
Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 56

Chapter 4

 DmRT for NUMA

In this chapter, the dynamic memory allocator called DmRT for Non-uniform memory

access (NUMA) architecture will be discussed. As such, there is no change in strategies, policies,

and mechanisms which have been used in DmRT for SMP but one more strategy has been

introduced to find out the remote memory.

 All the design principals such as strategies, policies, and mechanisms are briefly explained

first, then, the method to find out remote memory for NUMA with its results with different test

cases has been discussed.

4.1 Design Principals

Figure 4.1: NUMA Architecture

CPU

0

CPU

1

CPU

2

RAM Bus

CPU

3

CPU

4

CPU

5

Bus
RAM

Router

Node 1

Node 2

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 57

 NUMA (Non-uniform memory access) is one type of design for computer memory, used

in multiprocessing, in which the access time of memory depends on the memory location relative

to the processor. In NUMA architecture, a processor can read/write faster from its local memory

than the non-local one like the local memory of other processor or shared memory between

processors. The benefits of NUMA are limited to particular workloads, mainly on the servers

where the data is often associated strongly with certain tasks or users.

 In a high-performance computing generation, NUMA is the future of SMP, but its

architecture is more complex than the Symmetric multiprocessors. Figure 4.1 shows simple

NUMA architecture with two nodes each containing more than one processor and all are sharing

a common memory. However, they may have their local memory as well. There are other complex

architectures also available which can have 4 or 8 nodes. 4 nodes architecture has been considered

for this proposed memory allocator, however, it is very easy to scale it up to 8 nodes.

 In this chapter, a dynamic memory allocator DmRT for NUMA has been proposed and its

design principals, pseudo code and results with different test cases have been discussed.

4.1.1 Strategy for selecting Remote Memory

 The memory allocator which can work on NUMA based architecture for the real-time

operating system has been displayed in figure 4.2. There are total four nodes where each node has

two processors and each processor within a node are connected with a bus. These all nodes are

connected with shared memory with their own local (private) memory.

 When any processor requires a memory block, it, first, checks into its local memory; if the

required memory block is available, then it will allocate the same block from the local memory.

Now, if it fails in finding a local memory, then, it tries to access it from the shared memory. Here,

if the memory block is available in shared memory, then it will be allocated. If the block is not

found in shared memory also, then, it will ask another processor which is lightly loaded in terms

of memory. So, the next step is to find the lightly loaded processor.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 58

Figure 4.2: Complex NUMA Structure (4 Nodes)

 According to memory utilization, each processor can be categorized into four categories as

under:

 1) Ideal

 2) Heavily Loaded

 3) Normal Loaded

 4) Lightly Loaded

 The first step is to calculate the average load for memory utilization of all processors using

the following equation [85] [111].

𝑀𝑒𝑚𝑢_𝑎𝑣𝑔 =
𝑀𝑒𝑚𝑢1 + 𝑀𝑒𝑚𝑢2 + 𝑀𝑒𝑚𝑢3 + ⋯ + 𝑀𝑒𝑚𝑢𝑛

𝑛

4.1

 The second step is to find the upper and lower threshold value for memory utilization using

the following equation [85] [111].

TU = U × Mem u_avg

TL = L × Mem u_avg

4.2

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 59

Where, TU = upper limit of threshold,

 TL = lower limit of threshold,

 U and L are constants. (U >1 and L< 1)

 In the proposed algorithm DmRT, U and L are set to 1.3 and 0.7 respectively, which is

interpreted like this. If the memory utilization of a processor is 30% above the 𝑀𝑒𝑚𝑢_𝑎𝑣𝑔, the

processor is said to be heavily loaded and if the memory utilization of a processor is 70% of the

𝑀𝑒𝑚𝑢_𝑎𝑣𝑔, it is said to be a lightly loaded processor; otherwise, it is considered as a normally

loaded processor.

