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Chapter 6  

Experimental Results 

This chapter covers experimental work carried out with the implementation of 

Hadoop 2.7.2 on Grid’5000. This chapter gives a brief overview of Grid’5000 

experiment set-up, followed by parameters used for measurement. Finally, the result 

is obtained using proposed “Saksham” model and compared with standard Hadoop 

results. 

6.1 Overview of Grid’5000 

We have tested our experiment on Grid’5000 (Grid5000.fr, 2018) heterogeneous 

cluster. Grid’5000 is a large scale distributed testbed for the researchers to 

experiment with their research on a high configurable cluster. Gri’5000 not only 

provides storage resources but, it also supports following key features for persistent 

and reliable infrastructure for researchers. 

 Resource Availability: Grid’5000 supports a cluster made up of 1000+ 

nodes. These compute nodes are grouped into homogeneous and 

heterogeneous clusters. It supports the latest hardware infrastructure such 

as Xeon Phi- CPUs, latest GPU, SSD drives, 10-25G Ethernet and InfiniBand. 

 Reconfigurable & Controllable: Grid’5000 provides full access to the 

researchers for configuration of software and resource usage. It provides a 

perfect environment for HPC, cloud and Big Data application testing. Due to 

bare metal deployment features, the researcher can isolate experiments at 

the network layer. 

 Advanced monitoring and measurement support: Grid’5000 supports 

ganglia and other monitoring tools for monitoring of clusters, networks, and 

other experiments. Grid’5000 also supports the measurement of energy 

consumption (i.e. kwapi) and analytics of resource usage. 
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6.2 Experiment Setup 

We have used 10 nodes for our experiment (i.e. 1 Namenode and 10 Datanodes). The 

cluster is configured for Hadoop 2.7.2 version on Ubuntu 14.04 operating system. 

Appendix II illustrates the Hadoop deployment on Grid’5000. The configuration of 

nodes is shown in table 6.1. The table displays the heterogeneity of nodes in terms of 

CPU, memory, storage, number of cores and networks. Table 6.2 shows priority and 

node label settings for block rearrangement and job processing respectively. In table 

6.2 parasilo and parapide are the names of the nodes in the cluster Rennes of 

Grid’5000. 

 Nodes are labeled as per the priority that we would like to give to the node. 

Here 2 means highest priority and 1 means lowest priority. Nodes are labeled or 

given priority based on the available configuration or available resources on the 

node. For example, if our job is compute intensive, we will give higher priority and 

hence we assign label 2 which has more processing capacity. In case if our job is data 

intensive, then we will give higher priority where more memory and more file space 

is available, instead of the one with CPU Power. 

CPU Detail Specifications No of nodes 

Intel Xeon E5-2630 
v3 

CPU: 2 CPUs/node 

Cores: 8 cores/CPU 
Memory: 128 GB memory 

Storage: 558 GB/node, 
Network: 10 Gbps 

Parasilo-[1-6] 
Total – 6 

Intel Xeon X5570 
CPU: 2 CPUs/node 

Cores: 4 cores/CPU 
Memory: 24 GB memory 
Storage: 465 GB/node, 

Network: 20 Gbps 

Parapide-[1-4] 
Total – 4 

Table 6.1 Hadoop 2.7.2 Heterogeneous Cluster Configuration 

Priority-2 Priority-1 
Node Label – “high_cpu” Node Label – “low_cpu” 

parasilo-1.rennes.grid5000.fr parapide-1.rennes.grid5000.fr 
parasilo-2.rennes.grid5000.fr parapide-2.rennes.grid5000.fr 
parasilo-3.rennes.grid5000.fr parapide-3.rennes.grid5000.fr 
parasilo-4.rennes.grid5000.fr parapide-4.rennes.grid5000.fr 
parasilo-5.rennes.grid5000.fr  
parasilo-6.rennes.grid5000.fr  

Table 6.2 Data Rearrangement Priority and Node Label Settings 
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6.3 Experiment Scenarios 

In this experimental study, we have used three different scenarios for comparing the 

results. It is important to compare the results of our proposed model with the 

default and custom configured Hadoop set-up for validating and reliability of 

proposed results.  Figure 6.1 shows the test cycle for all the scenarios discussed 

below. Results of all scenarios help to compare the results and show the 

effectiveness of the “Saksham” model. 

Scenario 1: In this scenario, we first place data blocks using the default HDFS block 

placement policy. We use default Hadoop 2.7.2 parameters and schedule the 

MapReduce jobs using different schedulers for Big Data processing. Results of these 

applications are evaluated for comparing it with our proposed “Saksham” model.  

