

9

Chapter 2

Background

It is inevitable to use distributed computing for storing, processing and analyzing

Big Data applications (Padole and Shah, 2018). Distributed computing is an

environment which supports storage and processing of data using various systems

distributed over a network. A distributed system forms a cluster for data storage,

processing, and analytics. The cluster can be homogeneous or heterogeneous. In

current era of fast growing technology, it is seldom to find merely a homogeneous

cluster. Moreover, specifically for Big Data processing heterogeneous cluster is

better choice compared to homogeneous one. The reason is, heterogeneous

distributed cluster brings together distinct resources to facilitate better scalability.

However, performance optimization, heterogeneity of resources, optimum

scheduling, and load balancing are some of the key challenges to be dealt with, while

implementing scalability model. Therefore, proper selection of distributed model

and tools play a vital role while implementing distributed computing, for Big Data

processing.

2.1 Big Data

When data storage and processing cannot be managed by a single computing system

or with a conventional approach, it is termed as Big Data (Trujillo et al., 2015). The

data is emerging at a tremendous pace, from huge range of sources and in variety of

forms. Thus, it may comprise of structured and unstructured data which may not fit

into traditional databases and storage systems.

According to the IBM study (Jacobson, 2018), social networking sites, sensor

devices, IoT devices, public-private network cloud, and many more services

generate nearly 2.5 quintillion bytes of data every day. The study also reveals that,

out of the total data currently available all across the globe, 90% of it is generated in

the past 2 years (Jacobson, 2018). Big data usually include data sets with sizes such

Chapter 2. Background

10

as Petabytes or Zettabytes, which are beyond the capability of conventional tools

and techniques for storage, processing and managing the data within a reasonable

amount of time. Big data calls for cost-effective and innovative methods of

information processing.

2.1.1 Big Data Characteristics

To understand, the enormity of Big Data, it is important to understand the

characteristics of Big Data. These characteristics are described as volume, velocity,

variety, and veracity, also commonly referred as 4 V’s of Big Data, as shown in fig.

2.1.

Figure 2.1 Big Data Characteristics

1. Volume: It refers to the colossal amount of data. The data is growing

exponentially, and it is becoming more and more difficult to store and process

this huge data. The volume of data is increasing much faster than the storage and

processing speed of computational devices. Traditional Redundant Array of

Chapter 2. Background

11

Independent Disks (RAID) model no longer suffices the need of performance,

scalability, and availability of Big Data processing.

2. Velocity: It refers to the pace of data being generated by various organizations,

applications, devices, and systems. With the increase in the volume of data, there

is also a significant improvement in the speed of data generation. Data has

turned from static to dynamic due to wide usage of social media, mobile

applications, and IoT devices. Nowadays, batch-processing is no longer

thinkable, as data generated by the applications is real-time, streaming data.

Data access speed is very much important while processing the data. If data is

generated too fast and data access latencies are too high, it degrades the

performance.

3. Variety: It refers to the type of data being generated. Usually, Big Data is a raw

form of data. It comprises structured, semi-structured and unstructured types of

data. Due to the varieties of data type, it is essential to perform pre-processing on

datasets prior to processing and analysis. Conventional processing and analysis

approaches do not work efficiently while dealing with Big Data.

4. Veracity: It refers to the trust-worthiness and accuracy of data. It requires

special attention to validate the authenticity of data. It is equally important to

check whether the data that is being stored and mined is meaningful to the

problem being analyzed.

2.1.2 Big Data Processing Platform

For large data storage, management, and processing, the conventional storage

systems are not useful. The research community has proposed various platforms for

Big Data processing. Grid, Cloud and Distributed Computing are few of them. For our

thesis, our focus is on distributed computing. Distributed computing system

framework fits the need of Big Data, e.g. distributed storage, efficient processing,

scalability, elasticity, and management of large datasets. Distributed computing

framework has achieved great success in processing clustered tasks, various Big

Data application, and performing Big Data analytics. Following are the key

characteristics requirements for the environment useful for big data processing

Chapter 2. Background

12

 Scalable Computing Infrastructure: Distributed computing provides powerful

backstage scalable infrastructure support for Big Data processing. It also enables

the distribution and management of Big Data across many nodes and disks.

 Data Storage Framework: The Big Data requires nodes which can store data in

a distributed manner and when it comes to processing, provides support for

execution of the data which shall be addressed by distributed computing.