 For example, 𝑀𝑒𝑚𝑢_𝑎𝑣𝑔 is 50, then heavily loaded node can be considered as 30 % above

𝑀𝑒𝑚𝑢_𝑎𝑣𝑔 (50 + 30 % of 50 = 65) i.e. its value is 65. And lightly loaded node can be considered

as 70 % of 𝑀𝑒𝑚𝑢_𝑎𝑣𝑔 (70% of 50 = 35) i.e. its value is 35.

 Hence, Light weight Memory <= 35% Memory utilization

 Heavy weight Memory >= 65% Memory utilization

 Average (Normal) weight Memory > 35% to < 65% Memory utilization

 Ideal Memory < 10% Memory utilization. Ideal Memory is one of the categories for DmRT

memory structure in which there is no utilization or memory is only utilized for startup process of

processor [85]. The next step is to select the appropriate processor’s memory for allocating the

memory. Here, which memory will be used to allocate the memory block is decided.

4.1.2 Multiple strategies for different sizes of blocks

 As stated earlier, various strategies have been used for allocating the different size of blocks

to achieve the benefits of all policies, strategies, and mechanisms.

i. A small block whose size of memory block is < 512 bytes

ii. A normal block whose size of memory block is < threshold (Some predefined size, here,

2Mb)

iii. A large block whose size for request exceeds the threshold or some predefined size

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 60

4.1.3 Search Policies and Mechanisms

 After defining the strategies, the following policies and mechanisms have been considered

to implement these strategies.

I. First, for Small blocks, the best-fit policy is used and implemented using exact-fit

mechanisms to reduce the fragmentation in small sizes of blocks due to rounding up the

request size of the memory block.

II. Second, for Normal blocks, the good-fit policy is used implemented using segregated lists,

which in turn uses an array of unallocated block lists.

III. Finally, for Large blocks, the worst-fit policy is used.

4.1.4 Arrangement of blocks

 The arrangement of the block is same as discussed in Symmetric Multiprocessing

architecture (SMP) in section 3.1.3.

4.2 Pseudo code of Proposed Allocator for NUMA: DmRT

 Pseudo code for the arrangement of the block and allocating a memory block is the same

as what has been discussed in SMP in section 3.2. But pseudo code to find remote node is

mentioned below:

4.2.1 Remote Node Search

Memui= Memory utilization of ith node

Memus= Memory utilization of self node

TU = upper limit of threshold,

TL = lower limit of threshold,

U and L are constants. (U>1 and L < 1)

Here U = 1.3 and L = 0.7

𝑴𝒆𝒎𝒖_𝒂𝒗𝒈= Average Memory utilization of all available nodes including shared memory

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 61

BEGIN

Calculate Memory Utilization of each node

Find Average Memory Utilization.

𝑴𝒆𝒎𝒖_𝒂𝒗𝒈 =
𝑴𝒆𝒎𝒖𝟏 + 𝑴𝒆𝒎𝒖𝟐 + 𝑴𝒆𝒎𝒖𝟑 + ⋯ + 𝑴𝒆𝒎𝒖𝒏

𝒏

Find Upper and Lower Threshold Values

TU = H × Memu_avg

TL = L × Memu_avg

Sort node in ascending order of utilization

Categorize each node Ideal, lightly loaded, Average Loaded and Heavily Loaded

IF Self node is Ideal Node THEN

Use local memory of self-node for utilization.

ELSE IF Ideal Node is available THEN

Use local memory of ideal node for utilization

ELSE IF Lightly Loaded Node is available THEN

 IF Memory utilization of Lightly Loaded Node <= Memus THEN

Use local memory of Lightly Loaded node for utilization.

 ELSE

Use local memory of self-node for utilization.

 ENDIF

ELSE IF Average Loaded Node is available THEN

 IF Memory utilization of Average Loaded Node <= Memus THEN

Use local memory of Average Loaded node for utilization.

 ELSE

Use local memory of self-node for utilization.

 ENDIF

ELSE

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 62

Use local memory of self-node for utilization.

