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Chapter 1: Introduction 

1.1 Distributed Computing 

Distributed Computing (DC) refers to computation using system of loosely coupled computers 

striving to solve computationally intensive problems that are difficult to be computed using 

single computer. Distributed computing is used to solve complex computational problems that 

cannot be solved within a specified time frame on a single computer. The complex 

computational problems may involve either compute intensive or data intensive processing. 

1.1.1 Distributed Computing System (DCS) 

“A Distributed Computing System, also referred as a Distributed System, is a collection of 

independent computers that appears to its end users, as a single computing system” 

[1].Distributed Computing System (DCS) refers to a system of multiple computers working on a 

single problem that is computationally intensive. Distributed Computing System is a wide scale 

infrastructure that supports sharing of resources, distribution transparency, scalability, single 

point failure handling and single system image concept in large-scale problem solving. 

Distributed Computing System provides these advantages compared to traditional centralized 

computing system.  

1.1.2 Distributed Computing System Architecture 

In computer architecture terminology, distributed computing system belongs to the class of 

loosely coupled Multiple Instruction, Multiple Data (MIMD) machines, with each node having 

an unshared memory [2]. Below fig.1 shows a simple architecture of a distributed computing 

system [1, 3] 

Distributed Computing systems are built up using existing hardware, operating systems (OS) and 

network. These hardware, OS and networks may be of same type or different type i.e. they may 

be either homogeneous or heterogeneous respectively, in nature. A distributed system comprises 

of collection of autonomous computers, linked through a computer network and distribution 

middleware. The middleware enables distribution transparency, where-in the task submitted to 

master, is distributed amongst multiple slaves. Thus, middleware is the bridge that connects 

distributed applications across multiple systems. Middleware provides standard services such as 



naming, persistence, concurrency control to ensure that accurate and faster results for processes 

are produced. 

 
Figure 1Distributed Computing System Architecture 

Distributed computing system comprises of variety of hardware and software, to form a 

distributed platform. At a lower level, it is necessary to have multiple CPUs which are 

interconnected with each other by network. At a higher level, those interconnected CPUs will 

communicate with each other through Middleware. Distributed computing system can be 

categorized as homogeneous or heterogeneous based on their hardware, OS, connection, 

architecture, and other components. 

1.1.3 Homogeneous Distributed Computing System (HDCS) 

A distributed computing system is said to be Homogeneous Distributed Computing System: a) If 

hardware on each computing machine has same architecture, processing capacity and same 

storage representation. b) If software (i.e. Operating system, Compiler etc.) on each computing 

machine has same storage organization and similar operation speed. The requirements for a 

homogeneous distributed computing system are quite stringent and are frequently not met in 

network of workstations, or PCs, even when each computer in the network is of the same make 

and model. 



1.1.4 Heterogeneous Distributed Computing System (HeDCS) 

Heterogeneous Distributed Computing System (HeDCS) is one which is not homogeneous. 

Heterogeneous platform used for distributed computing always include processors and 

communication network interconnecting the processors, of different types. Distributed 

computing systems are naturally heterogeneous. A heterogeneous distributed system is a 

dedicated system designed mainly for high - performance distributed computing. In this research 

study the aim is to use Heterogeneous Distributed Computing System (HeDCS), hence it is 

discussed in detail. 

Computing performed using Homogeneous Distributed Computing System (HDCS) is referred 

as Homogeneous Distributed Computing (HDC) and likewise, the computing performed using 

Heterogeneous Distributed Computing System (HeDCS) is known as Heterogeneous Distributed 

Computing (HeDC). Henceforth, for the discussion, the term HeDC will be used to describe 

problem solving on using HeDCS. 

1.2 Heterogeneous Distributed Computing 

In Practical scenario, it is difficult to find a computing platform, with all computers involved in 

processing, to be of perfectly uniform configuration. Hence, the emphasis is using heterogeneous 

set of computational resources, for solving computational intensive problems. 

A Heterogeneous Distributed Computing (HeDC) that consists of a heterogeneous suite of 

processors, high-speed interconnections, interfaces, operating systems, communication protocols 

and programming environments provides a variety of architectural capabilities, which can be 

coordinated to  process an application that has diverse execution requirements [4,5]. HeDC is 

now well recognized as an important computing paradigm, in meeting the computational 

requirements of many applications in science, engineering and commerce. The examples of 

applications are weather forecasting, simulation modeling, mapping of the human genome, big 

data processing, image processing, modeling of semiconductors, superconductors and banking 

systems [6-9]. While the distributed computing systems offer the promise of vastly increased 

performance, it introduces additional complexities such as scheduling of parallel program, load 

balancing among the involved processors, process synchronization, communication, handling 

data redundancy etc. which are not encountered with stand-alone processing. 



A heterogeneous distributed computing system, as shown in fig.2, is a dedicated system designed 

mainly for high-performance computing, which is obtained from the classical homogeneous 

system architecture by relaxing one of its three key properties, leading to the situation wherein : 

 Processors in distributed environment may not be identical. 

 The communication network may have a regular but heterogeneous structure. 

 The HeDC may be a multitasking computer system, allowing several independent users 

to simultaneously run variety of applications, on the same set of processors. 

 

Figure 2A heterogeneous system with processors of different architectures 

HeDC Challenges 

Heterogeneous Distributed Computing comes with new challenges due to non-uniformity, 

variety of programming models, and overall varied system capability. The following factors are 

to be considered, while applying HeDC for large data sets. 

 Different instruction set and memory set architectures 

 Library and OS services are not uniformly available on distributed nodes 

 CPUs have different performance level and power consumption 

 Compute elements have different cache structure, network architecture 



Above factors may result in performance degradation while working on large data sets, also 

referred as Big Data. Big Data processing would be difficult to be performed on a single 

computer; it also cannot apply upon homogeneous distributed computing, because of scalability 

issues. Hence, there is a need of HeDC for processing large data sets i.e. Big Data. 

1.3 Big Data 

Big Data is data that exceeds the processing capacity of single system or conventional group of 

computers. The data is too big, moves too fast and may comprise of unstructured data which may 

not fit into traditional database and storage structure. In other words, Big Data is an all-

encompassing term for any collection of data sets so large and complex that it becomes difficult 

to process using on-hand data management tools or traditional data processing environments. Big 

Data solutions are useful for business analytics. 

