

Synopsis for the title

“Performance Optimization of Big Data Processing

using Heterogeneous Distributed Computing”

Submitted by

Mr. Ankit Shah [FOTE/916]

as a partial fulfillment for

PhD in Computer Science and Engineering

at

The Maharaja Sayajirao University of Baroda

Research Guide

Dr. Mamta Chandraprakash Padole

Associate Professor

Department of Computer Science and Engineering

Faculty of Technology and Engineering

The Maharaja Sayajirao University of Baroda

List of Figures

Figure 1Distributed Computing System Architecture ..5

Figure 2A heterogeneous system with processors of different architectures7

Figure 3 Characteristics of Big Data ..9

Figure 4 Hadoop 2.0 Architecture ... 12

Figure 5 YARN Architecture... 13

Figure 6 MapReduce Model .. 14

Figure 7 Scheduling Objective .. 17

Figure 8 “Saksham” Model .. 27

Figure 9 HDFS Default Block Placement Example... 28

Figure 10 “Saksham” Approach: Group-1: Priority=2; Group-2: Priority=1 29

Figure 11 Proposed “Saksham” algorithm .. 30

Figure 12 [A] Saksham Balancing: Text dataset (A) Size-15 GB .. 32

Figure 12 [B] Saksham Balancing: Text dataset (B) Size-30 GB .. 33

Figure 14 Saksham block rearrangement time .. 35

Figure 15 Comparison of data locality achieved ... 36

Figure 16 Job Execution Time using Capacity Scheduler .. 37

Figure 17 Job Execution Time using Fair-FIFO Scheduler .. 37

Figure 18 Job Execution Time using Fair-Fair Scheduler .. 37

Figure 19 Job Execution Time using Fair-DRF Scheduler ... 38

Figure 20 Comparison of Job Execution Time using “Saksham” policy 38

List of Tables

Table 1 Various Distributed File System Comparison ... 16

Table 2. Comparison of Various Scheduling Algorithms ... 20

Table 3 Performance Improvement Related Research Contribution .. 25

Table 4 Hadoop 2.7.2 heterogeneous cluster configuration .. 31

Table 5 Data placement priority and node label settings .. 31

Table 6 Disk utilization of all nodes for different datasize .. 34

Table 7 Data locality results for various strategies .. 36

Table of Contents

List of Figures…………………………………………………………………………………….

List of Tables……………………………………………………………………………………..

Chapter 1: Introduction ...4

1.1 Distributed Computing ..4

1.2 Heterogeneous Distributed Computing ..6

1.3 Big Data ..8

1.4 Hadoop ... 11

Chapter 2: Literature Review... 15

2.1 Study of Various Distributed File Systems .. 15

2.2 Scheduling Algorithms in Heterogeneous Distributed Computing 16

2.3 Study of Scheduling Algorithms in Hadoop .. 22

2.4 Study of Performance Improvement Algorithms in Hadoop .. 23

Chapter 3: Proposed Model ... 26

3.1 Saksham: Block Rearrangement Algorithm ... 27

Chapter 4: Results ... 31

4.1 Experiment Setup .. 31

4.1 Experiment Results ... 32

Chapter 5: Conclusion ... 39

Research Paper Presented / Published .. 40

References .. 41

Chapter 1: Introduction

1.1 Distributed Computing

Distributed Computing (DC) refers to computation using system of loosely coupled computers

striving to solve computationally intensive problems that are difficult to be computed using

single computer. Distributed computing is used to solve complex computational problems that

cannot be solved within a specified time frame on a single computer. The complex

computational problems may involve either compute intensive or data intensive processing.

1.1.1 Distributed Computing System (DCS)

“A Distributed Computing System, also referred as a Distributed System, is a collection of

independent computers that appears to its end users, as a single computing system”

[1].Distributed Computing System (DCS) refers to a system of multiple computers working on a

single problem that is computationally intensive. Distributed Computing System is a wide scale

infrastructure that supports sharing of resources, distribution transparency, scalability, single

point failure handling and single system image concept in large-scale problem solving.

Distributed Computing System provides these advantages compared to traditional centralized

computing system.

1.1.2 Distributed Computing System Architecture

In computer architecture terminology, distributed computing system belongs to the class of

loosely coupled Multiple Instruction, Multiple Data (MIMD) machines, with each node having

an unshared memory [2]. Below fig.1 shows a simple architecture of a distributed computing

system [1, 3]

Distributed Computing systems are built up using existing hardware, operating systems (OS) and

network. These hardware, OS and networks may be of same type or different type i.e. they may

be either homogeneous or heterogeneous respectively, in nature. A distributed system comprises

of collection of autonomous computers, linked through a computer network and distribution

middleware. The middleware enables distribution transparency, where-in the task submitted to

master, is distributed amongst multiple slaves. Thus, middleware is the bridge that connects

distributed applications across multiple systems. Middleware provides standard services such as

naming, persistence, concurrency control to ensure that accurate and faster results for processes

are produced.

Figure 1Distributed Computing System Architecture

Distributed computing system comprises of variety of hardware and software, to form a

distributed platform. At a lower level, it is necessary to have multiple CPUs which are

interconnected with each other by network. At a higher level, those interconnected CPUs will

communicate with each other through Middleware. Distributed computing system can be

categorized as homogeneous or heterogeneous based on their hardware, OS, connection,

architecture, and other components.

1.1.3 Homogeneous Distributed Computing System (HDCS)

A distributed computing system is said to be Homogeneous Distributed Computing System: a) If

hardware on each computing machine has same architecture, processing capacity and same

storage representation. b) If software (i.e. Operating system, Compiler etc.) on each computing

machine has same storage organization and similar operation speed. The requirements for a

homogeneous distributed computing system are quite stringent and are frequently not met in

network of workstations, or PCs, even when each computer in the network is of the same make

and model.

1.1.4 Heterogeneous Distributed Computing System (HeDCS)

Heterogeneous Distributed Computing System (HeDCS) is one which is not homogeneous.

Heterogeneous platform used for distributed computing always include processors and

communication network interconnecting the processors, of different types. Distributed

computing systems are naturally heterogeneous. A heterogeneous distributed system is a

dedicated system designed mainly for high - performance distributed computing. In this research

study the aim is to use Heterogeneous Distributed Computing System (HeDCS), hence it is

discussed in detail.

Computing performed using Homogeneous Distributed Computing System (HDCS) is referred

as Homogeneous Distributed Computing (HDC) and likewise, the computing performed using

Heterogeneous Distributed Computing System (HeDCS) is known as Heterogeneous Distributed

Computing (HeDC). Henceforth, for the discussion, the term HeDC will be used to describe

problem solving on using HeDCS.

1.2 Heterogeneous Distributed Computing

In Practical scenario, it is difficult to find a computing platform, with all computers involved in

processing, to be of perfectly uniform configuration. Hence, the emphasis is using heterogeneous

set of computational resources, for solving computational intensive problems.

A Heterogeneous Distributed Computing (HeDC) that consists of a heterogeneous suite of

processors, high-speed interconnections, interfaces, operating systems, communication protocols

and programming environments provides a variety of architectural capabilities, which can be

coordinated to process an application that has diverse execution requirements [4,5]. HeDC is

now well recognized as an important computing paradigm, in meeting the computational

requirements of many applications in science, engineering and commerce. The examples of

applications are weather forecasting, simulation modeling, mapping of the human genome, big

data processing, image processing, modeling of semiconductors, superconductors and banking

systems [6-9]. While the distributed computing systems offer the promise of vastly increased

performance, it introduces additional complexities such as scheduling of parallel program, load

balancing among the involved processors, process synchronization, communication, handling

data redundancy etc. which are not encountered with stand-alone processing.

A heterogeneous distributed computing system, as shown in fig.2, is a dedicated system designed

mainly for high-performance computing, which is obtained from the classical homogeneous

system architecture by relaxing one of its three key properties, leading to the situation wherein :

 Processors in distributed environment may not be identical.

 The communication network may have a regular but heterogeneous structure.

 The HeDC may be a multitasking computer system, allowing several independent users

to simultaneously run variety of applications, on the same set of processors.

Figure 2A heterogeneous system with processors of different architectures

HeDC Challenges

Heterogeneous Distributed Computing comes with new challenges due to non-uniformity,

variety of programming models, and overall varied system capability. The following factors are

to be considered, while applying HeDC for large data sets.

 Different instruction set and memory set architectures

 Library and OS services are not uniformly available on distributed nodes

 CPUs have different performance level and power consumption

 Compute elements have different cache structure, network architecture

Above factors may result in performance degradation while working on large data sets, also

referred as Big Data. Big Data processing would be difficult to be performed on a single

computer; it also cannot apply upon homogeneous distributed computing, because of scalability

issues. Hence, there is a need of HeDC for processing large data sets i.e. Big Data.

1.3 Big Data

Big Data is data that exceeds the processing capacity of single system or conventional group of

computers. The data is too big, moves too fast and may comprise of unstructured data which may

not fit into traditional database and storage structure. In other words, Big Data is an all-

encompassing term for any collection of data sets so large and complex that it becomes difficult

to process using on-hand data management tools or traditional data processing environments. Big

Data solutions are useful for business analytics.

According to an IBM study, nearly 2.5quintillion bytes of data is created every year, so much

that about 90% of the data in the world today has been created in the last two years itself [10].

This data comes from everywhere: social networking sites, GPS, sensors, private or public

networks etc. Although, Big Data may be in both the forms: structured as well as unstructured,

these data are generally in raw form, i.e. they are unstructured data sets. Big data usually include

data sets with sizes such as Petabytes or Zetabytes, which are beyond the ability of commonly

used software tools to capture, create, manage, and process the data within a tolerable elapsed

time.Big data requires cost-effective and innovative forms of information processing.

1.3.1 Characteristics of Big Data

Big Data has been defined by the four “V”s [10]: Volume, Velocity, Variety, and Veracity, as

shown in fig 3. These four characteristics help to determine whether your information

architecture needs to process Big Data.

Volume: The amount of data. While volume indicates more data, it is the granular nature of the

data that is unique. Big Data requires processing high volumes of low-density data, that is, data

of unknown value, such as social networks, clicks on a web page, network traffic, sensor-enabled

equipment etc.

Figure 3 Characteristics of Big Data

Velocity: A fast rate that data is received and perhaps acted upon. The highest velocity data

normally streams directly into memory versus being written to disk.

Variety: New unstructured data types. Unstructured and semi-structured data types, such as text,

audio, and video require additional processing to both derive meaning and the supporting

metadata.