 ENDIF

END

4.3 Results

Here, four different test cases have been considered for NUMA which are mentioned below:

Case 1: Existing allocators from Local and DmRT follows Local → Shared → Ideal

 Existing allocators (Dlmalloc, tcmalloc and TLSF) allocate memory block from Local

Memory while DmRT, first, tries to allocate a block from Local Memory. If it fails to do so, then,

it attempts the same from Shared memory. If it fails, here too, it tries to find ideal memory and

allocates a block from it. As DmRT tries to find a memory block from three different types of

memory, its execution time will be more than the other allocators, but it provides a consistent

execution time. Along with that, it satisfies the maximum number of the requests as well as creates

less fragmentation due to proposed allocator (DmRT) structure.

Case 2: Existing allocators from Local and DmRT from Ideal

 In this case, all existing allocators allocate memory block from Local memory only, while

DmRT, first, finds the ideal memory and it will allocate a memory block from it. Here, existing

allocators allocate the blocks from local memory only that is why they have less number of request

satisfactions while DmRT has a maximum number of request satisfaction. The other parameters

can also perform the best due to its structure.

Case 3: Existing allocators and DmRT both from Ideal

 In this case, the existing allocators and DmRT, both first find ideal memory and allocate a

block from it. As existing allocators and DmRT, both allocate memory from the ideal memory, the

execution time will be almost same but the DmRT will have a maximum number of request

satisfied and less fragmentation as an added advantage.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 63

Case 4: Existing allocators and DmRT follow Local → Shared → Ideal

 In this case, the existing allocators and DmRT, both first, try to allocate memory block

from local and if they fail, they try to allocate the same block from shared memory. If they fail in

shared memory too, then, they find ideal memory and allocate same memory block from it. Though

both, the existing allocators and DmRT, follow the same path from allocating memory, the

proposed allocator, DmRT, defeats all of them from all aspects.

In each case, there are three different test categories have been used.

a. Best case, i.e. the test has been carried out for 100 memory blocks request.

b. Average case, i.e. the test has been carried out for 1000 memory blocks request.

c. Worst case, i.e. the test has been carried out for 2000 memory blocks request.

There are three main parameters which have been considered for the results.

 Parameter 1: The execution time should be consistent and minimum.

 Parameter 2: Fragmentation should be as low as possible.

 Parameter 3: The number of Requests Satisfied should be as high as possible.

For comparisons, the following four memory management algorithms have been used.

a. Dlmalloc

b. tcmalloc

c. TLSF

d. DmRT

 All the tests have been carried out on MemSimRT which will be discussed in detail in

chapter 5. Each result mentioned here is the average of 100 attempts. The 100 attempts of each

case have been mentioned in the Annexure I.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 64

4.3.1 Existing from Local and DmRT follows Local → Shared → Ideal

 1. Average of 100 attempts (Best Case, i.e., for 100 memory block requests)

Table 4.1: Existing from Local and DmRT follows Local → Shared → Ideal (Best Case)

Algorithms Dlmalloc tcmalloc TLSF DmRT

Parameters

Execution Time (ms) 326.2426 410.8068 290.2026 374.3901

Fragmentation in (%) 43.5037 36.6849 21.5874 10.5141

Request Satisfied in (%) 57.5068 62.3301 76.6088 94.6614

As shown in Figure 4.1, the DmRT

takes more execution time than the

DLmalloc and the TLSF because the

DmRT follows the path of memory

allocation from Local to Shared to

Ideal, whereas and the existing

algorithms allocate from local

memory only. In this scenario also,

tcmalloc takes maximum execution

time.

Figure 4.3: Execution time of Memory allocators in

Best case

As shown in figure 4.2, the DmRT

satisfies the maximum requests and

has the lowest fragmentation as

compared to all other dynamic

memory allocators, and Dlmalloc

performs exactly opposite to it.

