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Chapter 3: Text Pre-Processing 
 

This chapter starts with introduction about pre-processing followed by steps in 

preprocessing. Each pre-processing step is discussed in detail. The pre-

processing method and technique implemented in the proposed work is also 

deliberated upon. Finally, the chapter ends with evaluation of the summary with 

several metrics. 

3.1 Introduction 

Though this is considered the preliminary step to be conducted before 

actually applying Text Mining algorithms/methods, it is a very important process 

and this routine itself is divided into a number of sub-methods, which again have 

optional algorithms with their own set of advantages and disadvantages. The text 

data on which I have executed the algorithm have been first converted to text 

format if it was not so. In fact, the majority of the datasets were already in text 

format. 

Most of the Text Mining approaches are based on the idea that a text 

document can be described on the set of words contained in it i.e. bag-of-words 

representation. The pre-processing itself is made up of a sequence of steps. The 

steps are explained in detail. 

3.2 Morphological Analysis 

The first step in text-preprocessing is the morphological analyses. It is 

divided into three subcategories: tokenization, filtering and stemming. 

Morphology is a part of linguistics which is dealing with words. Therefore, it deals 

with the smallest, useful unit of a document. One could say that characters are 

the smallest unit. Nonetheless, characters do not carry any valuable information 

for information retrieval. Firstly, Text Mining requires the words and the endings 

of a document. Finding words and separating them is known as tokenization.   

The next step is filtering of important and relevant words from our list of words 

which were the output of tokenization. This is also called stop words removal. 
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The third step is stemming. Stemming is very important and a lot of 

research work has already been done on it. Stemming reduces words variants to 

its root form. Stemming of words increases the recall and precision of the 

information retrieval in Text Mining. The term recall describes the proportion of all 

relevant documents in a data set that are retrieved by the information retrieval 

system. The term precision describes the proportion of relevant documents in the 

data set returned to the user. Precision and recall are two very important 

measures for text categorization, clustering as well as summarization. The details 

are discussed further as and when they are applied. 

3.3 Tokenization 

Over here, the input document is split into a set of words by removing all 

punctuation marks, tabs and other non-text characters and replacing them with 

white spaces. The part-of-speech (POS) tagging is also applied in some cases 

where words are tagged according to the grammatical context of the word in the 

sentence, hence dividing the words into nouns, verbs, etc. This is important for 

the exact analysis of relations between words.  

Another approach was to ignore the order in which the words occurred and 

instead focus on their statistical distributions (the bag-of-words approach). In this 

case, it is necessary to index the text into data vectors. I have used the bag-of-

words approach in implementing the algorithms. The POS becomes important if 

the research is related to NLP. In one algorithm as part of extension work POS 

has been implemented. 

Tokenization has been done using Visual Basic (using strip () function) as 

well as Matlab (using strtok () function). The Matlab function was found to be 

much more efficient and fast.  

3.4 Filtering 

This step is related to removing words, which are of no importance for our 

Text Mining process like articles, prepositions, conjunctions, etc. This is known as 

„Stop Words Filtering‟. It is controlled by human input and not automated. There 

is not one definite list of stop words, which all tools use, if even used. The stop 

words list is available on the site of the Onix Text Retrievel Tookit and the site is: 
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http://www.lextek.com/manuals/onix/stopwords1.html.  

This is a very popular list and as per the requirement, the list can be modified. I 

have used this list to remove the stop words. Another popular list is available on 

the MIT site and can be downloaded from: 

http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop.  

3.5 Stemming 

3.5.1 Introduction to Stemming 

Word stemming is an important feature supported by present day indexing 

and search systems. Indexing and searching are in turn part of Text Mining 

applications, Natural Language Processing (NLP) systems and Information 

Retrieval (IR) systems. The main idea is to improve recall by automatic handling 

of word endings by reducing the words to their word roots, at the time of indexing 

and searching. Recall in increased without compromising on the precision of the 

documents fetched. Stemming is usually done by removing any attached suffixes 

and prefixes (affixes) from index terms before the actual assignment of the term 

to the index. Since the stem of a term represents a broader concept than the 

original term, the stemming process eventually increases the number of retrieved 

documents in an IR system. Text clustering, categorization and summarization 

also require this conversion as part of the pre-processing before actually applying 

any related algorithm. 

