

29

Chapter 3: Text Pre-Processing

This chapter starts with introduction about pre-processing followed by steps in

preprocessing. Each pre-processing step is discussed in detail. The pre-

processing method and technique implemented in the proposed work is also

deliberated upon. Finally, the chapter ends with evaluation of the summary with

several metrics.

3.1 Introduction

Though this is considered the preliminary step to be conducted before

actually applying Text Mining algorithms/methods, it is a very important process

and this routine itself is divided into a number of sub-methods, which again have

optional algorithms with their own set of advantages and disadvantages. The text

data on which I have executed the algorithm have been first converted to text

format if it was not so. In fact, the majority of the datasets were already in text

format.

Most of the Text Mining approaches are based on the idea that a text

document can be described on the set of words contained in it i.e. bag-of-words

representation. The pre-processing itself is made up of a sequence of steps. The

steps are explained in detail.

3.2 Morphological Analysis

The first step in text-preprocessing is the morphological analyses. It is

divided into three subcategories: tokenization, filtering and stemming.

Morphology is a part of linguistics which is dealing with words. Therefore, it deals

with the smallest, useful unit of a document. One could say that characters are

the smallest unit. Nonetheless, characters do not carry any valuable information

for information retrieval. Firstly, Text Mining requires the words and the endings

of a document. Finding words and separating them is known as tokenization.

The next step is filtering of important and relevant words from our list of words

which were the output of tokenization. This is also called stop words removal.

Chapter 3: Text Pre-Processing

30

The third step is stemming. Stemming is very important and a lot of

research work has already been done on it. Stemming reduces words variants to

its root form. Stemming of words increases the recall and precision of the

information retrieval in Text Mining. The term recall describes the proportion of all

relevant documents in a data set that are retrieved by the information retrieval

system. The term precision describes the proportion of relevant documents in the

data set returned to the user. Precision and recall are two very important

measures for text categorization, clustering as well as summarization. The details

are discussed further as and when they are applied.

3.3 Tokenization

Over here, the input document is split into a set of words by removing all

punctuation marks, tabs and other non-text characters and replacing them with

white spaces. The part-of-speech (POS) tagging is also applied in some cases

where words are tagged according to the grammatical context of the word in the

sentence, hence dividing the words into nouns, verbs, etc. This is important for

the exact analysis of relations between words.

Another approach was to ignore the order in which the words occurred and

instead focus on their statistical distributions (the bag-of-words approach). In this

case, it is necessary to index the text into data vectors. I have used the bag-of-

words approach in implementing the algorithms. The POS becomes important if

the research is related to NLP. In one algorithm as part of extension work POS

has been implemented.

Tokenization has been done using Visual Basic (using strip () function) as

well as Matlab (using strtok () function). The Matlab function was found to be

much more efficient and fast.

3.4 Filtering

This step is related to removing words, which are of no importance for our

Text Mining process like articles, prepositions, conjunctions, etc. This is known as

„Stop Words Filtering‟. It is controlled by human input and not automated. There

is not one definite list of stop words, which all tools use, if even used. The stop

words list is available on the site of the Onix Text Retrievel Tookit and the site is:

Chapter 3: Text Pre-Processing

31

http://www.lextek.com/manuals/onix/stopwords1.html.

This is a very popular list and as per the requirement, the list can be modified. I

have used this list to remove the stop words. Another popular list is available on

the MIT site and can be downloaded from:

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop.

3.5 Stemming

3.5.1 Introduction to Stemming

Word stemming is an important feature supported by present day indexing

and search systems. Indexing and searching are in turn part of Text Mining

applications, Natural Language Processing (NLP) systems and Information

Retrieval (IR) systems. The main idea is to improve recall by automatic handling

of word endings by reducing the words to their word roots, at the time of indexing

and searching. Recall in increased without compromising on the precision of the

documents fetched. Stemming is usually done by removing any attached suffixes

and prefixes (affixes) from index terms before the actual assignment of the term

to the index. Since the stem of a term represents a broader concept than the

original term, the stemming process eventually increases the number of retrieved

documents in an IR system. Text clustering, categorization and summarization

also require this conversion as part of the pre-processing before actually applying

any related algorithm.