Figure 4.4: Fragmentation & Request Satisfied of

Memory allocators in Best case

0

100

200

300

400

500

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 50 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & NO. OF REQUEST
SATISFIEDM

E
M

O
R

Y
 A

L
L

O
C

A
T

O
R

S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 65

2. Average of 100 attempts (Average Case, i.e., for 1000 memory block requests)

Table 4.2: Existing from Local and DmRT follows Local → Shared → Ideal (Average Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 2013.324 2988.474 1522.335 2303.212

Fragmentation in (%) 52.5491 44.4944 29.5867 15.6241

Request Satisfied in (%) 45.2403 54.2546 65.6095 87.4181

As shown in Figure 4.5, even for 1000

blocks requests, the DmRT takes

more execution time than the

DLmalloc and TLSF, as the DmRT

follows the path of memory allocation

from Local to shared to Ideal and the

existing ones allocate from the local

memory only. Here also, tcmalloc

takes the maximum execution time.
Figure 4.5: Execution time of Memory allocators in

Average case

As shown in figure 4.6, the DmRT

satisfies the maximum requests and

has the lowest fragmentation with

reference to all other dynamic

memory allocators, and Dlmalloc

performs exactly opposite to DmRT.

Dlmalloc causes a higher amount of

Fragmentation than satisfying

number of requests. Figure 4.6: Fragmentation & Request Satisfied of

Memory allocators in Average case

0

500

1000

1500

2000

2500

3000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

E
 T

IM
E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATIDFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 66

3. Average of 100 attempts (Worst Case, i.e., for 2000 memory block requests)

Table 4.3: Existing from Local and DmRT follows Local → Shared → Ideal (Worst Case)

Algorithms Dlmalloc Tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 3202.561 4348.651 2049.025 3361.854

Fragmentation in (%) 61.4645 43.3702 36.5828 20.5572

Request Satisfied in (%) 35.006 50.0315 60.055 82.3775

As shown in Figure 4.7, for 2000

blocks requests also, the DmRT

takes more execution time than

DLmalloc and TLSF. Here too, it

follows the same path of memory

allocation from Local to shared to

Ideal. The existing allocators

allocate the same from local

memory only yet the tcmalloc takes

the maximum execution time.

Figure 4.7: Execution time of Memory allocators in

Worst case

As shown in figure 4.8, the DmRT

satisfies maximum requests and

shows the lowest fragmentation in

comparison with all other dynamic

memory allocators. The Dlmalloc

is exactly opposite to it causing

higher Fragmentation than

satisfying the number of

requests.
Figure 4.8: Fragmentation & Request Satisfied of

Memory allocators in Worst case

0

1000

2000

3000

4000

5000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATIDFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 67

4.3.2 Existing From Local and DmRT from Ideal

1. Average of 100 attempts (Best Case, i.e., for 100 memory block requests)

Table 4.4: Existing From Local and DmRT from Ideal (Best Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 338.0589 420.5202 296.4418 245.4583

Fragmentation in (%) 45.2763 33.6326 24.0237 15.4697

Request Satisfied in (%) 57.7885 64.1904 76.9458 89.9526

As shown in figure 4.9, the

DmRT takes minimum

execution time as compared

to all other dynamic memory

allocators, whereas tcmalloc

takes the maximum execution

time.

Figure 4.9: Execution time of Memory allocators in Best

case

As shown in figure 4.10, the

DmRT satisfies the

maximum requests and has

the lowest fragmentation

due to allocation of memory

from Ideal memory as

compared to all other

dynamic memory allocators.

The Dlmalloc has the exactly

opposite performance.

Figure 4.10: Fragmentation & Request Satisfied of

Memory allocators in Best case

0

100

200

300

400

500

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 68

2. Average of 100 attempts (Average Case, i.e., for 1000 memory block requests)

Table 4.5: Existing From Local and DmRT from Ideal (Average Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 2054.716 2995.241 1539.964 1115.835

Fragmentation in (%) 61.1009 53.0719 37.7599 26.0615

Request Satisfied in (%) 34.3767 50.9882 61.8621 73.6385

As shown in figure 4.11, the

DmRT takes the minimum

execution time among all

dynamic memory allocators, and

tcmalloc takes the maximum

execution time.