Veracity: Veracity refers to the biases, noise and abnormality in data. It is important to check

whether the data that is being stored and processed is meaningful to the problem being analyzed.

It checks the authenticity of data. Big data solutions must validate the correctness of the large

amount of rapidly arriving data.

1.3.2 Challenges in Big Data Processing

When data is in large amount (Big Data), it also comes with huge challenges like: data

acquisition, storage, management and analysis. Traditional data management systems are based

on the relational database management system (RDBMS). However, such RDBMSs only apply

to structured data it cannot work with semi-structured or unstructured form of data. To process

huge volume of data and analyze it is a big challenge. Proper infrastructure needs to be

developed. Some literature [11–13] discusses the difficulties in the development of big data

applications. The key challenges are listed as follows [14]: data representation, analytical

mechanism, data confidentiality, scalability and optimization

1.3.3 Big Data Processing Platforms

As discussed, there are various challenges that need to be addressed for Big Data solutions. For

large data storage, management and processing, homogeneous platform cannot be sufficient. The

research community has proposed solution from different perspectives. Heterogeneous

Distributed Computing (HeDC) framework is utilized to meet the requirement on infrastructure

for Big Data, e.g. cost efficiency, elasticity, scalability, storage and management of large

datasets. HeDC framework has achieved great success in processing various big data application

and accomplishing big data analytics. The physical data center network is the core for supporting

big data. Below are the key characteristics for physical data center network.

 Scalable Computing Infrastructure: HeDC provides powerful backstage scalable

infrastructure support for Big Data processing. HeDC enables distribution and

management of Big Data across many nodes and disks.

 Data Storage Framework: The big data paradigm has more stringent requirements on

storage capacity and processing capacity, as well as network transmission capacity which

shall be addressed by HeDC.

 Parallel / Distributed Programming Framework: HeDC supports distributed

programming for complex computations.

 Analytics Framework: HeDC provides analytical platform for processing large volumes

of persistent Big Data in highly distributed and efficient manner.

1.3.4 Big Data Optimization

For large business enterprises it is indispensable to process large scale data (Big Data) to get

better insight into business. There is no doubt that, processing of big data has become

challenging task, although many tools and techniques are available to process this flood of data.

However, an important concern while processing big data is that its overall performance should

not degrade. Increasing rate of data will become critical in the future, so proper optimization

techniques need to be applied for Big Data processing.

The challenges discussed for Big Data Processing can be met through HeDC. HeDC provides the

solution for scalability, storage and distributed processing. Major research is focused to provide

proper optimization techniques to big data sets. Based on the objective, optimization techniques

can be categorized as Performance, Ease-of-use and Cost Effectiveness. Performance

optimization aims to reduce execution time to make data processing faster. Ease-of-use aims to

make data processing tools easier to implement and useable for variety of datasets, while cost

effective optimization focuses to minimize the operating cost of the system.

1.4 Hadoop

Applications involving Big Data need enormous memory space to load the data and high

processing power to execute them. Individually, the traditional computing systems are not

sufficient to execute these big data applications but, cumulatively they can be used to meet the

needs. This cumulative power for processing Big Data Applications can be achieved by using

Distributed Systems with Map-Reduce model under Apache Hadoop framework. Mere

implementation of the application on Distributed Systems may not make optimal use of available

resources.

Hadoop Ecosystem

Hadoop is open source software comprising of framework of tools. These tools provide support

for executing big data applications. Hadoop has very simple architecture. Hadoop 2.0 version

primarily consists of three components as shown in fig.4:

1. HDFS (Hadoop Distributed File System) [15]: It provides distributed storage of data over

Hadoop environment. It stores data and metadata separately.

2. YARN (Yet Another Resource Negotiator) [16]: YARN is responsible for managing the

resources of Hadoop cluster.

3. MapReduce [17]: It is the programming model on top of YARN responsible for processing of

data in the Hadoop environment. It performs the computation.

A. HDFS

Hadoop HDFS has master/slave architecture. Master node has two components called Resource

Manager and Namenode. Slave on each node of a cluster, is having Node Manager and

Datanode. Namenode and datanode are under the umbrella of the HDFS while Resource

Manager and Node Manager are under the umbrella of YARN.

Figure 4 Hadoop 2.0 Architecture

The big data applications in Hadoop first assign the task to the master node. Master node will

distribute the task among multiple slaves to perform computation and end result will be

combined and given back to the master node.

In case of distributed storage, it is important to give indexing for faster and efficient data access.

The namenode that resides on the master node is containing the index of data that is residing on

different datanodes. Whenever an application requires the data, it contacts the namenode that

routes the application to the datanode to obtain the data.

Hardware failures are bound to happen, but Hadoop has been developed with efficient failure-

detection model. Hadoop has de-facto fault tolerance support for data. By default Hadoop

maintains three copies of file on different nodes. Therefore, even in case if one datanode fails,

system would not stop running as data would be available on one or more different nodes.

Fault tolerance does not handle the failure of just slave nodes, but it also takes care of failure of

master node. There is no single point of failure in case of master node. Hadoop maintains

multiple copies of name node on different computer as well as maintains two masters, one as a

main master and other as a backup master.

Programmer need not worry about the questions like where the file is located, how to manage

failure, how to split computational blocks, how to program for scalability etc. Hadoop implicitly

manages all these efficiently. It is scalable and its scalability is linear to the processing speed. In

Hadoop 1.x version, MapReduce was managing both resources and computation. However,

Hadoop 2.x splits the two responsibilities into separate entities by introducing YARN.

B. YARN

YARN is a framework to develop and/or execute distributed applications. As shown in fig. 5:

Components in the YARN based systems are Global Resource Manager (RM), Application

Master (AM) for each application, Node Manager (NM) for each slave node, and an application

container for each application running on a Node Manager.

Figure 5 YARN Architecture

Resource Manager has two main components: Scheduler and Application Manager. The

scheduler schedules the tasks based on availability and requirement of resources. The scheduler

schedules the task based on capacity, queues etc. The scheduler allocates the resources by taking

consideration of memory, CPU speed, disk capacity etc. The application manager accepts the job

from client and negotiates to execute the first container of the application. The application

manager provides the failover mechanism to restart the services, which might have failed due to

application or hardware failure. Each application manager tracks the status of individual

application.

C. MapReduce Programming Model

MapReduce is Google’s programming model for processing the colossal amount of data. This

model consists of two important phases i.e. maps and reduces. As shown in fig.6 in “map” phase

it takes input as key-value (k, V) pair and produces intermediate key-value pair (k1,V1)

{(k2,V2)} as a result while in “reduce” phase it takes a key and a list of the keys and values and

generates the final output as key/value (k2; {V2}) {V3} pair. In distributed processing, it is

important to take consideration of data locality. If data to be processed is located near, then it can

reduce the time of transmission and can achieve better performance. MapReduce can use this

functionality during map-reduce function. In MapReduce each map function will take place on

local data and output will be stored to temporary storage.

A master node coordinates the input data only after an input is processed. In the next phase i.e.

shuffle phase, it randomly generates values assigned and then sorts it according to the assigned

values. Now in reduce phase, it processes the intermediate key-value data and produces the final

output.

Figure 6 MapReduce Model

Chapter 2: Literature Review

This section literature review is divided in four parts: First, various distributed file systems

which are widely used for Big Data storage. Second, various scheduling algorithms for

heterogeneous distributed computing are discussed. Third, default schedulers in Hadoop are

discussed. Last, alternative approaches to the implementation and improvement of load-

balancing algorithms in Hadoop are discussed.

2.1 Study of Various Distributed File Systems

Big data implementation is only as good as its file system. From an architectural standpoint,

managing the massive volume and throughput of data is a challenge. Big data solutions typically

use large, distributed arrays of servers and specialized software. For risk management, a huge

amount of data flying across distributed servers also requires exceptional built-in fault tolerance.

Various file system for big data storage are: GlusterFS, HDFS, Lustre, Ceph, MooseFS.

GlusterFS is a file system from RedHat for its enterprise Linux OS. GlusterFS gets excellent file

look-up speed from using elastic hash algorithms rather than centralized metadata. GlusterFS has

been most notably used for cloud computing, streaming media, and content delivery. Hadoop

HDFS is extremely popular and has gained a great deal of prominence in the big data world. It

uses MapReduce as a key function of its data management. Hadoop is an open-source system

written in Java designed to run on low-cost hardware. Lustre is a centralized distributed file

system which differs from the current DFSs in that it does not provide any copy of data and

metadata. Instead, Lustre chooses to store its stores metadata on a shared storage called Metadata

Target (MDT) attached to two Metadata Servers (MDS), thus offering an active/passive failover.

Ceph is a totally distributed system. Unlike HDFS, to ensure scalability Ceph provides a

dynamic distributed metadata management using a metadata cluster (MDS) and stores data and

metadata in Object Storage Devices (OSD). MooseFS acts as HDFS. It has a master server

managing metadata, several chunk servers storing and replicating data blocks. MooseFS has a

little difference since it provides failover between the master server and the meta logger servers.

DFSs are the principle storage solution used by supercomputers, clusters and datacenters. Here,

we have given a comparison of four DFSs based on scalability, transparency and fault tolerance.

DFSs surveyed are: Lustre, HDFS, Ceph, and GlusterFS. We have seen that the DFSs ensure

transparency and fault tolerance using different methods that provide the same results. The main

difference lies on the design. In theory, decentralized architectures seem to scale better than a

centralized one thanks to the distributed workload management.

Furthermore, the choice of a DFS should be done according to their use. For performance, an

asynchronous replication and the use of an index to maintain the namespace are preferable

whereas a decentralized architecture is better for managing large amounts of data and requests.

The comparison is given in table 1 below.

 HDFS Ceph GlusterFS Lustre

Architecture Centralized Distributed Decentralized Centralized

Naming Index CRUSH EHA Index

Fault

detection
Fully connected Fully connected Detected Manually

System

availability
No failover High High Failover

Data

availability
Replication Replication RAID-like No

Placement

strategy
Auto Auto Manual No

Replication Asynchronous Synchronous Synchronous RAID-like

Load

balancing
Auto Manual Manual No

Table 1 Various Distributed File System Comparison

2.2 Scheduling Algorithms in Heterogeneous Distributed Computing

Scheduling in distributed computing system (DCS) is primarily concerned with two aspects such

as optimizing completion time of an application and optimizing the resource utilization. In the

context of an application, the main parameter is to reduce the total cost of executing a particular

application whereas, optimal utilization and performance of the resource is the prime concern of

the resource provider. The two main factors in defining the best performance of a scheduling

algorithm in HeDCS are application-specific and system-specific. Thus, objective functions of

scheduling algorithms can be categorized into two broad classifications: Application-Specific

and System-Specific. Figure 7 displays the objective functions of scheduling algorithms covered

in this paper.