Scenario 2: In this scenario, the first step remains the same as scenario-1 i.e. placing 

data blocks using the default HDFS block placement policy. Second, we assigned 

node labels to the nodes for job placement. Last, we scheduled the MapReduce jobs 

using various scheduling policies for Big Data processing. We evaluated the result of 

the node label approach as it is important to show the effectiveness of our proposed 

approach and to affirm that it is better than mere implementation of default node 

label settings. 

Scenario 3: In this scenario, once again we used the default HDFS block placement 

policy for data placement. Second, we implemented “Saksham” block rearrangement 

algorithm which rearranges the block according to the configuration parameter. In 

this level, all blocks are stored to the nodes which have high computation power or 

more resource availability (I.e. CPU, memory). Next, we assigned node labels (Refer 

Appendix III) to the nodes.  At last, we scheduled the MapReduce jobs using all 

scheduling policies. 

6.4 Performance Metrics 

For our experiment results, we focused on two important parameters which define 

the performance of Hadoop.  We have evaluated and analyzed the result of Hadoop 

based on data locality, job execution time, and job completion time. These are the 
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major performance criterions to improve Hadoop performance. In our experiment, 

block rearrangement time is also important as total time would include the block 

rearrangement time, to measure the results precisely. 

 
Figure 6.1 Test Cycle for All Scenarios 

Data Locality: It refers to process of moving computation close to data rather than 

transferring large data near the computing resources. If data moves to the cluster, 

then in some instances may cause network traffic congestion and size of data may 

skew the overall job performance. Hence, improvement in data locality will 

definitely enhance overall performance. 

 For our experiment, we calculated data locality percentage of all applications. 

Here we have represented, total number of map tasks launched for each application 

as     , total data local tasks as     and finally data locality percentage 

                   is calculated as,  

                                   Eq.1 
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Job Execution Time: It is the time required to complete the job once job starts 

executing. It is obvious that job execution time is a major factor of performance 

criteria.  

For our experiment, we focused on reduction of job execution time so that 

significant performance can be seen. Here we have represented, job start time as   , 

job finish time as   and finally job execution time    is calculated as,  

         Eq.2 

Job Completion Time: It is the time required to complete the job once it is 

submitted by a user. It is important to consider job completion time as many factors 

play a role once the job is submitted by the user. The job is required to be scheduled, 

depending on the availability of resources and priority of job. 

For our experiment, we strive for reducing the job waiting time so that job 

completion time can be improvised. Here we have represented, job execution time 

as    according to equation 2, job waiting time as    and finally job completion time 

   is calculated as,  

         Eq.3 

Rearrangement Time: It is the time required to rearrange the blocks using 

“Saksham” block rearrangement policy. 

In our experiment, our major task is to rearrange the blocks according to the 

availability of resources. Therefore, it is significant to examine the time taken for the 

rearrangement of blocks. Here we have represented, block rearrangement start time 

as     , rearrangement completion time as      and finally rearrangement time      is 

calculated as,  

               Eq.4 

6.5 Applications & Dataset 

In order to exemplify the legitimacy of our “Saksham” resource aware block 

rearrangement policy we adopted the widely accepted and benchmark applications 
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for our experiment. It is equally important to validate the application using proper 

dataset. Here in next subsection, we have discussed the test applications and dataset 

used for our experiment.   

6.5.1 Test Applications 

We ran two benchmark job applications and one Big Data application for testing to 

prove the efficacy of our proposed approach. 

1. WordCount: WordCount application counts the total number of times each 

word occurs in a specified file. The WordCount application is implemented 

using MapReduce programming to achieve parallelism. Standard “bag of 

words” (Archive.ics.uci.edu, 2019) static test dataset is used for the counting 

job. WordCount is typically CPU intensive application as it requires to 

compute the total words after each map-reduce phase. 

2. TeraSort: TeraSort sorts the large data generated by TeraGen using 

MapReduce programming. The TeraSort benchmark is the most well-known 

Hadoop benchmark (Ibm.com, 2019b) to sort the data. TeraSort is typically 

I/O intensive application as it requires to read/write large data between CPU 

and memory. 

3. DNA Pattern Search: In DNA pattern search, it searches for an exact 

subsequence in a given DNA sequence. This application is vital in many areas 

such as genetics, genomics, forensics, pharmacogenetics, phylogeny etc. 

