
Memory Management in

Real-Time Operating System

A Synopsis

Submitted in partial fulfillment of the

requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE & ENGINEERING

By

SHAH VATSALKUMAR HASMUKHBHAI

FOTE/878

Guided By,

Dr. APURVA SHAH

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

FACULTY OF TECHNOLOGY & ENGINEERING

THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

VADODARA-390002 (INDIA)

JUNE 2018

Memory Management in Real-time Operating System

I

ABSTRACT

The memory allocation algorithms have been analyzed and worked upon broadly, but there

is less attention given to the multiprocessor architecture and real-time operating system as well.

Most of the algorithms are applicable for the general-purpose operating system and do not fulfill

the necessities of real-time systems. Moreover, limited allocators designed to support real-time

systems which are not completely scalable for multiprocessors. In the 21st century, as we have

entered into an era of high-performance computing, the demand for multi-core architecture has

gained momentum. NUMA architecture based systems are the outcome of this tendency and offer

an organized scalable design. However, existing dynamic memory allocators are not capable of

performing on a multiprocessor architecture and do not comply with real-time system

requirements as well. Researches have proved that the existing memory allocators for any

operating systems which support NUMA architecture are not suitable for real-time applications.

Hence, there is a need to have a dynamic memory allocator which can perform well on SMP and

NUMA based soft real-time systems, with better execution time and less fragmentation.

This research is carried out in the same direction to achieve the aforementioned goal of a

dynamic memory allocator for real-time systems. 1. Dynamic memory allocator DmRT for

symmetric multiprocessing (SMP) and Non-Uniform Memory Access (NUMA) architecture based

real-time operating system has been designed and implemented which provides consistent and

optimum execution time, less memory fragmentation, as well as satisfying a maximum number of

the memory request, compared to other existing allocators. 2. There are so many simulators

available to simulate different test cases for scheduling in a real-time operating system like Litmus-

RT, Mark3, rtsim, etc., but till date, none of the simulators is available for simulating memory

management algorithm for RTOS. Hence, MemSimRT has been designed to simulate various

memory allocators for both SMP as well as NUMA architecture based RTOS.

Memory Management in Real-time Operating System

II

TABLE OF CONTENTS

Sr. No. Topic Page No.

I Abstract I

II Table of Contents II

III List of Tables III

IV List of Figures III

1 INTRODUCTION

 1.1 Introduction to Real-Time Operating System 1

 1.2 Features of RTOS 2

 1.3 Memory Management 2

 1.4 Problem Statement 3

 1.5 Objectives of Memory Management 4

 1.6 Research Contributions 4

2 LITERATURE REVIEW

 2.1 Dynamic Memory Management Algorithms 6

 2.2 Summary 13

3 DmRT for SMP & NUMA

 3.1 Design Principals 15

 3.1.1 Multiple strategies for different sizes of blocks 17

 3.1.2 Search Policies and Mechanisms 17

 3.1.3 Arrangement of blocks 18

 3.1.4 Strategy for selecting Remote Memory 21

4 Results & MemSimRT

 4.1 MemSimRT 23

 4.2 Results 24

 References 29

 Publications 32

Memory Management in Real-time Operating System

III

LIST OF TABLES

Sr.

No.

Table

Number
Table Caption

Page

No.

1 Table 1.1 Difference between General Purpose OS and RTOS 1

2 Table 1.2
The Fundamental difference between static and dynamic memory

management
2

3 Table 2.1 Summary of all Allocators 13

4 Table 4.1 Results of All Allocators in All Test cases 26

LIST OF FIGURES

Sr.

No.

Figure

Number
Figure Caption

Page

No.

1 Figure 2.1 Organization of DLmalloc algorithm 7

2 Figure 2.2 Organization of Half-fit algorithm 8

3 Figure 2.3 Simple TLSF Structure 10

4 Figure 2.4 Organization of tcmalloc algorithm 11

5 Figure 2.5 Organization of Hoard algorithm 12

6 Figure 2.6 Structure of Smart Memory Allocator 13

7 Figure 3.1 SMP Architecture 15

8 Figure 3.2 NUMA Architecture 16

9 Figure 3.3 DmRT Structure for Small Block Allocation 19

10 Figure 3.4 DmRT Structure for Normal Block Allocation 19

11 Figure 3.5 Complex NUMA Structure (4 Nodes) 21

12 Figure 4.1 Welcome screen of MemSimRT 23

13 Figure 4.2 Fragmentation in % of all Allocators in All Test cases 27

14 Figure 4.3 Execution time in (ms) of all Allocators in All Test cases 27

15 Figure 4.4 No. of Request Satisfied in % of all Allocators in All Test cases 28

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 1

Chapter 1

Introduction

1.1 Introduction to Real-Time Operating System

RTOS denotes “Real-time Operating System” which is basically a type of an operating