Figure 7 Scheduling Objective

A. Application-Specific

Various scheduling parameters need to be considered while implying application-specific

scheduling. Application-specific scheduling explicitly addresses heterogeneity and conflict in

distributed environments. Watchful scheduling of application components is essential to

accomplish its performance objectives. Scheduling decisions are determined based on parameters

like application performance, computational requirements, task inter-dependency, processing

load and the availability of resources. Depending upon an application, parameters to be

considered, may vary, to optimize the performance of a specific application.

B. System-Specific

In system-specific objectives, the main aim is resource utilization, particularly that of processors

and memory. The variance in performance of the resources has a direct influence on the

performance of the submitted application and must be deliberated during scheduling. Resource

utilization, i.e., the percentage of time a resource is busy or available is of vital importance.

Overutilization of a scarce resource means non-availability of resource when the application

needs it. This may increase the application waiting time, thus resulting in higher completion

time. Other resource-specific objectives are load balancing, fixed number of processors,

unbounded number of processors, etc. The factors considered in this research paper are

scheduling type, multi-core processors, heterogeneity, degree of multiprogramming, makespan,

load balancing, multiplicity of resources, impact of bounded number of processors (BNP) and

unbounded number of heterogeneous processors, optimized resource time, etc.

2.1.1. Comparative Study of Scheduling Algorithms

The study emphasizes on two aspects, one to find the objective behind using specific scheduling

technique, and secondly discussed the merits and possible enhancements to each technique. In

Table 2, various algorithms have been listed.

Zheng et al. [18] [2013] proposed Monte Carlo based Directed Acyclic Graph scheduling

approach with the objective to minimize the makespan for BNP. This approach works well for

any random distribution under heterogeneous environment. This approach gives competitive

advantage compared to other static heuristic techniques.

Ehsan et al. [19] [2013] proposed Stand deviation-based algorithm for task scheduling

(SDBATS) to reduce schedule length and speedup the scheduling by assigning task priority.

Kwok et al. [20] [1999] proposed to optimize the makespan by considering a wide range of

techniques, genetic algorithm, randomization branch-and- bound and graph theory. Authors have

proposed many useful static, heuristic algorithms (e.g. HEFT, MCP, ETF, and DLS) but that

won’t the effective in today’s era of big data.

Kanemitsu et al. [21] [2016] proposed clustering based task scheduling algorithm that

minimizes the schedule length for heterogeneous processors. It is apt for data intensive

application and has proven to be better than other list-based and clustering-based task scheduling

algorithms.

Abdelkader et al. [22] [2012] proposed dynamic task scheduling algorithm for heterogeneous

systems called Clustering Based HEFT with Duplication (CBHD). This algorithm targets the

three important parameters for getting better performance, minimize the makespan, load

balancing and optimize the sleek time.

Wang et al. [23] [2016] proposed Heterogeneous Scheduling algorithm with improved task

Priority (HSIP) for improvising schedule length ratio and task priority. This algorithm performs

two-step process first, identifies the task priority and second finds the best processor to execute

the tasks.

Ahmad et al. [24] [2012] proposed Performance Effective Genetic Algorithm (PEGA) which

operates through large search space and finds the best solution using reproduction concept.

Reproduction uses two operators namely crossover and mutation to select a random task and

performs fitness function on it to select the best task to execute on the heterogeneous parallel

multiprocessor system.

Ahmad et al. [25] [2016] proposed Hybrid Genetic Algorithm (HGA) is a hybrid combination of

HEFT heuristic and PEGA genetic algorithm. It provides optimize makespan and load balancing

over heterogeneous systems.

Valeria, et al. [26] [2015] proposed Distributed QoS-Aware Scheduling with self-adaptive

capability in storm. By using this concept authors tried to overcome the limitation of high

latency, less availability and poor system utilization in distributed data stream processing (DSP).

Hamid et al. [27] [2013] proposed Predict Early Finish Time (PEFT) to speedup and optimize

the makespan. It has two phases: a task prioritizing and a processor selection which identifies the

task priority and allocates it to the best processor respectively.

Khaldi et al. [28] [2015] proposed static-heuristic scheduler called Bounded Dominant

Sequence Clustering (BDSC) is an extension of DSC limiting the memory constraints and the

bounded number of processors. It is suitable for signal processing and image processing kind of

application.

Kenli Li et al. [29] [2015] proposed stochastic dynamic level scheduling (SDLS) algorithm to

minimize the makespan. This algorithm outperforms when tasks arrive randomly.

Jorge et al. [30] [2011] proposed Parallel Heterogeneous Earliest Finish Time (P-HEFT) which

is an extension to HEFT. P-HEFT supports parallel task DAG which provides optimized

makespan that makes it suitable for image processing type of application.

Pravanjan Choudhury et al. [31] [2012] proposed online scheduling of dynamic task graphs.

Algorithm provides dynamic path selection option by scheduling tasks at run time. The proposed

algorithm is assumed to be limited to homogeneous systems. But it can be extended further to

heterogeneous systems by taking the base of this algorithm.

Tang, Z. et al. [32] [2015] proposed Self-Adaptive Reduce Scheduling (SARS) for Hadoop

platform. During MapReduce phase, it reduces the waiting time by selecting an adaptive time to

schedule the reduce task. This method reduces the turnaround time.

Yuxiong et al. [33] [2011] proposed Multi-Queue Balancing (MQB) algorithm that minimizes

the makespan and maximize the heterogeneous resource utilization. MQB has multiple queues

for online scheduling to achieve better utilization and minimizing completion time.

T
a

b
le

 2
.
C

o
m

p
a

ri
so

n
 o

f
V

a
ri

o
u

s
S

ch
ed

u
li

n
g
 A

lg
o

ri
th

m
s

A
lg

o
ri

th
m

c
o
m

p
a
re

d

- - - C
lu

st
er

in
g

b
as

ed
 T

as
k

S
ch

ed
u
li

n
g

A
lg

o
ri

th
m

H

E
F

T
,

T
ri

p
le

t

C
lu

st
er

C
o
m

p
ar

ed

w
it

h
 v

ar
io

u
s

ty
p
es

 o
f

lo
ad

.

P
E

F
T

,

S
D

B
A

T
S

,

H
E

F
T

,

C
P

O
P

*

R
R

*
,
S

JF
*
,

F
C

F
S

*

C
o
m

m
e
n

ts

A
v
o
id

 t
h
e

co
m

p
le

x

co
m

p
u
ta

ti
o
n
 w

it
h
 r

an
d
o
m

v
ar

ia
b
le

 a
n
d
 a

p
p
li

ca
b
le

 t
o
 a

n
y

ra
n
d
o
m

 d
is

tr
ib

u
ti

o
n
.D

A
G

H
E

F
T

 b
as

ed
 w

h
ic

h
 i

s
le

ss

ef
fe

ct
iv

e.

S
u
it

ab
le

 f
o
r

so
m

e
re

al
-w

o
rl

d

ap
p
li

ca
ti

o
n
 l

ik
e

G
au

ss
ia

n

el
im

in
at

io
n
 a

n
d
 F

o
u
ri

er

tr
an

sf
o
rm

at
io

n

S
ta

n
d
ar

d
 a

lg
o
ri

th
m

s
fo

r
st

at
ic

ta
sk

 s
ch

ed
u
li

n
g
.

S
u
it

ab
le

 t
o
 d

at
a

in
te

n
si

v
e

ap
p
li

ca
ti

o
n
 a

n
d
 h

et
er

o
g
en

eo
u
s

sy
st

em
 s

u
p
p
o
rt

M
in

im
iz

e
m

ak
es

p
an

,

m
ax

im
iz

e
p
ro

ce
ss

o
r

u
ti

li
za

ti
o
n

b
y
 l

o
ad

 b
al

an
ci

n
g
.

R
ed

u
ce

s
th

e
p
ro

ce
ss

o
r

id
le

ti
m

e
an

d
 f

u
ll

 u
se

 o
f

re
so

u
rc

es

A
lg

o
ri

th
m

s
w

el
l

su
it

ab
le

 f
o
r

h
et

er
o
g
en

eo
u
s

en
v
ir

o
n
m

en
t

an
d
 u

se
fu

l
fo

r
re

al
 w

o
rl

d

p
ro

b
le

m
s

A
lg

o
ri

th
m

 o
u
tp

er
fo

rm
s

ag
ai

n
st

tr
ad

it
io

n
al

 s
ch

ed
u
li

n
g

m
et

h
o
d
s.

 N
o
t

su
it

ab
le

 f
o
r

la
rg

e

d
at

a
se

ts

O
b

je
c
ti

v
e

T
o

 m
in

im
iz

e
th

e

m
ak

ep
an

an

d

o
p

ti
m

iz
e

o
v
er

al
l

p
er

fo
rm

an
ce

E
ff

ec
ti

v
e

S
ch

ed
u
le

le
n

g
th

 a
n

d
 s

p
ee

d
 u

p

T
o

 m
in

im
iz

e
m

ak
e

sp
an

T
o

 m
in

im
iz

e
W

o
rs

t

S
ch

ed
u
le

 L
en

g
th

(W
S

L
)

T
o

 m
in

im
iz

e
th

e

ex
ec

u
ti

o
n
 t

im
e

&

p
ro

v
id

e
lo

ad

b
al

an
ci

n
g
.