However, it is very much time consuming due to its large datasets (i.e. Big 

Data) and pattern search processing. We opt for this application to prove that 

our “Saksham” approach is not only efficient for benchmark applications but 

can also be useful for real-world applications. 

6.5.2 Dataset Description 

For our experiment, we used datasets of size 10 GB and 20 GB. For WordCount 

application we use text data collection (Archive.ics.uci.edu, 2019) of 10 GB and 20 

GB size. Dataset contains different words in vocabulary. For TeraSort we use the 

data generated using TeraGen utility. TeraGen generates and writes the large 
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dataset on to the cluster nodes. For DNA pattern match we used standard human 

genome dataset from NCBI (ncbi.nlm.nih.gov, 2019a) website. Dataset is of size 10 

GB which includes genomes of Homo sapiens. 

6.6 Result Analysis 

In this section, we analysed the results of three applications. The performance of 

“Saksham” model is explored and is compared with the results of default Hadoop 

setup along with node label settings.  

6.6.1 Benchmark Applications 

In our experiment, two Hadoop applications WordCount and TeraSort were 

implemented for testing. WordCount and TeraSort applications are archetypal 

MapReduce jobs for Hadoop performance measurement. We used 4 datasets as the 

input data out of which 2 text dataset files (5GB and 10 GB) for WordCount and 2 

datasets (5GB and 10 GB) were generated using TeraGen utility.  For this experiment 

we kept replication factor as 3. Therefore total block size was 15 GB and 30 GB. 

 As described in experiment scenarios; we first loaded the dataset on HDFS 

cluster using default HDFS block placement policy. Afterwards, we applied 

“Saksham” block rearrangement policy according to settings described in table 6.2. 

Figure 6.2 [A-B] shows the result of our approach on 15 GB and 30 GB text dataset 

we used for WordCount application. As it is clearly shows that default HDFS block 

placement policy places data blocks unevenly among the cluster nodes. Moreover, 

processing capability of nodes was not considered while placing the blocks. Results 

also shows that after applying the “Saksham” block rearrangement policy blocks 

were rearranged according to the priority set in configuration.xml, as shown in table 

6.2. We assigned priority-2 for the nodes parasilo-[1-6] as these nodes have more 

resources (number of cores, storage and memory) compared to the nodes parapide-

[1-4] shown in table 6.1. 
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Figure 6.2 Saksham Balancing: Text Dataset (A) Size-15 GB (B) Size- 30 GB 

Figure 6.3 [A-B] depicts the result of our approach on 15 GB and 30 GB 

dataset we use for TeraSort application. Here also we first used default HDFS block 

placement policy for data placement and then we applied “Saksham” block 

rearrangement policy for rearrangement. 

Result of fig. 6.2 and 6.3 clearly illustrates that our proposed “Saksham” block 

rearrangement successfully rearranges the blocks to the nodes which have priority-

2. It is very much important to rearrange the blocks to the only nodes which have 

more processing capability which we successfully achieved. 
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Figure 6.3 Saksham Balancing: TeraGen Dataset (A) Size- 15 GB (B) Size-30 GB 

Table 6.3 shows storage utilization after implementing default block 

placement policy and in the next step after applying “Saksham” block rearrangement 

policy. The result of table 6.3 proves that our “Saksham” algorithm is successfully 

configured and all the blocks were rearranged to the nodes which have prirority-2 

and disk utilization of nodes was also merely same. Figure 6.4 shows rearrangement 

time taken by the “Saksham” algorithm. 



Chapter 6. Experimental Results 

83 
 

 
Table 6.3 Disk Utilization of All Nodes for Different Data size 

 
Figure 6.4 Saksham Block Rearrangement Time 

We have successfully achieved control over block rearrangement based upon 

the priority assigned to the nodes and also all nodes have approximately equal data 

size. Therefore, along with rearranging the block we also resolved load balancing 

issue. Next, we assigned Node Labels to the nodes according to the table 6.2 and 

using YARN resource manager we scheduled the jobs using capacity 

(Issues.apache.org, 2019a) and fair (Issues.apache.org, 2019b) schedulers according 

to given labels. Then we compared our proposed approach with the all 4 scheduling 

policies described in chapter 3. We evaluated and compared the performance of our 
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proposed “Saksham” policy in accordance with node locality percentage, job 

completion time, job execution time and total time. 

