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ABSTRACT 

The memory allocation algorithms have been analyzed and worked upon broadly, but there 

is less attention given to the multiprocessor architecture and real-time operating system as well. 

Most of the algorithms are applicable for the general-purpose operating system and do not fulfill 

the necessities of real-time systems. Moreover, limited allocators designed to support real-time 

systems which are not completely scalable for multiprocessors. In the 21st century, as we have 

entered into an era of high-performance computing, the demand for multi-core architecture has 

gained momentum. NUMA architecture based systems are the outcome of this tendency and offer 

an organized scalable design. However, existing dynamic memory allocators are not capable of 

performing on a multiprocessor architecture and do not comply with real-time system 

requirements as well. Researches have proved that the existing memory allocators for any 

operating systems which support NUMA architecture are not suitable for real-time applications. 

Hence, there is a need to have a dynamic memory allocator which can perform well on SMP and 

NUMA based soft real-time systems, with better execution time and less fragmentation.  

This research is carried out in the same direction to achieve the aforementioned goal of a 

dynamic memory allocator for real-time systems. 1. Dynamic memory allocator DmRT for 

symmetric multiprocessing (SMP) and Non-Uniform Memory Access (NUMA) architecture based 

real-time operating system has been designed and implemented which provides consistent and 

optimum execution time, less memory fragmentation, as well as satisfying a maximum number of 

the memory request, compared to other existing allocators. 2. There are so many simulators 

available to simulate different test cases for scheduling in a real-time operating system like Litmus-

RT, Mark3, rtsim, etc., but till date, none of the simulators is available for simulating memory 

management algorithm for RTOS. Hence, MemSimRT has been designed to simulate various 

memory allocators for both SMP as well as NUMA architecture based RTOS. 
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Chapter 1 

Introduction  
 

 

1.1 Introduction to Real-Time Operating System 

RTOS denotes “Real-time Operating System” which is basically a type of an operating 

system which provides support to the real-time applications by giving an accurate result within the 

time limit [4][17]. Real-time Operating System can be mainly classified into two categories: 1) 

hard real-time system and 2) soft real-time system depends on how rigorously it follows the task 

accomplishment deadline. 

Table 1.1: Difference between General Purpose OS and RTOS [4] 

 RTOS General Purpose OS 

Determinism  Deterministic  Non-deterministic  

Preemptive kernel All kernel operations are 

preemptable 

Not Necessary  

Priority Inversion  Have mechanisms to prevent 

priority inversion  

No such mechanism is present  

Task Scheduling  Scheduling is time-based  Scheduling is process based  

Latency  Have their worst-case latency 

defined  

Latency is not of a concern 

Purpose OS  

Application  Typically used for embedded 

applications  

General purpose OS is used for 

desktop PCs or other general 

purpose PCs  

 

A real-time system can be categorized into three different categories on the basis of its criticality 

[17]: 

 Hard: A real-time task/system is considered to be hard if generating the outcomes after its 

deadline may create terrible significances on the system under control. For example, 
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automotive systems, and nuclear-plant governing systems, etc. 

 Firm: A real-time task/system is considered to be firm if generating the outcomes after its 

deadline is of no use for the system, but does not create any destruction. For example, railway 

ticket reservation system. 

 Soft: A real-time task/system is considered to be soft if generating the outcomes after its 

deadline still provides usefulness for the system, however affecting a performance degradation. 

For example, multimedia applications on the mobile phone. 

 

1.2 Features of RTOS [4] [17] 

There are various features of RTOS like Synchronization, Interrupt Handling, Timer and 

clock, Real-Time Priority Levels, Fast Task, Preemption and Memory Management among them 

our focus is towards Memory Management.  

Real-time operating system for huge and standard sized application are predictable to offer 

virtual memory, not only to achieve the demands of memory but to provide the memory request 

of non-real-time applications as well such as different types of editors, browsers, etc. A real-time 

operating system normally has small memory size by comprising only the essential features for an 

application [12].  

 

 1.3 Memory Management 

Generally, memory management of Real-time operating system can be categorized as static 

memory management and dynamic memory management [35]. Table 1.2 [4] shows the 

fundamental difference between static memory management and dynamic memory management. 

 

Table 1.2: The Fundamental difference between static and dynamic memory management 

 

Static Memory management Dynamic Memory Management 

1 Memory allocation is done at compile or 

design time. 