Figure 4.11: Execution time of Memory allocators in

Average case

As shown in figure 4.12, the

DmRT satisfies the maximum

requests and shows the lowest

fragmentation among all other

dynamic memory allocators, and

performance point of view, the

Dlmalloc is exactly opposite. It

causes a higher amount of

Fragmentation than satisfying

the number of requests.
Figure 4.12: Fragmentation & Request Satisfied of

Memory allocators in Average case

0

1000

2000

3000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 69

3. Average of 100 attempts (Worst Case, i.e., for 2000 memory block requests)

Table 4.6: Existing From Local and DmRT from Ideal (Worst Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 3283.047 4288.159 2064.704 1785.676

Fragmentation in (%) 60.4389 43.6719 32.0433 26.9948

Request Satisfied in (%) 34.9105 49.962 59.887 74.1195

As shown in figure 4.13, the

DmRT takes minimum

execution time as compared to

all other dynamic memory

allocators and the tcmalloc

takes the maximum execution

time.

Figure 4.13: Execution time of Memory allocators in

Worst case

As shown in figure 4.14, the

DmRT satisfies the maximum

requests and has the lowest

fragmentation among all. The

Dlmalloc performs exactly

opposite to the DmRT with a

higher amount of

Fragmentation than

satisfying the number of

requests. Figure 4.14: Fragmentation & Request Satisfied of

Memory allocators in Worst case

0

1000

2000

3000

4000

5000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80

Dlmalloc

tcmalloc

TLSF

DmRT

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 70

4.3.3 Existing and DmRT Both from Ideal

1. Average of 100 attempts (Best Case, i.e., for 100 memory block requests)

Table 4.7: Existing and DmRT Both from Ideal (Best Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 374.8572 444.5905 319.6948 249.566

Fragmentation in (%) 35.2178 26.3902 19.2872 14.5781

Request Satisfied in (%) 67.5358 72.1999 83.1096 89.1851

As shown in figure 4.15, the

DmRT takes minimum

execution time as compared to

all other dynamic memory

allocators, and tcmalloc takes

maximum execution time even

though all allocators allocate

from Ideal memory.

Figure 4.15: Execution time of Memory allocators in Best

case

As shown in figure 4.16,

Though all allocators are

allocating memory from Ideal

memory, the DmRT has the

maximum number of

requests satisfied and has the

lowest fragmentation. The

Dlmalloc is exactly opposite to

it, as it has been.
Figure 4.16: Fragmentation & Request Satisfied of

Memory allocators in Best case

0

100

200

300

400

500

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 71

2. Average of 100 attempts (Average Case, i.e., for 1000 memory block requests)

Table 4.8: Existing and DmRT Both from Ideal (Average Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 2110.58 3240.527 1530.277 1149.484

Fragmentation in (%) 43.0248 35.5497 26.3408 19.7854

Request Satisfied in (%) 55.5939 64.722 73.3219 81.1776

As shown in figure 4.17,

For 1000 blocks request, though

all allocators are allocating

memory from the Ideal memory,

the DmRT takes the minimum

execution time as compared to

all other dynamic memory

allocators, and tcmalloc takes the

maximum.

Figure 4.17: Execution time of Memory allocators in

Average case

As shown in figure 4.18,

For 1000 blocks request, though

all allocators are allocating

memory from the Ideal memory,

DmRT, as usual, satisfies the

maximum requests with the

lowest fragmentation among

all. The Dlmalloc does exactly

opposite to it.
Figure 4.18: Fragmentation & Request Satisfied of

Memory allocators in Average case

0

1000

2000

3000

4000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 72

3. Average of 100 attempts (Worst Case, i.e., for 2000 memory block requests)

Table 4.9: Existing and DmRT Both from Ideal (Worst Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 3277.428 4467.102 2172.658 1860.321

Fragmentation in (%) 52.6015 43.6602 35.9747 25.1212

Request Satisfied in (%) 44.834 52.813 64.469 74.053

As shown in figure 4.19, Though

all allocators are allocating

memory from the Ideal memory,

the DmRT takes minimum

execution time among all and the

tcmalloc takes the maximum

execution time.

Figure 4.19: Execution time of Memory allocators in

Worst case

As shown in figure 4.20, though

all allocators are allocating

memory from the Ideal memory,

the DmRT has the highest

satisfying requests and has the

lowest fragmentation. The

Dlmalloc causes a higher amount

of Fragmentation than

satisfying the number of

requests.