R
ed

u
ce

 e
x
ec

.
ti

m
e

b
y

 m
ax

.
re

so
u

rc
e

u
ti

li
za

ti
o

n

Im
p

ro
v
e

ta
sk

 p
ri

o
ri

ty

st
ra

te
g

y
 f

o
r

o
p

ti
m

iz
ed

 m
ak

es
p
an

T
o

 m
in

im
iz

e
fi

n
is

h

ti
m

e
al

o
n

g
 w

it
h

in
cr

ea
se

 t
h

ro
u

g
h
p
u
t

E
n

v
ir

o
n

m
e
n

t

D
y

n
am

ic
 D

A
G

S
im

u
la

to
r

N
o

t
m

en
ti

o
n

ed

B
o

u
n

d
ed

 N
o
.

o
f

H
o

m
o

g
en

eo
u

s

P
ro

ce
ss

o
rs

N
o

t
m

en
ti

o
n

ed

D
is

tr
ib

u
te

d

A
lg

o
ri

th
m

S
im

u
la

to
r

D
is

cr
et

e
-

ti
m

e

S
im

u
la

to
r

H
et

er
o

g
en

eo
u

s

S
im

u
la

ti
o

n

H
et

er
o

g
en

eo
u

s

S
im

u
la

ti
o

n

N
a

tu
r
e

o
f

T
a

sk

F
lo

w
 o

f

W
o

rk

P
er

io
d
ic

T
as

k

S
im

u
lt

an
eo

u

s
T

as
k

s

T
as

k

C
lu

st
er

in
g

G
ro

u
p

ed

T
as

k

(C
lu

st
er

)

P
ar

al
le

l
T

re
e

W
o

rk
lo

ad

b
as

ed

S
tr

u
ct

u
re

S
im

u
lt

an
eo

u

s
T

as
k

R
an

d
o
m

T
as

k

S
c
h

e
d

u
li

n
g

T
y

p
e

G
lo

b
al

,

S
ta

ti
c,

S
u

b
-o

p
ti

m
al

,

H
eu

ri
st

ic

G
lo

b
al

,

S
ta

ti
c

G
lo

b
al

,
S

ta
ti

c,

S
u

b
-o

p
ti

m
al

,

H
eu

ri
st

ic

G
lo

b
al

,

S
ta

ti
c

G
lo

b
al

,

D
y

n
am

ic
,

D
is

tr
ib

u
te

d

G
lo

b
al

,

D
y

n
am

ic
,

D
is

tr
ib

u
te

d

G
lo

b
al

,

S
ta

ti
c

G
lo

b
al

,

S
ta

ti
c

O
p

ti
m

al

K
e
y
 P

a
r
a
m

e
te

r

M
ak

es
p
an

,

H
et

er
o
g
en

ei
ty

,

B
o
u
n
d
ed

N
u
m

b
er

 o
f

P
ro

ce
ss

o
rs

M
ak

es
p
an

,

M
u
lt

i-
co

re

p
ro

ce
ss

o
rs

M
ak

es
p
an

,

D
eg

re
e

o
f

m
u
lt

ip
ro

g
ra

m
m

i

n
g

S

ch
ed

u
le

 l
en

g
th

M
ak

es
p
an

,

L
o
ad

 B
al

an
ci

n
g
,

O
p
ti

m
iz

e
sl

ee
k

ti
m

e

M
ak

es
p
an

,

L
o
ad

 B
al

an
ci

n
g

S
ch

ed
u
le

 l
en

g
th

ra
ti

o
n
,

ef
fi

ci
en

cy

O
p
ti

m
al

m
ap

p
in

g
,

se
q
u
en

ce
 o

f

ex
ec

u
ti

o
n

A
lg

o
ri

th
m

M
o

n
te

 C
ar

lo
 b

as
ed

D
A

G
*

sc
h

ed
u
li

n
g
 a

p
p
ro

ac
h

[1
8

]

S
D

*
-B

as
ed

 A
lg

o
.

 f
o
r

T
as

k
 S

ch
ed

u
li

n
g
 -

S
D

B
A

T
S

 [
1
9
]

H
E

F
T

*
,

M
C

P
*
,

E
T

F
*
,

H
L

E
F

T
*
,

D
L

S
*
 [

2
0
]

C
lu

st
er

in
g
 f

o
r

M
in

im
iz

in
g
 S

ch
ed

u
le

L
en

g
th

 -

[2

1
]

C
lu

st
er

-i
n
g
 B

as
ed

H
E

F
T

 w
it

h
 D

u
p
li

-

ca
ti

o
n
 –

 C
B

H
D

 [
2
2
]

M
u

lt
i

Q
u
eu

e

B
al

an
ci

n
g
 -

 M
Q

B

[3
3
]

H
et

er
o
g
en

eo
u
s

S
ch

ed
u
li

n
g
 A

lg
o
ri

th
m

w
it

h
 i

m
p
ro

v
ed

 T
as

k

P
ri

o
ri

ty
 –

 H
S

IP
 [

2
3
]

P
er

fo
rm

an
ce

E
ff

ec
ti

v
e

G
en

et
ic

 A
lg

o
ri

th
m

 -

P
E

G
A

 [
2

4
]

S
r
.

N
o

1

2

3

4

5

6

7

8

A
lg

o
ri

th
m

c
o
m

p
a
re

d

M
C

P
,

H
E

F
T

,

P
E

G
A

,M
P

Q
G

A
*
,H

S
C

G
S

*

cR
R

*
,
cO

p
t*

L
o
o
k

-a
h
ea

d
,

H
E

F
T

,H
C

P
T

*
,

P
E

T
S

*
,

H
P

S
*

H
L

F
E

T
,
IS

H
,

M
C

P
,

H
E

F
T

H
E

F
T

,
R

o
b

-

H
E

F
T

,
an

d

S
H

E
F

T

H
et

er
o
g
en

eo
u
s

P
ar

al
le

l
T

as
k

S
ch

ed
u
le

r

(H
P

T
S

)

M
u
lt

ip
ro

ce
ss

o
r

sc
h
ed

u
li

n
g

al
g
o
ri

th
m

F
IF

O
,

F
ai

r
,

C
a-

p
ac

it
y

S
ch

ed
u
le

r

C
o
m

m
e
n

ts

F
o
ll

o
w

s
M

o
n
ta

g
e,

C
y
b
er

S
h
ak

e
b
en

ch
m

ar
k

fo
r

v
al

id
at

e
p
er

fo
rm

an
ce

S
to

rm
 b

as
ed

 s
ch

ed
u
le

r

fo
r

o
v
er

al
l

sy
st

em
 p

er
f.

an
d
 q

u
al

it
y
 o

f
se

rv
ic

es
.

S
u
it

ab
le

 w
h
en

 a
ll

 t
as

k
s

ar
e

k
n
o
w

n
 a

lo
n
g
 w

it
h

th
ei

r
co

m
p
le

x
it

y
 a

n
d

d
ep

en
d
en

cy
.

S
u
it

ab
le

 f
o
r

si
g
n
al

p
ro

ce
ss

in
g
,
im

ag
e

p
ro

ce
ss

in
g
 a

p
p
li

ca
ti

o
n
.

F
o
r

B
N

P
 s

y
st

em
 i

s

ro
b
u
st

E

ff
ec

ti
v
e

fo
r

ra
n
d
o
m

 t
as

k

ar
ri

v
al

 t
im

e.
 T

h
is

 w
il

l
b
e

m
o
re

 e
ff

ec
ti

v
e

b
y

p
ar

al
le

li
sm

.

S
u
it

ab
le

 f
o
r

im
ag

e

p
ro

ce
ss

in
g
 a

p
p
li

ca
ti

o
n
.

B
es

t
fo

r
m

u
lt

ip
le

-m
ix

ed

jo
b
s.

In
te

rp
ro

ce
ss

o
r

co
m

m
u
n
ic

at
io

n
s

o
f

fi
x
ed

n
u
m

b
er

 o
f

h
o
m

o
g
en

eo
u
s

p
ro

ce
ss

o
rs

.

S
u
it

ab
le

 t
o
 b

ig
 d

at
a

ap
p
li

ca
ti

o
n
 p

ro
ce

ss
in

g
.

O
b

je
c
ti

v
e

O
p

ti
m

iz
at

io
n
 o

f

m
ak

es
p

an
 a

n
d

u
ti

li
ze

 m
ax

im
u
m

re
so

u
rc

es

Im
p

ro
v
e

p
er

f.
 b

y

ad
ap

ti
v
e

sc
h
ed

u
le

r

fo
r

d
is

tr
ib

u
te

d

F
o

re
ca

st
 t

h
e

co
st

ta
b
le

 a
n

d
 s

ch
ed

u
le

th
e

ta
sk

ac
co

rd
in

g
ly

 t
o

ac
h
ie

v
e
 l

o
w

co
m

p
le

x
it

y

E
ff

ec
ti

v
e

re
so

u
rc

e

m
an

ag
em

en
t

an
d

sp
ee

d
u

p
s

o
n

sh
ar

ed
 a

n
d

d
is

tr
ib

u
te

d

en
v

ir
o

n
m

en
t

T
o

 a
ch

ie
v

e
b
et

te
r

p
er

fo
rm

an
ce

 b
y

d
y

n
am

ic

sc
h

ed
u
li

n
g

T
o

 m
in

im
iz

e
th

e

co
m

p
le

ti
o
n
 t

im
e

b
y

 p
ar

al
le

l

ex
ec

u
ti

o
n
.

T
o

 p
ro

v
id

e

ru
n

ti
m

e

sc
h

ed
u
li

n
g

T
o

 m
in

im
iz

e

av
er

ag
e

co
m

p
le

ti
o
n
 t

im
e

an
d

 r
es

p
o

n
se

 t
im

e

E
n

v
ir

o
n

m
e

n
t

H
et

er
o

g
en

e

o
u

s

S
im

u
la

ti
o

n

P
ee

rs
im

S
im

u
la

to
r

N
o

t

m
en

ti
o

n
ed

P
IP

S

P
la

tf
o
rm

S
im

u
la

ti
o

n

cl
u

st
er

N
o

t

m
en

ti
o

n
ed

N
o

t

m
en

ti
o

n
ed

H
ad

o
o

p

M
ap

-

R
ed

u
ce

C
lu

st
er

N
a

tu
r
e

o
f

T
a

sk

R
eg

u
la

r/

R
an

d
o
m

T
as

k

D
is

tr
ib

u
te

d
 S

tr
ea

m

P
ro

ce
ss

in

g

W
o

rk
fl

o

w

P
ar

al
le

l

T
as

k

E
x

ec
u

ti
o

n

P
re

ce
d

en

ce

co
n

st
ra

in

ed
 t

as
k

s

S
im

u
lt

an

eo
u

s

T
as

k
s

R
ea

l
ti

m
e

T
as

k
s

B
at

ch

p
ro

ce
ss

in

g

S
c
h

e
d

u
li

n

g
 T

y
p

e

G
lo

b
al

,

S
ta

ti
c

O
p

ti
m

al

G
lo

b
al

,

D
y

n
am

ic
,

A
d

ap
ti

v
e

G
lo

b
al

,

S
ta

ti
c

G
lo

b
al

,

S
ta

ti
c,

S
u

b
-

O
p

ti
m

al
,

H
eu

ri
st

ic

G
lo

b
al

,

D
y

n
am

ic
,

D
is

tr
ib

u
te

d

G
lo

b
al

,

D
y

n
am

ic

G
lo

b
al

,

D
y

n
am

ic

G
lo

b
al

,

D
y

n
am

ic
,

D
is

tr
ib

u
te

d
,

O
p
ti

m
al

K
e
y

P
a

r
a
m

e
te

r

M
ak

es
p
an

,

L
o

ad

B
al

an
ci

n
g

L
at

en
cy

,

av
ai

la
b

il
it

y
,

sy
s.

 u
ti

li
z.