Memory allocation is done at runtime or 

during execution. 
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2 Static memory allocation is a fix process 

which means requisite memory for a 

specific process is already identified, and 

after allocating memory no modifications 

can be done during execution. 

Dynamic memory allocation needs memory 

manager to maintain which portion of the 

memory is allocated and which portion of the 

memory is unallocated.  Due to this when a 

process requests memory, it can allocate 

memory and when the task is done then 

deallocate it. 

3 Allocation and deallocation of memory 

are not performed during execution. 

Memory bindings are established and 

demolished during execution. 

4 Extra memory space required.  Less memory space required. 

 

1.4 Problem Statement 

Since last four to five decades, the majority of the operating systems have been used 

dynamic memory allocation for processing which requires communicating explicitly with memory 

allocator component. Though memory allocation algorithms have been analyzed and worked upon 

broadly since 1960, it has been observed that there is less attention given to the multiprocessor 

architecture and real-time operating system as well. Most of the algorithms have been designed 

such that, they are applicable for the general-purpose operating system and do not fulfill the 

necessities of real-time systems [37]. Moreover, limited allocators designed to support real-time 

systems which are not completely scalable for multiprocessors. In the 21st century, as we have 

entered into an era of high-performance computing, the demand for multi-core architecture has 

gained momentum. NUMA architecture based systems are the outcome of this tendency and offer 

an organized scalable design indicating that a few dynamic memory allocators are available. 

However, these dynamic memory allocators are not capable of performing on a multiprocessor 

architecture and do not comply with real-time system requirements as well. Researches have 

proved that the existing memory allocators for any operating systems which support NUMA 

architecture are not suitable for real-time applications. Hence, there is a need to have a dynamic 

memory allocator which can perform well on SMP and NUMA based soft real-time systems, with 
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better execution time and less fragmentation. This research is carried out in the same direction to 

achieve the aforementioned goal of a dynamic memory allocator for real-time systems. 

 

1.5 Objectives of Memory Management Algorithm 

 The research in dynamic memory management for real-time systems is one of the 

unconquered areas primarily because real-time applications impose different requirements on 

memory allocators from general-purpose applications. Actually, most significant requirements in 

real-time systems are the investigation of scheduling which should be achieved to decide if the 

response time of real-time application can be bounded to fulfill the timing restriction of execution. 

This investigation should consider the impression of multiprocessor architecture settings like 

concurrency, lock contention, cache misses and traffic on the bus. Effect of all these problems on 

NUMA architecture systems, related to dynamic memory management could be defined as 

follows: 

1) Reduce memory fragmentation 

2) Restricted execution time  

3) Increase node-based locality  

4) Reduce false sharing 

5) Reduce memory access to the remote nodes  

6) Reduce lock conflicts  

 

1.6 Research Contributions 

1. Dynamic memory allocator DmRT has been designed and implemented for symmetric 

multiprocessing system which provides consistent and optimum execution time, less memory 

fragmentation, as well as satisfying a maximum number of the memory request, compare to 

other existing allocators.  

2. As per the need of high-performance computing, a dynamic memory allocator DmRT for 

NUMA architecture based real-time operating system has been designed and implemented 
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which provides consistent and optimum execution time, less memory fragmentation as well as 

satisfying a maximum number of the memory request. 

3. There are so many simulators available to simulate different test cases for scheduling in a real-

time operating system like Litmus-RT, Mark3, rtsim, etc. but till date, no such simulator is 

available for simulating memory management algorithm for RTOS. Hence MemSimRT has 

been designed to simulate various memory allocators for both SMP as well as NUMA 

architecture based RTOS. 

 Download MemSimRT using following QR code 
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Chapter 2 

Literature Review 
 

 

2.1       Dynamic Memory Management Algorithms 

Memory management is the key feature of the real-time operating system. This section 

describes certain memory management algorithms for general-purpose as well as the real-time 

operating system. There are conventional as well as unconventional algorithms for dynamically 

allocation/deallocation of memory. All traditional algorithms can be considered as conventional 

algorithms. 1) Sequential Fit Algorithm 2) Buddy Allocators 3) Doug Lea(DLmalloc) 4)  Half-Fit  

5) TLSF 6) tcmalloc 7) Hoard 8) Smart Memory Allocators 

1) Sequential Fit Algorithm  

It can be categorized into four types [4] [17] [37]: Best Fit, Next Fit, First Fit and Worst-

Fit. 

a. Best Fit: Its name itself suggest that each time the allocator tries to search out the smallest 

unallocated memory block which is big enough to fulfill the application’s request. 

b. Next Fit: The array of unallocated blocks is to be found from the location where the 

previous search suspended, returning the next memory block which is big enough to fulfill 

the request. 

c. First fit: The array of unallocated blocks is to be found from scratch, returning the first 

memory block which is big enough to fulfill the request. 

d. Worst fit: The array of unallocated blocks is searched, returning biggest existing 

unallocated memory block. 