We used two datasets of size 10 GB and 20 GB for our experiment. We 

executed these experiments 15 times on Grid 5000 and the values of time or data 

blocks in GB is the average time of these 15 executions. We focused  primarily on 

one of the major parameters of performance improvement in Hadoop, which was 

data locality. If data locality improves proportionally, it improves MapReduce job 

processing time. For Hadoop performance data locality is an important measure as 

in case of Hadoop, computation is moved where data is residing. But if data is 

residing at random nodes, where containers/processing resources are not available 

or slow in nature, then Hadoop by default will move the data to another node in the 

same rack or across node on another rack, which will consume data relocation time 

and also network bandwidth, resulting into higher job execution time and more 

amount of resources. So, to avoid moving data at runtime, Saksham policy places 

blocks only on those nodes where computational and sufficient storage resources 

are already available. 

We compared our strategy with default placement execution and after 

applying only node labelling without “Saksham” balancing.  Table 6.4 illustrates the 

result of total tasks launched, data local found and data locality in percentage. Figure 

6.5 shows the comparative result of data locality achieved by various strategies. In 

fig 6.5 each bar represents the data locality achieved by default Hadoop, after 

applying Node label, and proposed “Saksham” approach. Results validate that our 

“Saksham” algorithm with node labelling approach accomplishes almost 90% data 

locality which was far better than other strategies.  

 
Table 6.4 Data Locality Results for Various Strategies 

Jobs
Data 
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%

Total 
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Local

Data 
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%

Total 
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Data

Local

Data 

Locality

%

10 GB 128 88 68.75% 122 74 60.66% 120 112 93.33%

20 GB 240 178 74.17% 227 140 61.67% 233 208 89.27%

10 GB 134 102 76.12% 126 89 70.63% 127 111 87.40%

20 GB 267 183 68.54% 250 186 74.40% 236 213 90.25%
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SakshamDefault Node Label
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Figure 6.5 Comparison of Data Locality Achieved 

Last, we used default Hadoop schedulers for our test. We combined our 

“Saksham” algorithm plus node labelling and scheduled the jobs for testing. We 

tested using following schedulers to see the effectiveness: capacity and fair 

scheduler. Fair scheduler has three policies: Fair-FIFO, Fair-Fair and Fair-DRF. Test 

scenarios for all experiments discussed in previous section and fig. 6.1 displays our 

test cycle that we implemented for comparison. We compared the job execution time 

of our proposed approach with default MapReduce execution, executing using node 

labelling w/o “Saksham” balancing.  

Figure 6.6-6.9 demonstrates the results of job execution of two jobs using two 

different size of datasets. It is important to note that “Saksham” policy results are 

with default Hadoop, and after applying node label.   

 

Figure 6.6 Job Execution Time using Capacity Scheduler 
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Figure 6.7 Job Execution Time using Fair-FIFO Scheduler 

 

Figure 6.8 Job Execution Time using Fair-Fair Scheduler 

 

Figure 6.9 Job Execution Time using Fair-DRF Scheduler 
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Results establish that mere implementation of node labelling creates 

overhead of the internode and interrack block transfer and augments the job 

execution time. But our “Saksham” algorithm in combination with node labelling 

achieves optimized result. Figure 6.10 shows the comparison of the job execution 

time of different scheduling policies for “Saksham” model. Results of the two 

applications are compared with two different dataset size. Here fig. 6.10 affirms that 

fair-fair scheduling strategy outsmarts capacity, fair-fifo, and fair-drf policies. 

 
Figure 6.10 Job Execution Time of all Scheduling Policies 

Results testify that “Saksham” policy successfully attains better job execution 

time and improves the Hadoop performance. But at the same time, it is important to 

prepend the amount of time required for the rearrangement of the blocks. Figure 

6.11 shows the total time comparison in fair-fair scheduling policy. Here total time 
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that even if we consider rearrangement time we achieved substantially surpassing 

results than the existing policies. 
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Figure 6.11 Total time (Execution Time + Rearrangement Time) using Fair-Fair Policy 

 
Figure 6.12 Average CPU Utilization 

Figure 6.12 and 6.13 shows the comparison of average CPU time and memory 

utilization for both the jobs. The figure clearly shows that CPU time is less for 

“Saksham” model compared to all four scheduling policies. In terms of CPU time & 

memory usage shown in fig. 6.12 and 6.13, Fair-Fair is better as it utilizes less CPU 

time and effectively uses physical memory. Results show that our “Saksham” 

approach utilized more memory compared to default Hadoop, but total CPU time is 
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reduced significantly. Therefore, we can say we reduce the time complexity of 

resource utilization which ultimately succeeds to speed up our Hadoop 

performance. 