E
ff

ic
ie

n
cy

,

M
ak

es
p
an

,

b
et

te
r

sc
h

ed
u
le

le
n

g
th

 r
at

io

R
es

o
u

rc
e

M
an

ag
em

en
t,

S
p

ee
d

u
p

,

B
o

u
n

d
ed

N
u

m
b

er
 o

f

P
ro

ce
ss

o
rs

M

ak
es

p
an

,

S
p

ee
d

u
p

,
an

d

m
ak

es
p

an

st
an

d
ar

d

d
ev

ia
ti

o
n

M
ak

es
p
an

,

H
et

er
o

g
en

ei
ty

P
ar

al
le

l
ta

sk

ex
ec

u
ti

o
n

N
u

m
b

er
 o

f

P
ro

ce
ss

o
rs

,

M
em

o
ry

R
ed

u
ce

co
m

p
le

ti
o
n

ti
m

e

A
lg

o
ri

th
m

H
y
b
ri

d
 G

en
et

ic

A
lg

o
ri

th
m

 –
 H

G
A

[2
5
]

D
is

tr
ib

u
te

d
 Q

o
S

aw
ar

e
sc

h
ed

u
le

r

[2
6
]

P
re

d
ic

t
E

ar
li

es
t

F
in

is
h
 T

im
e

–

P
E

F
T

 [
2

7
]

B
D

S
C

H
ie

ra
rc

h
ic

al

B
D

S
C

 -

H

B
D

S

[2
8
]

S
to

ch
as

ti
c

D
y
-

n
am

ic
 L

ev
el

S
ch

ed
-u

li
n
g

-

(S
D

L
S

)
[2

9
]

P
-H

E
F

T
 [

3
0
]

O
n
li

n
e

S
ch

ed
u

li
n

g

o
f

D
y
n
am

ic
 T

as
k

G
ra

p
h
s

[3
1
]

S
el

f
A

d
ap

ti
v
e

R
ed

u
ce

S
ch

ed
u
li

n
g
 –

S
A

R
S

 [
3

2
]

S
r
.

N
o

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

*DAG- Directed Acyclic Graph, SD-Stand Deviation, HEFT- Heterogeneous Earliest Finish Time, MCP- Modified Critical Path, HLEFT-

Highest Level First Estimate Time, DLS-Dynamic Level Scheduling, GA- Genetic Algorithm, ETF-Earliest Time First, ISH-Insertion Scheduling

Heuristic, HCPT-Heterogeneous Critical Parent Trees, PETS-Performance Effective Task Scheduling, HPS-High Performance Task Scheduling.

SHCP-Scheduling with Heterogeneity using Critical Path, HHS-Hybrid Heuristic Scheduling, RR-Round Robin, SJF, Shortest Job First, FCFS -

First Come First Serve, BDSC- Bounded Dominant Sequence Clustering, MPQGA-Multiple Priority Queues Genetic Algorithm, HSCGS-

Hybrid Successor Concerned Heuristic-Genetic Scheduling, cRR-Centralized Round-Robin, cOpt-Centralized Optimal scheduler, FIFO-First In

First Out

2.3 Study of Scheduling Algorithms in Hadoop

Hadoop supports three scheduling schemes in MapReduce framework: FIFO, Capacity [34] and

Fair [35] scheduler. MapReduce1 (MR1) comes with all three with FIFO as default scheduler,

while MR2 comes with capacity and fair scheduler, which can be further configured with delay

scheduler to address the locality issue.

A. Capacity Scheduler

This is the default scheduler, which comes with the MR2 or YARN. The capacity scheduler’s

configuration supports multiple queues, which can be allocated to multiple users based upon

tasks or organization. This scheduler is designed with an idea that same cluster can be rented to

multiple organization and resources may be divided to several users. Thus, the organization can

divide their resources across multiple departments or users depending upon their tasks or the

cluster can also be divided among multiple subsidiary organization. Each queue can be

configured with fix portion of resources, which can be soft or hard. Generally, resources are soft

having elastic allocation, but can also be configured for hard approach.

Capacity scheduler makes use of FIFO (First-In First-Out) scheduling if multiple jobs are in the

same queue. Suppose a job comes into the queue “A” and if queue “A” is empty, then it allocates

all the resources to the first job. This would utilize more resources then configured capacity of

queue, particularly if queue allocation is elastic and job requires more resources. When a new job

comes in queue “B”, assuming that the first job is still running and using the resources more then

it’s allocated capacity, then tasks of first job will be killed to free up the resources and allocate

that resources to second job. Suppose if another job comes to the queue “A” or “B” the capacity

scheduler will process it like FIFO or FIFO with priority. There are many features available like:

capacity guarantee, elasticity, security etc. that can be customized as per requirement.

B. Fair Scheduler

Fair schedulers have similar queue configuration as discussed in capacity scheduler. Jobs would

be submitted to the queue, which is termed as a “pool” in case of fair scheduler. Each job will

use the allocated resources to their pools. As in capacity scheduler, FIFO approach is followed

the jobs which are coming late has to wait till the time first job finishes or resources made

available, so this problem is solved in the fair scheduler that the jobs which have waited in the

queue would be picked up and would be processed in parallel with the same amount of resources

shared by the applications which are in the same queue. Fair scheduler support three scheduling

policy that is: FIFO, Fair, and DRF (Dominant Resource Fairness).

In FAIR-FIFO scheduling policy, if multiple jobs are in the same queue then resources will be

allocated to the job, which enters first in the queue, and each job will run serially. However, fair

sharing is still being done between the queues.

In FAIR-FAIR scheduling policy, the fair amount of resources will be shared by the jobs that are

running in the same queue.

FAIR-DRF scheduling policy is devised by Ghodsi. In FAIR-DRF scheduling policy, DRF

evaluates the resources shared by each user, finds out the maximum of it, and calls it as a

dominant resource of the user. The idea is to make uniform resource sharing among the users

through equalizing the resources like CPU and Memory.

2.4 Study of Performance Improvement Algorithms in Hadoop

To improve performance of Hadoop many researchers have work on many diversified areas. In

distributed computing load balancing is the key area which affects significantly in terms of

overall performance as you’re working with thousands of computer in clusters. Many researchers

have worked on performance improvement through effective load balancing using various

custom designed algorithms and programming models. In paper [36] authors have summarized

notable research contribution for load balancing by scheduling [37,38], load balancing during job

processing [39,40] and load balancing using custom block placement [41-44]. In this section we

summarize some of the noteworthy work done to achieve better performance in Hadoop using

load balancing and custom block placement strategy.

In paper [45] authors propose the approach which places the blocks based on region placement

policy. Data is stored into plurality of regions rather than plurality of nodes. Therefore, complete

replica of the region can be stored in a contiguous portion of data. This policy achieves great

fault-tolerance and data locality for region-based cluster storage. Authors of paper [46] propose

heterogeneous storage media aware strategy which collects storage media, processing capacity

and stores them on different storage media types (i.e. HDD, SSD, RAM) according to workload

balance. Experiment proves that it reduces imblancing of cluster. In paper [47] authors propose

dynamic replica placement which works on Markov probability model and places replica

homogeneously across the racks. Results shows better job completion time compare to HDFS

and CDRM and also distribute the replica uniformly across all the nodes. In paper [48] authors

propose strategy which considers network load and disk utilization for placing data blocks.

Proposed strategy outperforms default and real-time block placement policy and achieves better

performance in terms of throughput and storage space utilization. In paper [49] authors propose

improved slot replica placement policy which considers heterogeneity of nodes and partitions all

nodes in 4 sections to store data blocks. Section wise partition scheme achieves greater load

balancing and eliminates the use of HDFS balancer. In paper [50] authors propose strategy which

tracks spatial characteristics of data to co-locate them. If data blocks are geographically

distributed across multiple data centres without concern where job is running then it degrades the

performance tremendously. Here authors have achieved better query execution time by adding

spatial data awareness which effectively reduces the job execution time. In paper [51] authors

propose probability based DLMT (Data Local Map Task Slot) approach which adjusts the data

placement rate in along with replica eviction policy to improve Hadoop performance and cluster

space utilization respectively. In paper [52] authors propose a model called “Starfish” which

dynamically adjusts the Hadoop parameter according to workload of job. Starfish work with each

phase of Hadoop, starting with job level tuning, real time parameter adjustment and finally

process scheduling. It achieves great performance compare to default Hadoop setup, placement

policy and scheduling scheme. Below table 3 summarizes the work done by the researchers.

 Performance

Improvisation

Factors

Research Contribution Remarks

A region-based

placement policy

Fault-tolerance

and data locality

Designed region based cluster

storage system which stored once

complete replica of the region on

single node

This scheme is helpful when

plurality of region servers is

required.

Robust Data

Placement

Scheme (RDP)

Load balancing

and optimal

network

congestion

Proposed RDP scheme considers

the storage type (i.e. SSD, HDD

and RAM) and processing speed

of node for balancing.

Authors have successfully

demonstrate how storage type and

computing capacity prediction can

achieve better load balancing and

reduce network overhead.

Pre-processing for RDP scheme

takes significant amount of time

when multiple clusters with variety

of nodes are there.

Dynamic

Replication

Strategy

(DRS)

Job scheduling

time and disk

utilization rate

Proposed dynamic replica

placement based on Markov

model.

Authors have successfully tested

model on homogeneous cluster.

Authors have not considered the

time for replication adjustment

which is important justification.

Network

sensitive strategy

Strong fault-

tolerance block

placement and

high throughput

Designed scheme which considers

network load for data placement.

Try to place replica on low

network loaded group of nodes.

Proposed strategy reduces the inter-

rack transfers which eventually

increase the performance also works

with heterogeneous cluster.

Authors have not considered the

load imbalancing issue in Hadoop.

Improved replica

placement policy

Load balancing Designed policy which evenly

distributes the replicas into

section.

Proposed policy achieves even load

balancing across nodes which

eliminates the use of HDFS

balancer.

Policy only proposed for

homogeneous cluster.

CoS*-HDFS Reduce total

execution time

and network

bandwidth.

