
 

9 
 

Chapter 2  

Background 

It is inevitable to use distributed computing for storing, processing and analyzing 

Big Data applications (Padole and Shah, 2018). Distributed computing is an 

environment which supports storage and processing of data using various systems 

distributed over a network. A distributed system forms a cluster for data storage, 

processing, and analytics. The cluster can be homogeneous or heterogeneous. In 

current era of fast growing technology, it is seldom to find merely a homogeneous 

cluster. Moreover, specifically for Big Data processing heterogeneous cluster is 

better choice compared to homogeneous one. The reason is, heterogeneous 

distributed cluster brings together distinct resources to facilitate better scalability. 

However, performance optimization, heterogeneity of resources, optimum 

scheduling, and load balancing are some of the key challenges to be dealt with, while 

implementing scalability model. Therefore, proper selection of distributed model 

and tools play a vital role while implementing distributed computing, for Big Data 

processing. 

2.1 Big Data 

When data storage and processing cannot be managed by a single computing system 

or with a conventional approach, it is termed as Big Data (Trujillo et al., 2015). The 

data is emerging at a tremendous pace, from huge range of sources and in variety of 

forms. Thus, it may comprise of structured and unstructured data which may not fit 

into traditional databases and storage systems. 

According to the IBM study (Jacobson, 2018), social networking sites, sensor 

devices, IoT devices, public-private network cloud, and many more services 

generate nearly 2.5 quintillion bytes of data every day. The study also reveals that, 

out of the total data currently available all across the globe, 90% of it is generated in 

the past 2 years (Jacobson, 2018). Big data usually include data sets with sizes such 
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as Petabytes or Zettabytes, which are beyond the capability of conventional tools 

and techniques for storage, processing and managing the data within a reasonable 

amount of time. Big data calls for cost-effective and innovative methods of 

information processing. 

2.1.1 Big Data Characteristics 

To understand, the enormity of Big Data, it is important to understand the 

characteristics of Big Data. These characteristics are described as volume, velocity, 

variety, and veracity, also commonly referred as 4 V’s of Big Data, as shown in fig. 

2.1. 

 

Figure 2.1 Big Data Characteristics 

1. Volume: It refers to the colossal amount of data. The data is growing 

exponentially, and it is becoming more and more difficult to store and process 

this huge data. The volume of data is increasing much faster than the storage and 

processing speed of computational devices. Traditional Redundant Array of 
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Independent Disks (RAID) model no longer suffices the need of performance, 

scalability, and availability of Big Data processing. 

2. Velocity: It refers to the pace of data being generated by various organizations, 

applications, devices, and systems. With the increase in the volume of data, there 

is also a significant improvement in the speed of data generation. Data has 

turned from static to dynamic due to wide usage of social media, mobile 

applications, and IoT devices. Nowadays, batch-processing is no longer 

thinkable, as data generated by the applications is real-time, streaming data. 

Data access speed is very much important while processing the data. If data is 

generated too fast and data access latencies are too high, it degrades the 

performance. 

3. Variety: It refers to the type of data being generated. Usually, Big Data is a raw 

form of data. It comprises structured, semi-structured and unstructured types of 

data. Due to the varieties of data type, it is essential to perform pre-processing on 

datasets prior to processing and analysis. Conventional processing and analysis 

approaches do not work efficiently while dealing with Big Data. 

4. Veracity: It refers to the trust-worthiness and accuracy of data. It requires 

special attention to validate the authenticity of data. It is equally important to 

check whether the data that is being stored and mined is meaningful to the 

problem being analyzed.  

2.1.2 Big Data Processing Platform 

For large data storage, management, and processing, the conventional storage 

systems are not useful. The research community has proposed various platforms for 

Big Data processing. Grid, Cloud and Distributed Computing are few of them. For our 

thesis, our focus is on distributed computing. Distributed computing system 

framework fits the need of Big Data, e.g. distributed storage, efficient processing, 

scalability, elasticity, and management of large datasets. Distributed computing 

framework has achieved great success in processing clustered tasks, various Big 

Data application, and performing Big Data analytics.  Following are the key 

characteristics requirements for the environment useful for big data processing 



Chapter 2. Background 

12 
 

 Scalable Computing Infrastructure: Distributed computing provides powerful 

backstage scalable infrastructure support for Big Data processing. It also enables 

the distribution and management of Big Data across many nodes and disks.  

 Data Storage Framework: The Big Data requires nodes which can store data in 

a distributed manner and when it comes to processing, provides support for 

execution of the data which shall be addressed by distributed computing.  