The time complexity of this algorithm is O(n). 

 

2) Buddy Allocator Algorithm 

 This algorithm [31] uses an array of link lists of the unallocated blocks. Each list for 

allowable block size. For example list of 2N block size like 200 kb, 400 kb, 800 kb so on. The 
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buddy allocator finds the smallest block which is large enough to hold the request from the list of 

unallocated blocks. If the unallocated block list is empty, then it will search a block from another 

list which is larger than a request, then select and split the block [6][10]. A block must be divided 

into the same size blocks, i.e., 400 kb block will split into two 200 kb blocks. In the same way, the 

block may be merged with its adjacent block of the same size, and this is possible if the adjacent 

block has not been divided into the smaller block. 

 

3) Dlmalloc 

 This algorithm was proposed by Doug Lea in 1996. Later on, its extended version has been 

designed by Gloger in 2006 [20] and by Free Software Foundation in 2012. This algorithm 

occupies a huge number of static size arrays known as small-bins to allocate a small memory block. 

Bins occupy unallocated blocks which are having sizes not more than 256 bytes. Every bin 

comprises unallocated blocks of equal size. If demanded memory block’s size is not more than 

256 bytes, the algorithm tries to find for existing blocks in the bins using best-fit policy or large 

enough to satisfy the request. 

 

Figure 2.1: Organization of DLmalloc algorithm [37] 
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 If the demanded memory block’s size is larger than 256 bytes and smaller than some fixed 

value (normally 256 Kb), then algorithm tries to search existing blocks in an array known as tree-

bin, which is having a tree structure for the memory block. As shown in Figure 2.1 tree-bins 

accumulate a collection of the bin. Nodes in the tree structure act as a small-bin, comprising the 

blocks of equal size. Any demand of block size beyond the fixed value, the algorithm transfers the 

requests to the operating system through some specific system call. 

 

4) Half-Fit 

 This algorithm has been designed and implemented by Ogasawra [29] [30] in 1995. This 

algorithm uses bitmapped fit strategy and achieving execution time in constant manner. As it is 

using bitmap policy for allocating release block, it is slow.  Use of bitmap is nothing but only to 

maintain the status of unoccupied lists. Its time complexity of time is O(1).  

 This algorithm maintains a segregated list of a single level. In this list, unallocated blocks 

of different size are connected. It takes unallocated blocks of the required size from unallocated 

block list through which request will be satisfied. Figure 2.2 shows this example. 

 

Figure 2.2: Organization of Half-fit algorithm [29] [37] 
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 It has specific allocation/deallocation methodology to avoid searching using bitmaps 

because of its constant execution time.  If the requested size of the memory block is r, then index 

i may be computed by this equation [30]: 

 

𝑖 = {
        0                                                     𝑖𝑓 𝑟 𝑖𝑠 1

⌊log2(𝑟 − 1)⌋ + 1                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                 

2.1 

 

 Where i, specifies the unallocated memory block lists whose width vary from 2i to 2i+1 −1. 

After computing the value of i, an unallocated block is occupied from the unallocated block list 

indexed by i. If there is no unallocated block in the list, the subsequent unallocated block list will 

be searched. 

 If the size of an assigned memory block is more than the demanded memory block size, an 

unallocated block from the unallocated block list will be split into two distinct memory blocks of 

sizes r1 and r2 before assigning for allocation then the remaining memory block r2 will be put into 

the matching unallocated block list. For deallocation, released memory block will be directly 

merged with neighboring memory block if the corresponding block is free/unallocated.  

 This algorithm is suitable for real-time operating systems because of its constant time 

complexity.  

 

5) TLSF 

 TLSF is one of the best available dynamic memory allocation algorithm stands for two-

level segregated fit algorithm, unlike segregated list allocator, this algorithm having two level of 

segregated lists of unallocated memory blocks in which each list maintain the unallocated blocks 

of predefined size range [25][26][28]. 

 The first-level of list (FLI) splits unallocated memory blocks into various parts which are 

apart by the power of two like 2, 4, 8, 16 onwards. The secondary level known as second-level 

lists splits each first level list by a user-defined variable known as Second Level Index. TLSF 

structures are shown in Figure 2.3. 



