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Chapter 3  

Apache Hadoop 

Apache Hadoop (Hadoop.apache.org, 2018a) is the most suitable open source 

ecosystem for processing Big Data in a distributed manner. Google’s MapReduce 

(Dean and Ghemawat, 2008) is the best-proposed programming framework for a Big 

Data processing solution under the umbrella of Hadoop. Hadoop is not only a 

framework, but also it is a combination of various tools for storing and processing of 

Big Data. Hadoop has become more popular due to its adaptability of commodity 

hardware. Moreover, it has a better edge in terms of performance over a 

homogeneous environment than a heterogeneous one (Dean and Ghemawat, 2008). 

3.1 Hadoop Ecosystem 

Hadoop is an open source framework comprising of a set of tools for storage and 

processing. These tools provide support for executing big data applications. It has a 

very simple architecture. Hadoop 2.0 version primarily consists of three 

components: Hadoop Distributed File System (HDFS) (Shvachko et al., 2010), Yet 

Another Resource Negotiator (YARN) (Vavilapalli et al., 2013) and MapReduce (Dean 

and Ghemawat, 2008) as shown in fig.3.1:  

1. HDFS: It allows to split big data among multiple blocks and stores them to 

various datanodes in the distributed file system. Namenode maintains the 

metadata for the distributed blocks.  

2. YARN: It separates the resource management layer and processing components 

layer. YARN is responsible for managing resources of Hadoop cluster. 

3. MapReduce: It is a programming framework on top of YARN, responsible for the 

parallel processing of data that enables enormous scalability across thousand of 

computing devices run on a Hadoop cluster. 
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Figure 3.1 Hadoop Architecture 

3.1.1 Hadoop Distributed File System (HDFS) 

To store data in a distributed environment, Hadoop uses a Hadoop distributed file 

system. HDFS file system is designed in such a way that it can store and handle very 

large size of files on commodity hardware. Hadoop does that by dividing large files 

into small size number of blocks, store them using HDFS block placement policy and 

access them by providing low-latency data access. Before going to architecture, 

beneath are the few terms that need to be understood in details: 

A. Very large files: HDFS allows storing large files which consist of thousands of 

terabytes, petabytes to zettabytes. These large files split into a number of small 

size blocks for storage and distribution. 

B. Commodity hardware: One of the key reasons for the success of HDFS is its 

adaptability to run on any hardware. It doesn’t require a highly configured 

cluster environment, it can run smoothly even on low-cost computers without 

any problem. 

C. Blocks: HDFS splits the large files into number of small blocks for an efficient 

storage. These blocks are basically 64 MB (default) size, which means that the 

whole file is divided into 64 MB blocks for reading and writing purpose. 
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D. Namenode and Datanodes: Basically Hadoop cluster nodes are divided into 

two types of nodes: Two namenodes (primary and secondary) and multiple 

datanodes. Namenode stores the metadata of file system which basically 

contains information about datanodes and blocks storage. Datanodes are actual 

computation devices which perform processing of blocks. 

HDFS Architecture: 

Hadoop HDFS has master/slave architecture as shown in fig. 3.2. Master node has 

two components called Resource Manager and Namenode. Slave on each node of a 

cluster has Node Manager and Datanode. Namenode and Datanode are under the 

umbrella of HDFS while Resource Manager and Node Manager are under the 

umbrella of YARN which is discussed in next subsection.  

In Hadoop when clients submit applications, it first assigns the job to the 

master node. The master node then will distribute the task among multiple slaves, to 

perform computation and the end result will be combined and given back to the 

master node.  

In case of distributed storage, it is important to give indexing for a faster and 

efficient data access. The namenode that resides on the master node contains the 

index of data that resides on different datanodes. Whenever an application requires 

the data, it contacts the namenode that routes the application to the datanode to 

obtain the data.  

Hardware failures are bound to happen, but Hadoop has been developed with 

an efficient failure detection model. Hadoop has de-facto fault tolerance support for 

data. By default, Hadoop maintains three copies of file blocks on different nodes. 

Therefore, even in case one datanode fails, the system would not stop running as the 

data would be available on one or more different nodes.  