 
Figure 6.13 Average Memory Utilization 

6.6.2 DNA Pattern Search Application 

We have also implemented the proposed approach of Saksham Block 

Rearrangement policy and node labelling for custom application, other than the 

Benchmark Application of WordCount and TeraSort, to prove the applicability of our 

proposed algorithm. We implemented the proposed algorithm for DNA Pattern 

Search Application. 

The importance of DNA pattern search is increasing exponentially in Life 

Sciences research. DNA pattern search plays a vital role in genomic data analysis 

which has become the need of the day for betterment of mankind. Human DNA data 

is a massive collection of large sequences. Variety of tools are available to analyze 

and search patterns in DNA sequences. However, most of these tools need further 

improvisation (Vineetha, Biji and Nair, 2019) due to the huge size of DNA data.  
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For our experiment purpose we have used Human Papillomavirus Type 16 

(HPV16) (data source: ncbi.nlm.nih.gov, 2019b) for searching subsequence is 

available in dataset or not. We have used 2 different types of data sets both from 

ncbi, where HPV16 is the pattern that is searched in the Genomic sequence of Homo 

sapiens genomic sequence. Human Papillomavirus (HPV16) is usually found in a 

person having cervical cancer. Cervical cancer is a serious health problem occurs in 

women, is the third leading malignancy among women after breast and colorectal 

cancer (Denny et al., 2015). Most types of cervical cancer are caused by human 

papillomavirus (HPV), a sexually transmitted infection.  

 We used different configuration of node for DNA pattern search application 

just to check the authenticity of work and check impact on results. The configuration 

of nodes is shown in table 6.5. Table 6.6 shows priority and node label settings for 

block rearrangement and job processing respectively.  

CPU Detail Specifications No of nodes 
 

Intel Xeon E5-2630 

CPU: 2 CPUs/node 

Cores: 6 cores/CPU 
Memory: 32 GB memory 
Storage: 598 GB/node, 

Network: 10 Gbps 

taurus-[1-6] 
Total – 6 

AMD Opteron 250 
CPU: 2 CPUs/node 

Cores: 1 core/CPU 
Memory: 2 GB memory 
Storage: 73 GB/node, 

Network: 20 Gbps 

sagittaire-[32-
34,44] 

Total – 4 

Table 6.5 Heterogeneous Cluster Configuration (DNA Pattern Search) 

Priority-2 Priority-1 
Node Label – “high_cpu” Node Label – “low_cpu” 

taurus-1.lyon.grid5000.fr sagittaire-32.lyon.grid5000.fr 
taurus-2.lyon.grid5000.fr sagittaire-33.lyon.grid5000.fr 
taurus-3.lyon.grid5000.fr sagittaire-34.lyon.grid5000.fr 
taurus-4.lyon.grid5000.fr sagittaire-44.lyon.grid5000.fr 
taurus-5.lyon.grid5000.fr  
taurus-6.lyon.grid5000.fr  

Table 6.6 Data Rearrangement Priority and Node Label Settings (DNA Pattern Search) 

We used a dataset of size 10 GB for our experiment and results are prepared 

by taking an average of 15 experiments. We compared our strategy with default 

placement execution and after applying only node labelling without “Saksham” 
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balancing.  Figure 6.14 illustrates the comparative result of data locality achieved by 

various strategies. Results confirm that our “Saksham” algorithm with node labelling 

approach accomplishes almost 93% data locality which was far better than other 

strategies. 

 
Figure 6.14 Data Locality for DNA Pattern Search Dataset 

 
Figure 6.15 Job Execution Time for DNA Pattern Search 
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note that even if we consider rearrangement time we achieved substantially 

improvement, surpassing the results of existing policies. 

 

Figure 6.16 Total time (Execution Time + Rearrangement Time) for All Policies 

 In this chapter, we implemented and tested our proposed “Saksham” model 

for Hadoop performance improvisation. All three application results are analyzed 

based on execution time, data locality, and CPU/memory utilization by each 

application. We studied the performance of the Hadoop in detail and developed a 

comprehensive “Saksham” model for Big Data processing on a heterogeneous cluster 

environment. The results of “Saksham’ model validate our model as we received 

more than 90% data locality and execution time is also reduced to approximately 

50% than the default execution environment. After the implementation and testing 

of results, we firmly believe that “Saksham” model is pretty much useful for both 

homogeneous and heterogeneous environment and also optimizes the performance 

of Hadoop. 


