TABLE OF CONTENTS

Acknowledgements	i
Abstract	iii
List of Tables	xi
List of Figures	XV
Nomenclature	XX
Abbreviations	xxii

Chapter		Title	Page
			No
1	Intro	oduction	1-11
	1.1	General	1
	1.2	Chlorine Disinfection	2
		1.2.1 Chlorine Decay	3
		1.2.2 Problems Associated with Excess Chlorination	3
	1.3	Booster Chlorination	4
	1.4	Need for Water Quality Modelling	5
	1.5	Optimization Techniques	6
	1.6	Motivation for the Study	7
	1.7	Objectives and Scope of Study	9
	1.8	Methodology Adopted	10
	1.9	Inferences	10
2	Liter	ature Review	12-76
	2.1	Introduction	12

2.1	Introduction	12
2.2	Drinking Water Distribution System (DWDS)	13
2.3	Drinking Water Distribution System Models	14

2.4	Hydraulic Models for Drinking Water Distribution System (DWDS)	15
	2.4.1 Development in Hydraulic Modelling	15
	2.4.1 Development in Hydraulic Wodeling 2.4.2 Governing Equations for Hydraulic Modelling	13
	2.4.3 Analysis Methods	19
2.5	Water Quality Models for Drinking Water Distribution System	20
2.5	(DWDS)	20
	2.5.1 Steady-state Water Quality Models	21
	2.5.2 Dynamic Water Quality Models	21
	2.5.3 Governing Equations for Water Quality Modelling	22
	2.5.4 Solution Methods	25
	2.5.5 Modelling Individual Constituents in Drinking Water	27
2.6	Water Quality Management in DWDS through chlorine	27
	disinfection	
	2.6.1 Process Description	29
	2.6.2 Chlorine Chemistry	30
	2.6.3 Nomenclature for Residual Chlorine	31
	2.6.4 Forms of Chlorine	31
	2.6.5 Chlorine Decay	32
	2.6.6 Modelling the Decay of Residual Chlorine	33
	2.6.7 Application of Water Quality Models for Simulation of	47
	Residual Chlorine and DBP	
	2.6.8 Investigation on Chlorine Decay Coefficients and Effect of	50
	Various Parameters on Chlorine Decay	
2.7	Disinfection By-Product Formation and Modelling of DBP	53
2.8	Booster Chlorination	56
2.9	Optimization Methods	58
2.10	Requirements for Optimal Problem Formulation	60
	2.10.1 Mathematical Model for Optimization Problem	60
	2.10.2 Types of Optimization Algorithm / Methods to Solve	60
	Optimization Problem	
	2.10.3 Linear Programming Optimization Method	61
	2.10.4 Particle Swarm Optimization (PSO)	62
	2.10.5 Basic Variants of PSO	62

		2.10.6 Applications of PSO	63
	2.11	Optimization Technique for Booster Chlorination	65
		2.11.1 Optimal Scheduling of Disinfectant Injection and Operation of Booster Station	67
		2.11.2 Optimal Location of Booster Stations	70
		2.11.3 Booster Chlorination responding to a Contamination	73
		Incident and other Applications	
	2.12	Appraisal of Reviewed Literature	75
	2.13	Inferences	76
3	Devel	opment of Hydraulic and Water Quality Models	77-98
	3.1	Introduction	77
		3.1.1. Introduction to EPANET	78
	3.2	General Formulation for Hydraulic Model	80
	3.3	General Formulation for Water Quality Model	85
		3.3.1 Computation of Residual Chlorine	86
		3.3.2 Model Computations for Example Problem	95
		3.3.3 Analysis and Discussion of Results	96
	3.4	Inferences	98
4	Devel	opment of Simulation Model using EPANET	99-152
	4.1	General	99
	4.2	Hydraulic Modelling	100
	4.3	Water Quality Modelling	101
		4.3.1 Reaction Rate Data	102
	4.4	Residual Chlorine Simulation in Branch Network (Example	104
		Problem)	
		4.4.1 Simulation Runs	105
		4.4.2 Simulation Results	106
		4.4.3 Discussions	107
	4.5	CASE STUDY 1: Water Quality Modelling using Booster	109
		Chlorination in Drinking Water Distribution System	
		4.5.1 Simulation Results	111
		4.5.2 Discussions	113