 

Errors in Stemming  

There are mainly two errors in stemming – over stemming and under 

stemming. Over-stemming is when two words with different stems are stemmed 

to the same root. This is also known as a false positive. Under-stemming is when 

two words that should be stemmed to the same root are not. This is also known 

as a false negative. Paice has proved that light-stemming reduces the over-

stemming errors but increases the under-stemming errors. On the other hand, 

heavy stemmers reduce the under-stemming errors while increasing the over-

stemming errors.  

Classification of Stemming Algorithms  
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Broadly, stemming algorithms can be classified in three groups: truncating 

methods, statistical methods, and mixed methods. Each of these groups has a 

typical way of finding the stems of the word variants. These methods are shown 

in the Figure 3.1. 

 

Figure 3-1 Types of Stemming Algorithms 

 

In the work carried out in this research for both the models the Porters Stemmer 

has been implemented in Python for stemming. 

 

Porters Stemmer 

Porters stemming algorithm is as of now one of the most popular 

stemming methods proposed in 1980. Many modifications and enhancements 

have been done and suggested on the basic algorithm. It is based on the idea 

that the suffixes in the English language (approximately 1200) are mostly made 

up of a combination of smaller and simpler suffixes. It has five steps, and within 

each step, rules are applied until one of them passes the conditions. If a rule is 

accepted, the suffix is removed accordingly, and the next step is performed. The 

resultant stem at the end of the fifth step is returned.  

The rule looks like the following: 

<condition><suffix> → <new suffix> 

Stemming Algorithms 

Truncating Statistical Mixed 

1) Lovins 

2) Porters 

3) 

Paice/Husk 

4) Dawson 

 

1) N-Gram 

2) HMM 

3) YASS 

1) Inflectional & 
     Derivational 

  a) Krovetz 

  b) Xerox 

2) Corpus Based 

3) Context Sensitive 
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For example, a rule (m>0) EED → EE means, “If the word has at least one vowel 

and consonant plus EED ending, change the ending to EE”. So “agreed” 

becomes “agree” while “feed” remains unchanged. This algorithm has about 60 

rules and is very easy to comprehend.  

Porter designed a detailed framework of stemming which is known as 

„Snowball‟. The main purpose of the framework is to allow programmers to 

develop their own stemmers for other character sets or languages. Currently 

there are implementations for many Romance, Germanic, Uralic and 

Scandinavian languages as well as English, Russian and Turkish languages. 

Based on the stemming errors, Paice reached to a conclusion that the Porter 

stemmer produces less error rate than the Lovins stemmer does. However, it was 

noted that Lovins stemmer is a heavier stemmer that produces a better data 

reduction. The Lovins algorithm is noticeably bigger than the Porter algorithm, 

because of its very extensive endings list. Nevertheless, in one way that is used 

to advantage: it is faster. It has effectively traded space for time, and with its large 

suffix set it needs just two major steps to remove a suffix, compared with the five 

of the Porter algorithm. 

3.5.2 Stemming and Lemmatizing 

The basic function of both the methods – stemming and lemmatizing is 

similar. Both of them reduce a word variant to its „stem‟ in stemming and „lemma‟ 

in lemmatizing. There is a very subtle difference between both the concepts. In 

stemming the „stem‟ is obtaining after applying a set of rules but without bothering 

about the part of speech (POS) or the context of the word occurrence. In 

contrast, lemmatizing deals with obtaining the „lemma‟ of a word, which involves 

reducing the word forms to its root, form after understanding the POS and the 

context of the word in the given sentence.  

In stemming, conversion of morphological forms of a word to its stem is done 

assuming each one is semantically related. The stem need not be an existing 

word in the dictionary but all its variants should map to this form after the 

stemming has been completed. There are two points to be considered while 

using a stemmer: 

 Morphological forms of a word are assumed to have the same base 

meaning and hence should be mapped to the same stem 
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 Words that do not have the same meaning should be kept separate 

These two rules are good enough as long as the resultant stems are useful for 

our Text Mining or language processing applications. Stemming is generally 

considered as a recall-enhancing device. For languages with relatively simple 

morphology, the influence of stemming is less than for those with a more complex 

morphology. Most of the stemming experiments done so far are for English and 

other west European languages. 