Fault tolerance does not handle the failure of only slave nodes, but it also 

takes care of the failure of a master node. Hadoop architecture is fault tolerant 

against a single point of failure. Hadoop maintains multiple copies of a name node on 
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different computers as well as maintains two masters, main master aka primary 

namenode and a backup master aka secondary namenode.  

The programmer need not worry about the questions like where the file is 

located, how to manage failure, how to split computational blocks, how to program 

for scalability etc. Hadoop HDFS implicitly manages all these efficiently. It is scalable, 

and its scalability is linear to the processing speed.  

In Hadoop 1.x version, managed resources as well as computation. However, 

Hadoop 2.x splits these two responsibilities into separate entities by introducing 

YARN. 

 

Figure 3.2 HDFS Architecture (Hadoop.apache.org, 2018b) 

3.1.2 YARN 

YARN is a framework to develop and/or execute applications on distributed 

resources. YARN supports MapReduce, Tez, and other programming models at the 

same time play a vital role in enhancing scalability through effective resource 

utilization. In YARN, Resource Manager (RM), Node Manager (NM), Application 

Master (AM) and containers are key components. 
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A. Resource Manager: RM is responsible for handling all user requests and 

schedules the jobs/applications using scheduling management. For each 

application, RM allocates one Application Master and required resources. 

B. Node Manager: Each datanode contains a single node manager which is 

responsible for allocating container for a job and managing individual datanode 

resources. 

C. Application Master: For resource allocation of each application, RM negotiates 

with an Application Master. The Application Master allocates and monitors task 

containers for each application. 

D. Containers: Containers are actual processing units for tasks. For processing, 

containers use resources of nodes, such as a disk, a CPU, memory, network, etc. 

YARN assigns resources (CPU and memory) for the containers of each task using 

AM. The YARN allocates container resources dynamically as and when 

required/requested by tasks. 

YARN Architecture: 

Components in the YARN-based systems are Resource Manager (RM), Application 

Master (AM) for each application, Node Manager (NM) for each slave node 

(datanode) and an application container for each application running on a Node 

Manager. Resource Manager has two main components: a Scheduler and an 

Application Manager. The scheduler schedules the tasks based on the availability 

and requirement of resources. The scheduler schedules the task based on the 

processing capacity, number of queues etc. The scheduler allocates the resources by 

considering memory, CPU speed, disk capacity etc. The application manager accepts 

the job from a client and negotiates to execute the first container of the application. 

The application manager provides the failover mechanism to restart the services, 

which might have failed due to an application or a hardware failure. Each application 

manager tracks the status of an individual application. Reference fig. 3.3 shows the 

YARN architecture. 
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Figure 3.3 YARN Architecture (Hadoop.apache.org, 2019) 

3.1.3 MapReduce Programming Model 

MapReduce is Google’s programming model for parallel processing of distributed 

data. In distributed processing, it is significant to take data locality into 

consideration. If the data to be processed is located near, it can reduce the time of 

transmission and achieve better performance. MapReduce uses this functionality 

during the map-reduce function. The model uses the distributed data for processing 

and Hadoop is the most adopted implementation of MapReduce. MapReduce is 

supported by HDFS and YARN for executing parallel jobs / tasks among multiple 

datanodes.  

MapReduce Model: 

MapReduce model consists of two important phases i.e. maps and reduces. As 

shown in fig.3.4 in “map” phase it takes input as key-value (k, V) pair and produces 

intermediate key-value pair (k1,V1)  {(k2,V2)} as a result whilst in “reduce” phase 

it takes a key and a list of the keys and values and generates the final output as 

key/value (k2; {V2})  {V3} pair.  

In MapReduce each map function will take place on local data and output will 

be stored in a temporary storage.  A master node coordinates the input data only 

after the input is processed. In the next phase, i.e. the shuffle phase, it randomly 

generates values assigned and then sorts them according to the assigned values. 
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Now in reduce phase, the intermediate key value data is processed and the final 

output is produced. 