According to an IBM study, nearly 2.5quintillion bytes of data is created every year, so much 

that about 90% of the data in the world today has been created in the last two years itself [10]. 

This data comes from everywhere: social networking sites, GPS, sensors, private or public 

networks etc. Although, Big Data may be in both the forms: structured as well as unstructured, 

these data are generally in raw form, i.e. they are unstructured data sets. Big data usually include 

data sets with sizes such as Petabytes or Zetabytes, which are beyond the ability of commonly 

used software tools to capture, create, manage, and process the data within a tolerable elapsed 

time.Big data requires cost-effective and innovative forms of information processing. 

1.3.1 Characteristics of Big Data 

Big Data has been defined by the four “V”s [10]: Volume, Velocity, Variety, and Veracity, as 

shown in fig 3. These four characteristics help to determine whether your information 

architecture needs to process Big Data. 

Volume: The amount of data. While volume indicates more data, it is the granular nature of the 

data that is unique. Big Data requires processing high volumes of low-density data, that is, data 

of unknown value, such as social networks, clicks on a web page, network traffic, sensor-enabled 

equipment etc. 



 

Figure 3 Characteristics of Big Data 

Velocity: A fast rate that data is received and perhaps acted upon. The highest velocity data 

normally streams directly into memory versus being written to disk.  

Variety: New unstructured data types. Unstructured and semi-structured data types, such as text, 

audio, and video require additional processing to both derive meaning and the supporting 

metadata.  

Veracity: Veracity refers to the biases, noise and abnormality in data. It is important to check 

whether the data that is being stored and processed is meaningful to the problem being analyzed. 

It checks the authenticity of data. Big data solutions must validate the correctness of the large 

amount of rapidly arriving data. 

1.3.2 Challenges in Big Data Processing 

When data is in large amount (Big Data), it also comes with huge challenges like: data 

acquisition, storage, management and analysis. Traditional data management systems are based 

on the relational database management system (RDBMS). However, such RDBMSs only apply 

to structured data it cannot work with semi-structured or unstructured form of data. To process 

huge volume of data and analyze it is a big challenge. Proper infrastructure needs to be 

developed. Some literature [11–13] discusses the difficulties in the development of big data 



applications. The key challenges are listed as follows [14]: data representation, analytical 

mechanism, data confidentiality, scalability and optimization 

1.3.3 Big Data Processing Platforms 

As discussed, there are various challenges that need to be addressed for Big Data solutions. For 

large data storage, management and processing, homogeneous platform cannot be sufficient. The 

research community has proposed solution from different perspectives. Heterogeneous 

Distributed Computing (HeDC) framework is utilized to meet the requirement on infrastructure 

for Big Data, e.g. cost efficiency, elasticity, scalability, storage and management of large 

datasets. HeDC framework has achieved great success in processing various big data application 

and accomplishing big data analytics. The physical data center network is the core for supporting 

big data. Below are the key characteristics for physical data center network.  

 Scalable Computing Infrastructure: HeDC provides powerful backstage scalable 

infrastructure support for Big Data processing. HeDC enables distribution and 

management of Big Data across many nodes and disks. 

 Data Storage Framework: The big data paradigm has more stringent requirements on 

storage capacity and processing capacity, as well as network transmission capacity which 

shall be addressed by HeDC. 

 Parallel / Distributed Programming Framework: HeDC supports distributed 

programming for complex computations.  

 Analytics Framework: HeDC provides analytical platform for processing large volumes 

of persistent Big Data in highly distributed and efficient manner. 

1.3.4 Big Data Optimization 

For large business enterprises it is indispensable to process large scale data (Big Data) to get 

better insight into business. There is no doubt that, processing of big data has become 

challenging task, although many tools and techniques are available to process this flood of data. 

However, an important concern while processing big data is that its overall performance should 

not degrade. Increasing rate of data will become critical in the future, so proper optimization 

techniques need to be applied for Big Data processing.  



The challenges discussed for Big Data Processing can be met through HeDC. HeDC provides the 

solution for scalability, storage and distributed processing. Major research is focused to provide 

proper optimization techniques to big data sets. Based on the objective, optimization techniques 

can be categorized as Performance, Ease-of-use and Cost Effectiveness. Performance 

optimization aims to reduce execution time to make data processing faster. Ease-of-use aims to 

make data processing tools easier to implement and useable for variety of datasets, while cost 

effective optimization focuses to minimize the operating cost of the system. 

1.4 Hadoop 

Applications involving Big Data need enormous memory space to load the data and high 

processing power to execute them. Individually, the traditional computing systems are not 

sufficient to execute these big data applications but, cumulatively they can be used to meet the 

needs. This cumulative power for processing Big Data Applications can be achieved by using 

Distributed Systems with Map-Reduce model under Apache Hadoop framework. Mere 

implementation of the application on Distributed Systems may not make optimal use of available 

resources.  

Hadoop Ecosystem 

Hadoop is open source software comprising of framework of tools. These tools provide support 

for executing big data applications. Hadoop has very simple architecture. Hadoop 2.0 version 

primarily consists of three components as shown in fig.4:  

1. HDFS (Hadoop Distributed File System) [15]: It provides distributed storage of data over 

Hadoop environment. It stores data and metadata separately.  

2. YARN (Yet Another Resource Negotiator) [16]: YARN is responsible for managing the 

resources of Hadoop cluster.  

3. MapReduce [17]: It is the programming model on top of YARN responsible for processing of 

data in the Hadoop environment. It performs the computation.  

A. HDFS  

Hadoop HDFS has master/slave architecture. Master node has two components called Resource 

Manager and Namenode. Slave on each node of a cluster, is having Node Manager and 



Datanode. Namenode and datanode are under the umbrella of the HDFS while Resource 

Manager and Node Manager are under the umbrella of YARN.  

 
Figure 4 Hadoop 2.0 Architecture 

The big data applications in Hadoop first assign the task to the master node. Master node will 

distribute the task among multiple slaves to perform computation and end result will be 

combined and given back to the master node.  

