresoil and builtup areas have a noticeable effect on the surface urban heat. Water bodies 

have a little thermal response and are known to be an efficient absorbent of radiation. The result 

presented in Figure 5.55-B indicates the NDWI spatial distribution, the NDWI values ranged 

from -0.458 to −0.166. A negative correlation was observed between LST and NDWI (Figure 

5.57-D) over water bodies. Surface water characteristics reflect the pattern of heat flow and 

can be used to minimize the impact of urban heat. 
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Figure 5.55: Spatial distribution of (A) NDVI, (B) NDWI, (C) DBSI and (D) Land use/land cover over 

Vadodara city.  
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Figure 5.56: Land surface temperature descriptive statistics of each land use/land cover 

category for both summer (A-G) and winter (B-H) in the study area. 

 

Figure 5.57: Scatterplots of (A) LST-NDVI over vegetation, (B) LST-DBSI over builtup class, (C) 

LST-DBSI over baresoil class and (D) LST-NDVI over water class.  
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Land Contribution Index (CI) and Landscape index (LI) 

To accurately identify the connection between the surface parameters and the trajectory of the 

land surface temperature in the area under study, a contribution index for each type of land 

cover was calculated for the summer and winter seasons. The influence of each of the specified 

land use/land cover types on the research area's land surface temperature was investigated and 

illustrated in Table 5.33. The results of the calculated contribution indices of the land use/land 

cover types show the dominance of the baresoil surface in relation to the impact on the overall 

land surface temperature regime of the study area. This trend might be explained by the fact 

that the baresoil land cover type is one of the two groups with a positive net contribution index. 

Second, for both seasons, this contribution index is greater than all others combined, suggesting 

that the baresoil region contributes to more surface heating than any other land use/land cover 

in the study area or has the largest heat generating capability on the surface. Among the four 

types, vegetation provided maximum heat mitigating impact in the study area. The contribution 

index value of water remained the same for both the seasons, indicating that temperature 

variation over water tends to be less variable due to its high thermal capacity. As expected, 

baresoil and builtup land had high contribution index in summer, which was significantly lower 

in winter due to lower solar radiation. Apart from baresoil and builtup land, the other types also 

provided less heat contribution in winter. These observations can be explained by the rainfall 

season prior to winter season which leads to more vibrant urban green space and therefore 

more heat sinking. From Table 5.34, it can be seen that all the values of LI of source landscape 

increased from summer to winter season, thus indicating that the intensity of the land surface 

temperature decreasing. This depicted that the contribution of the source and sink landscapes 

weakens the intensity of land surface temperature in the winter season. LI value of less than 1 

in summer shows that contribution of source and sink landscape promoted the intensity of land 

surface temperature. In a study conducted by Zölch et al., (2016), it was found that tree planting 

had the strongest impact on average physiological equivalent temperature (PET) reduction at 

13 percent compared to existing planting. Open spaces with shade of trees and green facades 

provide evapotranspirational cooling. To identify administrative wards with green spaces 

requirements (such as woodlands, parks, street trees, green roofs and facades), values were 

assigned on the scale of 1 (low temperature zone) to 6 (extremely high temperature zone) on 

land surface temperature rasters of both the seasons. A combined score value was later used to 

divide the administrative wards into low, medium and high green spaces requirement wards. 

Figure 5.58 and Table 5.35 show that ward numbers 2, 9 and 12 belong to high green spaces 

requirement wards. Strategically planting vegetation in such heat-exposed areas will be more 
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effective than merely selecting a large percentage of the green cover. This strategy will 

moderate the city climate because shading and evapotranspiration reduce the thermal load 

outdoors during hot weather conditions. 

Model fitting and evaluation 

To evaluate the machine learning models' performances for K-Nearest Neighbor  (K-NN) 

regression, Neural Networks  (NN), Random Trees (RT) regression and Support Vector Machine 

(SVM) regression with the mean moving kernel (observation grid) of 2×2 and 5×5 for each 

explanatory variable (NDVI, NDWI and DBSI). Three performance measures, namely, coefficient 

of determination, bias and RMSE were used. Figure 5.61 shows the model performances for 

KNN, NN, RT and SVM with mean moving kernel in the winter season. When considering both 

the scenarios (2×2 and 5×5), more than 60% of the land surface temperature variation was 

explained by explanatory variables in each model except RT (2×2 and 5×5) (Figure 5.59), which 

was nearly about 20% only. Maximum land surface temperature variation was explained in NN 

5×5 (about 64.1%), followed by, KNN 5×5 (62.6%), SVM 5×5 (62.1%), KNN 2×2 (61.7%). While, 

variation was explained equally in NN 5×5 and SVM 2×2 (61.3%).  