 Parallel / Distributed Programming Framework: Distributed computing 

supports distributed programming for complex computations.  

 Analytics Framework: Distributed computing provides an analytical platform 

for processing large volumes of persistent Big Data, in a highly distributed and 

efficient manner.  

2.1.3 Challenges in Big Data 

When data is in the large amount (Big Data) it also comes with major challenges like 

data storage, concurrent processing, and analysis of enormously growing data. 

Traditional data management tools are out of the scope for Big Data management as 

it cannot adhere to the unstructured and semi-structured form of data. To process a 

massive volume of data and analyze itself is a big challenge. Proper infrastructure 

needs to be developed. Few literature studies (Chaudari et al., 2011; Labrinidis and 

Jagadish, 2012; Agrawal et al., 2012) discuss the key problems of Big Data 

applications. The main challenges are described as follows (Chen et al., 2014): 

 Data representation: It refers to how data is being stored in the computer 

system. Under heterogeneous system this task becomes further challenging. 

Effective data representation is helpful for effective analysis of data.  

 Redundancy reduction and data compression: As Big Data mostly comprises 

of unstructured data, it may contain redundant data. It is important to clean and 

compress the data, by applying some pre-processing techniques, which can yield 

the cost-effective solution. 
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 Analytical mechanism: Inspection and analysis are the very important 

requirements of Big Data. To process the large volume of data and analyze the 

same in a limited amount of time is the biggest challenge of Big Data.  

 Data confidentiality: Protecting the confidentiality of Big Data is also the 

concern of research. As data needs to be transmitted or shared for processing, a 

scheme that can provide security, privacy, and confidentiality of data, needs to be 

developed. 

 Expandability and scalability: As data is growing exponentially, the system 

must be able to handle expandability and scalability of datasets. The seamless 

transition from small-scale data to large-scale data is required as data is 

increasing continuously. Moreover, the processing environment for Big Data 

should also be scalable, to meet the needs of data expansion or data growth.  

 Latency: Latency is one of the key problems when you’re dealing with huge 

amount of data. A latency not only affects the execution time sof job but it also 

affects various implicit parameters such as resource utilization, I/O overhead, 

processing performance and many more. 

 Optimization: Optimization of algorithms and tools for Big Data processing is of 

prime concern. Various techniques are available, but it is not that commendably 

developed. 

2.1.4 Big Data Optimization 

For large business enterprises, it is indispensable to process large-scale data (Big 

Data) to get better insight into the business. There is no doubt that, processing of Big 

Data has become a challenging task, although many tools and techniques are 

available to process this flood of data. However, to process Big Data in an optimized 

way such that its overall performance doesn’t degrade is a challenging task. 

Increasing rate of data will become critical to handle in future, hence, proper 

optimization techniques need to be applied for Big Data processing. 
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The major research problem is to provide proper optimization techniques for 

Big Data. Most of the optimized techniques which have been invented and 

researched are in context to traditional RDBMS. There are many challenges in 

applying existing optimization techniques for large data sets, which itself can be an 

area of research. Based on the objective, optimization techniques can be categorized 

as Performance Optimization, Ease-of-use, and Cost-Effectiveness. Performance 

optimization aims to reduce execution time to make data processing faster. Ease-of-

use aims to make data processing tools easier to implement and use for the variety 

of datasets, while cost-effective optimization focuses on, to minimize the operating 

cost of the system. In the previous section i.e. Section 2.1.3, several challenges in Big 

Data processing have been discussed, out of which distributed computing provides 

the solution for scalability, storage, and distributed processing. Thus, the focus of 

our research work is to optimize storage and processing of Big Data through 

Distributed Computing. 

2.2 Distributed Computing 

Distributed Computing (DC) refers to performing computation using a system of 

loosely coupled computers striving to solve computationally intensive problems that 

are difficult to be computed using a single computer. Distributed computing is an 

effective alternative to expensive resource intensive computing, that is required to 

manage and process, complex computational problems (Lapkin, 2012). Distributed 

computing is used to solve complex computational problems that cannot be solved 

within a specified time frame on a single computer. The complex computational 

problems may involve either compute intensive or data-intensive processing. 

2.2.1 Distributed Computing System (DCS) 

“A Distributed Computing System, also referred as a Distributed System, is a 

collection of independent computers that appears to its end users, as a single 

computing system” (Tanenbaum and Van Steen, 2007). Distributed Computing 

System (DCS) refers to a system of multiple computers working on a single problem 

that is computationally intensive. A distributed computing system is a wide scale 

infrastructure that supports the sharing of resources, distribution transparency, 
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scalability, single point failure handling and single system image concept in large-

scale problem-solving. Distributed computing system provides, the aforementioned 

advantages, compared to the traditional centralized computing system. The general 

architecture of the distributed computing system is discussed in the next section i.e. 

