

64

Chapter 5

Proposed Methodology

As we discussed in chapter 3, default block placement policy works well for

homogeneous systems. But when data blocks and datanodes are geographically

distributed on the heterogeneous environment, default block placement policy in

Hadoop, does not prove to be very efficient. In Hadoop, HDFS default block

placement policy does not consider node’s processing capability while placing data

blocks on that node. As a result, nodes with lesser processing capability affect the

performance of Hadoop. Therefore, Hadoop default HDFS block placement strategy

needs to be improvised, such that node processing capability and heterogeneity of

system can be taken into consideration. We propose the Block Rearrangement

Algorithm titled “Saksham”: Resource Aware Block Rearrangement Algorithm.

“Saksham” algorithm only rearranges the blocks according to assigned priority.

Actual placing of blocks is still done by default HDFS block placement policy.

5.1 Saksham: A Resource Aware Block Rearrangement Algorithm

Hadoop uses “Rack Awareness” while placing data blocks for fault tolerance and

better performance. ”Rack Awareness” is a concept Hadoop uses to place read/write

request to the same rack or nearby rack (Team, 2018). This concept helps to achieve

better data locality as discussed in chapter 3. MapReduce de facto standard tries to

move the job where data is stored. But, that node may not have sufficient processing

capability or job may get skewed due to less processing/memory capability. Hence,

we propose “Saksham” A Resource Aware algorithm which rearranges the data

blocks according to processing capability of the node or heterogeneity of

environment. Since, capability of the node is taken into consideration, we have

named the proposed algorithm with the Sanskrit word “Saksham”, which translates

to “Capable” in English.

Chapter 5. Proposed Methodology

65

We can apply custom block rearrangement policy by considering two distinct

approaches. In the first approach, we consider only heterogeneous nodes having

different computational capability. Meaning, we assign the priority based only on the

computational capability of the nodes, where each node may be of different

configuration from the other. For the nodes with the higher computational capability

we can assign higher priority. In the second approach, we create two groups based

on homogeneity and heterogeneity of nodes. As per the requirement of an

application, we may submit the job only to homogeneous cluster or only to

heterogeneous cluster. Depending on where the application needs to be submitted

the higher priority may be assigned to one of the groups.

Initially default HDFS block placement policy places data blocks as shown in

fig. 5.1. If a file that comprises of 8 blocks, needs to be placed in HDFS. As per the

working of HDFS, it will first create the replicas of these blocks of a file. The number

of replicas created will depend on the replication factor which can be customized.

The default replication factor for the blocks in HDFS is 3. Thus, a file having 8 blocks

with each block having 3 replicas i.e. in total 24 blocks need to be placed across

different nodes in HDFS. As shown in fig 5.1, the given file’s 24 blocks are placed in

random manner, such that Node 1 is overloaded with 8 blocks, whereas Node 6 has

only 1 block placed on it. So, placing of blocks is skewed. Now, let us assume that

there was no processing capability on Nodes 7 to Node 10. If blocks of file are placed

on these nodes, and if the task is floated for execution on this node, because it

contains data, then it will not be able to go into execution immediately due to its

inability to execute the task. Another possibility is that you may need to move the

block from these nodes i.e. for E.g. from Nodes 7 to any other Node between Node 2

to Node 6, where the task may go into execution with available resources, but this

would involve network transmission and increase in total execution time. As a result

the Nodes 7 to Node 10 may inhibit the overall progress of the job and hence create

a bottleneck in job completion. To avoid this situation, block rearrangement will be

required, which is done in the proposed algorithm.

 As per the First Approach of the proposed algorithm “Saksham”, we consider

processing capability of nodes for forming a group. For this case, we have

Chapter 5. Proposed Methodology

66

considered heterogeneous cluster comprising of nodes with different processing

capability. Few nodes may be having lower processing capability and hence, may be

comparatively slower. In distributed computing, the speed of execution of the job is

proportional to the speed of the slowest node in the cluster. Thus, slower nodes may

degrade the overall performance of job processing. To avoid this situation, we’ve

divided nodes into two groups and assigned them the values priority=1 and

priority=2. Priority=2 is assigned to nodes which have more processing capability

and priority=1 which has lower processing capability. These settings can be defined

in Hadoop’s config.xml file. Once priority is set our “Saksham” algorithm will

rearrange the blocks of specified HDFS file path and store all blocks onto the nodes

which has priority=2 and remove all the blocks from nodes which have priority=1.