Errors in Stemming

There are mainly two errors in stemming – over stemming and under

stemming. Over-stemming is when two words with different stems are stemmed

to the same root. This is also known as a false positive. Under-stemming is when

two words that should be stemmed to the same root are not. This is also known

as a false negative. Paice has proved that light-stemming reduces the over-

stemming errors but increases the under-stemming errors. On the other hand,

heavy stemmers reduce the under-stemming errors while increasing the over-

stemming errors.

Classification of Stemming Algorithms

Chapter 3: Text Pre-Processing

32

Broadly, stemming algorithms can be classified in three groups: truncating

methods, statistical methods, and mixed methods. Each of these groups has a

typical way of finding the stems of the word variants. These methods are shown

in the Figure 3.1.

Figure 3-1 Types of Stemming Algorithms

In the work carried out in this research for both the models the Porters Stemmer

has been implemented in Python for stemming.

Porters Stemmer

Porters stemming algorithm is as of now one of the most popular

stemming methods proposed in 1980. Many modifications and enhancements

have been done and suggested on the basic algorithm. It is based on the idea

that the suffixes in the English language (approximately 1200) are mostly made

up of a combination of smaller and simpler suffixes. It has five steps, and within

each step, rules are applied until one of them passes the conditions. If a rule is

accepted, the suffix is removed accordingly, and the next step is performed. The

resultant stem at the end of the fifth step is returned.

The rule looks like the following:

<condition><suffix> → <new suffix>

Stemming Algorithms

Truncating Statistical Mixed

1) Lovins

2) Porters

3)

Paice/Husk

4) Dawson

1) N-Gram

2) HMM

3) YASS

1) Inflectional &
 Derivational

 a) Krovetz

 b) Xerox

2) Corpus Based

3) Context Sensitive

Chapter 3: Text Pre-Processing

33

For example, a rule (m>0) EED → EE means, “If the word has at least one vowel

and consonant plus EED ending, change the ending to EE”. So “agreed”

becomes “agree” while “feed” remains unchanged. This algorithm has about 60

rules and is very easy to comprehend.

Porter designed a detailed framework of stemming which is known as

„Snowball‟. The main purpose of the framework is to allow programmers to

develop their own stemmers for other character sets or languages. Currently

there are implementations for many Romance, Germanic, Uralic and

Scandinavian languages as well as English, Russian and Turkish languages.

Based on the stemming errors, Paice reached to a conclusion that the Porter

stemmer produces less error rate than the Lovins stemmer does. However, it was

noted that Lovins stemmer is a heavier stemmer that produces a better data

reduction. The Lovins algorithm is noticeably bigger than the Porter algorithm,

because of its very extensive endings list. Nevertheless, in one way that is used

to advantage: it is faster. It has effectively traded space for time, and with its large

suffix set it needs just two major steps to remove a suffix, compared with the five

of the Porter algorithm.

3.5.2 Stemming and Lemmatizing

The basic function of both the methods – stemming and lemmatizing is

similar. Both of them reduce a word variant to its „stem‟ in stemming and „lemma‟

in lemmatizing. There is a very subtle difference between both the concepts. In

stemming the „stem‟ is obtaining after applying a set of rules but without bothering

about the part of speech (POS) or the context of the word occurrence. In

contrast, lemmatizing deals with obtaining the „lemma‟ of a word, which involves

reducing the word forms to its root, form after understanding the POS and the

context of the word in the given sentence.

In stemming, conversion of morphological forms of a word to its stem is done

assuming each one is semantically related. The stem need not be an existing

word in the dictionary but all its variants should map to this form after the

stemming has been completed. There are two points to be considered while

using a stemmer:

 Morphological forms of a word are assumed to have the same base

meaning and hence should be mapped to the same stem

Chapter 3: Text Pre-Processing

34

 Words that do not have the same meaning should be kept separate

These two rules are good enough as long as the resultant stems are useful for

our Text Mining or language processing applications. Stemming is generally

considered as a recall-enhancing device. For languages with relatively simple

morphology, the influence of stemming is less than for those with a more complex

morphology. Most of the stemming experiments done so far are for English and

other west European languages.