Proposed algorithm which is

aware of geo-spatial data blocks.

Proposed algorithm improves

performance of MapReduce query

execution and reduces network

traffic.

Data Replication

Method

Data locality and

replication

method

Proposed LRFA* policy

effectively uses storage space of

cluster to achieve better data

locality.

Effectiveness and performance is

not evaluated which they’ve

claimed.

Starfish Self-tuning

approach

Proposed self-tuning Hadoop

model to achieve better

performance.

Improved block placement policy

significantly improves job running

time. Dynamic tuning also tested

successfully.

*CoS- Co-Locating Geo-Distributed Spatial Data, LRFA- Least Recently Frequently Access

Table 3 Performance Improvement Related Research Contribution

Chapter 3: Proposed Model

To achieve to better performance for big data processing we target upon two important aspects of

heterogeneous distributed computing: file system management and process management.

First, file system management basically controls the block placement and allows us to rearrange

the blocks to specified nodes based upon two important approaches of load balancing:

1. Balance the load among heterogeneous and homogeneous nodes of the cluster.

2. Balance the load within the cluster based on the processing capability of each node by

giving priority to each node.

Our proposed algorithm allows the user to select the nodes based on their individual data

processing capability and rearrange the blocks which are placed using the default policy. Default

block placement policy of HDFS fails to achieve optimized performance as it does not check the

processing capability of the node while placing blocks to that node. Our proposed algorithm

achieves that by considering processing capability of nodes and places blocks which has higher

processing capability and if nodes are having same processing capacity then it also checks its

utilization, and considers the less utilized node first, for block placement. For processing

capability assignment we use static priority assignment in config.xml file. We have assigned

priority-2 to the nodes where we want to rearrange all blocks and priority-1 to the nodes which

won’t contain any blocks. By doing this we have control over data to be put on selected nodes,

considering processing capacity and utilization of nodes.

Second, we use the concept of node labeling to achieve better process management. YARN Node

label [53] allows partitioning the single cluster among multiple sub-clusters. Using this concept

we can mark nodes with meaningful labels i.e. Nodes with higher processing capability may be

labeled as “high_cpu” and with high memory may be labeled as “high_mem”. By combining the

proposed algorithm with node label, we can actually select where to put jobs. To achieve better

data locality we put our job to the nodes where data is actually rearranged by our algorithm. At

last, we use Hadoop scheduling to put jobs in queues for job processing. This also limits the

overhead of internode and inter-rack data transfer, since process (containers) and data blocks are

on to the same nodes. Figure 8 shows our proposed model.

Figure 8 “Saksham” Model

3.1 Saksham: Block Rearrangement Algorithm

Hadoop uses “Rack Awareness” while placing data blocks for fault tolerance and to achieve

better performance. ”Rack Awareness” is a concept Hadoop uses to place read/write request to

the same rack or nearby rack [54]. This concept helps to achieve better data locality as discussed

in section 2. MapReduce de facto standard tries to move the job where data is stored. But, that

node may not have sufficient processing capability or job may get skewed due to less

processing/memory capability. Hence, we propose “Saksham: Resource Aware” algorithm which

rearranges the data blocks according to user defined processing capability or heterogeneity of

environment.

We can apply custom block rearrangement policy by considering two distinct ways. First, we

have heterogeneous nodes with different computational capability. Second, we can assign two

separate groups for processing depending upon needs of application, homogeneous and

heterogeneous nodes. Initially default HDFS block placement policy places data blocks as shown

in fig. 9. Figure 9 shows how data placement would place 8 blocks, if client requests from node1

considering replication factor 3.

For the first way, we will consider processing capability of nodes for forming a group. For

this case, we have considered heterogeneous nodes so nodes are having different processing

capability. Few nodes are comparatively slower which may degrade the overall performance of

processing. We’ve divided nodes into two groups priority=1 and priority=2. Assigned priority=2

for nodes which have more processing capability and priority=1 which has lower processing

capability. These settings will take place in config.xml file. Once priority is set our “Saksham”

algorithm will rearrange the blocks of specified HDFS file path and store all blocks onto the

nodes which have priority=2 and remove all the blocks from nodes which has priority=1.

For the second way, we will formulate the group of homogeneous and heterogeneous nodes.

We can assign priority 1 or 2 to either of the group. Depends upon big data processing

application need we can rearrange all blocks to heterogeneous nodes or homogeneous nodes

only. Only nodes with priority=2 will store the blocks and with priority=1 will not store any of

them.

Figure 9 HDFS Default Block Placement Example

While placing all blocks our proposed algorithm also take care that blocks of a file will

distribute equally over all the nodes by considering disk usage of each node. Each time before

placing the block of file it checks that node should not contain a replica of the same block. The

fact that Hadoop works better for the homogeneous environment, fulfilled by our strategy even

though cluster is heterogeneous. Figure 10 demonstrates how our proposed “Saksham: Resource

Aware Block Rearrangement” policy can rearrange blocks according to a priority assigned.

Figure 10 “Saksham” Approach: Group-1: Priority=2; Group-2: Priority=1

Below fig.11 is the proposed “Sakasham: Resource Aware Block Rearrangement” algorithm.

- Firstly, algorithm checks the HDFS path contains blocks and also collects the list of

datanodes from the DatanodeInfo, Hadoop API and stored them in arraylist.

- Secondly, based upon statically configured config.xml file it checks the priority assigned to

each node and segregates the nodes in two lists i.e node_list1 (priority-1) and node_list2

(priority-2).

- In last step blocks along with each replica will be rearranged in nodes which are having

priority-2. For rearrangement, it checks the disk utilization and processing capability of each

node.

Algorithm 1 Saksham: Resource Aware Block Rearrangement algorithm

Input: HDFS location of input files to be balanced / rearranged

File contains list of data blocks which are placed in HDFS using default policy.

Output: Data blocks will be placed to specific nodes only based on given priority factor.

1) if input HDFS path != null

2) foreach locatedBlocks block : nameNode.getLocatedBlocks() do

3) Put blocks in arraylist<block_list>

4) endfor

5) endif

6) foreach DatanodeInfo node : getDatanodeStats(Live) do

7) if nodes in config.xml != null

8) Add nodes in arralylist<datanodes>

9) endif

10) endfor

11) foreach BalancerDataNode node : datanodes do

12) if nodes.priority = 1.0

13) Add nodes in arralylist<node_list1>

14) elseif nodes.priority = 2.0

15) Add nodes in arralylist<node_list2>

16) endif

17) endfor

18) Sort node_list2 by disk utilization in ascending order

19) for each block replica do

20) Initialize <block_list> queue with all blocks

21) Initialize <node_list2> nodes with priority=2

22) for each block replica in <block_list> do

23) if (find first node form <node_list2>) doesn’t contains(block)

24) Put block onto selected node

25) Remove node from <node_list2>

26) if node_list2 is empty

27) Initialize with all nodes with priority=2

28) endif

29) endif

30) endfor

31) endfor

Figure 11 Proposed “Saksham” algorithm

Chapter 4: Results

4.1 Experiment Setup

We have tested our experiment on Grid’5000 [55] heterogeneous cluster. Grid’5000 is large-

scale distributed testbed for the researchers to experiment their research on high configurable

cluster. We have used 10 nodes for our experiment. The cluster is configured for Hadoop 2.7.2

version. The configuration of nodes is shown in below table 4. Table 4 shows the heterogeneity

of nodes in terms of CPU, memory, storage, number of cores and networks. Table 5 shows

priority and node label settings for block rearrangement and the job processing respectively.

CPU Detail Specifications No of nodes

Intel Xeon E5-

2630 v3

CPU: 2 CPUs/node

Cores: 8 cores/CPU

Memory: 128 GB

memory Storage: 558

GB/node, 10 Network:

10 Gbps

Parasilo-[1-6]

Total - 6

Intel Xeon X5570 CPU: 2 CPUs/node

Cores: 4 cores/CPU

Memory: 24 GB

memory Storage: 465

GB/node, 10 Network:

20 Gbps

Parapide-[1-4]

Total - 4

Table 4 Hadoop 2.7.2 heterogeneous cluster configuration

Priority-2 Priority-1

Node Label – “high_cpu” Node Label – “low_cpu”

parasilo-1.rennes.grid5000.fr parapide-1.rennes.grid5000.fr

parasilo-2.rennes.grid5000.fr parapide-2.rennes.grid5000.fr

parasilo-3.rennes.grid5000.fr parapide-3.rennes.grid5000.fr

parasilo-4.rennes.grid5000.fr parapide-4.rennes.grid5000.fr

parasilo-5.rennes.grid5000.fr

parasilo-6.rennes.grid5000.fr

Table 5 Data placement priority and node label settings

4.1 Experiment Results

Initially, we have placed blocks using the default HDFS block placement policy. Afterwards, we

have applied “Saksham” block rearrangement policy according to settings described in table 4.

We have tested our “Saksham” algorithm using 2 datasets of different sizes. First, “Bag of

words” static text data set of 5 GB and 10 GB. Second 5 GB and 10 GB data generated using

TeraGen utility. TeraGen generates random data that can be conveniently used as input data for a

subsequent TeraSort run. Text data set is placed using the default HDFS placement policy while

TeraGen generates data using MapReduce and places accordingly. In both, the case replication

factor is 3 so total block size for rearrangement is 15 GB and 30 GB. Figure 12 [A-B] and fig. 13

[A-B] shows how blocks are rearranged from default placement to our selected nodes only (i.e.

parasilo-[1-6]) with priority is set to 2.

Figure 12 [A] Saksham Balancing: Text dataset (A) Size-15 GB

0

1

2

3

4

5

6

D
a
ta

 S
iz

e

in
 G

B

Datanodes

(A) Saksham Block Rearrangement

Total Block Size - 15 GB (Text Dataset)

Default Placement Saksham Balancing

Figure 132 [B] Saksham Balancing: Text dataset (B) Size-30 GB

Figure 13[A] Saksham Balancing: TeraGen dataset (A) Size- 15 GB

0

1

2

3

4

5

6

7

8

9

10

D
a
ta

 S
iz

e

in
 G

B

Datanodes

(B) Saksham Block Rearrangement

Total Block Size - 30 GB (Text Dataset)

Default Placement Saksham Balancing

0

0.5

1

1.5

2

2.5

3

D
a
ta

 S
iz

e

in
 G

B

Datanodes

(A) Saksham Block Rearrangement

Total Block Size - 15 GB (TeraGen Dataset)

Default Placement Saksham Balancing

Figure 13[B] Saksham Balancing: TeraGen dataset (B) Size- 30 GB

Table 6 Disk utilization of all nodes for different datasize

Results of table 6 also show that our “Saksham” algorithm is successfully configured and all

the blocks are rearranged to the nodes which have prirority-2 and disk utilization of nodes is also

merely same. Figure 14 shows rearrangement time taken by “Saksham” algorithm.

