

74

Chapter 6

Experimental Results

This chapter covers experimental work carried out with the implementation of

Hadoop 2.7.2 on Grid’5000. This chapter gives a brief overview of Grid’5000

experiment set-up, followed by parameters used for measurement. Finally, the result

is obtained using proposed “Saksham” model and compared with standard Hadoop

results.

6.1 Overview of Grid’5000

We have tested our experiment on Grid’5000 (Grid5000.fr, 2018) heterogeneous

cluster. Grid’5000 is a large scale distributed testbed for the researchers to

experiment with their research on a high configurable cluster. Gri’5000 not only

provides storage resources but, it also supports following key features for persistent

and reliable infrastructure for researchers.

 Resource Availability: Grid’5000 supports a cluster made up of 1000+

nodes. These compute nodes are grouped into homogeneous and

heterogeneous clusters. It supports the latest hardware infrastructure such

as Xeon Phi- CPUs, latest GPU, SSD drives, 10-25G Ethernet and InfiniBand.

 Reconfigurable & Controllable: Grid’5000 provides full access to the

researchers for configuration of software and resource usage. It provides a

perfect environment for HPC, cloud and Big Data application testing. Due to

bare metal deployment features, the researcher can isolate experiments at

the network layer.

 Advanced monitoring and measurement support: Grid’5000 supports

ganglia and other monitoring tools for monitoring of clusters, networks, and

other experiments. Grid’5000 also supports the measurement of energy

consumption (i.e. kwapi) and analytics of resource usage.

Chapter 6. Experimental Results

75

6.2 Experiment Setup

We have used 10 nodes for our experiment (i.e. 1 Namenode and 10 Datanodes). The

cluster is configured for Hadoop 2.7.2 version on Ubuntu 14.04 operating system.

Appendix II illustrates the Hadoop deployment on Grid’5000. The configuration of

nodes is shown in table 6.1. The table displays the heterogeneity of nodes in terms of

CPU, memory, storage, number of cores and networks. Table 6.2 shows priority and

node label settings for block rearrangement and job processing respectively. In table

6.2 parasilo and parapide are the names of the nodes in the cluster Rennes of

Grid’5000.

 Nodes are labeled as per the priority that we would like to give to the node.

Here 2 means highest priority and 1 means lowest priority. Nodes are labeled or

given priority based on the available configuration or available resources on the

node. For example, if our job is compute intensive, we will give higher priority and

hence we assign label 2 which has more processing capacity. In case if our job is data

intensive, then we will give higher priority where more memory and more file space

is available, instead of the one with CPU Power.

CPU Detail Specifications No of nodes

Intel Xeon E5-2630
v3

CPU: 2 CPUs/node

Cores: 8 cores/CPU
Memory: 128 GB memory

Storage: 558 GB/node,
Network: 10 Gbps

Parasilo-[1-6]
Total – 6

Intel Xeon X5570
CPU: 2 CPUs/node

Cores: 4 cores/CPU
Memory: 24 GB memory
Storage: 465 GB/node,

Network: 20 Gbps

Parapide-[1-4]
Total – 4

Table 6.1 Hadoop 2.7.2 Heterogeneous Cluster Configuration

Priority-2 Priority-1
Node Label – “high_cpu” Node Label – “low_cpu”

parasilo-1.rennes.grid5000.fr parapide-1.rennes.grid5000.fr
parasilo-2.rennes.grid5000.fr parapide-2.rennes.grid5000.fr
parasilo-3.rennes.grid5000.fr parapide-3.rennes.grid5000.fr
parasilo-4.rennes.grid5000.fr parapide-4.rennes.grid5000.fr
parasilo-5.rennes.grid5000.fr
parasilo-6.rennes.grid5000.fr

Table 6.2 Data Rearrangement Priority and Node Label Settings

Chapter 6. Experimental Results

76

6.3 Experiment Scenarios

In this experimental study, we have used three different scenarios for comparing the

results. It is important to compare the results of our proposed model with the

default and custom configured Hadoop set-up for validating and reliability of

proposed results. Figure 6.1 shows the test cycle for all the scenarios discussed

below. Results of all scenarios help to compare the results and show the

effectiveness of the “Saksham” model.