Lemmatizing deals with the complex process of first understanding the

context, then determining the POS of a word in a sentence and then finally

finding the „lemma‟. In fact, an algorithm that converts a word to its linguistically

correct root is called a lemmatizer. A lemma in morphology is the canonical form

of a lexeme. Lexeme, in this context, refers to the set of all the forms that have

the same meaning, and lemma refers to the particular form that is chosen by

convention to represent the lexeme.

In computational linguistics, a stem is the part of the word that never

changes even when morphologically inflected, whilst a lemma is the base form of

the verb. Stemmers are typically easier to implement and run faster, and the

reduced accuracy may not matter for some applications. Lemmatizers are difficult

to implement because they are related to the semantics and the POS of a

sentence. Stemming usually refers to a crude heuristic process that chops off the

ends of words in the hope of achieving this goal correctly most of the time, and

often includes the removal of derivational affixes. The results are not always

morphologically right forms of words. Nevertheless, since document index and

queries are stemmed "invisibly" for a user, this peculiarity should not be

considered as a flaw, but rather as a feature distinguishing stemming from

lemmatization. Lemmatization usually refers to doing things properly with the use

of a vocabulary and morphological analysis of words, normally aiming to remove

inflectional endings only and to return the lemma.

For example, the word inflations like gone, goes, going will map to the

stem „go‟. The word „went‟ will not map to the same stem. However a lemmatizer

will map even the word „went‟ to the lemma „go‟.

Stemming:

introduction, introducing, introduces – introduc

gone, going, goes – go

Chapter 3: Text Pre-Processing

35

Lemmatizing:

introduction, introducing, introduces – introduce

gone, going, goes, went – go

3.6 Syntactical and Semantical Analysis

3.6.1 Syntactical Analysis

This analysis deals with the syntax of a sentence in natural language and is

useful in Information Retrieval systems. It can be divided in three parts: part-of-

speech tagging, phrase recognition and parsing.

1. Part-of-speech tagging: The recognition of the elements of a sentence like

nouns, verbs, adjectives, prepositions, etc. is realized through part of speech

tagging (POS tagging).

The part-of-speech (POS) tagging is also applied in some cases where words

are tagged according to the grammatical context of the word in the sentence,

hence dividing up the words into nouns, verbs, etc. This is important for the

exact analysis of relations between words.

2. Phrase Recognition (PR): This is also very similar to POS. It is required to

locate group of words or phrases. PR finds phrases like those given below:

 Preposition phrase (e.g. in love)

 Noun Phrase(e.g. the magician of Mecca)

 Verb Phrase (e.g. do business)

 Adjectival Phrase (e.g. small house)

 Adverbial Phrase (e.g. very quickly)

3. Parsing: This process is also part of POS as well as phrase recognition. The

sentences are fractionalized into grammatical units. The Stanford parser is

very popular for parsing. It generates a tree which is useful for information

extraction.

3.6.2 Semantical Analysis

This part of pre-processing deals with the meaning of the textual data i.e. the

semantics. It is more or less related to Natural Language Processing.

3.7 The Vector Space Model (VSM)

3.7.1 Introduction to VSM

Chapter 3: Text Pre-Processing

36

This model was proposed by Salton and it incorporates the local as well as

global information about terms in a document and corpus.

It is an algebraic model for representing text documents as vectors of

identifiers. The vector space model procedure can be divided in to three stages.

The first stage is the document indexing where content bearing terms are

extracted from the document text. The second stage is the weighting of the

indexed terms to enhance retrieval of document relevant to the user. The last

stage ranks the document with respect to the query according to a similarity

measure. The term „query‟ is used because this model is used in Information

Retrieval also.

The similarity between documents or a query and a document is

determined through calculations of the cosine similarity, Dice‟s coefficient, the

Jaccard‟s coefficient and in some cases the Eucliean distance. The vector space

model has been shown diagrammatically as in Figure 3.1. In the figure, d1 and d2

are document vectors and q1 is the query vector. We call them vectors because

they are made up of different terms.