 Parallel / Distributed Programming Framework: Distributed computing

supports distributed programming for complex computations.

 Analytics Framework: Distributed computing provides an analytical platform

for processing large volumes of persistent Big Data, in a highly distributed and

efficient manner.

2.1.3 Challenges in Big Data

When data is in the large amount (Big Data) it also comes with major challenges like

data storage, concurrent processing, and analysis of enormously growing data.

Traditional data management tools are out of the scope for Big Data management as

it cannot adhere to the unstructured and semi-structured form of data. To process a

massive volume of data and analyze itself is a big challenge. Proper infrastructure

needs to be developed. Few literature studies (Chaudari et al., 2011; Labrinidis and

Jagadish, 2012; Agrawal et al., 2012) discuss the key problems of Big Data

applications. The main challenges are described as follows (Chen et al., 2014):

 Data representation: It refers to how data is being stored in the computer

system. Under heterogeneous system this task becomes further challenging.

Effective data representation is helpful for effective analysis of data.

 Redundancy reduction and data compression: As Big Data mostly comprises

of unstructured data, it may contain redundant data. It is important to clean and

compress the data, by applying some pre-processing techniques, which can yield

the cost-effective solution.

Chapter 2. Background

13

 Analytical mechanism: Inspection and analysis are the very important

requirements of Big Data. To process the large volume of data and analyze the

same in a limited amount of time is the biggest challenge of Big Data.

 Data confidentiality: Protecting the confidentiality of Big Data is also the

concern of research. As data needs to be transmitted or shared for processing, a

scheme that can provide security, privacy, and confidentiality of data, needs to be

developed.

 Expandability and scalability: As data is growing exponentially, the system

must be able to handle expandability and scalability of datasets. The seamless

transition from small-scale data to large-scale data is required as data is

increasing continuously. Moreover, the processing environment for Big Data

should also be scalable, to meet the needs of data expansion or data growth.

 Latency: Latency is one of the key problems when you’re dealing with huge

amount of data. A latency not only affects the execution time sof job but it also

affects various implicit parameters such as resource utilization, I/O overhead,

processing performance and many more.

 Optimization: Optimization of algorithms and tools for Big Data processing is of

prime concern. Various techniques are available, but it is not that commendably

developed.

2.1.4 Big Data Optimization

For large business enterprises, it is indispensable to process large-scale data (Big

Data) to get better insight into the business. There is no doubt that, processing of Big

Data has become a challenging task, although many tools and techniques are

available to process this flood of data. However, to process Big Data in an optimized

way such that its overall performance doesn’t degrade is a challenging task.

Increasing rate of data will become critical to handle in future, hence, proper

optimization techniques need to be applied for Big Data processing.

Chapter 2. Background

14

The major research problem is to provide proper optimization techniques for

Big Data. Most of the optimized techniques which have been invented and

researched are in context to traditional RDBMS. There are many challenges in

applying existing optimization techniques for large data sets, which itself can be an

area of research. Based on the objective, optimization techniques can be categorized

as Performance Optimization, Ease-of-use, and Cost-Effectiveness. Performance

optimization aims to reduce execution time to make data processing faster. Ease-of-

use aims to make data processing tools easier to implement and use for the variety

of datasets, while cost-effective optimization focuses on, to minimize the operating

cost of the system. In the previous section i.e. Section 2.1.3, several challenges in Big

Data processing have been discussed, out of which distributed computing provides

the solution for scalability, storage, and distributed processing. Thus, the focus of

our research work is to optimize storage and processing of Big Data through

Distributed Computing.

2.2 Distributed Computing

Distributed Computing (DC) refers to performing computation using a system of

loosely coupled computers striving to solve computationally intensive problems that

are difficult to be computed using a single computer. Distributed computing is an

effective alternative to expensive resource intensive computing, that is required to

manage and process, complex computational problems (Lapkin, 2012). Distributed

computing is used to solve complex computational problems that cannot be solved

within a specified time frame on a single computer. The complex computational

problems may involve either compute intensive or data-intensive processing.

2.2.1 Distributed Computing System (DCS)

“A Distributed Computing System, also referred as a Distributed System, is a

collection of independent computers that appears to its end users, as a single

computing system” (Tanenbaum and Van Steen, 2007). Distributed Computing

System (DCS) refers to a system of multiple computers working on a single problem

that is computationally intensive. A distributed computing system is a wide scale

infrastructure that supports the sharing of resources, distribution transparency,

Chapter 2. Background

15

scalability, single point failure handling and single system image concept in large-

scale problem-solving. Distributed computing system provides, the aforementioned

advantages, compared to the traditional centralized computing system. The general

architecture of the distributed computing system is discussed in the next section i.e.