Memory Management in Real-time Operating System 

 
 

 
Vatsal Shah (FOTE/878)                                                                                                                              10 

 

 

Figure 2.3: Simple TLSF Structure [25][26] 

 This algorithm provides bounded execution/response time. This algorithm is best suitable 

for the real-time operating system. 

 

6) tcmalloc  

 This algorithm is developed and implemented by Sanjay Ghemawt in 2010 [36]. It is an 

extremely accessible algorithm which associates both global heap structure and threads private 

heap multiprocessor architecture. To allocate small memory block which size range from 4 bytes 

to 32 Kb, this allocator allocates private local heap to each thread. Hence, small size memory block 

allocation does not require synchronization mechanism for the thread. 

 To allocate large memory blocks which ranges from 32 Kb to 1 Mb, this allocator maintains 

a global heap structure which is collectively used by all available threads. As this global heap is 

shared by threads, some kind of synchronization mechanism should be used to offer mutual 

exclusion. Hence, it employs spin-lock mechanism. If any applications demand a huge memory 

block whose size is beyond 1Mb, then allocator forwards the request to the existing operating 

system using a system call or APIs. Figure 2.4 shows the structure of tcmalloc allocator. The time 

complexity of this allocator is O(1). 
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Figure 2.4: Organization of the tcmalloc algorithm [36] 

 

7) Hoard 

 This algorithm was designed by Bergar in 2000 [17], and it is popular due to its speed and 

scalable in the environment of the multiprocessor system. This allocator also employs a segregated 

class mechanism, but unlike tcmalloc it maintains private heap to each processor and to avoid heap 

conflict it maintains a global heap. Other than private processor heap and global heap, it also 

maintains private heap per thread to allocate smaller size memory blocks which size less than 256 

bytes. Threads which are executing on the same processor can also share private processor heap.  

 Hence, to allocate any blocks whose size is less than 256 bytes, it first searches it into a 

heap of the thread if it fails, then it searches into private processor heap, and if it is also full, then 

it searches into a global heap. So its time complexity is O(n), where n is the number of chunks of 

the memory block which is known as super-block., Figure 2.5 shows the structure of this algorithm. 
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Figure 2.5: Organization of Hoard algorithm [2] 

 

8) Smart Memory Allocator Algorithm 

 This algorithm has been proposed by Ramakrishna M, Jisung Kim, Woohyong Lee and 

Youngki Chung in 2008 [47]. This is a custom type of dynamic memory algorithm having the best 

response time and less memory fragmentation. This algorithm divides memory blocks into two 

categories. One is short-lived, and another is long-lived memory blocks. The short-lived memory 

blocks are allocated in the direction of lowest level to highest level from heap while long-lived 

memory blocks are allocated from highest level to lowest level [47]. The used space of heap grows 

from highest level to lowest level as well as lowest level to highest level. Initially, entire heap 

memory is unallocated, and there is only one unallocated memory block for each short as well as 

long-lived memory. The heap space is divided equally into two blocks. When the heap grows from 

both sides, the virtual border between these two can easily modify according to the dynamic 

memory request.     

 As this algorithm predicting memory object life scope, it can easily allocate memory block 

from either short-lived or long-lived memory pool [9]. So it can have best response time with lower 

fragmentation. It is implemented with a lookup table and hierarchical bitmaps which are improved 

version of the multilevel segregated mechanism. 
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Figure 2.6: Structure of Smart Memory Allocator [41] [47] 

2.2 Summary 

Table 2.1: Summary of all Allocators 

Memory Management 

Algorithms  

Parameters 

Allocation Fragmentation NUMA Support 

Sequential fit  O(n) Acceptable No 

Buddy System  O(log𝑛 2) Unacceptable No 

Doug Lea(DLmalloc) O(m) Acceptable No 

tcmalloc O(1) Acceptable Yes 

Hoard O(n) Acceptable No 

Half-fit O(1) Unacceptable No 

TLSF O(1) Acceptable No 

Smart Memory 

Allocator 
O(log2 𝑛) Unacceptable No 
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Table 2.1 shows in the worst-case, the time complexity of the allocators as well as 

fragmentation by the allocator is acceptable or not and whether it provides support to NUMA 

architecture or not. In the table, n is the heap size, m is the tree’s depth. Concerning real-time 

systems segregated Fit, tcmalloc and Half-fit are the only algorithms which satisfactorily provides 

the desired objectives also provide a constant execution time. 
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Chapter 3 
DmRT for SMP & NUMA 