system which provides support to the real-time applications by giving an accurate result within the

time limit [4][17]. Real-time Operating System can be mainly classified into two categories: 1)

hard real-time system and 2) soft real-time system depends on how rigorously it follows the task

accomplishment deadline.

Table 1.1: Difference between General Purpose OS and RTOS [4]

 RTOS General Purpose OS

Determinism Deterministic Non-deterministic

Preemptive kernel All kernel operations are

preemptable

Not Necessary

Priority Inversion Have mechanisms to prevent

priority inversion

No such mechanism is present

Task Scheduling Scheduling is time-based Scheduling is process based

Latency Have their worst-case latency

defined

Latency is not of a concern

Purpose OS

Application Typically used for embedded

applications

General purpose OS is used for

desktop PCs or other general

purpose PCs

A real-time system can be categorized into three different categories on the basis of its criticality

[17]:

 Hard: A real-time task/system is considered to be hard if generating the outcomes after its

deadline may create terrible significances on the system under control. For example,

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 2

automotive systems, and nuclear-plant governing systems, etc.

 Firm: A real-time task/system is considered to be firm if generating the outcomes after its

deadline is of no use for the system, but does not create any destruction. For example, railway

ticket reservation system.

 Soft: A real-time task/system is considered to be soft if generating the outcomes after its

deadline still provides usefulness for the system, however affecting a performance degradation.

For example, multimedia applications on the mobile phone.

1.2 Features of RTOS [4] [17]

There are various features of RTOS like Synchronization, Interrupt Handling, Timer and

clock, Real-Time Priority Levels, Fast Task, Preemption and Memory Management among them

our focus is towards Memory Management.

Real-time operating system for huge and standard sized application are predictable to offer

virtual memory, not only to achieve the demands of memory but to provide the memory request

of non-real-time applications as well such as different types of editors, browsers, etc. A real-time

operating system normally has small memory size by comprising only the essential features for an

application [12].

 1.3 Memory Management

Generally, memory management of Real-time operating system can be categorized as static

memory management and dynamic memory management [35]. Table 1.2 [4] shows the

fundamental difference between static memory management and dynamic memory management.

Table 1.2: The Fundamental difference between static and dynamic memory management

Static Memory management Dynamic Memory Management

1 Memory allocation is done at compile or

design time.

Memory allocation is done at runtime or

during execution.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 3

2 Static memory allocation is a fix process

which means requisite memory for a

specific process is already identified, and

after allocating memory no modifications

can be done during execution.

Dynamic memory allocation needs memory

manager to maintain which portion of the

memory is allocated and which portion of the

memory is unallocated. Due to this when a

process requests memory, it can allocate

memory and when the task is done then

deallocate it.

3 Allocation and deallocation of memory

are not performed during execution.

Memory bindings are established and

demolished during execution.

4 Extra memory space required. Less memory space required.

1.4 Problem Statement

Since last four to five decades, the majority of the operating systems have been used

dynamic memory allocation for processing which requires communicating explicitly with memory

allocator component. Though memory allocation algorithms have been analyzed and worked upon

broadly since 1960, it has been observed that there is less attention given to the multiprocessor

architecture and real-time operating system as well. Most of the algorithms have been designed

such that, they are applicable for the general-purpose operating system and do not fulfill the

necessities of real-time systems [37]. Moreover, limited allocators designed to support real-time

systems which are not completely scalable for multiprocessors. In the 21st century, as we have

entered into an era of high-performance computing, the demand for multi-core architecture has

gained momentum. NUMA architecture based systems are the outcome of this tendency and offer

an organized scalable design indicating that a few dynamic memory allocators are available.