0

1

2

3

4

5

6

D
a
ta

 S
iz

e

in
 G

B

Datanodes

(B) Saksham Block Rearrangement

Total Block Size - 30 GB (TeraGen Dataset)

Default Placement Saksham Balancing

Datanodes
Default

Placement

Saksham

Balancing

Default

Placement

Saksham

Balancing

Default

Placement

Saksham

Balancing

Default

Placement

Saksham

Balancing

Parasilo-1 5.04 2.55 9.85 5.08 2.41 2.45 1.94 4.77

Parasilo-2 0.50 2.53 2.02 4.93 1.12 2.43 2.23 4.80

Parasilo-3 0.50 2.51 2.52 5.09 0.65 2.49 1.29 4.79

Parasilo-4 0.50 2.51 1.51 4.95 1.01 2.39 3.23 4.85

Parasilo-5 0.50 2.51 3.02 5.01 1.12 2.38 2.87 4.80

Parasilo-6 1.51 2.52 1.01 4.96 1.94 2.44 4.81 4.76

Parapide-1 1.01 28 kb 3.03 28 kb 1.94 28 kb 3.23 28 kb

Parapide-2 2.02 28 kb 3.02 28 kb 1.29 28 kb 1.87 28 kb

Parapide-3 1.51 28 kb 2.52 28 kb 2.41 28 kb 5.35 28 kb

Parapide-4 2.02 28 kb 1.51 28 kb 0.70 28 kb 1.94 28 kb

Text Data 15 GB Text Data 30 GB TeraGen 15 GB TeraGen 30 GB

Figure 14 Saksham block rearrangement time

We successfully achieved control over block rearrangement based upon the priority assigned

to the nodes. Next, we have assigned Node Labels to the nodes according to table 5 and using

YARN resource manager we schedule the jobs according to given labels. This approach will

prove the effectiveness of the proposed algorithm.

We have used two standard job applications for testing to prove the effectiveness of our

proposed approach.

1. WordCount: Standard “bag of words”static test dataset is used for the counting job.

Wordcount application counts the total no. of words from the file using MapReduce

programming to achieve parallelism.

2. TeraSort: The TeraSort benchmark is the most well-known Hadoop benchmark for

stress testing. To perform the sorting on data generated by TeraGen using MapReduce

programming.

We use two datasets of size 10 GB and 20 GB for our experiment. We focus on two important

parameters of performance improvement in Hadoop, data locality and job execution time. If data

locality gets improve proportionally it improves MapReduce job processing time. We compared

our strategy with default placement execution time and after applying only node labeling without

“Saksham” balancing. Table 7 shows the result of total tasks launched, data local found and data

locality in percentage. Figure 15 shows the comparative result of data locality achieved by

0

1

2

3

4

5

6

7

Text Data 15

GB

TextGen 15

GB

Text Data 30

GB

TeraGen 30

GB

Time 2.89 2.82 6.34 6.33

T
im

e

in
 m

in
u

te
s

Rearrangement Time

various strategies. Results prove that our “Saksham” algorithm with node labeling approach

achieves almost 90% data locality which is far better than other strategies.

Table 7 Data locality results for various strategies

Figure 15 Comparison of data locality achieved

Last, we use default Hadoop schedulers for our test. We combine our “Saksham” algorithm

plus node labeling and schedule the jobs for testing. We test using following schedulers to see

the effectiveness: capacity and fair scheduler. Fair scheduler has three policies: Fair-FIFO, Fair-

Fair and Fair-DRF. We compare the job execution time of our propose approach with default

MapReduce execution, execution using node labeling w/o “Saksham” balancing. Figure [16-19]

shows results of job execution time of two jobs (i.e. wordcount and terasort) using different

schedulers.

Jobs
Data

Size

Total

Task

Launched

Data

Local

Data

Locality

%

Total

Task

Launched

Data

Local

Data

Locality

%

Total

Task

Launched

Data

Local

Data

Locality

%

10 GB 128 88 68.75% 122 74 60.66% 120 112 93.33%

20 GB 240 178 74.17% 227 140 61.67% 233 208 89.27%

10 GB 134 102 76.12% 126 89 70.63% 127 111 87.40%

20 GB 267 183 68.54% 250 186 74.40% 236 213 90.25%

Word

Count

TeraSort

SakshamDefault Node Label

10GB 20GB 10GB 20GB

Word Count TeraSort

Default 68.75% 74.17% 76.12% 68.54%

Node Label 60.66% 61.67% 70.63% 74.40%

Saksham 93.33% 89.27% 87.40% 90.25%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e
r
c
e
n

ta
g

e

Data Locality

Figure 16 Job Execution Time using Capacity Scheduler

Figure 17 Job Execution Time using Fair-FIFO Scheduler

Figure 18 Job Execution Time using Fair-Fair Scheduler

0.00
5.00

10.00
15.00
20.00
25.00
30.00

10GB 20GB 10GB 20GB

Word Count TeraSort

Ti
m

e
in

 M
in

u
te

s

Capacity Scheduler
Job Execution Time

Default

Node Label

Saksham

0
5

10
15
20
25
30

10GB 20GB 10GB 20GB

Word Count TeraSort

Ti
m

e
in

 M
in

u
te

s

Fair-Fifo Scheduler
Job Execution Time

Default

Node Label

Saksham

0.00
5.00

10.00
15.00
20.00
25.00
30.00

10GB 20GB 10GB 20GB

Word Count TeraSort

Ti
m

e
in

 M
in

u
te

s

Fair-Fair Scheduler
Job Execution Time

Default

Node Label

Proposed

Figure 19 Job Execution Time using Fair-DRF Scheduler

Results show that mere implementation of node labeling creates overhead of the internode and

interrack block transfer and increase the job execution time. But our “Saksahm” algorithm in

combination with node labeling achieves optimized result. Below fig. 20 proves that Fair-Fair

scheduling strategy works better compare to capacity, fair-fair, fair-drf policies.

Figure 20 Comparison of Job Execution Time using “Saksham” policy

0
5

10
15
20
25
30

10GB 20GB 10GB 20GB

Word Count TeraSort

Ti
m

e
in

 M
in

u
te

s

Fair-DRF Scheduler
Job Execution Time

Default

Node Label

Proposed

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

10GB 20GB 10GB 20GB

Word Count TeraSort

Ti
m

e
in

 M
in

u
te

s

Job Execution Time
Saksham Algorithm

Capacity

Fair-Fifo

Fair-Fair

Fair-DRF

Chapter 5: Conclusion

HDFS is an important core component of Apache Hadoop. Not only does it simply store data in a

virtual file system, but HDFS also greatly affects and guides the MapReduce layer. By carefully

rearranging blocks in the cluster, we can improve the performance of HDFS and thus also the

overall performance of Apache Hadoop. This thesis contributes to the research of optimal data

placement in large-scale server clusters.

Default block placement policy does not consider processing capability of nodes for placing

data blocks. MapReduce job try to place process where data blocks are stored but it might be

possible that the few nodes which are having data block may not have processing capability.

Therefore, it is required to shift the process where processing capability is available and in that

case, it may require to move blocks where the process is running. This affects to overall Hadoop

performance which is an area of concern.

We propose Saksham: block rearrangement policy which leverages the processing capacity of

CPU, during block placement. This approach will be helpful in MapReduce to minimize the

internode and inter-rack transfer. We have demonstrated that we can place data blocks of a

specific file to specific nodes only. This approach will not affect the overall load balancing of a

cluster as rest of the files won’t be affected. Experimental results prove that with the use of

proposed scheme and Fair-Fair scheduler, Hadoop can achieve better performance for Big Data

processing.

Considering all cluster nodes’ processing capability plays an important role in a distributed

computation framework. We show that distributing blocks and their replica rearrangement on

desired cluster nodes, improves the performance of HDFS. The MapReduce layer is able to place

a greater number of application copies onto cluster nodes with data locally available.

In conclusion, we believe that our “Saksham” block rearrangement algorithm is an

improvement over the HDFS default blocks placement policy and “Saksham” policy combined

with node labeling yield a greater performance over Hadoop default performance.

In future enhancement, it would be possible to replace default block placement policy with

our “Saksham” policy for direct block placement. However, that would require a lot of

modification in existing API. It is also possible to think over implementing dynamic priority

assignment based on processing capability or hardware specifications.

Research Paper Presented / Published

[1] Padole M., Shah A. (2018) Comparative Study of Scheduling Algorithms in

Heterogeneous Distributed Computing Systems. In: Choudhary R., Mandal J.,

Bhattacharyya D. (eds) Advanced Computing and Communication Technologies.

Advances in Intelligent Systems and Computing, vol 562. Springer, Singapore

Published [Scopus Indexed]

[2] Shah A., Padole M. (2018) Performance Analysis of Scheduling Algorithms in Apache

Hadoop. Data Engineering and Applications Springer Book Series.

In process of Publication [EI-Compendex, DBLP, Scopus Indexed]

[3] Shah A., Padole M. (2018) Load Balancing through Block Rearrangement Policy for

Hadoop Heterogeneous Cluster. ICACCI’18 Bangalore Conference.

In process of Publication - IEEE Xplore [Thomson Reuters Citation Index, Scopus

Indexed]

[4] Shah A., Padole M. (2018) “Saksham: Resource Aware Block Rearrangement Algorithm

for Load Balancing in Hadoop”

Paper submitted in International Journal

References

[1] Andrew S. Tanenbaum, Maarten van Steen, (2002). Distributed Systems: Principles and

Paradigms, Pearson Education Asia.

[2] SukumarGhosh, (2010). Distributed systems: an algorithmic approach. CRC press.

[3] George Coulouris, Jean Dollimore, Tim Kindberg, (2001). Distributed Systems: Concepts

and Design, 4/E, Pearson Education Ltd.

[4] K. Hwang and F. A. Briggs, (1985). Computer Architecture and Parallel Processing.

McGraw-Hill International Edition.

[5] Kshemkalyani, A.D. and Singhal, M., (2011). Distributed computing: principles, algorithms,

and systems. Cambridge University Press.

[6] S. Srinivasan and N. K. Jha, (1999). "Safety and reliability driven task allocation

indistributed systems." IEEE Transactions on Parallel and Distributed Systems, vol 10, no.