In case of distributed storage, it is important to give indexing for faster and efficient data access. 

The namenode that resides on the master node is containing the index of data that is residing on 

different datanodes. Whenever an application requires the data, it contacts the namenode that 

routes the application to the datanode to obtain the data.  

Hardware failures are bound to happen, but Hadoop has been developed with efficient failure-

detection model. Hadoop has de-facto fault tolerance support for data. By default Hadoop 

maintains three copies of file on different nodes. Therefore, even in case if one datanode fails, 

system would not stop running as data would be available on one or more different nodes.  

Fault tolerance does not handle the failure of just slave nodes, but it also takes care of failure of 

master node. There is no single point of failure in case of master node. Hadoop maintains 

multiple copies of name node on different computer as well as maintains two masters, one as a 

main master and other as a backup master.  

Programmer need not worry about the questions like where the file is located, how to manage 

failure, how to split computational blocks, how to program for scalability etc. Hadoop implicitly 

manages all these efficiently. It is scalable and its scalability is linear to the processing speed.  In 



Hadoop 1.x version, MapReduce was managing both resources and computation. However, 

Hadoop 2.x splits the two responsibilities into separate entities by introducing YARN. 

 

B. YARN  

YARN is a framework to develop and/or execute distributed applications. As shown in fig. 5: 

Components in the YARN based systems are Global Resource Manager (RM), Application 

Master (AM) for each application, Node Manager (NM) for each slave node, and an application 

container for each application running on a Node Manager. 

 
Figure 5 YARN Architecture 

 

Resource Manager has two main components: Scheduler and Application Manager. The 

scheduler schedules the tasks based on availability and requirement of resources. The scheduler 

schedules the task based on capacity, queues etc. The scheduler allocates the resources by taking 

consideration of memory, CPU speed, disk capacity etc. The application manager accepts the job 

from client and negotiates to execute the first container of the application. The application 

manager provides the failover mechanism to restart the services, which might have failed due to 

application or hardware failure. Each application manager tracks the status of individual 

application. 

 



C. MapReduce Programming Model  

MapReduce is Google’s programming model for processing the colossal amount of data. This 

model consists of two important phases i.e. maps and reduces. As shown in fig.6 in “map” phase 

it takes input as key-value (k, V) pair and produces intermediate key-value pair (k1,V1)  

{(k2,V2)} as a result while in “reduce” phase it takes a key and a list of the keys and values and 

generates the final output as key/value (k2; {V2}) {V3} pair. In distributed processing, it is 

important to take consideration of data locality. If data to be processed is located near, then it can 

reduce the time of transmission and can achieve better performance. MapReduce can use this 

functionality during map-reduce function. In MapReduce each map function will take place on 

local data and output will be stored to temporary storage.  

A master node coordinates the input data only after an input is processed. In the next phase i.e. 

shuffle phase, it randomly generates values assigned and then sorts it according to the assigned 

values. Now in reduce phase, it processes the intermediate key-value data and produces the final 

output. 

 
Figure 6 MapReduce Model  



Chapter 2: Literature Review 

This section literature review is divided in four parts: First, various distributed file systems 

which are widely used for Big Data storage. Second, various scheduling algorithms for 

heterogeneous distributed computing are discussed. Third, default schedulers in Hadoop are 

discussed. Last, alternative approaches to the implementation and improvement of load-

balancing algorithms in Hadoop are discussed. 

2.1 Study of Various Distributed File Systems 

Big data implementation is only as good as its file system. From an architectural standpoint, 

managing the massive volume and throughput of data is a challenge. Big data solutions typically 

use large, distributed arrays of servers and specialized software. For risk management, a huge 

amount of data flying across distributed servers also requires exceptional built-in fault tolerance. 

Various file system for big data storage are: GlusterFS, HDFS, Lustre, Ceph, MooseFS. 

GlusterFS is a file system from RedHat for its enterprise Linux OS. GlusterFS gets excellent file 

look-up speed from using elastic hash algorithms rather than centralized metadata. GlusterFS has 

been most notably used for cloud computing, streaming media, and content delivery. Hadoop 

HDFS is extremely popular and has gained a great deal of prominence in the big data world. It 

uses MapReduce as a key function of its data management. Hadoop is an open-source system 

written in Java designed to run on low-cost hardware. Lustre is a centralized distributed file 

system which differs from the current DFSs in that it does not provide any copy of data and 

metadata. Instead, Lustre chooses to store its stores metadata on a shared storage called Metadata 

Target (MDT) attached to two Metadata Servers (MDS), thus offering an active/passive failover. 

Ceph is a totally distributed system. Unlike HDFS, to ensure scalability Ceph provides a 

dynamic distributed metadata management using a metadata cluster (MDS) and stores data and 

metadata in Object Storage Devices (OSD). MooseFS acts as HDFS. It has a master server 

managing metadata, several chunk servers storing and replicating data blocks. MooseFS has a 

little difference since it provides failover between the master server and the meta logger servers. 

DFSs are the principle storage solution used by supercomputers, clusters and datacenters. Here, 

we have given a comparison of four DFSs based on scalability, transparency and fault tolerance. 

DFSs surveyed are: Lustre, HDFS, Ceph, and GlusterFS. We have seen that the DFSs ensure 



transparency and fault tolerance using different methods that provide the same results. The main 

difference lies on the design. In theory, decentralized architectures seem to scale better than a 

centralized one thanks to the distributed workload management.  

Furthermore, the choice of a DFS should be done according to their use. For performance, an 

asynchronous replication and the use of an index to maintain the namespace are preferable 

whereas a decentralized architecture is better for managing large amounts of data and requests. 

The comparison is given in table 1 below.  