Lemmatizing deals with the complex process of first understanding the 

context, then determining the POS of a word in a sentence and then finally 

finding the „lemma‟. In fact, an algorithm that converts a word to its linguistically 

correct root is called a lemmatizer. A lemma in morphology is the canonical form 

of a lexeme. Lexeme, in this context, refers to the set of all the forms that have 

the same meaning, and lemma refers to the particular form that is chosen by 

convention to represent the lexeme.  

In computational linguistics, a stem is the part of the word that never 

changes even when morphologically inflected, whilst a lemma is the base form of 

the verb. Stemmers are typically easier to implement and run faster, and the 

reduced accuracy may not matter for some applications. Lemmatizers are difficult 

to implement because they are related to the semantics and the POS of a 

sentence. Stemming usually refers to a crude heuristic process that chops off the 

ends of words in the hope of achieving this goal correctly most of the time, and 

often includes the removal of derivational affixes. The results are not always 

morphologically right forms of words. Nevertheless, since document index and 

queries are stemmed "invisibly" for a user, this peculiarity should not be 

considered as a flaw, but rather as a feature distinguishing stemming from 

lemmatization. Lemmatization usually refers to doing things properly with the use 

of a vocabulary and morphological analysis of words, normally aiming to remove 

inflectional endings only and to return the lemma.  

For example, the word inflations like gone, goes, going will map to the 

stem „go‟. The word „went‟ will not map to the same stem. However a lemmatizer 

will map even the word „went‟ to the lemma „go‟. 

Stemming: 

introduction, introducing, introduces – introduc 

gone, going, goes – go  
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Lemmatizing: 

introduction, introducing, introduces – introduce 

gone, going, goes, went – go  

3.6 Syntactical and Semantical Analysis 

3.6.1 Syntactical Analysis 

This analysis deals with the syntax of a sentence in natural language and is 

useful in Information Retrieval systems. It can be divided in three parts: part-of-

speech tagging, phrase recognition and parsing. 

1. Part-of-speech tagging: The recognition of the elements of a sentence like 

nouns, verbs, adjectives, prepositions, etc. is realized through part of speech 

tagging (POS tagging).  

The part-of-speech (POS) tagging is also applied in some cases where words 

are tagged according to the grammatical context of the word in the sentence, 

hence dividing up the words into nouns, verbs, etc.  This is important for the 

exact analysis of relations between words. 

2. Phrase Recognition (PR): This is also very similar to POS. It is required to 

locate group of words or phrases. PR finds phrases like those given below: 

 Preposition phrase (e.g. in love) 

 Noun Phrase(e.g. the magician of Mecca) 

 Verb Phrase (e.g. do business) 

 Adjectival Phrase (e.g. small house) 

 Adverbial Phrase (e.g. very quickly) 

3. Parsing: This process is also part of POS as well as phrase recognition. The 

sentences are fractionalized into grammatical units. The Stanford parser is 

very popular for parsing. It generates a tree which is useful for information 

extraction.  

3.6.2 Semantical Analysis 

This part of pre-processing deals with the meaning of the textual data i.e. the 

semantics. It is more or less related to Natural Language Processing. 

3.7 The Vector Space Model (VSM) 

3.7.1 Introduction to VSM 
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This model was proposed by Salton and it incorporates the local as well as 

global information about terms in a document and corpus. 

It is an algebraic model for representing text documents as vectors of 

identifiers. The vector space model procedure can be divided in to three stages. 

The first stage is the document indexing where content bearing terms are 

extracted from the document text. The second stage is the weighting of the 

indexed terms to enhance retrieval of document relevant to the user. The last 

stage ranks the document with respect to the query according to a similarity 

measure. The term „query‟ is used because this model is used in Information 

Retrieval also. 

The similarity between documents or a query and a document is 

determined through calculations of the cosine similarity, Dice‟s coefficient, the 

Jaccard‟s coefficient and in some cases the Eucliean distance. The vector space 

model has been shown diagrammatically as in Figure 3.1. In the figure, d1 and d2 

are document vectors and q1 is the query vector. We call them vectors because 

they are made up of different terms. 