3, pp. 238-251.

[7] Kai Hwang, (1993). Advanced Computer Architecture: Parallelism. Scalability.

Programmability McGraw-Hill International Editions.

[8] S.Bansal, P.Kumar and K.Singh,(2005) “Dealing with heterogeneity through limited

duplication for scheduling precedence constrained task graphs.” Journal of Parallel and

Distributed Computing. Vol. 65, pp. 479-491.

[9] R. F. Freund and H. J. Siegel, (1993). "Introduction: Heterogeneous processing - guest

editors introduction. IEEE Computer. vol. 26. no. 6. pp. 13-17.

[10] https://www.ibm.com/software/data/bigdata/what-is-big-data.html. [Accessed 10 Oct. 2018]

[11] Labrinidis A, Jagadish HV (2012) Challenges and opportunitieswith big data. Proc VLDB

Endowment 5(12):2032–2033

[12] Chaudhuri S, Dayal U, Narasayya V (2011) An overview of business intelligence

technology. Commun ACM 54(8):88–98

[13] Agrawal D, Bernstein P, Bertino E, Davidson S, DayalU,FranklinM, Gehrke J, Haas L,

Halevy A, Han J et al (2012) Challengesand opportunities with big data. A community

white paper developed by leading researches across the United States

[14] Chen, M., Mao, S. and Liu, Y., (2014). Big data: A survey. Mobile networks and

applications, 19(2), pp.171-209.
[15] Hadoop, http://hadoop.apache.org [Accessed 10 Oct. 2018]

[16] Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves,

T., Lowe, J., Shah, H., Seth, S. and Saha, B., (2013). Apache hadoop yarn: Yet another

resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing (p.

5). ACM.

[17] Dean, J. and Ghemawat, S., (2008). MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1), pp.107-113.

[18] Zheng, W.Sakellariou, R., (2013). Stochastic DAG scheduling using a Monte Carlo

approach. Journal of Parallel and Distributed Computing. 73, 1673-1689.
[19] Munir, E., Mohsin, S., Hussain, A., Nisar, M., Ali, S., (2013). SDBATS: A Novel

Algorithm for Task Scheduling in Heterogeneous Computing Systems. Parallel and

Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th

International. 43-53.
[20] Kwok, Y.Ahmad, I., (1999). Static scheduling algorithms for allocating directed task graphs

to multiprocessors. ACM Computing Surveys. 31, 406-471.

https://www.ibm.com/software/data/bigdata/what-is-big-data.html

[21] Kanemitsu, H., Hanada, M., Nakazato, H., (2016). Clustering-Based Task Scheduling in a

Large Number of Heterogeneous Processors. IEEE Transactions on Parallel and Distributed

Sys-tems. 27, 3144-3157.
[22] Abdelkader, D.Omara, F., (2012). Dynamic task scheduling algorithm with load balancing

for he-terogeneous computing system. Egyptian Informatics Journal. 13, 135-145.
[23] Wang, G., Wang, Y., Liu, H., Guo, H, (2016). HSIP: A Novel Task Scheduling Algorithm

for He-terogeneous Computing. Scientific Programming. 2016, 1-11.
[24] Munir, E., Ahmad, S., Nisar, W., (2013). PEGA: A Performance Effective Genetic

Algorithm for Task Scheduling in Heterogeneous Systems. In High Performance Computing

and Com-munication & 2012 IEEE 9th International Conference on Embedded Software

and Sys-tems (HPCC-ICESS), 2012 IEEE 14th International Conference. 1082-1087.
[25] Ahmad, S., Liew, C., Munir, E., Ang, T., Khan, S., (2016). A hybrid genetic algorithm for

optimi-zation of scheduling workflow applications in heterogeneous computing systems.

Journal of Parallel and Distributed Computing. 87, 80-90.
[26] Cardellini, V., Grassi, V., Presti, F., Nardelli, M., (2015). Distributed QoS-aware scheduling

in storm. DEBS '15 Proceedings of the 9th ACM International Conference on Distributed

Event-Based Systems. 344-347.
[27] Arabnejad, H.Barbosa, J., (2014). List Scheduling Algorithm for Heterogeneous Systems by

an Optimistic Cost Table. IEEE Transactions on Parallel and Distributed Systems. 25, 682-

694.
[28] Khaldi, D., Jouvelot, P., Ancourt, C., (2015). Parallelizing with BDSC, a resource-

constrained scheduling algorithm for shared and distributed memory systems. Parallel

Computing. 41, 66-89.
[29] Li, K., Tang, X., Veeravalli, B., Li, K., (2015). Scheduling Precedence Constrained

Stochastic Tasks on Heterogeneous Cluster Systems. IEEE Transactions on Computers. 64,

191-204.
[30] Barbosa, J. Moreira, B., (2011). Dynamic scheduling of a batch of parallel task jobs on

heteroge-neous clusters. Parallel Computing. 37, 428-438.
[31] Choudhury, P., Chakrabarti, P., Kumar, R., (2012). Online Scheduling of Dynamic Task

Graphs with Communication and Contention for Multiprocessors. IEEE Transactions on

Parallel and Distributed Systems. 23, 126-133.
[32] Tang, Z., Jiang, L., Zhou, J., Li, K., Li, K., (2015). A self-adaptive scheduling algorithm for

re-duce start time. Future Generation Computer Systems. 43-44, 51-60.
[33] Yuxiong, H., Liu, J., Hongyang, S., (2011). Scheduling Functionally Heterogeneous

Systems with Utilization Balancing. IEEE International Parallel & Distributed Processing

Symposium. 1187-1198.
[34] Hadoop Capacity Scheduler:https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-

yarn-site/CapacityScheduler.html (Accessed 10 Oct. 2018)

[35] Hadoop Fair Scheduler:https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-

site/FairScheduler.html (Accessed 10 Oct. 2018)

[36] Shah, A. and Padole, M., (2018). Load Balancing through Block Rearrangement Policy for

Hadoop Heterogeneous Cluster. Paper Presented at the 7th International Conference on

Advances in Computing, Communication and Informatics. 19-22 September 2018.

Bangalore, India.
[37] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S. and Stoica, I., (2010).

Delay scheduling: a simple technique for achieving locality and fairness in cluster

scheduling. In Proceedings of the 5th European conference on Computer systems (pp. 265-

278). ACM.
[38] Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H. and Stoica, I., (2008). Improving

MapReduce performance in heterogeneous environments. In Osdi (Vol. 8, No. 4, p. 7).
[39] Liu, Q., Cai, W., Shen, J., Fu, Z., Liu, X. and Linge, N., (2016). A speculative approach to

spatial‐temporal efficiency with multi‐objective optimization in a heterogeneous cloud

environment. Security and Communication Networks, 9(17), pp.4002-4012.
[40] Liu, Y., Jing, W., Liu, Y., Lv, L., Qi, M. and Xiang, Y., (2017). A sliding window‐based

dynamic load balancing for heterogeneous Hadoop clusters. Concurrency and Computation:

Practice and Experience, 29(3), p.e3763.
[41] Dharanipragada, J., Padala, S., Kammili, B. and Kumar, V., (2017), December. Tula: A disk

latency aware balancing and block placement strategy for Hadoop. In Big Data (Big Data),

2017 IEEE International Conference on (pp. 2853-2858). IEEE.
[42] Anon, (2018). [online] Available at: https://github.com/fluxroot/hadaps. [Accessed 18 Oct.

2018].
[43] Xie, J., Yin, S., Ruan, X., Ding, Z., Tian, Y., Majors, J., Manzanares, A. and Qin, X., 2010,

April. Improving mapreduce performance through data placement in heterogeneous hadoop

clusters. In Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010

IEEE International Symposium on (pp. 1-9). IEEE.
[44] Hsiao, H.C., Chung, H.Y., Shen, H. and Chao, Y.C., 2013. Load rebalancing for distributed

file systems in clouds. IEEE transactions on parallel and distributed systems, 24(5), pp.951-

962.
[45] Muthukkaruppan, K., Ranganathan, K. and Tang, L., Facebook Inc, (2016). Placement

policy. U.S. Patent 9,268,808.
[46] Qureshi, F., Muhammad, N. and Shin, D.R., (2016). RDP: A storage-tier-aware Robust Data

Placement strategy for Hadoop in a Cloud-based Heterogeneous Environment. KSII

Transactions on Internet & Information Systems, 10(9).
[47] Qu, K., Meng, L. and Yang, Y., (2016), August. A dynamic replica strategy based on

Markov model for hadoop distributed file system (HDFS). In Cloud Computing and

Intelligence Systems (CCIS), 2016 4th International Conference on (pp. 337-342). IEEE.
[48] Meng, L., Zhao, W., Zhao, H. and Ding, Y., (2015). A Network Load Sensitive Block

Placement Strategy of HDFS. KSII Transactions on Internet & Information Systems, 9(9).
[49] Dai, W., Ibrahim, I. and Bassiouni, M., (2017), June. An improved replica placement policy

for Hadoop Distributed File System running on Cloud platforms. In Cyber Security and

Cloud Computing (CSCloud), 2017 IEEE 4th International Conference on (pp. 270-275).

IEEE.
[50] Fahmy, M.M., Elghandour, I. and Nagi, M., (2016), December. CoS-HDFS: co-locating

geo-distributed spatial data in hadoop distributed file system. In Proceedings of the 3rd

IEEE/ACM International Conference on Big Data Computing, Applications and

Technologies (pp. 123-132). ACM.
[51] Park, D., Kang, K., Hong, J. and Cho, Y., (2016), April. An efficient Hadoop data

replication method design for heterogeneous clusters. In Proceedings of the 31st Annual

ACM Symposium on Applied Computing (pp. 2182-2184). ACM.
[52] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F.B. and Babu, S., (2011),

January. Starfish: a self-tuning system for big data analytics. In Cidr (Vol. 11, No. 2011, pp.

261-272).

[53] Hadoop.apache.org. (2018). Apache Hadoop 2.7.2 – YARN Node Labels. [online]

Available at: https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-

site/NodeLabel.html [Accessed 18 Oct. 2018].
[54] Team, D. (2018). Rack Awareness in Hadoop HDFS – An Introductory Guide – DataFlair.

[online] Data-flair.training. Available at: https://data-flair.training/blogs/rack-awareness-

hadoop-hdfs/ [Accessed 18 Oct. 2018].
[55] Grid5000.fr. (2018). Grid5000. [online] Available at:

https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home [Accessed 18 Oct. 2018].