4.6	Vadodara City at a Glance	115
	4.6.1 Sources of water for Vadodara City	116
	4.6.2. Scenario of Water Distribution Services of Vadodara City	116
4.7	Drinking Water Distribution Networks used for Case Studies	118
4.8	CASE STUDY 2: Hydraulic and Water Quality Analysis of	120
	Zoning System of Subhanpura Drinking Water Distribution	
	System.	
	4.8.1 Investigation of Bulk Decay Coefficients	122
	4.8.2 Simulation Results	124
	4.8.3. Discussions	128
4.9	CASE STUDY 3: Hydraulic and Water Quality Analysis of	128
	Channi Drinking Water Distribution System for Continuous and	
	Intermittent Water Supply	
	4.9.1 Simulation Results	131
	4.9.2 Discussions	137
4.10	CASE STUDY 4: Evaluating Booster Chlorination Strategies for	138
	North Harni Drinking Water Distribution System Using	
	EPANET	
	4.10.1 Simulation Results	140
	4.10.2. Discussions	144
4.11	CASE STUDY 5: Alternative Chlorine Management Strategy	145
	Using Booster Chlorination for Manjalpur Drinking Water	
	Distribution System	
	4.11.1 Simulation Results	147
	4.11.2 Discussions	151
4.12	Inferences	152
Coup	led Simulation - Optimization Model for Chlorine Management	153-242
-	nking Water Distribution Systems	
5.1	Introduction	153
5.2	Need for Simulation-Optimization Model	153
5.3	Linear Programming Optimization Method	155
5.4	Development of Optimization Model Using Linear Programming	157
	Optimization Method 5.4.1 Impulse Response Coefficients	157
	J.4.1 Impulse Response Coefficients	137

5

	5.4.2 General Formulation of Optimization Model for Booster Chlorination	157
	5.4.3 The impulse response coefficients for Sample and Example Network	158
	5.4.4 Methods to Compute Impulse Response Coefficients for Large Network	159
5.5	Details of Study Area (Manjalpur)	160
5.6	Case Study 6: Optimal Location and Scheduling of Booster Stations for One Hour Water Supply (MJ-1H-LP)	163
	5.6.1 Development of Optimization Model for Study Area (Manjalpur)	163
	5.6.2 Optimization Results	167
	5.6.3. Discussions	171
5.7	Case Study 7: Optimal Location and Scheduling of Booster Stations for Two Hours Water Supply (MJ-2H-LP)	172
	5.7.1 Optimization Results	174
	5.7.2. Discussions	178
5.8	Details of Study Area (North Harni)	178
5.9	Case Study 8: Optimal Location and Scheduling of Booster Chlorination for One Hour Water Supply (NH-1H-LP)	180
	5.9.1 Optimization Results	183
	5.9.2 Discussions	188
5.10	Case Study 9: Optimal Location and Scheduling of Booster Chlorination for Two Hours Water Supply (NH-2H-LP)	189 191
	5.10.1 Optimization Results5.10.2 Discussions	191
5 1 1		
5.11	Case Study 10: Optimal Location and Scheduling of Booster Chlorination with Deficit Flow Conditions (NH-2HD-LP)	193
	5.11.1 Optimization Results	196
	5.11.2 Discussions	201
5.12	Particle Swarm Optimization (PSO) for Chlorine Management in DWDS	204
	5.12.1 Computational Implementation of PSO	206
5.13	Case Study 11: Coupled Simulation Optimization Model using PSO for North Harni DWDS Network with Deficit Flow Condition (NH-2HD-PSO)	210
	5.13.1 Optimization Results	214
	5.13.2 Sensitivity Analysis for PSO Parameters	217
	5.13.3 Discussions	219

5.14	Case Study 12: Optimal Location and Scheduling of North Harni DWDS Network using PSO for Deficit flow conditions (NH- 2HD-PSO-OL)	220
	5.14.1 Discussions	222
5.15	Case Study 13: Optimal Location and Scheduling of Booster Stations using PSO for North Harni DWDS Network with One and two hours water supply (NH-1H-PSO-OL & NH-2H-PSO- OL)	222
	5.15.1 Discussions	224
5.16	Case Study 14: Optimal Location and Scheduling of Booster Stations using PSO for Manjalpur DWDS with One Hour and Two Hours Water Supply (MJ-1H-PSO-OL & MJ-2H-PSO-OL)	225
	5.16.1 Discussions	227
5.17	General Discussions	233
5.18	Impact Matrix for Booster Chlorination	234
5.19	Cost Analysis for the Optimum Locations of Booster Chlorination Station	238
5.20	Inferences	242
Sumr	nary and Conclusions	243-247
6.1	Summary	243
6.2	Conclusions	244
6.3	Research Contributions	247
6.4	Scope for Further Research Work	247
Appe	ndix-1	248
Input	Parameters and Computations of Hydraulic Analysis	
Refer	rences	257
List o	List of Publications	

6

х