However, these dynamic memory allocators are not capable of performing on a multiprocessor

architecture and do not comply with real-time system requirements as well. Researches have

proved that the existing memory allocators for any operating systems which support NUMA

architecture are not suitable for real-time applications. Hence, there is a need to have a dynamic

memory allocator which can perform well on SMP and NUMA based soft real-time systems, with

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 4

better execution time and less fragmentation. This research is carried out in the same direction to

achieve the aforementioned goal of a dynamic memory allocator for real-time systems.

1.5 Objectives of Memory Management Algorithm

 The research in dynamic memory management for real-time systems is one of the

unconquered areas primarily because real-time applications impose different requirements on

memory allocators from general-purpose applications. Actually, most significant requirements in

real-time systems are the investigation of scheduling which should be achieved to decide if the

response time of real-time application can be bounded to fulfill the timing restriction of execution.

This investigation should consider the impression of multiprocessor architecture settings like

concurrency, lock contention, cache misses and traffic on the bus. Effect of all these problems on

NUMA architecture systems, related to dynamic memory management could be defined as

follows:

1) Reduce memory fragmentation

2) Restricted execution time

3) Increase node-based locality

4) Reduce false sharing

5) Reduce memory access to the remote nodes

6) Reduce lock conflicts

1.6 Research Contributions

1. Dynamic memory allocator DmRT has been designed and implemented for symmetric

multiprocessing system which provides consistent and optimum execution time, less memory

fragmentation, as well as satisfying a maximum number of the memory request, compare to

other existing allocators.

2. As per the need of high-performance computing, a dynamic memory allocator DmRT for

NUMA architecture based real-time operating system has been designed and implemented

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 5

which provides consistent and optimum execution time, less memory fragmentation as well as

satisfying a maximum number of the memory request.

3. There are so many simulators available to simulate different test cases for scheduling in a real-

time operating system like Litmus-RT, Mark3, rtsim, etc. but till date, no such simulator is

available for simulating memory management algorithm for RTOS. Hence MemSimRT has

been designed to simulate various memory allocators for both SMP as well as NUMA

architecture based RTOS.

 Download MemSimRT using following QR code

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 6

Chapter 2

Literature Review

2.1 Dynamic Memory Management Algorithms

Memory management is the key feature of the real-time operating system. This section

describes certain memory management algorithms for general-purpose as well as the real-time

operating system. There are conventional as well as unconventional algorithms for dynamically

allocation/deallocation of memory. All traditional algorithms can be considered as conventional

algorithms. 1) Sequential Fit Algorithm 2) Buddy Allocators 3) Doug Lea(DLmalloc) 4) Half-Fit

5) TLSF 6) tcmalloc 7) Hoard 8) Smart Memory Allocators

1) Sequential Fit Algorithm

It can be categorized into four types [4] [17] [37]: Best Fit, Next Fit, First Fit and Worst-

Fit.

a. Best Fit: Its name itself suggest that each time the allocator tries to search out the smallest

unallocated memory block which is big enough to fulfill the application’s request.

b. Next Fit: The array of unallocated blocks is to be found from the location where the

previous search suspended, returning the next memory block which is big enough to fulfill

the request.

c. First fit: The array of unallocated blocks is to be found from scratch, returning the first

memory block which is big enough to fulfill the request.

d. Worst fit: The array of unallocated blocks is searched, returning biggest existing

unallocated memory block.

The time complexity of this algorithm is O(n).

2) Buddy Allocator Algorithm

 This algorithm [31] uses an array of link lists of the unallocated blocks. Each list for

allowable block size. For example list of 2N block size like 200 kb, 400 kb, 800 kb so on. The

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 7

buddy allocator finds the smallest block which is large enough to hold the request from the list of

unallocated blocks. If the unallocated block list is empty, then it will search a block from another

list which is larger than a request, then select and split the block [6][10]. A block must be divided

into the same size blocks, i.e., 400 kb block will split into two 200 kb blocks. In the same way, the

block may be merged with its adjacent block of the same size, and this is possible if the adjacent

block has not been divided into the smaller block.

3) Dlmalloc

 This algorithm was proposed by Doug Lea in 1996. Later on, its extended version has been

designed by Gloger in 2006 [20] and by Free Software Foundation in 2012. This algorithm

occupies a huge number of static size arrays known as small-bins to allocate a small memory block.