Figure 3-2 The Vector Space Model

Chapter 3: Text Pre-Processing

37

The angle between the documents or the query and documents determines the

similarity between them.

3.7.2 Term Frequency

The term Frequency method is widely being used for information retrieval

systems and text summarization due to its flexibility. The weight is used to

measure the importance of word in the document. The measure of importance

increases proportionally as the word appears in the document.

The problem with this method is that the terms occurring most frequently

might not characterize or contain essentials of the document, as they could be

possibly stop words of the document.

TF (Term Frequency) = (No. of times word/terms appear in a document) /

(Total no. of words/terms in document)

Luhn (1958) demonstrated the idea of upper and lower cut-off terms for resolving

issue regarding the power of significant words.

Figure 3-3 Word frequency diagram(S, 2018)

As shown in figure, upper cut-off shows stop words, whereas lower cut-off

shows less frequently occurring words in the document. The figure demonstrates

the Zipf‟s law (Zipf 1949) which tells that the frequency of the word is inversely

proportional to its rank. Words having score more than the upper cut-off are

considered as too common words and the words below the cut-off are considered

Chapter 3: Text Pre-Processing

38

as rare terms. These words are not considered as part of summary as they do

not exhibit any importance to the content.

3.7.3 The tf-idf score

The document indexing is done using the tf-idf method. It stands for term-

frequency (tf) and inverse document frequency (idf). It is weight based on

statistics which is assigned to a word to evaluate its importance in a single

document or a collection of documents. This weight is also used to generate

ranking in documents. It is used in almost all Text Mining algorithms. Over here

the assumption is that the first three steps of data pre-processing – tokenization,

removing stop words and stemming is already complete.

In the VSM, each document d is considered to be a vector in the term-

space i.e. terms that make the document. A document d can be represented as,

dtf = (tf1, tf2, …, tfn),

Where tfi is the frequency of the ith term in document d. In this way,the tf vector

can represent each term in a document. Since all documents are not of the same

size, we normalize the term frequency by dividing it by the total number of unique

terms in the document.

The inverse document frequency (idf) is a measure of the general

importance of the term in the corpus. It is obtained by dividing the total number of

documents by the number of documents containing the term and taking the

logarithm of that quotient.

𝑖𝑑𝑓 𝑡 = 𝑙𝑜𝑔
∣ 𝐷 ∣

∣ 𝑑: 𝑡𝜖𝑑 ∣
 (3.1)

Where,

∣D∣ - total number of documents in the corpus

∣d:tϵd∣ - number of documents where term t appears

If a term is not in the corpus this will lead to division by zero and so we

adjust (1) by adding 1 to the denominator. i.e. 1 + ∣d:tϵd∣.

So now the tf-idf score for a term in a document becomes,

tf-idf (t, d) = tf × idf (3.2)

Chapter 3: Text Pre-Processing

39

A high weight in tf-idf is reached by a high term frequency in a document

and a low document frequency of the term in the whole collection of documents.

This will filter out the common terms across the corpus. For terms of more

importance in certain algorithms, weights are also assigned i.e. tf score of

important terms is multiplied by some integer to increase its weightage.

The tf-idf scoring is very effectively shown in Figure 3.4. For each term of

each document in the corpus, in this way the tf-idf score is obtained. A matrix is

created to store these scores and then in the Text Mining algorithms these scores

are applied. The matrix looks like the example shown in Table 3.1. The actual

scores are stored in text files and the Matlab or Visual Basic programs first

creates the file and then reads and uses the scores in the programs for the

different Text Mining algorithms implementation.

Figure 3-4The term and document frequencies

Chapter 3: Text Pre-Processing

40

As shown in the Figure 3-4, the corpus is a collection of documents, documents

consist of passages and passages consist of sentences. Thus, for a term i in a

document j we can talk in terms of collection frequencies (Cf), term frequencies

(tf), passage frequencies (Pf) and sentence frequencies (Sf).