 

Figure 3.4 MapReduce Model 

3.2 HDFS Block Placement Policy 

Hadoop uses HDFS block placement policy (Shvachko et al., 2010) for placing data 

blocks on datanodes. Whenever a client places the request to store data blocks in 

HDFS, first the dataset is split into blocks according to block size set (default: 

64/128 MB) and also the replica of that blocks set is generated in replication factor 

(default: 3). This policy attempts to place blocks evenly amongst the list of available 

nodes. In Hadoop, Data locality plays a prominent role in HDFS reliability and 

performance of MapReduce. Data locality (Team, 2018) relies on moving the 

computation close to data rather than moving large data blocks to computation. Data 

locality minimizes network congestion and attains high performance and reliability. 

“Rack Awareness” is a key concept on which HDFS block placement policy relies. 

Figure 3.5 demonstrates the default HDFS block placement policy. 

1. Hadoop stores data blocks on different datanodes of using placement policy 

available in HDFS. The policy of placing blocks in Hadoop helps to distribute the 

data block uniformly amongst the cluster nodes. This policy places the data 

blocks according to the following approach: Split the files into blocks and 
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replicates the blocks according to the replication factor that has already been 

defined in the hdfs-site.xml file. 

2. If a request comes from the datanode which is the node of the cluster, the first 

replica of the block must put on that datanode itself. Otherwise, place it 

randomly on any datanode of the cluster. 

3. The second replica of the block will be placed on nodes of other racks if available 

or may be placed on the same rack of the first replica. 

4. The third replica will be placed on any node of the rack where the second replica 

is placed. 

 

Figure 3.5 HDFS Block Placement Policy 

3.2.1 Issues of Default Policy 

The performance of Hadoop and MapReduce vastly relies on how well data blocks 

are distributed and stored on datanodes. HDFS block placement policy uniquely 

places data blocks but replicas are not evenly distributed. Sometimes, it is important 

to consider various scenarios like cluster imbalance, network configuration, disk 
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speed, and many others.  A few points that should be considered for improving 

existing strategy and a few which are already implemented are discussed here. 

 Cluster/Data imbalance: Default policy places the first copy of the block in the 

client rack itself and other copies in other racks which sometimes imbalances the 

cluster. It doesn’t consider where an application is going to process. As a result, if 

racks are geographically distributed it considerably imbalances the cluster. 

 Heterogeneity model: While placing blocks the current placement policy fails to 

work efficiently with the heterogeneity of nodes, network configuration, and 

other resources. 

 Resource awareness: Default policy doesn’t consider processing capability of 

nodes for placing data blocks. The job may get skewed. It can also consider disk 

speed, types of storage, memory and other resources for effective data storage 

and distribution. 

 HDFS balancer: To deal with cluster imbalance issue, Hadoop has introduced 

HDFS balancer which balances the cluster based on total distributed storage. 

However, it also doesn’t consider any of the problems discussed above. 

3.3 Hadoop Schedulers 

YARN uses schedulers to schedule the jobs among multiple shared resources. It 

supports three scheduling schemes in MapReduce framework: FIFO (First-In, First-

Out), Capacity (Hadoop.apache.org, 2018c) and Fair (Hadoop.apache.org, 2018d) 

scheduler. MapReduce1 (MR1) comes with all three with FIFO as default scheduler, 

while MR2 comes with capacity and fair scheduler, which can be further configured 

with delay scheduler to address the locality issue. FIFO scheduler is the simplest and 

doesn’t support priority and size based scheduling. Capacity scheduler guarantees a 

minimum capacity of resources available to each queue for processing. The latter 

guarantees fairly share amount of resources among all the queues. 

3.3.1 FIFO Scheduler 

First-In, First-Out (FIFO) scheduler schedules the oldest job first in a queue. All the 

available resources will get allocated to the first application/job in a queue and the 
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cluster won’t be shared with other application. Therefore, the job coming next in 

queue has to wait until the first job finishes its task which leads to poor utilization of 

cluster. Priority-based and job size based resource allocation is not possible as it 

doesn’t support preemption or application based scheduling. Figure 3.6 shows 

working of FIFO scheduler. 