 

In this chapter, a new dynamic memory allocator for the real-time operating system will be 

discussed. It has been proposed, designed and implemented for Symmetric multiprocessing (SMP) 

NUMA (Non-uniform memory access) architecture. And its name is DmRT stand for Dynamic 

memory manager for Real-Time systems. This allocator has been designed to achieve constant and 

minimum execution time, low fragmentation and satisfying a maximum number of request for the 

memory block. Furthermore, the DmRT has been compared with the existing dynamic memory 

allocators of the real-time operating system. 

 All the design principals such as strategies, policies, and mechanisms will be explained 

then the structure of DmRT, and its results will be discussed in this section. 

 

3.1 Design Principals 

 

 

 

 

 

 

 

Figure 3.1: SMP Architecture 

 As shown in Figure 3.1, Symmetric multiprocessing (SMP) comprises a multiprocessor 

computer hardware and software architecture in which more than one identical processors are 

connected to a common or rather shared main memory, and all processors have full access to all 
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resources like input and output devices, and are managed by a single operating system instance 

that treats all processors equally, reserving none for special purposes. Nowadays, the majority of 

the multiprocessor systems use the SMP architecture. While in the multi-core processors, the SMP 

architecture applies to the cores, treating them as separate processors. 

  

 

Figure 3.2: NUMA Architecture 

 NUMA stands for Non-uniform memory access (NUMA) is nothing but one type of design 

for a computer memory which is used in multiprocessing in which the access time of memory 

depends on the memory location relative to the processor. In NUMA architecture, a processor can 

read/write from its local memory faster than non-local memory, i.e., the local memory of other 

processor or shared memory between processors. The benefits of NUMA are limited to particular 

workloads, notably on servers where the data is often strongly associated with certain tasks or 

users. 
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 In high-performance computing generation, NUMA is the future of SMP, but its 

architecture is clumsier than the Symmetric multiprocessor. Figure 3.2 shows simple NUMA 

architecture where only two nodes are available in which each node contains more than one 

processor and they all are sharing one memory. They may have their local memory as well. The 

complex architectures are also available which can have 4 or 8 nodes. 4 nodes architecture has 

been considered for this proposed memory allocator, but it is merely easy to scale it up to 8 nodes. 

 There are different strategies for different size of block in which has been explained in this 

section. 

 

3.1.1 Multiple strategies for different sizes of blocks (for SMP & NUMA) 

 As discussed earlier, various strategies have been used for allocating the different size of 

blocks to achieve advantages of all policies, strategies, and mechanisms.  

I. A small block whose size of memory block < 512 bytes 

II. A normal block whose size of memory block < threshold (Some predefined size, i.e., 2Mb) 

III. A large block whose size for request exceeding the threshold or (Some predefined size) 

 

3.1.2 Search Policies and Mechanisms (for SMP & NUMA) 

 After defining the strategies, now its turn to which policies and mechanisms will be used 

to implement these strategies.    

I. For small blocks, the best-fit policy is used which have been implemented by exact-fit 

mechanisms to reduce the fragmentation in small sizes of blocks generated by rounding up 

the request size of the memory block. 

II. For normal blocks, the good-fit policy is used which has been implemented by segregated 

lists, which use an array of unallocated block lists. 

III. For large blocks, the worst-fit policy is used. 
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3.1.3 Arrangement of blocks (for SMP & NUMA) 

 DmRT implements the exact-fit mechanism to increase the efficiency of small memory 

block allocation and to decrease internal fragmentation. It also implements the segregated-fit 

mechanisms to employ a good-fit and a first-fit policy for searching the nearest segregated size 

class. Thus it can ignore the requirement of a thorough search. Actually, two types of bitmaps have 

been used to keep track of unallocated blocks in the implementation of DmRT. Furthermore, this 

allocator is predictable as it has employed segregated list with bitmap policies and it provides 

confined execution time. 

 Among the bitmaps, use of one bitmap is to keep track of small memory blocks, and this 

bitmap is employed as a two-dimensional array for holding unallocated memory blocks according 

to the memory block size. In this proposed memory allocator (DmRT), for effective memory 

allocation, the block size is set apart 4 bytes from 4 bytes to 512 bytes. To check whether a specific 

size of a memory block is unallocated or not, two mechanisms have been employed. One is in two 

bitmaps total 64-bits and second is maintaining a pointer array to hold unallocated blocks as shown 

in Figure 3.3. 