Bins occupy unallocated blocks which are having sizes not more than 256 bytes. Every bin

comprises unallocated blocks of equal size. If demanded memory block’s size is not more than

256 bytes, the algorithm tries to find for existing blocks in the bins using best-fit policy or large

enough to satisfy the request.

Figure 2.1: Organization of DLmalloc algorithm [37]

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 8

 If the demanded memory block’s size is larger than 256 bytes and smaller than some fixed

value (normally 256 Kb), then algorithm tries to search existing blocks in an array known as tree-

bin, which is having a tree structure for the memory block. As shown in Figure 2.1 tree-bins

accumulate a collection of the bin. Nodes in the tree structure act as a small-bin, comprising the

blocks of equal size. Any demand of block size beyond the fixed value, the algorithm transfers the

requests to the operating system through some specific system call.

4) Half-Fit

 This algorithm has been designed and implemented by Ogasawra [29] [30] in 1995. This

algorithm uses bitmapped fit strategy and achieving execution time in constant manner. As it is

using bitmap policy for allocating release block, it is slow. Use of bitmap is nothing but only to

maintain the status of unoccupied lists. Its time complexity of time is O(1).

 This algorithm maintains a segregated list of a single level. In this list, unallocated blocks

of different size are connected. It takes unallocated blocks of the required size from unallocated

block list through which request will be satisfied. Figure 2.2 shows this example.

Figure 2.2: Organization of Half-fit algorithm [29] [37]

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 9

 It has specific allocation/deallocation methodology to avoid searching using bitmaps

because of its constant execution time. If the requested size of the memory block is r, then index

i may be computed by this equation [30]:

𝑖 = {
 0 𝑖𝑓 𝑟 𝑖𝑠 1

⌊log2(𝑟 − 1)⌋ + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2.1

 Where i, specifies the unallocated memory block lists whose width vary from 2i to 2i+1 −1.

After computing the value of i, an unallocated block is occupied from the unallocated block list

indexed by i. If there is no unallocated block in the list, the subsequent unallocated block list will

be searched.

 If the size of an assigned memory block is more than the demanded memory block size, an

unallocated block from the unallocated block list will be split into two distinct memory blocks of

sizes r1 and r2 before assigning for allocation then the remaining memory block r2 will be put into

the matching unallocated block list. For deallocation, released memory block will be directly

merged with neighboring memory block if the corresponding block is free/unallocated.

 This algorithm is suitable for real-time operating systems because of its constant time

complexity.

5) TLSF

 TLSF is one of the best available dynamic memory allocation algorithm stands for two-

level segregated fit algorithm, unlike segregated list allocator, this algorithm having two level of

segregated lists of unallocated memory blocks in which each list maintain the unallocated blocks

of predefined size range [25][26][28].

 The first-level of list (FLI) splits unallocated memory blocks into various parts which are

apart by the power of two like 2, 4, 8, 16 onwards. The secondary level known as second-level

lists splits each first level list by a user-defined variable known as Second Level Index. TLSF

structures are shown in Figure 2.3.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 10

Figure 2.3: Simple TLSF Structure [25][26]

 This algorithm provides bounded execution/response time. This algorithm is best suitable

for the real-time operating system.

6) tcmalloc

 This algorithm is developed and implemented by Sanjay Ghemawt in 2010 [36]. It is an

extremely accessible algorithm which associates both global heap structure and threads private

heap multiprocessor architecture. To allocate small memory block which size range from 4 bytes

to 32 Kb, this allocator allocates private local heap to each thread. Hence, small size memory block

allocation does not require synchronization mechanism for the thread.

 To allocate large memory blocks which ranges from 32 Kb to 1 Mb, this allocator maintains

a global heap structure which is collectively used by all available threads. As this global heap is

shared by threads, some kind of synchronization mechanism should be used to offer mutual

exclusion. Hence, it employs spin-lock mechanism. If any applications demand a huge memory

block whose size is beyond 1Mb, then allocator forwards the request to the existing operating

system using a system call or APIs. Figure 2.4 shows the structure of tcmalloc allocator. The time

complexity of this allocator is O(1).