Section 2.2.2. 

2.2.2 Distributed Computing System Architecture 

In computer architecture terminology, distributed computing system belongs to the 

class of loosely coupled Multiple Instruction, Multiple Data (MIMD) machines, with 

each node having an unshared memory (Ghosh, 2014). Fig.1 shows the typical 

architecture of DCS (Coulouris et al., 2005; Tanenbaum and Van Steen, 2007) 

Distributed Computing systems are built using existing commodity hardware, 

operating systems (OS) and network. The hardware, OS, and network involved in 

forming DCS, may be of same type or different type i.e. they may be either 

homogeneous or heterogeneous in nature, respectively. A distributed system is a 

collection of individual computers connected via a network and middleware service 

which supports distributed storage and concurrent processing. The middleware 

enables distribution transparency, wherein the task submitted to Master is 

distributed amongst multiple Slaves. Thus, middleware serves as a service agent 

between distributed applications and machines. Middleware provides concurrent 

processing, and memory access services for faster processing. Figure 2.2 shows the 

architectural design which connects large number of computing devices with the 

fast network for transparent resource sharing among the distributed applications. 

The distributed computing system comprises of the variety of hardware and 

software, to form a distributed platform. At a lower level, it is necessary to have 

multiple CPUs which are interconnected with each other by the network. At a higher 

level, those interconnected CPUs will communicate with each other through 

Middleware. The distributed computing system can be categorized as homogeneous 

or heterogeneous based on the uniformity or non-uniformity of hardware, OS, 

connection, architecture, and other components, respectively. 
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Figure 2.2 Distributed Computing System Architecture (Tanenbaum and Steen, 2007) 

2.2.3 Homogeneous Distributed Computing System (HDCS) 

A distributed computing system is said to be a Homogeneous Distributed Computing 

System: a) If hardware on each computing machine has the same architecture, 

processing capacity, and same storage representation. b) If the software (i.e. 

Operating system, Compiler etc.) on each computing machine has the same storage 

organization and similar operational speed. The requirements for a homogeneous 

distributed computing system are quite stringent and are frequently not met in the 

network of workstations, or PCs, even when each computer in the network is of the 

same make and model. 

2.2.4 Heterogeneous Distributed Computing System (HeDCS) 

Heterogeneous Distributed Computing System (HeDCS) is one which is not 

homogeneous. Heterogeneous distributed computing system supports different 

types of processors, hardware configurations, network, and operating systems. 

Distributed computing systems highly rely on the heterogeneity of processing nodes. 

A heterogeneous distributed system is mainly designed to achieve high performance 

by connecting distinct devices on a distributed platform. In this research study, the 

aim is to use Heterogeneous Distributed Computing System (HeDCS), hence, it is 

discussed in detail. 
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Computing performed using Homogeneous Distributed Computing System 

(HDCS) is referred as Homogeneous Distributed Computing (HDC) and likewise, the 

computing performed using Heterogeneous Distributed Computing System (HeDCS) 

is known as Heterogeneous Distributed Computing (HeDC). Henceforth, for the 

discussion, the term HeDC will be used to describe problem-solving using HeDCS. 

2.3 Heterogeneous Distributed Computing 

In a practical scenario, it is difficult to find a computing platform, with all computers 

involved in processing, to comprise of perfectly uniform configuration. Hence, the 

emphasis is using the heterogeneous set of computational resources, for solving 

computationally intensive problems. 

A Heterogeneous Distributed Computing (HeDC) made up of a heterogeneous 

OS, CPUs, network, and protocols provide a way to connect distinct devices to 

perform distributed computation (Hwang and Briggs, 1985). Heterogeneity allows 

scaling of a cluster. HeDC is very well established computing paradigm to meet the 

data-intensive or process intensive requirements of Big Data applications. The 

examples of applications are weather forecasting, simulation and modeling, mapping 

of the human genome, Big Data processing, image processing, modeling of 

semiconductors, superconductors and banking systems. 

 

Figure 2.3 Heterogeneity of Nodes 
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Figure 2.3 gives an idea about the heterogeneity of nodes. In today’s era 

where technology is changing every day, it is infeasible to have cluster nodes of 

similar types. Therefore, it is important to have distributed functionality though 

systems, networks, and configurations are heterogeneous in nature. 