Scenario 1: In this scenario, we first place data blocks using the default HDFS block

placement policy. We use default Hadoop 2.7.2 parameters and schedule the

MapReduce jobs using different schedulers for Big Data processing. Results of these

applications are evaluated for comparing it with our proposed “Saksham” model.

Scenario 2: In this scenario, the first step remains the same as scenario-1 i.e. placing

data blocks using the default HDFS block placement policy. Second, we assigned

node labels to the nodes for job placement. Last, we scheduled the MapReduce jobs

using various scheduling policies for Big Data processing. We evaluated the result of

the node label approach as it is important to show the effectiveness of our proposed

approach and to affirm that it is better than mere implementation of default node

label settings.

Scenario 3: In this scenario, once again we used the default HDFS block placement

policy for data placement. Second, we implemented “Saksham” block rearrangement

algorithm which rearranges the block according to the configuration parameter. In

this level, all blocks are stored to the nodes which have high computation power or

more resource availability (I.e. CPU, memory). Next, we assigned node labels (Refer

Appendix III) to the nodes. At last, we scheduled the MapReduce jobs using all

scheduling policies.

6.4 Performance Metrics

For our experiment results, we focused on two important parameters which define

the performance of Hadoop. We have evaluated and analyzed the result of Hadoop

based on data locality, job execution time, and job completion time. These are the

Chapter 6. Experimental Results

77

major performance criterions to improve Hadoop performance. In our experiment,

block rearrangement time is also important as total time would include the block

rearrangement time, to measure the results precisely.

Figure 6.1 Test Cycle for All Scenarios

Data Locality: It refers to process of moving computation close to data rather than

transferring large data near the computing resources. If data moves to the cluster,

then in some instances may cause network traffic congestion and size of data may

skew the overall job performance. Hence, improvement in data locality will

definitely enhance overall performance.

 For our experiment, we calculated data locality percentage of all applications.

Here we have represented, total number of map tasks launched for each application

as , total data local tasks as and finally data locality percentage

 is calculated as,

 Eq.1

Chapter 6. Experimental Results

78

Job Execution Time: It is the time required to complete the job once job starts

executing. It is obvious that job execution time is a major factor of performance

criteria.

For our experiment, we focused on reduction of job execution time so that

significant performance can be seen. Here we have represented, job start time as ,

job finish time as and finally job execution time is calculated as,

 Eq.2

Job Completion Time: It is the time required to complete the job once it is

submitted by a user. It is important to consider job completion time as many factors

play a role once the job is submitted by the user. The job is required to be scheduled,

depending on the availability of resources and priority of job.

For our experiment, we strive for reducing the job waiting time so that job

completion time can be improvised. Here we have represented, job execution time

as according to equation 2, job waiting time as and finally job completion time

 is calculated as,

 Eq.3

Rearrangement Time: It is the time required to rearrange the blocks using

“Saksham” block rearrangement policy.

In our experiment, our major task is to rearrange the blocks according to the

availability of resources. Therefore, it is significant to examine the time taken for the

rearrangement of blocks. Here we have represented, block rearrangement start time

as , rearrangement completion time as and finally rearrangement time is

calculated as,

 Eq.4

6.5 Applications & Dataset

In order to exemplify the legitimacy of our “Saksham” resource aware block

rearrangement policy we adopted the widely accepted and benchmark applications

Chapter 6. Experimental Results

79

for our experiment. It is equally important to validate the application using proper

dataset. Here in next subsection, we have discussed the test applications and dataset

used for our experiment.

6.5.1 Test Applications

We ran two benchmark job applications and one Big Data application for testing to

prove the efficacy of our proposed approach.

1. WordCount: WordCount application counts the total number of times each

word occurs in a specified file. The WordCount application is implemented

using MapReduce programming to achieve parallelism. Standard “bag of

words” (Archive.ics.uci.edu, 2019) static test dataset is used for the counting

job. WordCount is typically CPU intensive application as it requires to

compute the total words after each map-reduce phase.

2. TeraSort: TeraSort sorts the large data generated by TeraGen using

MapReduce programming. The TeraSort benchmark is the most well-known

Hadoop benchmark (Ibm.com, 2019b) to sort the data. TeraSort is typically

I/O intensive application as it requires to read/write large data between CPU

and memory.