Section 2.2.2.

2.2.2 Distributed Computing System Architecture

In computer architecture terminology, distributed computing system belongs to the

class of loosely coupled Multiple Instruction, Multiple Data (MIMD) machines, with

each node having an unshared memory (Ghosh, 2014). Fig.1 shows the typical

architecture of DCS (Coulouris et al., 2005; Tanenbaum and Van Steen, 2007)

Distributed Computing systems are built using existing commodity hardware,

operating systems (OS) and network. The hardware, OS, and network involved in

forming DCS, may be of same type or different type i.e. they may be either

homogeneous or heterogeneous in nature, respectively. A distributed system is a

collection of individual computers connected via a network and middleware service

which supports distributed storage and concurrent processing. The middleware

enables distribution transparency, wherein the task submitted to Master is

distributed amongst multiple Slaves. Thus, middleware serves as a service agent

between distributed applications and machines. Middleware provides concurrent

processing, and memory access services for faster processing. Figure 2.2 shows the

architectural design which connects large number of computing devices with the

fast network for transparent resource sharing among the distributed applications.

The distributed computing system comprises of the variety of hardware and

software, to form a distributed platform. At a lower level, it is necessary to have

multiple CPUs which are interconnected with each other by the network. At a higher

level, those interconnected CPUs will communicate with each other through

Middleware. The distributed computing system can be categorized as homogeneous

or heterogeneous based on the uniformity or non-uniformity of hardware, OS,

connection, architecture, and other components, respectively.

Chapter 2. Background

16

Figure 2.2 Distributed Computing System Architecture (Tanenbaum and Steen, 2007)

2.2.3 Homogeneous Distributed Computing System (HDCS)

A distributed computing system is said to be a Homogeneous Distributed Computing

System: a) If hardware on each computing machine has the same architecture,

processing capacity, and same storage representation. b) If the software (i.e.

Operating system, Compiler etc.) on each computing machine has the same storage

organization and similar operational speed. The requirements for a homogeneous

distributed computing system are quite stringent and are frequently not met in the

network of workstations, or PCs, even when each computer in the network is of the

same make and model.

2.2.4 Heterogeneous Distributed Computing System (HeDCS)

Heterogeneous Distributed Computing System (HeDCS) is one which is not

homogeneous. Heterogeneous distributed computing system supports different

types of processors, hardware configurations, network, and operating systems.

Distributed computing systems highly rely on the heterogeneity of processing nodes.

A heterogeneous distributed system is mainly designed to achieve high performance

by connecting distinct devices on a distributed platform. In this research study, the

aim is to use Heterogeneous Distributed Computing System (HeDCS), hence, it is

discussed in detail.

Chapter 2. Background

17

Computing performed using Homogeneous Distributed Computing System

(HDCS) is referred as Homogeneous Distributed Computing (HDC) and likewise, the

computing performed using Heterogeneous Distributed Computing System (HeDCS)

is known as Heterogeneous Distributed Computing (HeDC). Henceforth, for the

discussion, the term HeDC will be used to describe problem-solving using HeDCS.

2.3 Heterogeneous Distributed Computing

In a practical scenario, it is difficult to find a computing platform, with all computers

involved in processing, to comprise of perfectly uniform configuration. Hence, the

emphasis is using the heterogeneous set of computational resources, for solving

computationally intensive problems.

A Heterogeneous Distributed Computing (HeDC) made up of a heterogeneous

OS, CPUs, network, and protocols provide a way to connect distinct devices to

perform distributed computation (Hwang and Briggs, 1985). Heterogeneity allows

scaling of a cluster. HeDC is very well established computing paradigm to meet the

data-intensive or process intensive requirements of Big Data applications. The

examples of applications are weather forecasting, simulation and modeling, mapping

of the human genome, Big Data processing, image processing, modeling of

semiconductors, superconductors and banking systems.

Figure 2.3 Heterogeneity of Nodes

Chapter 2. Background

18

Figure 2.3 gives an idea about the heterogeneity of nodes. In today’s era

where technology is changing every day, it is infeasible to have cluster nodes of

similar types. Therefore, it is important to have distributed functionality though

systems, networks, and configurations are heterogeneous in nature.