 HDFS Ceph GlusterFS Lustre 

Architecture Centralized Distributed Decentralized Centralized 

Naming Index CRUSH EHA Index 

Fault 

detection 
Fully connected Fully connected Detected Manually 

System 

availability 
No failover High High Failover 

Data 

availability 
Replication Replication RAID-like No 

Placement 

strategy 
Auto Auto Manual No 

Replication Asynchronous Synchronous Synchronous RAID-like 

Load 

balancing 
Auto Manual Manual No 

Table 1 Various Distributed File System Comparison 

2.2 Scheduling Algorithms in Heterogeneous Distributed Computing 
 

Scheduling in distributed computing system (DCS) is primarily concerned with two aspects such 

as optimizing completion time of an application and optimizing the resource utilization. In the 

context of an application, the main parameter is to reduce the total cost of executing a particular 

application whereas, optimal utilization and performance of the resource is the prime concern of 

the resource provider. The two main factors in defining the best performance of a scheduling 

algorithm in HeDCS are application-specific and system-specific. Thus, objective functions of 

scheduling algorithms can be categorized into two broad classifications: Application-Specific 

and System-Specific. Figure 7 displays the objective functions of scheduling algorithms covered 

in this paper. 



 

Figure 7 Scheduling Objective 

A. Application-Specific 

Various scheduling parameters need to be considered while implying application-specific 

scheduling. Application-specific scheduling explicitly addresses heterogeneity and conflict in 

distributed environments. Watchful scheduling of application components is essential to 

accomplish its performance objectives. Scheduling decisions are determined based on parameters 

like application performance, computational requirements, task inter-dependency, processing 

load and the availability of resources. Depending upon an application, parameters to be 

considered, may vary, to optimize the performance of a specific application. 

B. System-Specific 

In system-specific objectives, the main aim is resource utilization, particularly that of processors 

and memory. The variance in performance of the resources has a direct influence on the 

performance of the submitted application and must be deliberated during scheduling. Resource 

utilization, i.e., the percentage of time a resource is busy or available is of vital importance. 

Overutilization of a scarce resource means non-availability of resource when the application 

needs it. This may increase the application waiting time, thus resulting in higher completion 

time. Other resource-specific objectives are load balancing, fixed number of processors, 

unbounded number of processors, etc. The factors considered in this research paper are 

scheduling type, multi-core processors, heterogeneity, degree of multiprogramming, makespan, 

load balancing, multiplicity of resources, impact of bounded number of processors (BNP) and 

unbounded number of heterogeneous processors, optimized resource time, etc. 



2.1.1. Comparative Study of Scheduling Algorithms 
 

The study emphasizes on two aspects, one to find the objective behind using specific scheduling 

technique, and secondly discussed the merits and possible enhancements to each technique. In 

Table 2, various algorithms have been listed. 

Zheng et al. [18] [2013] proposed Monte Carlo based Directed Acyclic Graph scheduling 

approach with the objective to minimize the makespan for BNP. This approach works well for 

any random distribution under heterogeneous environment. This approach gives competitive 

advantage compared to other static heuristic techniques. 

Ehsan et al. [19] [2013] proposed Stand deviation-based algorithm for task scheduling 

(SDBATS) to reduce schedule length and speedup the scheduling by assigning task priority.  

Kwok et al. [20] [1999] proposed to optimize the makespan by considering a wide range of 

techniques, genetic algorithm, randomization branch-and- bound and graph theory. Authors have 

proposed many useful static, heuristic algorithms (e.g. HEFT, MCP, ETF, and DLS) but that 

won’t the effective in today’s era of big data.  

Kanemitsu et al. [21] [2016] proposed clustering based task scheduling algorithm that 

minimizes the schedule length for heterogeneous processors. It is apt for data intensive 

application and has proven to be better than other list-based and clustering-based task scheduling 

algorithms.   

Abdelkader et al. [22] [2012] proposed dynamic task scheduling algorithm for heterogeneous 

systems called Clustering Based HEFT with Duplication (CBHD). This algorithm targets the 

three important parameters for getting better performance, minimize the makespan, load 

balancing and optimize the sleek time. 

Wang et al. [23] [2016] proposed Heterogeneous Scheduling algorithm with improved task 

Priority (HSIP) for improvising schedule length ratio and task priority. This algorithm performs 

two-step process first, identifies the task priority and second finds the best processor to execute 

the tasks. 

Ahmad et al. [24] [2012] proposed Performance Effective Genetic Algorithm (PEGA) which 

operates through large search space and finds the best solution using reproduction concept. 



Reproduction uses two operators namely crossover and mutation to select a random task and 

performs fitness function on it to select the best task to execute on the heterogeneous parallel 

multiprocessor system. 

Ahmad et al. [25] [2016] proposed Hybrid Genetic Algorithm (HGA) is a hybrid combination of 

HEFT heuristic and PEGA genetic algorithm. It provides optimize makespan and load balancing 

over heterogeneous systems. 

Valeria, et al. [26] [2015] proposed Distributed QoS-Aware Scheduling with self-adaptive 

capability in storm. By using this concept authors tried to overcome the limitation of high 

latency, less availability and poor system utilization in distributed data stream processing (DSP). 

Hamid et al. [27] [2013] proposed Predict Early Finish Time (PEFT) to speedup and optimize 

the makespan. It has two phases: a task prioritizing and a processor selection which identifies the 

task priority and allocates it to the best processor respectively.  

Khaldi et al. [28] [2015] proposed static-heuristic scheduler called Bounded Dominant 

Sequence Clustering (BDSC) is an extension of DSC limiting the memory constraints and the 

bounded number of processors. It is suitable for signal processing and image processing kind of 

application. 

Kenli Li et al. [29] [2015] proposed stochastic dynamic level scheduling (SDLS) algorithm to 

minimize the makespan. This algorithm outperforms when tasks arrive randomly. 

Jorge et al. [30] [2011] proposed Parallel Heterogeneous Earliest Finish Time (P-HEFT) which 

is an extension to HEFT. P-HEFT supports parallel task DAG which provides optimized 

makespan that makes it suitable for image processing type of application. 

Pravanjan Choudhury et al. [31] [2012] proposed online scheduling of dynamic task graphs. 

Algorithm provides dynamic path selection option by scheduling tasks at run time. The proposed 

algorithm is assumed to be limited to homogeneous systems. But it can be extended further to 

heterogeneous systems by taking the base of this algorithm.  

Tang, Z. et al. [32] [2015] proposed Self-Adaptive Reduce Scheduling (SARS) for Hadoop 

platform. During MapReduce phase, it reduces the waiting time by selecting an adaptive time to 

schedule the reduce task. This method reduces the turnaround time. 