 The second type of bitmap comprises a two-dimensional bitmap array directing to 

unallocated memory blocks. The primary bitmap which is indexed by i, specifies unallocated 

memory blocks whose sizes available between 2i to 2i+1 − 1, and the secondary bitmap which is 

indexed by j, splits each primary level range in similar width of a number of ranges. For the 

easiness, the number of ranges in the secondary level is signified as the power of two: 2range. For 

this allocator, the default value of the range is taken as 6. The variable range splits the primary 

level ranges in an equal number of ranges. For example, if value of range is 4 then there are 16 

segregated lists inside the provided size ranges, if value of range is 5 then there are 32 segregated 

lists inside the provided size ranges and so on and if value of range is 1 then the allocator 

accomplishes unallocated blocks as powerfully as the binary buddy allocator. 

 The value of the range is crucial to specify the performance of the allocator. Because it is 

important to decide the minimum size of the memory block. If the value of the range is big, then 

it causes more consumption of memory space for the storing information like extra bits and 
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pointers. Conversely, If the value of the range is too small, then it increases the internal 

fragmentation accordingly. 

 

Figure 3.3: DmRT Structure for Small Block Allocation 

 

Figure 3.4: DmRT Structure for Normal Block Allocation 
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 Therefore, the index i denotes the existing maximum size of a memory block: 2i+1 − 1, 

while the number of segregated lists in the provide sizes can be defined by the number of ranges: 

2range. Furthermore, a specific segregated list can be identified by the value of index I (i, j), and the 

value of index I specify whether the list (i, j) encompasses any unallocated blocks or not. Hence, 

all bitmaps do not comprise unallocated memory blocks, but they specify the probable availability 

of a particular size of the memory block. All pointers to unallocated memory blocks are kept in 

two-dimensional pointer array which is known as matrix. 

 As discussed, for this proposed allocate, the value of range  is set to 6 by default, each and 

every component of the array indicates to a list which has unallocated memory blocks of sizes in 

a range from 2i +2(i−range) × j to 2i + 2(i−range) × (j+1) −1. 

 According to the employment of this allocator, it employs two-dimensional bitmap arrays, 

which needs a 64-bit variable for the primary bitmap and two-time 64-bit variables for the 

secondary bitmaps, therefore total 66 variables of 64-bit to specify the unallocated block lists are 

required. Also in each secondary level range, all available memory blocks arranged in AVL tree 

inorder to balance the tree structure.  

 The Primary Level is intended to accomplish the time of execution in a constant manner 

for allocation of memory blocks. Every segregated list keep the specific size of unallocated 

memory blocks, and the proposed algorithm can find an unallocated block by an index computed 

using equation 3.1. The Primary Level is designed using bitmaps and singular linked lists which 

contain small sizes of memory blocks, and also it is designed using a bitmap, arrays of pointers to 

unallocated blocks and doubly-linked lists for normal sizes of memory blocks. Sharing a single 

global heap between more than one threads having a tendency to raise the possibility of lock 

conflicts. To decrease this, every thread of the application should have a private thread heap.  

 

ISL (PI, SI) = {

𝑃𝐼 =  ⌊log2 𝑅𝐵⌋          𝑤ℎ𝑒𝑟𝑒 𝑃𝐼 ∈  [9,31]

𝑆𝐼 = ⌊
(𝑅𝐵 − 2𝑃𝐼)

2𝑃𝐼−𝑟𝑎𝑛𝑔𝑒
⌋           𝑤ℎ𝑒𝑟𝑒 𝑆𝐼 ∈ [0, 63]

 3.1 
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3.1.4 Strategy for selecting Remote Memory 

  We have proposed one memory allocator which can work on NUMA based 

architecture for the real-time operating system. Figure 3.5 shows a schematic diagram of NUMA 

based architecture for RTOS. As shown in the figure, there are total four nodes where each node 

having two processors, each processor within a node are connected with a bus, and all nodes are 

connected with shared memory. Also, each processor having their own local (private) memory. 

 Whenever any processor requires any memory block it will first check into its local 

memory, if the required memory block is available then it will allocate the same block from the 

local memory and if not then it will try to access from the shared memory, if the memory block is 

there in shared memory then it will allocate but if it is not there then it will ask for another processor 

which is lightly loaded in terms of memory. Now, what is lightly loaded processor? Let’s check it. 