Table 3-1. The tf-idf matrix example

3.7.4 Length Normalization

Let‟s consider two documents in the corpus. Also considers, nth page in

document D1 and nth and n + 1th pages of the document D2 of similar text. Now,

the larger document contains more terms with the more occurrence for a specific

term/word. Considering the above scenario, in Document D1, if a term chair

appears 7 times and the same term appears 14 times in Document D2, then to

overcome this situation length normalization must be applied. One of the length

normalization techniques is cosine length normalization.

'

2

1

ij

ij
t t

ikk

w
w

w





(3.3)

Chapter 3: Text Pre-Processing

41

The equation 3.3 is considered for normalizing the weight of the ith term of

the document. Here, t indicates the number of terms in the collection of

documents, whereas Wij‟ represents the term frequency without considering

normalized length. The Wij represents the length adjusted weight. The term

frequency weights are standardized by dividing the length of the document. The

equation is given below.

𝑊𝑖𝑗 =
𝑊𝑖𝑗

𝑙𝑒𝑛𝑔𝑡𝑕 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 (3.4)

 Here, the length of the document is considered as a relative length of the

document.

3.8 Attribute Selection

3.8.1 Introduction

Attribute selection, more popularly known as feature selection is the

technique of selecting a subset of relevant features for building robust learning

models in machine learning using statistical methods. It is also called variable

selection, feature reduction or variable subset selection.

Many attribute / feature selection methods have been developed and

extensive research work has already been done in this field.

Feature selection is a process commonly used in machine learning,

wherein a subset of the features available from the data is selected for

application of a learning algorithm. The best subset contains the least number of

dimensions that most contribute to accuracy; we discard the remaining,

unimportant dimensions. This is an important stage of preprocessing and is one

of two ways of avoiding the curse of dimensionality – the other is feature

extraction. It decreases the size of the effective vocabulary and increases

accuracy of Text Mining by decreasing noise.

3.8.2 Comparison of Attribute Selection Methods

The most popular attribute selection methods are the frequency

distribution, Mutual Information (MI), the chi-square test, correlation coefficient

and relevancy score. The methods are all statistical based on probability

distributions. The formulas of these methods are given in Table 3.2. The details

Chapter 3: Text Pre-Processing

42

about these methods are in the references section as per the reference numbers

in the last column of the table.

Table 3-2 Main methods of feature reduction / selection

Function

Denoted

by

Mathematical Form

Document

Frequency

#(𝑡𝑘 , 𝑐𝑖)

𝑃(𝑡𝑘 , 𝑐𝑖)

Information

gain

(Expected

Mutual

Information)

𝐼𝐺

= (𝑡𝑘 , 𝑐𝑖)

𝑃 𝑡𝑘 , 𝑐𝑖 ∙ log
𝑃(𝑡𝑘 , 𝑐𝑖)

𝑃 𝑐𝑖 ∙ 𝑃(𝑡𝑘)
+ 𝑃(𝑡𝑘 , 𝑐𝑖 ∙ log

𝑃(𝑡𝑘 , 𝑐𝑖)

𝑃 𝑐𝑖 ∙ 𝑃(𝑡𝑘)

Chi-square

𝑥2(𝑡𝑘 , 𝑐𝑖)

𝑔 ∙ 𝑃 𝑡𝑘 , 𝑐𝑖 ∙ 𝑃 𝑡𝑘 , 𝑐𝑖 − 𝑃(𝑡𝑘 , 𝑐𝑖) ∙ 𝑃(𝑡𝑘 , 𝑐𝑖)
2

𝑃(𝑡𝑘) ∙ 𝑃(𝑡𝑘) ∙ 𝑃(𝑐𝑖) ∙ 𝑃(𝑐𝑖)

Correlation

coefficient

𝐶𝐶(𝑡𝑘 , 𝑐𝑖)

 𝑔 ∙ 𝑃 𝑡𝑘 , 𝑐𝑖 ∙ 𝑃 𝑡𝑘 , 𝑐𝑖 − 𝑃(𝑡𝑘 , 𝑐𝑖) ∙ 𝑃(𝑡𝑘 , 𝑐𝑖)

 𝑃(𝑡𝑘) ∙ 𝑃(𝑡𝑘) ∙ 𝑃(𝑐𝑖) ∙ 𝑃(𝑐𝑖)

Relevancy

score

𝑅𝑆(𝑡𝑘 , 𝑐𝑖)

log
𝑃 𝑡𝑘 𝑐𝑖 + 𝑑

𝑃 𝑡𝑘 𝑐𝑖 + 𝑑

Chapter 3: Text Pre-Processing

43

As per the research done by Martin Sewell1, the different feature selection

methods are as follows.