3. DNA Pattern Search: In DNA pattern search, it searches for an exact

subsequence in a given DNA sequence. This application is vital in many areas

such as genetics, genomics, forensics, pharmacogenetics, phylogeny etc.

However, it is very much time consuming due to its large datasets (i.e. Big

Data) and pattern search processing. We opt for this application to prove that

our “Saksham” approach is not only efficient for benchmark applications but

can also be useful for real-world applications.

6.5.2 Dataset Description

For our experiment, we used datasets of size 10 GB and 20 GB. For WordCount

application we use text data collection (Archive.ics.uci.edu, 2019) of 10 GB and 20

GB size. Dataset contains different words in vocabulary. For TeraSort we use the

data generated using TeraGen utility. TeraGen generates and writes the large

Chapter 6. Experimental Results

80

dataset on to the cluster nodes. For DNA pattern match we used standard human

genome dataset from NCBI (ncbi.nlm.nih.gov, 2019a) website. Dataset is of size 10

GB which includes genomes of Homo sapiens.

6.6 Result Analysis

In this section, we analysed the results of three applications. The performance of

“Saksham” model is explored and is compared with the results of default Hadoop

setup along with node label settings.

6.6.1 Benchmark Applications

In our experiment, two Hadoop applications WordCount and TeraSort were

implemented for testing. WordCount and TeraSort applications are archetypal

MapReduce jobs for Hadoop performance measurement. We used 4 datasets as the

input data out of which 2 text dataset files (5GB and 10 GB) for WordCount and 2

datasets (5GB and 10 GB) were generated using TeraGen utility. For this experiment

we kept replication factor as 3. Therefore total block size was 15 GB and 30 GB.

 As described in experiment scenarios; we first loaded the dataset on HDFS

cluster using default HDFS block placement policy. Afterwards, we applied

“Saksham” block rearrangement policy according to settings described in table 6.2.

Figure 6.2 [A-B] shows the result of our approach on 15 GB and 30 GB text dataset

we used for WordCount application. As it is clearly shows that default HDFS block

placement policy places data blocks unevenly among the cluster nodes. Moreover,

processing capability of nodes was not considered while placing the blocks. Results

also shows that after applying the “Saksham” block rearrangement policy blocks

were rearranged according to the priority set in configuration.xml, as shown in table

6.2. We assigned priority-2 for the nodes parasilo-[1-6] as these nodes have more

resources (number of cores, storage and memory) compared to the nodes parapide-

[1-4] shown in table 6.1.

Chapter 6. Experimental Results

81

Figure 6.2 Saksham Balancing: Text Dataset (A) Size-15 GB (B) Size- 30 GB

Figure 6.3 [A-B] depicts the result of our approach on 15 GB and 30 GB

dataset we use for TeraSort application. Here also we first used default HDFS block

placement policy for data placement and then we applied “Saksham” block

rearrangement policy for rearrangement.

Result of fig. 6.2 and 6.3 clearly illustrates that our proposed “Saksham” block

rearrangement successfully rearranges the blocks to the nodes which have priority-

2. It is very much important to rearrange the blocks to the only nodes which have

more processing capability which we successfully achieved.

Chapter 6. Experimental Results

82

Figure 6.3 Saksham Balancing: TeraGen Dataset (A) Size- 15 GB (B) Size-30 GB

Table 6.3 shows storage utilization after implementing default block

placement policy and in the next step after applying “Saksham” block rearrangement

policy. The result of table 6.3 proves that our “Saksham” algorithm is successfully

configured and all the blocks were rearranged to the nodes which have prirority-2

and disk utilization of nodes was also merely same. Figure 6.4 shows rearrangement

time taken by the “Saksham” algorithm.