 

Figure 3.5: Complex NUMA Structure (4 Nodes) 

 According to memory utilization, each processor will be categorized into four categories.  
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 1) Ideal 

 2) Heavily Loaded  

 3) Normal Loaded 

 4) Lightly Loaded 

 The first step is to calculate the load average for memory utilization for all processors using 

following equation [32] [38]. 

𝑀𝑒𝑚𝑢_𝑎𝑣𝑔 =
𝑀𝑒𝑚𝑢1+ 𝑀𝑒𝑚𝑢2+ 𝑀𝑒𝑚𝑢3+⋯+ 𝑀𝑒𝑚𝑢𝑛

𝑛
         3.2 

 

 The second step is to find the upper and lower threshold value for memory utilization using 

following equation. 

TU = H × Mem u_avg 

TL = L × Mem u_avg 

 

3.3 

 

Where, TU = upper limit of threshold,  

  TL = lower limit of threshold,  

  U and L are constants. (U >1 and L< 1) 

  

 In the proposed algorithm, U and L are set to be 1.3 and 0.7 respectively which interpret if 

memory utilization is 30% above the 𝑀𝑒𝑚𝑢_𝑎𝑣𝑔, it is heavily loaded. And if memory utilization is 

70% of the 𝑀𝑒𝑚𝑢_𝑎𝑣𝑔, it is lightly loaded; otherwise, it is normally loaded. 

 Hence, Light weight Memory <= 35% of Threshold value 

 Heavy weight Memory >= 65% of Threshold value 

 Average Memory node > 35% to < 65% 

 Ideal Memory < 10%    Threshold value 

And then select appropriate processor’s memory for allocating memory. 
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Chapter 4 

Results & MemSimRT 
 

4.1 MemSimRT 

 There are so many simulators available to simulate different test cases for scheduling in a 

real-time operating system like Litmus-RT, Mark3 etc. But till date, no such simulator is available 

for simulating memory management algorithm for RTOS. So MemSimRT has been designed to 

simulate various memory allocators for both SMP as well as NUMA architecture based RTOS. Its 

front end created in C# while back-end developed using python. 

Download MemSimRT using this QRcode:  

 

 

 

Figure 4.1: The welcome screen of MemSimRT 

 Figure 5.1 shows the welcome screen of MemSimRT. So it is the Home screen of the 

simulator. As per our dynamic memory allocator, it has two alternatives. One is SMP, i.e., 
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Symmetric multiprocessor and second is NUMA, i.e., Non-uniform memory access based 

architecture. Basically, in this simulator, NUMA is designed for eight processors, but it can be 

modified as per requirement by slightly changing the script. 

 

4.2 Results 

There are five different test cases. 
 

1. SMP 

Case 1: Existing allocators and DmRT allocate from Local Memory 

 As it is a Symmetric MultiProcessor architecture, all processors will share the same 

memory which is known as local memory for them. And whenever any request for the memory 

block is raised then, the memory manager will search and allocate memory block from the same 

local memory.   

2. NUMA 

Case 2: Existing from Local and DmRT Follow Local → Shared → Ideal   

Existing allocators means Dlmalloc, tcmalloc and TLSF will allocate the memory block 

from local memory while DmRT will first try to allocate block from local memory; if it fails then 

it will attempt the same from shared memory and still if it will get failure then it will find ideal 

memory which has been discussed earlier and then it will allocate block from it. As DmRT tries 

to find memory block from three different types of memory, its execution time will be more than 

the other allocators, but it provides consistent execution time. And also it will satisfy a maximum 

number of the request as well as it will have less fragmentation due to proposed allocator structure.     

Case 3: Existing allocators from Local and DmRT from Ideal 

In this case, all existing allocator will allocate memory block from Local memory only. 

While DmRT first finds the idle memory and then it will allocate memory block from it. Here, 

existing allocators allocating blocks only from local memory that’s why it can have less number 
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of request satisfaction while DmRT will have a maximum number of request satisfaction. Also, 

other parameters will be best due to its structure.  

Case 4: Existing allocators and DmRT both from Ideal 

In this case, existing allocators and DmRT both will first find idle memory and then allocate 

a block from it. As existing allocators and DmRT, both allocate memory from ideal memory, 

execution time will be moreover same, but still, DmRT will have a maximum number of request 

satisfaction and less fragmentation. 