Figure 4.20: Fragmentation & Request Satisfied of

Memory allocators in Worst case

0

1000

2000

3000

4000

5000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 73

4.3.4 Existing and DmRT follow Local → Shared → Ideal

1. Average of 100 attempts (Best Case, i.e., for 100 memory block requests)

Table 4.10: Existing and DmRT follow Local → Shared → Ideal (Best Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 528.5204 636.5573 480.8449 385.8492

Fragmentation in (%) 31.4948 23.8764 17.5356 10.4119

Request Satisfied in (%) 71.7431 78.1612 86.8777 93.7361

As shown in figure 4.21,

Though all allocators following

the path of Local, Shared and Ideal

memory for allocating memory,

DmRT takes minimum execution

time compared to all other

dynamic memory allocators, and

tcmalloc takes maximum

execution time. Figure 4.21: Execution time of Memory allocators in

Best case

As shown in figure 4.22,

Though all allocators following

the path of Local, Shared and Ideal

memory for allocating memory,

the DmRT satisfies the

maximum requests with the

lowest fragmentation and

Dlmalloc does exactly opposite to

it. Figure 4.22: Fragmentation & Request Satisfied of

Memory allocators in Best case

0

200

400

600

800

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 74

2. Average of 100 attempts (Average Case, i.e., for 1000 memory block requests)

Table 4.11: Existing and DmRT follow Local → Shared → Ideal (Average Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 2928.034 4166.439 2541.517 2252.019

Fragmentation in (%) 38.895 31.6255 22.913 15.0111

Request Satisfied in (%) 62.0389 70.6678 79.9134 87.5092

As shown in figure 4.23, for 1000

blocks allocation though all

allocators following the path of

Local, Shared and Ideal memory,

DmRT takes minimum execution

time as compared to all other

dynamic memory allocators, and

tcmalloc takes maximum

execution time. Figure 4.23: Execution time of Memory allocators in

Average case

As shown in figure 4.24, for 1000

blocks allocation though all

allocators following the path of

Local, Shared and Ideal memory,

DmRT satisfies maximum

requests and has lowest

fragmentation as compared to all

other dynamic memory allocators,

and Dlmalloc is exactly opposite

to it.
Figure 4.24: Fragmentation & Request Satisfied of

Memory allocators in Average case

0

200

400

600

800

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 75

3. Average of 100 attempts (Worst Case, i.e., for 2000 memory block requests)

Table 4.12: Existing and DmRT follow Local → Shared → Ideal (Worst Case)

Algorithms Dlmalloc tcmalloc TLSF Proposed

Parameters

Execution Time (ms) 4231.555 5107.635 3684.495 3367.702

Fragmentation in (%) 47.3835 38.2598 30.8472 19.1314

Request Satisfied in (%) 50.8095 59.9945 73.883 82.662

As shown in figure 4.25, for 2000

blocks allocation though all

allocators following the path of

Local, Shared and Ideal memory,

DmRT takes minimum execution

time as compared to all other

dynamic memory allocators, and

tcmalloc takes maximum

execution time.
Figure 4.25: Execution time of Memory allocators in

Worst case

As shown in figure 4.26, for 2000

blocks allocation though all

allocators following the path of

Local, Shared and Ideal memory,

DmRT satisfies maximum

request and has lowest

fragmentation compare to all

other dynamic memory allocators,

and Dlmalloc is exactly opposite

to it. Figure 4.26: Fragmentation & Request Satisfied of

Memory allocators in Worst case

0

1000

2000

3000

4000

5000

6000

Dlmalloc tcmalloc TLSF DmRT

E
X

E
C

U
T

IO
N

 T
IM

E

MEMORY ALLOCATORS

Execution Time (ms)

0 20 40 60 80 100

Dlmalloc

tcmalloc

TLSF

DmRT

FRAGMENTATION & REQUEST SATISFIED

M
E

M
O

R
Y

 A
L

L
O

C
A

T
O

R
S

Request Satisfied in (%) Fragmentation in (%)

	0-Dec-Ack-Abstract-ToC-LoT-LoF.pdf
	Thesis core chapters.pdf