Chapter 6. Experimental Results

83

Table 6.3 Disk Utilization of All Nodes for Different Data size

Figure 6.4 Saksham Block Rearrangement Time

We have successfully achieved control over block rearrangement based upon

the priority assigned to the nodes and also all nodes have approximately equal data

size. Therefore, along with rearranging the block we also resolved load balancing

issue. Next, we assigned Node Labels to the nodes according to the table 6.2 and

using YARN resource manager we scheduled the jobs using capacity

(Issues.apache.org, 2019a) and fair (Issues.apache.org, 2019b) schedulers according

to given labels. Then we compared our proposed approach with the all 4 scheduling

policies described in chapter 3. We evaluated and compared the performance of our

Datanodes
Default

Placement

Saksham

Balancing

Default

Placement

Saksham

Balancing

Default

Placement

Saksham

Balancing

Default

Placement

Saksham

Balancing

Parasilo-1 5.04 2.55 9.85 5.08 2.41 2.45 1.94 4.77

Parasilo-2 0.50 2.53 2.02 4.93 1.12 2.43 2.23 4.80

Parasilo-3 0.50 2.51 2.52 5.09 0.65 2.49 1.29 4.79

Parasilo-4 0.50 2.51 1.51 4.95 1.01 2.39 3.23 4.85

Parasilo-5 0.50 2.51 3.02 5.01 1.12 2.38 2.87 4.80

Parasilo-6 1.51 2.52 1.01 4.96 1.94 2.44 4.81 4.76

Parapide-1 1.01 28 kb 3.03 28 kb 1.94 28 kb 3.23 28 kb

Parapide-2 2.02 28 kb 3.02 28 kb 1.29 28 kb 1.87 28 kb

Parapide-3 1.51 28 kb 2.52 28 kb 2.41 28 kb 5.35 28 kb

Parapide-4 2.02 28 kb 1.51 28 kb 0.70 28 kb 1.94 28 kb

Text Data 15 GB Text Data 30 GB TeraGen 15 GB TeraGen 30 GB

0

20

40

60

80

100

120

140

160

180

Text Data

15 GB

TextGen 15

GB

Text Data

30 GB

TeraGen 30

GB

Time 94 113 162 170

T
im

e

in
 S

ec
o

n
d

s

Rearrangement Time

Chapter 6. Experimental Results

84

proposed “Saksham” policy in accordance with node locality percentage, job

completion time, job execution time and total time.

We used two datasets of size 10 GB and 20 GB for our experiment. We

executed these experiments 15 times on Grid 5000 and the values of time or data

blocks in GB is the average time of these 15 executions. We focused primarily on

one of the major parameters of performance improvement in Hadoop, which was

data locality. If data locality improves proportionally, it improves MapReduce job

processing time. For Hadoop performance data locality is an important measure as

in case of Hadoop, computation is moved where data is residing. But if data is

residing at random nodes, where containers/processing resources are not available

or slow in nature, then Hadoop by default will move the data to another node in the

same rack or across node on another rack, which will consume data relocation time

and also network bandwidth, resulting into higher job execution time and more

amount of resources. So, to avoid moving data at runtime, Saksham policy places

blocks only on those nodes where computational and sufficient storage resources

are already available.

We compared our strategy with default placement execution and after

applying only node labelling without “Saksham” balancing. Table 6.4 illustrates the

result of total tasks launched, data local found and data locality in percentage. Figure

6.5 shows the comparative result of data locality achieved by various strategies. In

fig 6.5 each bar represents the data locality achieved by default Hadoop, after

applying Node label, and proposed “Saksham” approach. Results validate that our

“Saksham” algorithm with node labelling approach accomplishes almost 90% data

locality which was far better than other strategies.

Table 6.4 Data Locality Results for Various Strategies

Jobs
Data

Size

Total

Task

Launched

Data

Local

Data

Locality

%

Total

Task

Launched

Data

Local

Data

Locality

%

Total

Task

Launched

Data

Local

Data

Locality

%

10 GB 128 88 68.75% 122 74 60.66% 120 112 93.33%

20 GB 240 178 74.17% 227 140 61.67% 233 208 89.27%

10 GB 134 102 76.12% 126 89 70.63% 127 111 87.40%

20 GB 267 183 68.54% 250 186 74.40% 236 213 90.25%

Word

Count

TeraSort

SakshamDefault Node Label

Chapter 6. Experimental Results

85

Figure 6.5 Comparison of Data Locality Achieved

Last, we used default Hadoop schedulers for our test. We combined our

“Saksham” algorithm plus node labelling and scheduled the jobs for testing. We

tested using following schedulers to see the effectiveness: capacity and fair

scheduler. Fair scheduler has three policies: Fair-FIFO, Fair-Fair and Fair-DRF. Test

scenarios for all experiments discussed in previous section and fig. 6.1 displays our

test cycle that we implemented for comparison. We compared the job execution time

of our proposed approach with default MapReduce execution, executing using node

labelling w/o “Saksham” balancing.