 

 

Figure 3-2 The Vector Space Model 
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The angle between the documents or the query and documents determines the 

similarity between them.  

3.7.2 Term Frequency 

The term Frequency method is widely being used for information retrieval 

systems and text summarization due to its flexibility. The weight is used to 

measure the importance of word in the document. The measure of importance 

increases proportionally as the word appears in the document. 

The problem with this method is that the terms occurring most frequently 

might not characterize or contain essentials of the document, as they could be 

possibly stop words of the document. 

TF (Term Frequency) = (No. of times word/terms appear in a document) / 

(Total no. of words/terms in document) 

Luhn (1958) demonstrated the idea of upper and lower cut-off terms for resolving 

issue regarding the power of significant words. 

 

Figure 3-3 Word frequency diagram(S, 2018) 

As shown in figure, upper cut-off shows stop words, whereas lower cut-off 

shows less frequently occurring words in the document.  The figure demonstrates 

the Zipf‟s law (Zipf 1949) which tells that the frequency of the word is inversely 

proportional to its rank.  Words having score more than the upper cut-off are 

considered as too common words and the words below the cut-off are considered 
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as rare terms. These words are not considered as part of summary as they do 

not exhibit any importance to the content. 

3.7.3 The tf-idf score 

The document indexing is done using the tf-idf method. It stands for term-

frequency (tf) and inverse document frequency (idf).  It is weight based on 

statistics which is assigned to a word to evaluate its importance in a single 

document or a collection of documents. This weight is also used to generate 

ranking in documents. It is used in almost all Text Mining algorithms. Over here 

the assumption is that the first three steps of data pre-processing – tokenization, 

removing stop words and stemming is already complete.  

In the VSM, each document d is considered to be a vector in the term-

space i.e. terms that make the document. A document d can be represented as, 

dtf = (tf1, tf2, …, tfn), 

Where tfi is the frequency of the ith term in document d. In this way,the tf vector 

can represent each term in a document. Since all documents are not of the same 

size, we normalize the term frequency by dividing it by the total number of unique 

terms in the document.  

The inverse document frequency (idf) is a measure of the general 

importance of the term in the corpus. It is obtained by dividing the total number of 

documents by the number of documents containing the term and taking the 

logarithm of that quotient. 

𝑖𝑑𝑓 𝑡 = 𝑙𝑜𝑔 
∣ 𝐷 ∣

∣ 𝑑: 𝑡𝜖𝑑 ∣
 (3.1) 

 

Where, 

∣D∣ - total number of documents in the corpus 

∣d:tϵd∣ - number of documents where term t appears 

If a term is not in the corpus this will lead to division by zero and so we 

adjust (1) by adding 1 to the denominator. i.e. 1 + ∣d:tϵd∣. 

So now the tf-idf score for a term in a document becomes, 

tf-idf (t, d) = tf × idf  (3.2) 
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A high weight in tf-idf is reached by a high term frequency in a document 

and a low document frequency of the term in the whole collection of documents. 

This will filter out the common terms across the corpus. For terms of more 

importance in certain algorithms, weights are also assigned i.e. tf score of 

important terms is multiplied by some integer to increase its weightage. 

The tf-idf scoring is very effectively shown in Figure 3.4. For each term of 

each document in the corpus, in this way the tf-idf score is obtained. A matrix is 

created to store these scores and then in the Text Mining algorithms these scores 

are applied. The matrix looks like the example shown in Table 3.1. The actual 

scores are stored in  text files and the Matlab or Visual Basic programs first 

creates the file and then reads and uses the scores in the programs for the 

different Text Mining algorithms implementation. 

 

Figure 3-4The term and document frequencies 
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As shown in the Figure 3-4, the corpus is a collection of documents, documents 

consist of passages and passages consist of sentences. Thus, for a term i in a 

document j we can talk in terms of collection frequencies (Cf), term frequencies 

(tf), passage frequencies (Pf) and sentence frequencies (Sf). 