Figure 5.1 HDFS Default Block Placement Example

 As per the second approach of the proposed algorithm “Saksham”, we divide

the nodes into two groups based on the homogeneity or heterogeneity of nodes in

the cluster. We can assign priority 1 or 2 to either of the group. Depending on

processing need of big data application, we can rearrange all blocks into set of

heterogeneous nodes or into set of homogeneous nodes only. Only nodes with

priority=2 will store the blocks and with priority=1 will not store any of them. If the

requirement of the application be such that it gets executed efficiently on cluster

with nodes having similar configuration, then we would like to submit the

Chapter 5. Proposed Methodology

67

application on set of homogeneous nodes and hence would assign the priority = 2 to

the set with homogeneous nodes. Thus, keeping the control of block placement in

our hands, rather than permitting a default behaviour of Hadoop.

While placing all blocks our proposed algorithm also takes care that blocks of

a file will get distributed equally over all the nodes by considering disk usage of each

node. Each time, before placing the block of file it checks that node should not

contain a replica of the same block. The facts prove that Hadoop works better in

homogeneous environment, but that can be fulfilled even on cluster is

heterogeneous nodes, using our proposed strategy. Figure 5.2 demonstrates how

our proposed “Saksham: Resource Aware Block Rearrangement” policy can

rearrange blocks according to a priority assigned.

Figure 5.2 “Saksham” Approach: Group-1: Priority=2; Group-2: Priority=1

 Before we understand the “Saksham” block rearrangement algorithm, it is

important to know how the configurations in the config.xml file refer the parameters

for the setup. The parameters for “Saksham” model are also specified in Config.xml

file. For “Saksham” model, we specify 4 key parameter settings such as hardware

types, hosts, priority and data blocks required to rearrange. First, hardware types

segregate all cluster nodes in group-1 and group-2. Second, hosts are categorized in

group-1 and group-2 according to the availability of resources. For example, we

Chapter 5. Proposed Methodology

68

assume the group-1 contains the hosts which have more processing capability then t

group-2 or vice versa. We can also make an assumption that group-1 is set of

homogeneous nodes and group-2 is set of heterogeneous nodes. Third parameter is

the priority, where we assign priority as explained above to groups of nodes. Finally,

we select the path of HDFS block for the rearrangement and store the blocks

information in ArrayList. Reference table 5.1 explains “Saksham” configuration

parameters used in config.xml file for further passing to “Saksham” block

rearrangement algorithm.

Configuration Parameter Description

saksham.hardwaretypes Comma-separated different types of hardware

configurations

saksham.<type>.hosts Comma-separated list of host names or IP addresses

of target DataNodes

saksham.<type>.priority Assign priority=2 for the hardwaretype where we

want to rearrange blocks and priority=1 will not

store anything

saksham.hdfsblocks HDFS location of blocks for rearrangement

Table 5.1 Saksham config.xml parameters

Figure 5.3 is the proposed “Saksham: Resource Aware Block Rearrangement”

algorithm.

- Firstly, algorithm checks the HDFS path that contains blocks and also collects

the list of datanodes from the DatanodeInfo, Hadoop API and stored them in

arraylist.

- Secondly, based upon config.xml file it checks the priority assigned to each

node and segregates the nodes in two lists i.e. node_list1 (priority-1) and

node_list2 (priority-2).

- In last step blocks along with each replica will be rearranged in nodes which

are having priority-2. For rearrangement, it checks the disk utilization and

processing capability of each node.

Chapter 5. Proposed Methodology

69

Algorithm 1 Saksham: Resource Aware Block Rearrangement Algorithm

Input: HDFS location of input files to be balanced / rearranged
File contains list of data blocks which are placed in HDFS using default policy.
Output: Data blocks will be placed to specific nodes only based on given priority
factor.