 

Figure 3.6 FIFO Scheduler (Subhash, G., 2018) 

3.3.2 Capacity Scheduler 

This is the default scheduler, which comes with MR2 or YARN. The capacity 

scheduler’s configuration supports multiple queues, which can be allocated to 

multiple users based on tasks or organization. This scheduler is designed with an 

idea that the same cluster can be rented to multiple organization and resources may 

be divided among several users. Thus, the organization can divide their resources 

across multiple departments or users depending upon their tasks or the cluster can 

also be divided among multiple subsidiary organizations. Each queue can be 

configured with a fixed portion of resources, which can be soft or hard. Generally, 

resources are soft having elastic allocation, but they can also be configured for hard 

approach.  

Capacity scheduler makes use of FIFO (First-In First-Out) scheduling if 

multiple jobs are in the same queue. Suppose a job comes into the queue “A” and if 
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queue “A” is empty, then it allocates all the resources to the first job. This would 

utilize more resources than configured capacity of a queue, particularly if queue 

allocation is elastic and the job requires more resources. When a new job comes in 

queue “B”, assuming that the first job is still running and using the resources more 

than its allocated capacity, then tasks of the first job will be killed to free up the 

resources and allocate those resources to the second job. If another job comes to 

queue “A” or “B”, the capacity scheduler will process it like FIFO or FIFO with 

priority. It has many features like capacity guarantee, elasticity, security etc. that can 

be customized as per requirement. Figure 3.7 shows working of a capacity 

scheduler. 

 

Figure 3.7 Capacity Scheduler (Subhash, G., 2018) 

3.3.3 Fair Scheduler  

Fair schedulers have a similar queue configuration as discussed in case of capacity 

scheduler. Jobs would be submitted to the queue, which is termed as a “pool” in case 

of fair scheduler. Each job will use the allocated resources to their pools. As FIFO 

approach is followed in capacity scheduler, jobs which come late has to wait till the 

first job finished or resources are made available. This problem is solved in fair 

scheduler. Jobs which have waited in the queue would be picked up and processed 

simultaneously with the same amount of resources shared by applications that are 

in the same queue. Fair scheduler supports three scheduling policies that are: FIFO, 



Chapter 3. Apache Hadoop 

36 
 

Fair, and DRF (Dominant Resource Fairness), to share fair resources within the 

queues. Figure 3.8 exemplifies working of Fair scheduler. 

 Fair-FIFO: In FAIR-FIFO scheduling policy, if multiple jobs are in the same queue 

then resources will be allocated to the job which enters first in the queue, and 

each job will run serially. However, fair sharing is still being done between the 

queues.  

 Fair-Fair: In Fair-Fair scheduling policy, the fair amount of resources will be 

shared by the jobs that are running in the same queue.  

 Fair-DRF: Fair-DRF scheduling policy is devised by Ghodsiet al., 2011. In FAIR-

DRF scheduling policy, DRF evaluates the resources shared by each user, finds 

out the maximum resource utilized and calls it a dominant resource of the user. 

The idea is to make uniform resource sharing among the users through 

equalizing the resources like CPU and Memory. 

 

Figure 3.8 Fair Scheduler (Subhash, G., 2018) 
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3.4 YARN Node Label 

YARN Node label (Hadoop.apache.org, 2018e) allows partitioning the single cluster 

into multiple subclusters. Using this concept node can be marked with meaningful 

labels i.e. Nodes with higher processing capability may be labelled as “high_cpu” and 

with high memory may be labelled as “high_mem”. Using node labels job containers 

can be specified to run on specific nodes only. For example, in Hadoop WordCount a 

job which requires a lot of computation is considered a CPU intensive job where as 

TeraSort which requires a lot of memory is considered as an I/O intensive job. 

Therefore, “high_cpu” label nodes can be provided to WordCount job and 

“high_mem” label nodes to TeraSort job so that their containers will run on those 

labelled nodes only. 

3.4.1 YARN Node Label Working  

A product label helps the consumer to get distinct information about the product. 

Based on label information a consumer decides whether to buy a product or not. In 

the same way, using node label information YARN decides where it should run a job. 

For each job, multiple task containers are allocated by YARN that run only on nodes 

with the specified node label. Two types of node labels can be assigned viz 

“Exclusive” and “Non-exclusive”. “Exclusive” node label allows applications to run 

containers only if it is requested by them, while in “Non-exclusive” node label 

resources can be shared and it allows applications to run containers even if no label 

is specified. 