2.3.1 HeDC Challenges 

Heterogeneous Distributed Computing comes with novel challenges due to non-

uniformity, the variety of programming models, and overall varied system 

capability. The following factors are to be considered while applying HeDC for large 

datasets. 

•    Different instruction set and memory set architectures 

•    Library and OS services are not uniformly available on distributed nodes 

•    CPUs have different performance level and power consumption 

•    Compute elements have different cache structure, network architecture 

Above factors may result in performance degradation while working on large 

data sets, also referred to as Big Data. Big Data processing would be difficult to be 

performed on a single computer; it is also not feasible  to be performed on 

homogeneous distributed computing,  due to scalability issues. Hence, there is a 

need for HeDC for processing large data sets i.e. Big Data. 

2.4 Distributed File System 

Distributed File System (DFS) is a specialized storage facility which allows splitting 

the data file into chunks and store them across multiple machines. The stored data 

can be accessed and processed in parallel for data processing. Unlike the local file 

system, data is not stored at a single place but it is spread out across multiple 

storage resources, connected via a high-speed network. Looking at the storage size 

and processing requirement of Big Data, it is inevitable to use a distributed file 

system concept. Even though data files are stored on multiple machines, DFS 

provides a simplified interface for managing, accessing and storing data on it. There 

are many different types of distributed file systems available, especially to deal with 

Big Data which is discussed in great detail in Chapter 4. For any DFS, it is important 
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to have features such as fault-tolerance support, scalable architecture and 

transparency.   

 Fault-tolerance: It is important that data be always available, when data is 

distributed using DFS. DFS should be strong enough to handle faults or failures. 

Issues may be related to data non-availability, hardware failure, network 

congestion or network failure. DFS should be fault-tolerant against these types of 

problems. 

 Scalability: In the case of Big Data, it is growing continuously so  the DFS 

implemented in DCS, should  be  scalable elastically according to the size and 

requirement of data. Scalability is an important aspect, necessary to be achieve, 

to deal with accessibility, latency, resource availability, and parallel processing 

issues. 

 Transparency: Regardless of where the data is stored and processed, a user 

should be able to see it as a single system. DFS should be transparent to the 

clients and they should be able to experience the same performance as they deal 

with the localfile system. 

2.4.1 Fault-tolerance Support 

In the real world, hardware, software, network failures are bound to happen. It is 

inevitable to design a system in which these problems don’t arise. Therefore, the 

only solution is to design a system which always has an alternative solution to the 

problems of data unavailability, replica management, and load balancing.  Here we 

present the key features of DFS for maintaining the high availability and fault-

tolerant support. 

 Replication: Replica placement and management are very important to 

maintain data availability. If multiple copies of data (called replica) are stored on 

distinct racks and geographic locations, then, even if one or more system or 

server crashes, data always remains available.  

 Load balancing: The different file system uses a different load balancing 

approach to deal with fault-tolerance and performance issues. In the case of 
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system failure or non-availability of data, the system must be able to migrate the 

data automatically to other nodes to avoid the trade-off of the performance 

degradation and data non-availability. 

 Synchronization: In DFS, synchronization between replicas, nodes, and process 

must be considered for making system fault-tolerant. If data is updated it is also 

important to update all copies of data in order to avoid the possibility of 

accessing the older data. 

2.4.2 Scalability Support 

To make scalable architecture, it is important to address the two important issues: 

high latency and network congestion. If scaling is not done properly it creates a lot of 

issues such as high latency, communication delay, and network congestion. 

Therefore, the performance of the system may get degraded. In DFS, scaling can be 

achieved vertically (scale up) and horizontally (scale out) as shown in Fig. 2.4. 

Vertical scaling (aka scale up) means to scale the existing system with 

upgrading hardware and software support. It means it upgrades the storage, 

memory and processing capacity of the existing system only. But even that has a 

limitation as you cannot upgrade the system beyond certain limit. Solution to the 

problem is, horizontal scaling (aka scale out) which allows a system to scale out 

horizontally by adding more computing resources rather than upgrading the 

existing one. Using the concept of horizontal scaling we can store more amount of 

data as scaling can be achieved extensively. 

2.4.3 Transparency Support 

Transparency hides the complexity of system implementation and configuration 

from the end-users. DFS server mainly provides location transparency and 

replication transparency.  In DFS, location transparency means hides the storage 

location where data is stored and replication transparency means hides the location 

of replica where it is stored. These data can be accessed by naming services which 

maps the logical and physical data location. 
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 (A)      (B) 

Figure 2.4 (A) Vertical Scaling (B) Horizontal Scaling 

The main advantage of transparent DFS is that it allows simple architecture 

for storage as, a user need not worry about the physical location of data storage. 