Table 3-1. The tf-idf matrix example 

 

 

3.7.4 Length Normalization 

Let‟s consider two documents in the corpus. Also considers, nth page in 

document D1 and nth and n + 1th pages of the document D2 of similar text. Now,  

the larger document contains more terms with the more occurrence for a specific 

term/word. Considering the above scenario, in Document D1, if a term chair 

appears 7 times and the same term appears 14 times in Document D2, then to 

overcome this situation length normalization must be applied. One of the length 

normalization techniques is cosine length normalization. 
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The equation 3.3 is considered for normalizing the weight of the ith term of 

the document. Here, t indicates the number of terms in the collection of 

documents, whereas Wij‟ represents the term frequency without considering 

normalized length.  The Wij represents the length adjusted weight. The term 

frequency weights are standardized by dividing the length of the document. The 

equation is given below. 

𝑊𝑖𝑗 =
𝑊𝑖𝑗

𝑙𝑒𝑛𝑔𝑡𝑕 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 (3.4) 

 Here, the length of the document is considered as a relative length of the 

document.  

3.8 Attribute Selection 

3.8.1 Introduction 

Attribute selection, more popularly known as feature selection is the 

technique of selecting a subset of relevant features for building robust learning 

models in machine learning using statistical methods. It is also called variable 

selection, feature reduction or variable subset selection. 

Many attribute / feature selection methods have been developed and 

extensive research work has already been done in this field.  

Feature selection is a process commonly used in machine learning, 

wherein a subset of the features available from the data is selected for 

application of a learning algorithm. The best subset contains the least number of 

dimensions that most contribute to accuracy; we discard the remaining, 

unimportant dimensions. This is an important stage of preprocessing and is one 

of two ways of avoiding the curse of dimensionality – the other is feature 

extraction. It decreases the size of the effective vocabulary and increases 

accuracy of Text Mining by decreasing noise. 

3.8.2 Comparison of Attribute Selection Methods 

The most popular attribute selection methods are the frequency 

distribution, Mutual Information (MI), the chi-square test, correlation coefficient 

and relevancy score. The methods are all statistical based on probability 

distributions. The formulas of these methods are given in Table 3.2. The details 
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about these methods are in the references section as per the reference numbers 

in the last column of the table. 

 

 

 

Table 3-2 Main methods of feature reduction / selection 

 

Function 

 

Denoted 

by 

 

Mathematical Form 

 

Document 

Frequency 

 

#(𝑡𝑘 , 𝑐𝑖) 

 

𝑃(𝑡𝑘 , 𝑐𝑖) 

 

Information 

gain 

(Expected 

Mutual 

Information) 

 

𝐼𝐺

= (𝑡𝑘 , 𝑐𝑖) 

 

 

𝑃 𝑡𝑘 , 𝑐𝑖 ∙ log
𝑃(𝑡𝑘 , 𝑐𝑖)

𝑃 𝑐𝑖 ∙ 𝑃(𝑡𝑘)
+ 𝑃(𝑡𝑘 , 𝑐𝑖 ∙ log

𝑃(𝑡𝑘 , 𝑐𝑖)

𝑃 𝑐𝑖 ∙ 𝑃(𝑡𝑘 )
 

 

Chi-square 

 

𝑥2(𝑡𝑘 , 𝑐𝑖) 

 

 

𝑔 ∙  𝑃 𝑡𝑘 , 𝑐𝑖 ∙ 𝑃 𝑡𝑘 , 𝑐𝑖  −  𝑃(𝑡𝑘 , 𝑐𝑖 ) ∙ 𝑃(𝑡𝑘 , 𝑐𝑖) 
2

𝑃(𝑡𝑘) ∙ 𝑃(𝑡𝑘 ) ∙ 𝑃(𝑐𝑖) ∙ 𝑃(𝑐𝑖 )
 

 

Correlation 

coefficient 

 

𝐶𝐶(𝑡𝑘 , 𝑐𝑖) 

 

 𝑔 ∙  𝑃 𝑡𝑘 , 𝑐𝑖 ∙ 𝑃 𝑡𝑘 , 𝑐𝑖  −  𝑃(𝑡𝑘 , 𝑐𝑖 ) ∙ 𝑃(𝑡𝑘 , 𝑐𝑖) 

 𝑃(𝑡𝑘) ∙ 𝑃(𝑡𝑘 ) ∙ 𝑃(𝑐𝑖) ∙ 𝑃(𝑐𝑖 )
 

 

Relevancy 

score 

 

𝑅𝑆(𝑡𝑘 , 𝑐𝑖) 

 

 

log
𝑃 𝑡𝑘 𝑐𝑖 + 𝑑

𝑃 𝑡𝑘  𝑐𝑖  + 𝑑
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As per the research done by Martin Sewell1, the different feature selection 

methods are as follows. 