Resources are managed by YARN using the hierarchy of queues. Queues can 

be configured using various scheduling policies discussed above. Here fig. 3.9 shows 

how the nodes are configured to use queues for allocating containers for the job. 

There are 3 queues configured named as “A”, “B” and “C” and all nodes are 

partitioned into 3 parts. 

1. Partition X (Exclusive Node Label-X) –As shown in fig 3.9 all nodes of partition X 

are labelled as node label “X” Exclusive. Only queue “A” can access the partition X 

as it is an Exclusive node label with capacity configured as 100%. 
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2. Partition Y (Non-exclusive Node Label-Y) – All nodes of Partition Y are labelled 

as node label “Y” Non-exclusive. Queue “A” and “B” share the partition with a 

capacity of 50% each. 

3. Default Partition – No labels are assigned to the nodes that come into this 

partition. Queue “A”, “B”, and “C” have access to these nodes in a capacity of 40%, 

30%, and 30% respectively. 

 

 
Figure 3.9 Node Label Configuration for Queues (Zhang and Zhang, 2018) 

Using above configurations four applications are submitted in queue “A” and 

“C” to see the effect of node label to run containers. As shown in fig 3.10 “user-1” has 

submitted 3 applications and “user-2” has submitted 1 application for 

processing.Application-1 and application-2 are submitted by user-1 in queue “A” 

using node label “X” and “Y” respectively. Containers of application-1 and 

application-2 are allocated on partition-X and partition-Y respectively.Application-3 

and application-4 are submitted by user-1 and user-2 respectively without 

Can use if it is idle for ResourceRequest on Default Partition 
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specifying anode label.Application-3 is submitted in queue “A” and application-4 is 

submitted in queue “C”. Partition-Y is “Non-exclusive”; hence if nodes of that 

partition are idle, they can be utilized by applications requesting default partition. 

Therefore, containers of application-3 and application-4 are allocated to partition-Y 

and default partition as shown in fig 3.10. 

 

Figure 3.10 Application Submission to Queues (Zhang and Zhang, 2018) 

3.4.2 Issues of Node Label 

As discussed in the above example node label allows us to select where to place 

application containers. Node label selection for putting job is equally critical because 

if nodes selected by using node label for job processing do not leverage cluster 

effectively. It degrades the application and job performance. Sometimes, if a 

partition is selected as “Exclusive” and data blocks are not present at that location to 

run the container then it requires moving data block all the way from other nodes or 

racks. Moving data block where containers are running is a very exhausting process 

as it degrades the performance of Hadoop drastically. 
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3.5 Challenges in Hadoop 

Hadoop cluster configuration is challenging since Hadoop framework is a complex 

distributed environment that involves a combination of hardware and software 

which affects the performance of Big Data application. On the hardware side, HDFS 

performance relies on data storage, access and data transfer between datanodes. 

Datanode hardware specifications like processors, memory, and storage space also 

play a major role in it. On the software side, Hadoop can be customized and tuned to 

achieve better performance. Various challenges that must be taken into account to 

achieve better Hadoop performance are discussed below: 

 Heterogeneous Environment: Hadoop is specifically designed for 

homogeneous nodes only. In today’s era of computing, we cannot imagine having 

a cluster made up of homogeneous nodes only. Data locality variation on a 

heterogeneous cluster is the biggest challenge to answer. To achieve better 

Hadoop performance on a heterogeneous cluster is one of the major challenges 

to exhibit. 

 HDFS Block Placement Policy: Hadoop default HDFS block placement strategy 

can be improvised, since it does not distribute blocks uniformly based on the 

processing capability of nodes. Default policy requires major changes specifically 

in heterogeneous Big Data application processing. 

 Load Balancing: Though Hadoop handles load balancing automatically, it is also 

one of the major concerns for the researchers and scientists. Sometimes, the load 

balancing issue occurs as data is not distributed evenly, so finished tasks have to 

wait for running tasks. There is a need of technique which can avoid or mitigate 

the effect of data skew. 

 Resource Awareness: HDFS and MapReduce do not consider the resource 

capability while storing and putting job request to datanodes. It can achieve 

better performance if the system is resource-aware (e.g. processor, number of 

cores, memory). 