Yuxiong et al. [33] [2011] proposed Multi-Queue Balancing (MQB) algorithm that minimizes 

the makespan and maximize the heterogeneous resource utilization. MQB has multiple queues 

for online scheduling to achieve better utilization and minimizing completion time.  
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2.3 Study of Scheduling Algorithms in Hadoop 

Hadoop supports three scheduling schemes in MapReduce framework: FIFO, Capacity [34] and 

Fair [35] scheduler. MapReduce1 (MR1) comes with all three with FIFO as default scheduler, 

while MR2 comes with capacity and fair scheduler, which can be further configured with delay 

scheduler to address the locality issue.  

A. Capacity Scheduler  

This is the default scheduler, which comes with the MR2 or YARN. The capacity scheduler’s 

configuration supports multiple queues, which can be allocated to multiple users based upon 

tasks or organization. This scheduler is designed with an idea that same cluster can be rented to 

multiple organization and resources may be divided to several users. Thus, the organization can 

divide their resources across multiple departments or users depending upon their tasks or the 

cluster can also be divided among multiple subsidiary organization. Each queue can be 

configured with fix portion of resources, which can be soft or hard. Generally, resources are soft 

having elastic allocation, but can also be configured for hard approach.  

Capacity scheduler makes use of FIFO (First-In First-Out) scheduling if multiple jobs are in the 

same queue. Suppose a job comes into the queue “A” and if queue “A” is empty, then it allocates 

all the resources to the first job. This would utilize more resources then configured capacity of 

queue, particularly if queue allocation is elastic and job requires more resources. When a new job 

comes in queue “B”, assuming that the first job is still running and using the resources more then 

it’s allocated capacity, then tasks of first job will be killed to free up the resources and allocate 

that resources to second job. Suppose if another job comes to the queue “A” or “B” the capacity 

scheduler will process it like FIFO or FIFO with priority. There are many features available like: 

capacity guarantee, elasticity, security etc. that can be customized as per requirement.  

B. Fair Scheduler  

Fair schedulers have similar queue configuration as discussed in capacity scheduler. Jobs would 

be submitted to the queue, which is termed as a “pool” in case of fair scheduler. Each job will 

use the allocated resources to their pools. As in capacity scheduler, FIFO approach is followed 

the jobs which are coming late has to wait till the time first job finishes or resources made 

available, so this problem is solved in the fair scheduler that the jobs which have waited in the 

queue would be picked up and would be processed in parallel with the same amount of resources 



shared by the applications which are in the same queue. Fair scheduler support three scheduling 

policy that is: FIFO, Fair, and DRF (Dominant Resource Fairness).  

In FAIR-FIFO scheduling policy, if multiple jobs are in the same queue then resources will be 

allocated to the job, which enters first in the queue, and each job will run serially. However, fair 

sharing is still being done between the queues.  

In FAIR-FAIR scheduling policy, the fair amount of resources will be shared by the jobs that are 

running in the same queue.  

FAIR-DRF scheduling policy is devised by Ghodsi. In FAIR-DRF scheduling policy, DRF 

evaluates the resources shared by each user, finds out the maximum of it, and calls it as a 

dominant resource of the user. The idea is to make uniform resource sharing among the users 

through equalizing the resources like CPU and Memory. 

2.4 Study of Performance Improvement Algorithms in Hadoop 

To improve performance of Hadoop many researchers have work on many diversified areas. In 

distributed computing load balancing is the key area which affects significantly in terms of 

overall performance as you’re working with thousands of computer in clusters. Many researchers 

have worked on performance improvement through effective load balancing using various 

custom designed algorithms and programming models. In paper [36] authors have summarized 

notable research contribution for load balancing by scheduling [37,38], load balancing during job 

processing [39,40] and load balancing using custom block placement [41-44]. In this section we 

summarize some of the noteworthy work done to achieve better performance in Hadoop using 

load balancing and custom block placement strategy.  

In paper [45] authors propose the approach which places the blocks based on region placement 

policy. Data is stored into plurality of regions rather than plurality of nodes. Therefore, complete 

replica of the region can be stored in a contiguous portion of data. This policy achieves great 

fault-tolerance and data locality for region-based cluster storage. Authors of paper [46] propose 

heterogeneous storage media aware strategy which collects storage media, processing capacity 

and stores them on different storage media types (i.e. HDD, SSD, RAM) according to workload 

balance. Experiment proves that it reduces imblancing of cluster. In paper [47] authors propose 

dynamic replica placement which works on Markov probability model and places replica 

homogeneously across the racks. Results shows better job completion time compare to HDFS 



and CDRM and also distribute the replica uniformly across all the nodes. In paper [48] authors 

propose strategy which considers network load and disk utilization for placing data blocks. 

Proposed strategy outperforms default and real-time block placement policy and achieves better 

performance in terms of throughput and storage space utilization. In paper [49] authors propose 

improved slot replica placement policy which considers heterogeneity of nodes and partitions all 

nodes in 4 sections to store data blocks. Section wise partition scheme achieves greater load 

balancing and eliminates the use of HDFS balancer. In paper [50] authors propose strategy which 

tracks spatial characteristics of data to co-locate them. If data blocks are geographically 

distributed across multiple data centres without concern where job is running then it degrades the 

performance tremendously. Here authors have achieved better query execution time by adding 

spatial data awareness which effectively reduces the job execution time. In paper [51] authors 

propose probability based DLMT (Data Local Map Task Slot) approach which adjusts the data 

placement rate in along with replica eviction policy to improve Hadoop performance and cluster 

space utilization respectively. In paper [52] authors propose a model called “Starfish” which 

dynamically adjusts the Hadoop parameter according to workload of job. Starfish work with each 

phase of Hadoop, starting with job level tuning, real time parameter adjustment and finally 

process scheduling. It achieves great performance compare to default Hadoop setup, placement 

policy and scheduling scheme. Below table 3 summarizes the work done by the researchers. 