Figure 6.6-6.9 demonstrates the results of job execution of two jobs using two

different size of datasets. It is important to note that “Saksham” policy results are

with default Hadoop, and after applying node label.

Figure 6.6 Job Execution Time using Capacity Scheduler

0

200

400

600

800

1000

1200

1400

1600

10GB 20GB 10GB 20GB

Word Count TeraSort

T
im

e

in
 S

ec
o

n
d

s

Capacity Scheduler

Job Execution Time

Default

Node Label

Saksham

 25%

 15%
 11% 22%

Chapter 6. Experimental Results

86

Figure 6.7 Job Execution Time using Fair-FIFO Scheduler

Figure 6.8 Job Execution Time using Fair-Fair Scheduler

Figure 6.9 Job Execution Time using Fair-DRF Scheduler

0

200

400

600

800

1000

1200

1400

1600

1800

10GB 20GB 10GB 20GB

Word Count TeraSort

T
im

e

in
 S

ec
o

n
d

s

Fair-Fifo Scheduler

Job Execution Time

Default

Node Label

Saksham

0

200

400

600

800

1000

1200

1400

1600

10GB 20GB 10GB 20GB

Word Count TeraSort

T
im

e

in
 S

ec
o

n
d

s

Fair-Fair Scheduler

Job Execution Time

Default

Node Label

Saksham

0

200

400

600

800

1000

1200

1400

1600

1800

10GB 20GB 10GB 20GB

Word Count TeraSort

T
im

e

in
 S

ec
o

n
d

s

Fair-DRF Scheduler

Job Execution Time

Default

Node Label

Saksham

Chapter 6. Experimental Results

87

Results establish that mere implementation of node labelling creates

overhead of the internode and interrack block transfer and augments the job

execution time. But our “Saksham” algorithm in combination with node labelling

achieves optimized result. Figure 6.10 shows the comparison of the job execution

time of different scheduling policies for “Saksham” model. Results of the two

applications are compared with two different dataset size. Here fig. 6.10 affirms that

fair-fair scheduling strategy outsmarts capacity, fair-fifo, and fair-drf policies.

Figure 6.10 Job Execution Time of all Scheduling Policies

Results testify that “Saksham” policy successfully attains better job execution

time and improves the Hadoop performance. But at the same time, it is important to

prepend the amount of time required for the rearrangement of the blocks. Figure

6.11 shows the total time comparison in fair-fair scheduling policy. Here total time

refers to job execution time plus block rearrangement time. It is significant to note

that even if we consider rearrangement time we achieved substantially surpassing

results than the existing policies.

10GB 20GB 10GB 20GB

Word Count TeraSort

Capacity 494 1054 387 854

Fair-Fifo 555 974 567 922

Fair-Fair 460 979 374 804

Fair-DRF 550 994 394 1068

0

200

400

600

800

1000

1200

T
im

e

in
 S

ec
o

n
d

s

Job Execution Time
Saksham Model

Chapter 6. Experimental Results

88

Figure 6.11 Total time (Execution Time + Rearrangement Time) using Fair-Fair Policy

Figure 6.12 Average CPU Utilization

Figure 6.12 and 6.13 shows the comparison of average CPU time and memory

utilization for both the jobs. The figure clearly shows that CPU time is less for

“Saksham” model compared to all four scheduling policies. In terms of CPU time &

memory usage shown in fig. 6.12 and 6.13, Fair-Fair is better as it utilizes less CPU

time and effectively uses physical memory. Results show that our “Saksham”

approach utilized more memory compared to default Hadoop, but total CPU time is

Chapter 6. Experimental Results

89

reduced significantly. Therefore, we can say we reduce the time complexity of

resource utilization which ultimately succeeds to speed up our Hadoop

performance.

Figure 6.13 Average Memory Utilization

6.6.2 DNA Pattern Search Application

We have also implemented the proposed approach of Saksham Block

Rearrangement policy and node labelling for custom application, other than the

Benchmark Application of WordCount and TeraSort, to prove the applicability of our

proposed algorithm. We implemented the proposed algorithm for DNA Pattern

Search Application.