Case 5: Existing allocators and DmRT follow Local → Shared → Ideal 

In this case, existing allocators and DmRT both will first try to allocate memory block from 

local; if they fail then they will try to allocate the same block from shared memory and still got the 

failure then they will find idle memory and try to allocate same memory block from it. Though 

both existing allocators and DmRT follow the same path from allocating memory, proposed 

allocator defeats all of them in each parameter.   

In each case, there are three different test categories have been selected.  

a. Best case, i.e. test has been taken for 100 memory blocks request. 

b. Average case, i.e. test has been taken for 1000 memory blocks request. 

c. Worst case, i.e. test has been taken for 2000 memory blocks request. 

There are three main parameters are considered for the results.  

 Parameter 1: Execution time. It should be consistent and minimum. 

 Parameter 2: Fragmentation. It should be as low as possible. 

 Parameter 3: Number of requests satisfied: It should be as high as possible. 

Here, total four memory management algorithms have been compared. 

a. Dlmalloc b. tcmalloc c. TLSF d. DmRT 

 All tests have been done on MemSimRT. 
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Table 4.1: Results of All Allocators in All Test cases 

 

As shown in the table, DmRT performs better concerning all other allocators (Dlmalloc, tcmalloc and TLSF) in all cases. Only 

in Case 2 where all existing allocators allocate memory from Local memory only and DmRT allocates from Local, Shared and Ideal in 

which execution time is more than Dlmalloc and TLSF but in same case number of request satisfied is maximum than others as well 

fragmentation is minimum than other allocators.

Parameter Execution Time Fragmentation Request Satisfied 

Test No. Cases Dlmalloc Tcmalloc TLSF DmRT Dlmalloc tcmalloc TLSF DmRT Dlmalloc Tcmalloc TLSF DmRT 

Case 1 

Best Case 287.8581 330.3003 268.598 234.6128 43.6472 29.684 22.4791 17.5031 56.6156 62.5883 81.5737 87.6169 

Average Case 1904.826 2890.503 1461.272 1067.995 52.3926 35.157 27.0205 22.0902 45.458 57.4617 74.9894 83.109 

Worst Case 3204.577 4352.133 2153.912 1847.152 60.4389 43.6719 32.0433 26.9948 34.903 52.783 70.9776 77.3786 

Case 2 

Best Case 326.2426 410.8068 290.2026 374.3901 43.5037 36.6849 21.5874 10.5141 57.5068 62.3301 76.6088 94.6614 

Average Case 2013.324 2988.474 1522.335 2303.212 52.5491 44.4944 29.5867 15.6241 45.2403 54.2546 65.6095 87.4181 

Worst Case 3202.561 4348.651 2049.025 3361.854 61.4645 43.3702 36.5828 20.5572 35.5009 50.4204 61.5822 83.7309 

Case 3 

Best Case 338.0589 420.5202 296.4418 245.4583 45.2763 33.6326 24.0237 15.4697 57.7885 64.1904 76.9458 89.9526 

Average Case 2054.716 2995.241 1539.964 1115.835 53.8153 44.9067 30.2955 19.5226 46.4232 54.5453 65.9168 82.8598 

Worst Case 3283.047 4288.159 2064.704 1785.676 60.4389 43.6719 32.0433 26.9948 34.903 52.783 70.9776 77.3786 

Case 4 

Best Case 374.8572 444.5905 319.6948 249.566 35.2178 26.3902 19.2872 14.5781 67.5358 72.1999 83.1096 89.1851 

Average Case 2110.58 3240.527 1530.277 1149.484 43.0248 35.5497 26.3408 19.7854 55.5939 64.722 73.3219 81.1776 

Worst Case 3277.428 4467.102 2172.658 1860.321 52.6015 43.6602 35.9747 25.1212 45.1788 53.4233 65.3064 74.1789 

Case 5 

Best Case 528.5204 636.5573 480.8449 385.8492 31.4948 23.8764 17.5356 10.4119 71.7431 78.1612 86.8777 93.7361 

Average Case 2928.034 4166.439 2541.517 2252.019 38.895 31.6255 22.913 15.0111 62.0389 70.6678 79.9134 87.5092 

Worst Case 4231.555 5107.635 3684.495 3367.702 47.3835 38.2598 30.8472 19.1314 52.5833 61.8889 74.2487 83.9386 
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Figure 4.2: Fragmentation in % of all Allocators in All Test cases 

 

Figure 4.3: Execution time in (ms) of all Allocators in All Test cases 
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Figure 4.4: No. of Request Satisfied in % of all Allocators in All Test cases 
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