 

 Performance 

Improvisation 

Factors 

Research Contribution Remarks 

A region-based 

placement policy 

Fault-tolerance 

and data locality 

Designed region based cluster 

storage system which stored once 

complete replica of the region on 

single node 

This scheme is helpful when 

plurality of region servers is 

required. 

Robust Data 

Placement 

Scheme (RDP) 

Load balancing 

and optimal 

network 

congestion 

Proposed RDP scheme considers 

the storage type (i.e. SSD, HDD 

and RAM) and processing speed 

of node for balancing. 

Authors have successfully 

demonstrate how storage type and 

computing capacity prediction can 

achieve better load balancing and 

reduce network overhead. 

Pre-processing for RDP scheme 

takes significant amount of time 

when multiple clusters with variety 

of nodes are there. 

Dynamic 

Replication 

Strategy 

(DRS) 

Job scheduling 

time and disk 

utilization rate 

Proposed dynamic replica 

placement based on Markov 

model. 

Authors have successfully tested 

model on homogeneous cluster.  

Authors have not considered the 

time for replication adjustment 

which is important justification. 



Network 

sensitive strategy 

Strong fault-

tolerance block 

placement and 

high throughput 

Designed scheme which considers 

network load for data placement. 

Try to place replica on low 

network loaded group of nodes. 

Proposed strategy reduces the inter-

rack transfers which eventually 

increase the performance also works 

with heterogeneous cluster. 

Authors have not considered the 

load imbalancing issue in Hadoop. 

Improved replica 

placement policy  

Load balancing Designed policy which evenly 

distributes the replicas into 

section. 

Proposed policy achieves even load 

balancing across nodes which 

eliminates the use of HDFS 

balancer. 

Policy only proposed for 

homogeneous cluster. 

CoS*-HDFS Reduce total 

execution time 

and network 

bandwidth.  

Proposed algorithm which is 

aware of geo-spatial data blocks. 

Proposed algorithm improves 

performance of MapReduce query 

execution and reduces network 

traffic. 

Data Replication 

Method 

Data locality and 

replication 

method 

Proposed LRFA* policy 

effectively uses storage space of 

cluster to achieve better data 

locality. 

Effectiveness and performance is 

not evaluated which they’ve 

claimed. 

Starfish Self-tuning 

approach 

Proposed self-tuning Hadoop 

model to achieve better 

performance. 

Improved block placement policy 

significantly improves job running 

time. Dynamic tuning also tested 

successfully.  

*CoS- Co-Locating Geo-Distributed Spatial Data, LRFA- Least Recently Frequently Access 

Table 3  Performance Improvement Related Research Contribution 

 

  



Chapter 3: Proposed Model 

To achieve to better performance for big data processing we target upon two important aspects of 

heterogeneous distributed computing: file system management and process management.  

First, file system management basically controls the block placement and allows us to rearrange 

the blocks to specified nodes based upon two important approaches of load balancing:  

1. Balance the load among heterogeneous and homogeneous nodes of the cluster.  

2. Balance the load within the cluster based on the processing capability of each node by 

giving priority to each node.  

Our proposed algorithm allows the user to select the nodes based on their individual data 

processing capability and rearrange the blocks which are placed using the default policy. Default 

block placement policy of HDFS fails to achieve optimized performance as it does not check the 

processing capability of the node while placing blocks to that node. Our proposed algorithm 

achieves that by considering processing capability of nodes and places blocks which has higher 

processing capability and if nodes are having same processing capacity then it also checks its 

utilization, and considers the less utilized node first, for block placement. For processing 

capability assignment we use static priority assignment in config.xml file. We have assigned 

priority-2 to the nodes where we want to rearrange all blocks and priority-1 to the nodes which 

won’t contain any blocks. By doing this we have control over data to be put on selected nodes, 

considering processing capacity and utilization of nodes. 

Second, we use the concept of node labeling to achieve better process management. YARN Node 

label [53] allows partitioning the single cluster among multiple sub-clusters. Using this concept 

we can mark nodes with meaningful labels i.e. Nodes with higher processing capability may be 

labeled as “high_cpu” and with high memory may be labeled as “high_mem”.  By combining the 

proposed algorithm with node label, we can actually select where to put jobs. To achieve better 

data locality we put our job to the nodes where data is actually rearranged by our algorithm. At 

last, we use Hadoop scheduling to put jobs in queues for job processing. This also limits the 

overhead of internode and inter-rack data transfer, since process (containers) and data blocks are 

on to the same nodes. Figure 8 shows our proposed model. 

 



 

Figure 8  “Saksham” Model 

3.1 Saksham: Block Rearrangement Algorithm 

Hadoop uses “Rack Awareness” while placing data blocks for fault tolerance and to achieve 

better performance. ”Rack Awareness” is a concept Hadoop uses to place read/write request to 

the same rack or nearby rack [54]. This concept helps to achieve better data locality as discussed 

in section 2. MapReduce de facto standard tries to move the job where data is stored. But, that 

node may not have sufficient processing capability or job may get skewed due to less 

processing/memory capability. Hence, we propose “Saksham: Resource Aware” algorithm which 

rearranges the data blocks according to user defined processing capability or heterogeneity of 

environment. 



We can apply custom block rearrangement policy by considering two distinct ways. First, we 

have heterogeneous nodes with different computational capability. Second, we can assign two 

separate groups for processing depending upon needs of application, homogeneous and 

heterogeneous nodes. Initially default HDFS block placement policy places data blocks as shown 

in fig. 9. Figure 9 shows how data placement would place 8 blocks, if client requests from node1 

considering replication factor 3. 

For the first way, we will consider processing capability of nodes for forming a group. For 

this case, we have considered heterogeneous nodes so nodes are having different processing 

capability. Few nodes are comparatively slower which may degrade the overall performance of 

processing. We’ve divided nodes into two groups priority=1 and priority=2. Assigned priority=2 

for nodes which have more processing capability and priority=1 which has lower processing 

capability. These settings will take place in config.xml file. Once priority is set our “Saksham” 

algorithm will rearrange the blocks of specified HDFS file path and store all blocks onto the 

nodes which have priority=2 and remove all the blocks from nodes which has priority=1.  

For the second way, we will formulate the group of homogeneous and heterogeneous nodes. 

