
Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 76

Chapter 5

Memory Management Simulator:

MemSimRT

 There are so many simulators available to simulate different test cases for scheduling in a

real-time operating system [16] [20] [56] [73-76] like Litmus-RT, Mark3, rtsim, etc., but till date,

no such simulator is available for simulating memory management algorithm for RTOS. Hence,

MemSimRT has been designed to simulate various memory allocators for both SMP as well as

NUMA architecture based RTOS. Its front end created in C# while back-end developed using

python.

Download MemSimRT using this QRcode:

Figure 5.1: The Welcome screen of MemSimRT

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 77

 Figure 5.1 shows the welcome screen of MemSimRT. So it is the Home screen of the

simulator. As per our dynamic memory allocator, it has two alternatives. One is SMP, i.e.,

Symmetric multiprocessor and second is NUMA, i.e. Non-uniform memory access based

architecture. Basically, in this simulator, NUMA is designed for eight processors, but it can be

modified as per requirement by slightly changing the script.

Figure 5.2: The Welcome screen of SMP

 Figure 5.2 shows that, when SMP is selected, this screen will appear. One can select

appropriate memory allocator for RTOS and select available number of the request. Also, memory

block request other than 100, 500, 1000 and 2000 can be provided by defining the specific number

in text box of the custom request and then press next button.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 78

Figure 5.3 shows the result of

the individual memory allocator. In

result, it shows the execution time in

ms (millisecond) taken by specific

allocator, how many requests have

been satisfied in % as well as

Fragmentation generated by allocator

in %.

Figure 5.3: Statistics of individual Memory

Allocator

Figure 5.4: Memory block allocation as per request by DmRT

 Figure 5.4 shows the exact memory allocation scenario by proposed memory allocator

which is actually divided into three different categories as per algorithm for small blocks whose

size less than 512 bytes, normal or medium blocks whose size is between 512 bytes to 2Mb and

Large blocks whose size is beyond 2 Mb. The request denoted by asterisk (*) defines that block

allocation is failed. At the end of each memory area, it shows a number of requests satisfied in %.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 79

Also, any number of memory block request can be provided. Direct buttons are available for 100,

500, 1000 and 2000 memory block request. To provide memory block request other than 100, 500,

1000 and 2000, then define it in text box of the custom request and press next button.

 Also, to allocate memory blocks in a specific area only like in small memory, medium

memory or large memory can be done by selecting the specific checkbox. “Flush memory” button

is used to flush the entire memory.

Figure 5.5: Statistics of all memory allocators

 Figure 5.5 shows the statistics of all allocators in the same window. If “compare all

allocators” is selected then result analysis for same block requests of all allocators will be shown

in this window.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 80

Figure 5.6: The Welcome screen of NUMA

 As shown in Figure 5.6, it is the first screen for NUMA, and one can select a specific

allocator, appropriate memory, and number of request from it. Memory can be Local, Ideal or

Local -> Shared -> Ideal, i.e. it first tries to allocate a memory block from Local Memory if it

fails then Shared memory and still if it fails then it will search from the Ideal memory. If Ideal

memory is selected then first thing is to find processor which can have ideal memory that is shown

in figure 5.7.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 81

Figure 5.7: All Processors with its memory utilization in (%)

 As shown in Figure 5.7, it is a NUMA architecture of eight processors (P0 to P7) and its

local memory utilization is defined with it. Also, it has found the category of memory according

to the threshold policy. Explicit memory utilization can also be defined by mentioning in the

textfield.

Memory Management in Real-Time Operating System

Vatsal Shah (FOTE/878) 82

Figure 5.8: Memory block allocation Log

 As shown in Figure 5.8, its memory allocation log. It is the status of requested memory

block of the specific allocator. Also, it generates the CSV file for the same.

	0-Dec-Ack-Abstract-ToC-LoT-LoF.pdf