 Kira and Rendell (1992) described a statistical feature selection algorithm 

called RELIEF that uses instance based learning to assign a relevance 

weight to each feature. 

 John, Kohavi and Pfleger (1994) addressed the problem of irrelevant 

features and the subset selection problem. They presented definitions for 

irrelevance and for two degrees of relevance (weak and strong). They also 

state that features selected should depend not only on the features and 

the target concept, but also on the induction algorithm. Further, they claim 

that the filter model approach to subset selection should be replaced with 

the wrapper model. 

 Pudil, Novoviˇcov´a and Kittler (1994) presented “floating” search methods 

in feature selection. These are sequential search methods characterized 

by a dynamically changing number of features included or eliminated at 

each step. They were shown to give very good results and to be 

computationally more effective than the branch and bound method. 

 Koller and Sahami (1996) examined a method for feature subset selection 

based on Information Theory: they presented a theoretically justified model 

for optimal feature selection based on using cross-entropy to minimize the 

amount of predictive information lost during feature elimination. 

 Jain and Zongker (1997) considered various feature subset selection 

algorithms and found that the sequential forward floating selection 

algorithm, proposed by Pudil, Novoviˇcov´a and Kittler (1994), dominated 

the other algorithms tested. 

 Dash and Liu (1997) gave a survey of feature selection methods for 

classification. In a comparative study of feature selection methods in 

statistical learning of text categorization (with a focus is on aggressive 

dimensionality reduction). 

 Yang and Pedersen (1997) evaluated document frequency (DF), 

information gain (IG), mutual information (MI), a CHI-square test and term 

strength (TS); and found IG and CHI to be the most effective. 

                                                
1
The different feature selection methods as discussed by Martin Sewell, http://www.machine-

learning.martinsewell.com/feature-selection 
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 Blum and Langley (1997) focused on two key issues: the problem of 

selecting relevant features and the problem of selecting relevant 

examples. 

 Kohavi and John (1997) introduced wrappers for feature subset selection. 

Their approach searches for an optimal feature subset tailored to a 

particular learning algorithm and a particular training set. 

 Yang and Honavar (1998) used a genetic algorithm for feature subset 

selection.  

 Liu and Motoda (1998) wrote their book on feature selection which offers 

an overview of the methods developed since the 1970s and provides a 

general framework in order to examine these methods and categorize 

them. 

 Weston, et al. (2001) introduced a method of feature selection for SVMs 

which is based upon finding those features which minimize bounds on the 

leave-one-out error.  

 Xing, Jordan and Karp (2001) successfully applied feature selection 

methods (using a hybrid of filter and wrapper approaches) to a 

classification problem in molecular biology involving only 72 data points in 

a 7130 dimensional space.  

 Forman (2003) presented an empirical comparison of twelve feature 

selection methods. Results revealed the surprising performance of a new 

feature selection metric, „Bi-Normal Separation‟ (BNS). 

 Guyon and Elisseeff (2003) gave an introduction to variable and feature 

selection. They recommend using a linear predictor of your choice (e.g. a 

2 linear SVM) and select variables in two alternate ways: (1) with a 

variable ranking method using correlation coefficient or mutual information; 

(2) with a nested subset selection method performing forward or backward 

selection or with multiplicative updates. 

 

SUMMARY 

This chapter gave a detailed description of the Text Pre-processing tasks which 

are performed before the Text Summarization model is implemented. Text Pre-

processing is in fact very important as the output of the algorithms depend on 
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how well the text is pre-processed. The pre-processing methods are also 

interesting areas of research.  The next chapter discusses about the Latent 

Semantic Analysis that is performed on the pre-processed data.