We can assign priority 1 or 2 to either of the group. Depends upon big data processing 

application need we can rearrange all blocks to heterogeneous nodes or homogeneous nodes 

only. Only nodes with priority=2 will store the blocks and with priority=1 will not store any of 

them. 

 
Figure 9  HDFS Default Block Placement Example 



While placing all blocks our proposed algorithm also take care that blocks of a file will 

distribute equally over all the nodes by considering disk usage of each node. Each time before 

placing the block of file it checks that node should not contain a replica of the same block. The 

fact that Hadoop works better for the homogeneous environment, fulfilled by our strategy even 

though cluster is heterogeneous. Figure 10 demonstrates how our proposed “Saksham: Resource 

Aware Block Rearrangement” policy can rearrange blocks according to a priority assigned.  

 

Figure 10  “Saksham” Approach: Group-1: Priority=2; Group-2: Priority=1 

Below fig.11  is the proposed “Sakasham: Resource Aware Block Rearrangement” algorithm.    

- Firstly, algorithm checks the HDFS path contains blocks and also collects the list of 

datanodes from the DatanodeInfo, Hadoop API and stored them in arraylist.  

- Secondly, based upon statically configured config.xml file it checks the priority assigned to 

each node and segregates the nodes in two lists i.e node_list1 (priority-1) and node_list2 

(priority-2).  

- In last step blocks along with each replica will be rearranged in nodes which are having 

priority-2. For rearrangement, it checks the disk utilization and processing capability of each 

node. 

 

 



Algorithm 1 Saksham: Resource Aware Block Rearrangement algorithm  

Input: HDFS location of input files to be balanced / rearranged 

File contains list of data blocks which are placed in HDFS using default policy. 

Output: Data blocks will be placed to specific nodes only based on given priority factor. 

1)  if input HDFS path != null 

2)  foreach locatedBlocks block : nameNode.getLocatedBlocks() do 

3)  Put blocks in arraylist<block_list> 

4) endfor 

5)  endif 

6)  foreach DatanodeInfo node : getDatanodeStats(Live) do 

7) if nodes in config.xml != null 

8)  Add nodes in arralylist<datanodes> 

9) endif 

10) endfor 

11) foreach BalancerDataNode node : datanodes do 

12) if nodes.priority = 1.0 

13)  Add nodes in arralylist<node_list1> 

14) elseif nodes.priority = 2.0 

15)  Add nodes in arralylist<node_list2> 

16) endif 

17) endfor 

18) Sort node_list2 by disk utilization in ascending order 

19) for each block replica do 

20) Initialize <block_list>  queue with all blocks 

21) Initialize <node_list2>  nodes with priority=2 

22) for each block replica in <block_list> do 

23)  if (find first node form <node_list2>) doesn’t contains(block) 

24)   Put block onto  selected node 

25)   Remove node from <node_list2> 

26)   if node_list2 is empty 

27)    Initialize with all nodes with priority=2 

28)   endif 

29)  endif 

30) endfor 

31) endfor 
 

Figure 11  Proposed “Saksham” algorithm 

  



Chapter 4: Results 

4.1 Experiment Setup 

We have tested our experiment on Grid’5000 [55] heterogeneous cluster. Grid’5000 is large-

scale distributed testbed for the researchers to experiment their research on high configurable 

cluster. We have used 10 nodes for our experiment. The cluster is configured for Hadoop 2.7.2 

version. The configuration of nodes is shown in below table 4. Table 4 shows the heterogeneity 

of nodes in terms of CPU, memory, storage, number of cores and networks. Table 5 shows 

priority and node label settings for block rearrangement and the job processing respectively. 

CPU Detail Specifications No of nodes 

Intel Xeon E5-

2630 v3 

CPU: 2 CPUs/node 

Cores: 8 cores/CPU 

Memory: 128 GB 

memory Storage: 558 

GB/node, 10 Network: 

10 Gbps  

Parasilo-[1-6] 

Total - 6 

Intel Xeon X5570 CPU: 2 CPUs/node 

Cores: 4 cores/CPU 

Memory: 24 GB 

memory Storage: 465 

GB/node, 10 Network: 

20 Gbps 

Parapide-[1-4] 

Total - 4 

Table 4 Hadoop 2.7.2 heterogeneous cluster configuration 

Priority-2 Priority-1 

Node Label – “high_cpu” Node Label – “low_cpu” 

parasilo-1.rennes.grid5000.fr parapide-1.rennes.grid5000.fr 

parasilo-2.rennes.grid5000.fr parapide-2.rennes.grid5000.fr 

parasilo-3.rennes.grid5000.fr parapide-3.rennes.grid5000.fr 

parasilo-4.rennes.grid5000.fr parapide-4.rennes.grid5000.fr 

parasilo-5.rennes.grid5000.fr  

parasilo-6.rennes.grid5000.fr  

Table 5 Data placement priority and node label settings 

 



4.1 Experiment Results 

Initially, we have placed blocks using the default HDFS block placement policy. Afterwards, we 

have applied “Saksham” block rearrangement policy according to settings described in table 4. 

We have tested our “Saksham” algorithm using 2 datasets of different sizes. First, “Bag of 

words” static text data set of 5 GB and 10 GB. Second 5 GB and 10 GB data generated using 

TeraGen utility. TeraGen generates random data that can be conveniently used as input data for a 

subsequent TeraSort run. Text data set is placed using the default HDFS placement policy while 

TeraGen generates data using MapReduce and places accordingly. In both, the case replication 

factor is 3 so total block size for rearrangement is 15 GB and 30 GB. Figure 12 [A-B] and fig. 13 

[A-B] shows how blocks are rearranged from default placement to our selected nodes only (i.e. 

parasilo-[1-6]) with priority is set to 2. 