2.3.1 HeDC Challenges

Heterogeneous Distributed Computing comes with novel challenges due to non-

uniformity, the variety of programming models, and overall varied system

capability. The following factors are to be considered while applying HeDC for large

datasets.

• Different instruction set and memory set architectures

• Library and OS services are not uniformly available on distributed nodes

• CPUs have different performance level and power consumption

• Compute elements have different cache structure, network architecture

Above factors may result in performance degradation while working on large

data sets, also referred to as Big Data. Big Data processing would be difficult to be

performed on a single computer; it is also not feasible to be performed on

homogeneous distributed computing, due to scalability issues. Hence, there is a

need for HeDC for processing large data sets i.e. Big Data.

2.4 Distributed File System

Distributed File System (DFS) is a specialized storage facility which allows splitting

the data file into chunks and store them across multiple machines. The stored data

can be accessed and processed in parallel for data processing. Unlike the local file

system, data is not stored at a single place but it is spread out across multiple

storage resources, connected via a high-speed network. Looking at the storage size

and processing requirement of Big Data, it is inevitable to use a distributed file

system concept. Even though data files are stored on multiple machines, DFS

provides a simplified interface for managing, accessing and storing data on it. There

are many different types of distributed file systems available, especially to deal with

Big Data which is discussed in great detail in Chapter 4. For any DFS, it is important

Chapter 2. Background

19

to have features such as fault-tolerance support, scalable architecture and

transparency.

 Fault-tolerance: It is important that data be always available, when data is

distributed using DFS. DFS should be strong enough to handle faults or failures.

Issues may be related to data non-availability, hardware failure, network

congestion or network failure. DFS should be fault-tolerant against these types of

problems.

 Scalability: In the case of Big Data, it is growing continuously so the DFS

implemented in DCS, should be scalable elastically according to the size and

requirement of data. Scalability is an important aspect, necessary to be achieve,

to deal with accessibility, latency, resource availability, and parallel processing

issues.

 Transparency: Regardless of where the data is stored and processed, a user

should be able to see it as a single system. DFS should be transparent to the

clients and they should be able to experience the same performance as they deal

with the localfile system.

2.4.1 Fault-tolerance Support

In the real world, hardware, software, network failures are bound to happen. It is

inevitable to design a system in which these problems don’t arise. Therefore, the

only solution is to design a system which always has an alternative solution to the

problems of data unavailability, replica management, and load balancing. Here we

present the key features of DFS for maintaining the high availability and fault-

tolerant support.

 Replication: Replica placement and management are very important to

maintain data availability. If multiple copies of data (called replica) are stored on

distinct racks and geographic locations, then, even if one or more system or

server crashes, data always remains available.

 Load balancing: The different file system uses a different load balancing

approach to deal with fault-tolerance and performance issues. In the case of

Chapter 2. Background

20

system failure or non-availability of data, the system must be able to migrate the

data automatically to other nodes to avoid the trade-off of the performance

degradation and data non-availability.

 Synchronization: In DFS, synchronization between replicas, nodes, and process

must be considered for making system fault-tolerant. If data is updated it is also

important to update all copies of data in order to avoid the possibility of

accessing the older data.

2.4.2 Scalability Support

To make scalable architecture, it is important to address the two important issues:

high latency and network congestion. If scaling is not done properly it creates a lot of

issues such as high latency, communication delay, and network congestion.

Therefore, the performance of the system may get degraded. In DFS, scaling can be

achieved vertically (scale up) and horizontally (scale out) as shown in Fig. 2.4.

Vertical scaling (aka scale up) means to scale the existing system with

upgrading hardware and software support. It means it upgrades the storage,

memory and processing capacity of the existing system only. But even that has a

limitation as you cannot upgrade the system beyond certain limit. Solution to the

problem is, horizontal scaling (aka scale out) which allows a system to scale out

horizontally by adding more computing resources rather than upgrading the

existing one. Using the concept of horizontal scaling we can store more amount of

data as scaling can be achieved extensively.

2.4.3 Transparency Support

Transparency hides the complexity of system implementation and configuration

from the end-users. DFS server mainly provides location transparency and

replication transparency. In DFS, location transparency means hides the storage

location where data is stored and replication transparency means hides the location

of replica where it is stored. These data can be accessed by naming services which

maps the logical and physical data location.