 Kira and Rendell (1992) described a statistical feature selection algorithm

called RELIEF that uses instance based learning to assign a relevance

weight to each feature.

 John, Kohavi and Pfleger (1994) addressed the problem of irrelevant

features and the subset selection problem. They presented definitions for

irrelevance and for two degrees of relevance (weak and strong). They also

state that features selected should depend not only on the features and

the target concept, but also on the induction algorithm. Further, they claim

that the filter model approach to subset selection should be replaced with

the wrapper model.

 Pudil, Novoviˇcov´a and Kittler (1994) presented “floating” search methods

in feature selection. These are sequential search methods characterized

by a dynamically changing number of features included or eliminated at

each step. They were shown to give very good results and to be

computationally more effective than the branch and bound method.

 Koller and Sahami (1996) examined a method for feature subset selection

based on Information Theory: they presented a theoretically justified model

for optimal feature selection based on using cross-entropy to minimize the

amount of predictive information lost during feature elimination.

 Jain and Zongker (1997) considered various feature subset selection

algorithms and found that the sequential forward floating selection

algorithm, proposed by Pudil, Novoviˇcov´a and Kittler (1994), dominated

the other algorithms tested.

 Dash and Liu (1997) gave a survey of feature selection methods for

classification. In a comparative study of feature selection methods in

statistical learning of text categorization (with a focus is on aggressive

dimensionality reduction).

 Yang and Pedersen (1997) evaluated document frequency (DF),

information gain (IG), mutual information (MI), a CHI-square test and term

strength (TS); and found IG and CHI to be the most effective.

1
The different feature selection methods as discussed by Martin Sewell, http://www.machine-

learning.martinsewell.com/feature-selection

Chapter 3: Text Pre-Processing

44

 Blum and Langley (1997) focused on two key issues: the problem of

selecting relevant features and the problem of selecting relevant

examples.

 Kohavi and John (1997) introduced wrappers for feature subset selection.

Their approach searches for an optimal feature subset tailored to a

particular learning algorithm and a particular training set.

 Yang and Honavar (1998) used a genetic algorithm for feature subset

selection.

 Liu and Motoda (1998) wrote their book on feature selection which offers

an overview of the methods developed since the 1970s and provides a

general framework in order to examine these methods and categorize

them.

 Weston, et al. (2001) introduced a method of feature selection for SVMs

which is based upon finding those features which minimize bounds on the

leave-one-out error.

 Xing, Jordan and Karp (2001) successfully applied feature selection

methods (using a hybrid of filter and wrapper approaches) to a

classification problem in molecular biology involving only 72 data points in

a 7130 dimensional space.

 Forman (2003) presented an empirical comparison of twelve feature

selection methods. Results revealed the surprising performance of a new

feature selection metric, „Bi-Normal Separation‟ (BNS).

 Guyon and Elisseeff (2003) gave an introduction to variable and feature

selection. They recommend using a linear predictor of your choice (e.g. a

2 linear SVM) and select variables in two alternate ways: (1) with a

variable ranking method using correlation coefficient or mutual information;

(2) with a nested subset selection method performing forward or backward

selection or with multiplicative updates.

SUMMARY

This chapter gave a detailed description of the Text Pre-processing tasks which

are performed before the Text Summarization model is implemented. Text Pre-

processing is in fact very important as the output of the algorithms depend on

Chapter 3: Text Pre-Processing

45

how well the text is pre-processed. The pre-processing methods are also

interesting areas of research. The next chapter discusses about the Latent

Semantic Analysis that is performed on the pre-processed data.