Furthermore, it automatically decides the storage location based on data placement 

strategy and also manages the replication of each block of data to avoid the system 

failure. 

2.5 Scheduling in Heterogeneous Distributed Computing 

Scheduling plays a prominent role in distributed computing performance. Moreover, 

if scheduling is not done properly it becomes the bottleneck in terms of throughput 

of the system. Proper choice of scheduling helps to improve resource utilization and 

job completion time. Considering the fact, scheduling algorithms are NP-complete 

(Ullman, 1975), Fig 2.5 shows the hierarchical classification of the scheduling 

algorithms. 
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Figure 2.5 Hierarchical classification of scheduling algorithms (Padole and Shah, 2018) 

The classification shown in Fig. 2.5, helps to understand the behaviour of 

scheduling algorithms. The important characteristics are considered for better 

understanding of classification of scheduling algorithms, although, there are many 

characteristics which can be explored further. . First, all scheduling algorithms are 

categorized as local and global subsequently subcategorized in two groups such as 

static and dynamic schedulers. Hierarchy of scheduling algorithm classification is 

discussed as follows: 

 Local & Global – Local scheduling performed on a single system which has single 

CPU to schedule the task while Global scheduling is performed in multisystem 

and multiprocessor environment. Distributed job scheduling comes into the 

category of global scheduling, which is taken into consideration for further tree 

expansion. 
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 Static & Dynamic – Global schedulers are static or dynamic in nature. Static 

schedulers run on predefined conditions of scheduling and do not consider any 

priority or deadline of jobs/tasks for scheduling at runtime.  Whereas, dynamic 

schedulers are more appropriate for scheduling in distributed computing, as it 

requires scheduling of job/task at runtime based upon various considerations 

like resource requirement to execute the task and availability of resources across 

distributed system. The static scheduler would need to know the resource 

requirement of the task in advance, before the processing of the task begins 

whereas, dynamic schedulers work dynamically depending upon the resource 

requirement of the task and the availability of resources, at runtime. 

 Optimal & Suboptimal – All static and dynamic schedulers are subcategorized as 

the optimal and suboptimal. Optimal scheduling can be performed when all 

resource requirements for the application is known to us before scheduling. 

Optimal scheduling tries to match the criterion like optimal makespan, resource 

sharing, and concurrency control. But as stated earlier, scheduling problems are 

NP-complete (Ullman, 1975), it is difficult to identify resource requirement 

apriori. Therefore, suboptimal scheduling is a better option for this kind of 

situation. Suboptimal scheduling do not assure the best or optimal solution, but 

provide sub solutions with guaranteed results. 

 Approximate & Heuristic – As the name implies approximate solution is 

guaranteed by the approximate scheduling approach. It gives approximate 

performance based upon available resources and scheduling parameters.  

Heuristic scheduling gives an accurate result rather than approximate. The 

heuristic approach is widely adopted as it supports both static and dynamic 

scheduling. 

 Distributed & Non-distributed – In global, dynamic category scheduling 

algorithms are divided into two broad subcategories, the schedulers which 

support distributed environment and the schedulers which are not. Non-

distributed schedulers can run on a centralized system environment only, which 

has lack of scalability, non fault-tolerant, and performance issues. On the other 
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hand, scheduling algorithms can be distributed on multiple machines and can 

perform the scheduling jobs on multiple systems. 

 Cooperative & Non-cooperative – Distributed schedulers are cooperative or non-

cooperative in nature. For cooperative scheduling, processors work together to 

make any decision for application scheduling. In contrast, non-cooperative 

scheduling processors work independently without concern of other processor 

and its effect, while making any decisions.  

2.6 Framework for Big Data 

There is a need for computing service which can answer key problems such as 

latency, scalability, resource sharing, and parallel processing. Distributed computing 

meets the need for Big Data. It is not necessary that all complex computing problems 

required specialized service like distributed computing. But the Big Data processing 

is struggling to get performance due to high latency and compatibility of hardware 

support. Distributed computing leverages the commodity hardware by effective 

resource sharing, concurrent processing and reducing latency.  

Basically, inspiration is to use distributed storage and processing to deal with 

the 4 V’s of Big Data. In order to meet the requirement of Big Data processing 

specialized framework is required which can provide services for distributed 

storage and processing. Hadoop is a widely adopted framework for the said purpose.  

The next section introduces “Apache Hadoop” – The Distributed Framework. 