Chapter 2. Background

21

 (A) (B)

Figure 2.4 (A) Vertical Scaling (B) Horizontal Scaling

The main advantage of transparent DFS is that it allows simple architecture

for storage as, a user need not worry about the physical location of data storage.

Furthermore, it automatically decides the storage location based on data placement

strategy and also manages the replication of each block of data to avoid the system

failure.

2.5 Scheduling in Heterogeneous Distributed Computing

Scheduling plays a prominent role in distributed computing performance. Moreover,

if scheduling is not done properly it becomes the bottleneck in terms of throughput

of the system. Proper choice of scheduling helps to improve resource utilization and

job completion time. Considering the fact, scheduling algorithms are NP-complete

(Ullman, 1975), Fig 2.5 shows the hierarchical classification of the scheduling

algorithms.

Chapter 2. Background

22

Figure 2.5 Hierarchical classification of scheduling algorithms (Padole and Shah, 2018)

The classification shown in Fig. 2.5, helps to understand the behaviour of

scheduling algorithms. The important characteristics are considered for better

understanding of classification of scheduling algorithms, although, there are many

characteristics which can be explored further. . First, all scheduling algorithms are

categorized as local and global subsequently subcategorized in two groups such as

static and dynamic schedulers. Hierarchy of scheduling algorithm classification is

discussed as follows:

 Local & Global – Local scheduling performed on a single system which has single

CPU to schedule the task while Global scheduling is performed in multisystem

and multiprocessor environment. Distributed job scheduling comes into the

category of global scheduling, which is taken into consideration for further tree

expansion.

Chapter 2. Background

23

 Static & Dynamic – Global schedulers are static or dynamic in nature. Static

schedulers run on predefined conditions of scheduling and do not consider any

priority or deadline of jobs/tasks for scheduling at runtime. Whereas, dynamic

schedulers are more appropriate for scheduling in distributed computing, as it

requires scheduling of job/task at runtime based upon various considerations

like resource requirement to execute the task and availability of resources across

distributed system. The static scheduler would need to know the resource

requirement of the task in advance, before the processing of the task begins

whereas, dynamic schedulers work dynamically depending upon the resource

requirement of the task and the availability of resources, at runtime.

 Optimal & Suboptimal – All static and dynamic schedulers are subcategorized as

the optimal and suboptimal. Optimal scheduling can be performed when all

resource requirements for the application is known to us before scheduling.

Optimal scheduling tries to match the criterion like optimal makespan, resource

sharing, and concurrency control. But as stated earlier, scheduling problems are

NP-complete (Ullman, 1975), it is difficult to identify resource requirement

apriori. Therefore, suboptimal scheduling is a better option for this kind of

situation. Suboptimal scheduling do not assure the best or optimal solution, but

provide sub solutions with guaranteed results.

 Approximate & Heuristic – As the name implies approximate solution is

guaranteed by the approximate scheduling approach. It gives approximate

performance based upon available resources and scheduling parameters.

Heuristic scheduling gives an accurate result rather than approximate. The

heuristic approach is widely adopted as it supports both static and dynamic

scheduling.

 Distributed & Non-distributed – In global, dynamic category scheduling

algorithms are divided into two broad subcategories, the schedulers which

support distributed environment and the schedulers which are not. Non-

distributed schedulers can run on a centralized system environment only, which

has lack of scalability, non fault-tolerant, and performance issues. On the other

Chapter 2. Background

24

hand, scheduling algorithms can be distributed on multiple machines and can

perform the scheduling jobs on multiple systems.

 Cooperative & Non-cooperative – Distributed schedulers are cooperative or non-

cooperative in nature. For cooperative scheduling, processors work together to

make any decision for application scheduling. In contrast, non-cooperative

scheduling processors work independently without concern of other processor

and its effect, while making any decisions.

2.6 Framework for Big Data

There is a need for computing service which can answer key problems such as

latency, scalability, resource sharing, and parallel processing. Distributed computing

meets the need for Big Data. It is not necessary that all complex computing problems

required specialized service like distributed computing. But the Big Data processing

is struggling to get performance due to high latency and compatibility of hardware

support. Distributed computing leverages the commodity hardware by effective

resource sharing, concurrent processing and reducing latency.

Basically, inspiration is to use distributed storage and processing to deal with

the 4 V’s of Big Data. In order to meet the requirement of Big Data processing

specialized framework is required which can provide services for distributed

storage and processing. Hadoop is a widely adopted framework for the said purpose.

The next section introduces “Apache Hadoop” – The Distributed Framework.