1) if input HDFS path != null
2) foreach locatedBlocks block : nameNode.getLocatedBlocks() do
3) Put blocks in arraylist<block_list>
4) endfor
5) endif
6) foreach DatanodeInfo node : getDatanodeStats(Live) do
7) if nodes in config.xml != null
8) Add nodes in arralylist<datanodes>
9) endif
10) endfor
11) foreach BalancerDataNode node : datanodes do
12) if nodes.priority = 1.0
13) Add nodes in arralylist<node_list1>
14) elseif nodes.priority = 2.0
15) Add nodes in arralylist<node_list2>
16) endif
17) endfor
18) Sort node_list2 by disk utilization in ascending order
19) for each block replica do
20) Initialize <block_list> queue with all blocks
21) Initialize <node_list2> nodes with priority=2
22) for each block replica in <block_list> do
23) if (find first node form <node_list2>) doesn’t contains(block)
24) Put block onto selected node
25) Remove node from <node_list2>
26) Remove block from <block_list>
27) if node_list2 is empty
28) Initialize with all nodes with priority=2
29) endif
30) endif
31) endfor
32) endfor

Figure 5.3 Proposed “Saksham” Algorithm

 Above algorithm describes how it rearranges the data blocks. But it is

important to note that this algorithm also depends upon so many small algorithms

for collecting data blocks and datanodes information from Namenode and

datanodestats. The flow diagram of the “Saksham” algorithm is shown in fig 5.4.

Chapter 5. Proposed Methodology

70

Figure 5.4 Flow Diagram of “Saksham” algorithm

False

False

Chapter 5. Proposed Methodology

71

5.2 Saksham Model

To achieve better performance for big data processing, we target upon two

important aspects of heterogeneous distributed computing: file system management

and process management. Figure 5.5 represents the proposed “Saksham” model.

First, file system management basically controls the block placement and

allows us to rearrange the blocks on specified nodes based upon two important

approaches of load balancing:

1. Balance the load among heterogeneous and homogeneous nodes of the

cluster.

2. Balance the load within the cluster based on the processing capability of each

node by giving priority to each node.

Our proposed algorithm allows the user to select the nodes based on its

individual data processing capability and rearrange the blocks which are placed

using the default policy. Default block placement policy of HDFS fails to achieve

optimized performance as it does not check the processing capability of the node

while placing blocks on the node. Our proposed algorithm achieves that by

considering processing capability of nodes and places blocks on nodes which has

higher processing capability. If there are two or more nodes having same processing

capability then it checks the utilization of the node, and considers the less utilized

node first, for block placement. By doing this, we have control over data to be put on

selected nodes, considering processing capacity and utilization of nodes. Saksham

does cause an overhead time, for rearrangement, but this rearrangement of blocks

that we do using Saksham is not included in the total time of execution. As the

movement of blocks is not happening during the job is in execution and hence, job

need not wait, or it is not preempted. If default policy is used then, in case, if the

resources are not available where the block is placed and the job is submitted, then

during the execution of job i.e. after submission, movement of data blocks to where

the resources are available, will be done, and that will cause lots of overhead.

Chapter 5. Proposed Methodology

72

Figure 5.5 Proposed “Saksham” Model for Load Balancing

Second, we use the concept of node labelling to achieve better process

management. YARN Node label (Hadoop.apache.org, 2018e) allows partitioning the

single cluster among multiple sub-clusters. Using this concept we can mark nodes

with meaningful labels i.e. nodes with higher processing capability may be labeled as

“high_cpu” and with high memory may be labeled as “high_mem”. By combining the

proposed algorithm with node label, it can be actually decided where to put jobs. To

Chapter 5. Proposed Methodology

73

achieve better data locality the job can be submitted to the nodes where data is

actually rearranged using proposed algorithm. Later, Hadoop scheduling can be

used to put jobs in queues for processing. It limits the overhead of internode and

inter-rack data transfer since process (containers) and data blocks are on to the

same nodes. Thus, along-with node labelling and using Saksham Block

Rearrangement algorithm, we have defined two-level architecture, to identify the

appropriate nodes, where data blocks should be placed and job execution can thus

be done more efficiently.

 In this chapter, we explain the concept of our “Saksham” model. We also

discussed that “Saksham” block rearrangement algorithm does take rearrangement

time overhead, but it will compensate against the total execution time of application.

We have integrated “Saksham” policy into the Hadoop-2.7.2 distribution. To validate the

importance and applicability of “Saksham” model, we run the various data intensive

applications and results are presented in the next chapter.