For KNN 2×2, KNN 5×5, RT 2×2, SVM 2×2 and SVM 5×5 the land surface temperature absolute 

error map (|predicted LST–  actual LST|) are shown in Figure 5.60-A1,E1,C1,D1 and H1, the 

mean value of error map (predicted LST–  actual LST) or Bias and standard deviation were 

found to be -0.0076 ◦C, -0.0097 ◦C, -0.0006 ◦C, -0.0622 ◦C and -0.0642 ◦C, and 0.561 ◦C, 0.549 ◦C, 

0.889 ◦C, 0.621 ◦C and 0.612 ◦C, respectively (Table 5.36). The corresponding frequency 

histograms of error (Figure 5.60-A2, E2, C2, D2 and H2) indicate that the above mentioned 

models underestimated the predicted LST. For NN 2×2, NN 5×5 and RT 5×5 the land surface 

temperature absolute error maps are shown in Figure 5.60-B1, F1, and G1, the mean value of 

error map or Bias (◦C) and standard deviation were found to be 0.0047 ◦C, 0.0011 ◦C and 0.0034 

◦C, and 0.617 ◦C, 0.595 ◦C and 0.890 ◦C, respectively (Table 5.36). The corresponding frequency 

histograms of error (Figure 5.60-B2, F2, and G2) indicate that the models slightly overestimated 

the predicted LST. The worst performances were observed by RT models (2×2 and 5×5) (Figure 

5.61-E and F). However, NN 2×2, NN 5×5, SVM 2×2 and SVM 5×5  models performed moderately 

good with overall RMSE of 0.617 ◦C, 0.594 ◦C,0.623 ◦C and 0.615 ◦C, respectively. Although the 

average estimation by all the models is very close to the average LST calculated using the 

Landsat 8 data, boxplots show that none of the models was capable to predict the extreme 

values Figure 5.62. The comparative results revealed that the K-NN algorithm outperformed the 
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other models. The lowest overall RMSE was calculated at a value of 0.549 ◦C for KNN 5×5, 

followed by, KNN 2×2 (0.561◦C). 

Table 5.33: The calculated land contribution indexes of each land cover types. 

 Summer Winter 

Class Area 
Km2 

Ti M Pi Ci Area 
Km2 

Ti M Pi Ci 

Water 0.65 37.56 41.00 0.004 -0.01 0.62 28.94 30.97 0.004 -0.01 

Vegetation 27.01 40.41 41.00 0.168 -0.10 34.28 30.21 30.97 0.214 -0.16 

Builtup 90.27 41.50 41.00 0.563 0.28 90.27 31.04 30.97 0.563 0.04 

Baresoil 42.45 42.86 41.00 0.265 0.49 35.21 31.55 30.97 0.220 0.13 

Table 5.34:  The calculated landscape index of sink and source landscapes. 

 Class Sink Source 

Summer 

Area Km2 27.66 132.72 

Ti 38.98 42.18 
M 41 41 
Pi 0.17 0.83 
Ci -0.3467 0.9821 

LI 0.353 
 

Winter 

Area Km2 34.9 125.48 

Ti 29.58 31.29 
M 30.97 30.97 
Pi 0.218 0.782 
Ci -0.303 0.2561 

LI 1.183 
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Table 5.35: Administrative wards with green spaces requirement. 

            Summer Winter   

Ward 
no. 

Majority class Individual 
score 

Majority class Individual 
score 

Combined 
score 

Green spaces 
requirement 

1 
Secondary high 

temperature zone 4 
Secondary high 

temperature zone 
4 8 Medium 

2 
Extremely high 

temperature zone 6 
Extremely high 

temperature zone 
6 12 High 

3 
Medium 

temperature zone 3 
Secondary high 

temperature zone 
4 7 Medium 

4 
Medium 

temperature zone 3 
Medium 

temperature zone 
3 6 Medium 

5 
Medium 

temperature zone 3 
Low temperature 

zone 
1 4 low 

6 
Secondary high 

temperature zone 4 
Medium 

temperature zone 
3 7 Medium 

7 
Medium 

temperature zone 3 
Medium 

temperature zone 
3 6 Medium 

8 
Medium 

temperature zone 3 
Medium 

temperature zone 
3 6 Medium 

9 
Medium 

temperature zone 3 
Extremely high 

temperature zone 
6 9 High 

10 
Secondary low 

temperature zone 2 
Medium 

temperature zone 
3 5 Medium 

11 
Secondary low 

temperature zone 2 
Medium 

temperature zone 
3 5 Medium 

12 
Extremely high 

temperature zone 6 
Extremely high 

temperature zone 
6 12 High 

 

 

Table 5.36 Calculated bias and RMSE of the predictive models. 

 Bias(◦C) RMSE(◦C) 

 2X2 5X5 2X2 5X5 

KNN  -0.0076 -0.0097 0.561 0.549 

NN 0.0047 0.0011 0.617 0.594 

RT -0.0006 0.0034 0.888 0.890 

SVM -0.0622 -0.0642 0.623 0.615 
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Figure 5.58: Classification of heat zones into UHI and non-UHI zones, and contribution index of 

land use/land cover classes in summer and winter seasons. 

 

Figure 5.59: Coefficient of determination between the LST calculated from Landsat 8 and the 

predicted LST using the K-NN (2×2), K-NN (5×5), NN (2×2), NN(5×5) ,RT (2×2), RT (5×5), SVM (2×2) 

and SVM (5×5) models, respectively. 
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Figure 5.60: Absolute error maps A1-H1 and corresponding frequency histogram of error A2-H2 

of predictive models.  
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Figure 5.61: Maps A,B, C, D,E,F,G and H show the predicted LST using the K-NN (2×2), K-NN 

(5×5), NN (2×2), NN(5×5) ,RT (2×2), RT (5×5), SVM (2×2) and SVM (5×5) models, respectively. 

Map I shows the observed LST estimated using Landsat 8.  

 

Figure 5.62: Box plot of observed LST estimated using Landsat 8, K-NN (2×2), K-NN (5×5), NN 

(2×2), NN(5×5) ,RT (2×2), RT (5×5), SVM (2×2) and SVM (5×5) models, respectively.  