The importance of DNA pattern search is increasing exponentially in Life

Sciences research. DNA pattern search plays a vital role in genomic data analysis

which has become the need of the day for betterment of mankind. Human DNA data

is a massive collection of large sequences. Variety of tools are available to analyze

and search patterns in DNA sequences. However, most of these tools need further

improvisation (Vineetha, Biji and Nair, 2019) due to the huge size of DNA data.

Chapter 6. Experimental Results

90

For our experiment purpose we have used Human Papillomavirus Type 16

(HPV16) (data source: ncbi.nlm.nih.gov, 2019b) for searching subsequence is

available in dataset or not. We have used 2 different types of data sets both from

ncbi, where HPV16 is the pattern that is searched in the Genomic sequence of Homo

sapiens genomic sequence. Human Papillomavirus (HPV16) is usually found in a

person having cervical cancer. Cervical cancer is a serious health problem occurs in

women, is the third leading malignancy among women after breast and colorectal

cancer (Denny et al., 2015). Most types of cervical cancer are caused by human

papillomavirus (HPV), a sexually transmitted infection.

 We used different configuration of node for DNA pattern search application

just to check the authenticity of work and check impact on results. The configuration

of nodes is shown in table 6.5. Table 6.6 shows priority and node label settings for

block rearrangement and job processing respectively.

CPU Detail Specifications No of nodes

Intel Xeon E5-2630

CPU: 2 CPUs/node

Cores: 6 cores/CPU
Memory: 32 GB memory
Storage: 598 GB/node,

Network: 10 Gbps

taurus-[1-6]
Total – 6

AMD Opteron 250
CPU: 2 CPUs/node

Cores: 1 core/CPU
Memory: 2 GB memory
Storage: 73 GB/node,

Network: 20 Gbps

sagittaire-[32-
34,44]

Total – 4

Table 6.5 Heterogeneous Cluster Configuration (DNA Pattern Search)

Priority-2 Priority-1
Node Label – “high_cpu” Node Label – “low_cpu”

taurus-1.lyon.grid5000.fr sagittaire-32.lyon.grid5000.fr
taurus-2.lyon.grid5000.fr sagittaire-33.lyon.grid5000.fr
taurus-3.lyon.grid5000.fr sagittaire-34.lyon.grid5000.fr
taurus-4.lyon.grid5000.fr sagittaire-44.lyon.grid5000.fr
taurus-5.lyon.grid5000.fr
taurus-6.lyon.grid5000.fr

Table 6.6 Data Rearrangement Priority and Node Label Settings (DNA Pattern Search)

We used a dataset of size 10 GB for our experiment and results are prepared

by taking an average of 15 experiments. We compared our strategy with default

placement execution and after applying only node labelling without “Saksham”

Chapter 6. Experimental Results

91

balancing. Figure 6.14 illustrates the comparative result of data locality achieved by

various strategies. Results confirm that our “Saksham” algorithm with node labelling

approach accomplishes almost 93% data locality which was far better than other

strategies.

Figure 6.14 Data Locality for DNA Pattern Search Dataset

Figure 6.15 Job Execution Time for DNA Pattern Search

Results as shown in fig 6.15 prove that “Saksham” policy successfully

accomplishes better job execution time for DNA pattern search application. Figure

6.16 shows the total time comparison of all scheduling policies. It is significant to

DNA Pattern Search

Default 67.02%

Node Label 70.41%

Saksham 93.48%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

P
er

ce
n

ta
g

e

Data Locality
 26%

Chapter 6. Experimental Results

92

note that even if we consider rearrangement time we achieved substantially

improvement, surpassing the results of existing policies.

Figure 6.16 Total time (Execution Time + Rearrangement Time) for All Policies

 In this chapter, we implemented and tested our proposed “Saksham” model

for Hadoop performance improvisation. All three application results are analyzed

based on execution time, data locality, and CPU/memory utilization by each

application. We studied the performance of the Hadoop in detail and developed a

comprehensive “Saksham” model for Big Data processing on a heterogeneous cluster

environment. The results of “Saksham’ model validate our model as we received

more than 90% data locality and execution time is also reduced to approximately

50% than the default execution environment. After the implementation and testing

of results, we firmly believe that “Saksham” model is pretty much useful for both

homogeneous and heterogeneous environment and also optimizes the performance

of Hadoop.