 

Figure 12 [A]  Saksham Balancing: Text dataset (A) Size-15 GB  
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Figure 132 [B]  Saksham Balancing: Text dataset (B) Size-30 GB  

 

Figure 13[A]  Saksham Balancing: TeraGen dataset (A) Size- 15 GB 
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Figure 13[B]  Saksham Balancing: TeraGen dataset (B) Size- 30 GB 

 
Table 6  Disk utilization of all nodes for different datasize 

Results of table 6 also show that our “Saksham” algorithm is successfully configured and all 

the blocks are rearranged to the nodes which have prirority-2 and disk utilization of nodes is also 

merely same. Figure 14 shows rearrangement time taken by “Saksham” algorithm. 
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Default 
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Saksham 

Balancing

Default 

Placement

Saksham 

Balancing

Default 

Placement

Saksham 

Balancing

Default 

Placement

Saksham 

Balancing

Parasilo-1 5.04 2.55 9.85 5.08 2.41 2.45 1.94 4.77

Parasilo-2 0.50 2.53 2.02 4.93 1.12 2.43 2.23 4.80

Parasilo-3 0.50 2.51 2.52 5.09 0.65 2.49 1.29 4.79

Parasilo-4 0.50 2.51 1.51 4.95 1.01 2.39 3.23 4.85

Parasilo-5 0.50 2.51 3.02 5.01 1.12 2.38 2.87 4.80

Parasilo-6 1.51 2.52 1.01 4.96 1.94 2.44 4.81 4.76

Parapide-1 1.01 28 kb 3.03 28 kb 1.94 28 kb 3.23 28 kb

Parapide-2 2.02 28 kb 3.02 28 kb 1.29 28 kb 1.87 28 kb

Parapide-3 1.51 28 kb 2.52 28 kb 2.41 28 kb 5.35 28 kb

Parapide-4 2.02 28 kb 1.51 28 kb 0.70 28 kb 1.94 28 kb
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Figure 14  Saksham block rearrangement time 

 

We successfully achieved control over block rearrangement based upon the priority assigned 

to the nodes. Next, we have assigned Node Labels to the nodes according to table 5 and using 

YARN resource manager we schedule the jobs according to given labels. This approach will 

prove the effectiveness of the proposed algorithm.  

We have used two standard job applications for testing to prove the effectiveness of our 

proposed approach. 

1. WordCount: Standard “bag of words”static test dataset is used for the counting job. 

Wordcount application counts the total no. of words from the file using MapReduce 

programming to achieve parallelism. 

2. TeraSort: The TeraSort benchmark is the most well-known Hadoop benchmark for 

stress testing. To perform the sorting on data generated by TeraGen using MapReduce 

programming.  

We use two datasets of size 10 GB and 20 GB for our experiment. We focus on two important 

parameters of performance improvement in Hadoop, data locality and job execution time. If data 

locality gets improve proportionally it improves MapReduce job processing time. We compared 

our strategy with default placement execution time and after applying only node labeling without 

“Saksham” balancing.  Table 7 shows the result of total tasks launched, data local found and data 

locality in percentage. Figure 15 shows the comparative result of data locality achieved by 
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various strategies. Results prove that our “Saksham” algorithm with node labeling approach 

achieves almost 90% data locality which is far better than other strategies. 

 

Table 7  Data locality results for various strategies 

 

Figure 15  Comparison of data locality achieved 

 

Last, we use default Hadoop schedulers for our test. We combine our “Saksham” algorithm 

plus node labeling and schedule the jobs for testing. We test using following schedulers to see 

the effectiveness: capacity and fair scheduler. Fair scheduler has three policies: Fair-FIFO, Fair-

Fair and Fair-DRF. We compare the job execution time of our propose approach with default 

MapReduce execution, execution using node labeling w/o “Saksham” balancing. Figure [16-19] 

shows results of job execution time of two jobs (i.e. wordcount and terasort) using different 

schedulers.  
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Figure 16 Job Execution Time using Capacity Scheduler 

 

Figure 17 Job Execution Time using Fair-FIFO Scheduler 

 

Figure 18 Job Execution Time using Fair-Fair Scheduler 
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Figure 19 Job Execution Time using Fair-DRF Scheduler 

 

Results show that mere implementation of node labeling creates overhead of the internode and 

interrack block transfer and increase the job execution time. But our “Saksahm” algorithm in 

combination with node labeling achieves optimized result. Below fig. 20 proves that Fair-Fair 

scheduling strategy works better compare to capacity, fair-fair, fair-drf policies. 

 

 

Figure 20 Comparison of Job Execution Time using “Saksham” policy 
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Chapter 5: Conclusion 

HDFS is an important core component of Apache Hadoop. Not only does it simply store data in a 

virtual file system, but HDFS also greatly affects and guides the MapReduce layer. By carefully 

rearranging blocks in the cluster, we can improve the performance of HDFS and thus also the 

overall performance of Apache Hadoop. This thesis contributes to the research of optimal data 

placement in large-scale server clusters. 

Default block placement policy does not consider processing capability of nodes for placing 

data blocks. MapReduce job try to place process where data blocks are stored but it might be 

possible that the few nodes which are having data block may not have processing capability. 

Therefore, it is required to shift the process where processing capability is available and in that 

case, it may require to move blocks where the process is running. This affects to overall Hadoop 

performance which is an area of concern. 

We propose Saksham: block rearrangement policy which leverages the processing capacity of 

CPU, during block placement. This approach will be helpful in MapReduce to minimize the 

internode and inter-rack transfer. We have demonstrated that we can place data blocks of a 

specific file to specific nodes only. This approach will not affect the overall load balancing of a 

cluster as rest of the files won’t be affected. Experimental results prove that with the use of 

proposed scheme and Fair-Fair scheduler, Hadoop can achieve better performance for Big Data 

processing.   

Considering all cluster nodes’ processing capability plays an important role in a distributed 

computation framework. We show that distributing blocks and their replica rearrangement on 

desired cluster nodes, improves the performance of HDFS. The MapReduce layer is able to place 

a greater number of application copies onto cluster nodes with data locally available.  

In conclusion, we believe that our “Saksham” block rearrangement algorithm is an 

improvement over the HDFS default blocks placement policy and “Saksham” policy combined 

with node labeling yield a greater performance over Hadoop default performance. 

In future enhancement, it would be possible to replace default block placement policy with 

our “Saksham” policy for direct block placement. However, that would require a lot of 

modification in existing API. It is also possible to think over implementing dynamic priority 

assignment based on processing capability or hardware specifications. 
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