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 11

Figure 2.4: Organization of the tcmalloc algorithm [36]

7) Hoard

 This algorithm was designed by Bergar in 2000 [17], and it is popular due to its speed and

scalable in the environment of the multiprocessor system. This allocator also employs a segregated

class mechanism, but unlike tcmalloc it maintains private heap to each processor and to avoid heap

conflict it maintains a global heap. Other than private processor heap and global heap, it also

maintains private heap per thread to allocate smaller size memory blocks which size less than 256

bytes. Threads which are executing on the same processor can also share private processor heap.

 Hence, to allocate any blocks whose size is less than 256 bytes, it first searches it into a

heap of the thread if it fails, then it searches into private processor heap, and if it is also full, then

it searches into a global heap. So its time complexity is O(n), where n is the number of chunks of

the memory block which is known as super-block., Figure 2.5 shows the structure of this algorithm.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 12

Figure 2.5: Organization of Hoard algorithm [2]

8) Smart Memory Allocator Algorithm

 This algorithm has been proposed by Ramakrishna M, Jisung Kim, Woohyong Lee and

Youngki Chung in 2008 [47]. This is a custom type of dynamic memory algorithm having the best

response time and less memory fragmentation. This algorithm divides memory blocks into two

categories. One is short-lived, and another is long-lived memory blocks. The short-lived memory

blocks are allocated in the direction of lowest level to highest level from heap while long-lived

memory blocks are allocated from highest level to lowest level [47]. The used space of heap grows

from highest level to lowest level as well as lowest level to highest level. Initially, entire heap

memory is unallocated, and there is only one unallocated memory block for each short as well as

long-lived memory. The heap space is divided equally into two blocks. When the heap grows from

both sides, the virtual border between these two can easily modify according to the dynamic

memory request.

 As this algorithm predicting memory object life scope, it can easily allocate memory block

from either short-lived or long-lived memory pool [9]. So it can have best response time with lower

fragmentation. It is implemented with a lookup table and hierarchical bitmaps which are improved

version of the multilevel segregated mechanism.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 13

Figure 2.6: Structure of Smart Memory Allocator [41] [47]

2.2 Summary

Table 2.1: Summary of all Allocators

Memory Management

Algorithms

Parameters

Allocation Fragmentation NUMA Support

Sequential fit O(n) Acceptable No

Buddy System O(log𝑛 2) Unacceptable No

Doug Lea(DLmalloc) O(m) Acceptable No

tcmalloc O(1) Acceptable Yes

Hoard O(n) Acceptable No

Half-fit O(1) Unacceptable No

TLSF O(1) Acceptable No

Smart Memory

Allocator
O(log2 𝑛) Unacceptable No

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 14

Table 2.1 shows in the worst-case, the time complexity of the allocators as well as

fragmentation by the allocator is acceptable or not and whether it provides support to NUMA

architecture or not. In the table, n is the heap size, m is the tree’s depth. Concerning real-time

systems segregated Fit, tcmalloc and Half-fit are the only algorithms which satisfactorily provides

the desired objectives also provide a constant execution time.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 15

Chapter 3
DmRT for SMP & NUMA

In this chapter, a new dynamic memory allocator for the real-time operating system will be

discussed. It has been proposed, designed and implemented for Symmetric multiprocessing (SMP)

NUMA (Non-uniform memory access) architecture. And its name is DmRT stand for Dynamic

memory manager for Real-Time systems. This allocator has been designed to achieve constant and

minimum execution time, low fragmentation and satisfying a maximum number of request for the

memory block. Furthermore, the DmRT has been compared with the existing dynamic memory

allocators of the real-time operating system.

 All the design principals such as strategies, policies, and mechanisms will be explained

then the structure of DmRT, and its results will be discussed in this section.

3.1 Design Principals

Figure 3.1: SMP Architecture

 As shown in Figure 3.1, Symmetric multiprocessing (SMP) comprises a multiprocessor

computer hardware and software architecture in which more than one identical processors are

connected to a common or rather shared main memory, and all processors have full access to all

CPU

0

CPU

1

CPU

2

CPU

3

CPU

4

CPU

5

RAM
Bus

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 16

resources like input and output devices, and are managed by a single operating system instance

that treats all processors equally, reserving none for special purposes. Nowadays, the majority of

the multiprocessor systems use the SMP architecture. While in the multi-core processors, the SMP

architecture applies to the cores, treating them as separate processors.

Figure 3.2: NUMA Architecture

 NUMA stands for Non-uniform memory access (NUMA) is nothing but one type of design

for a computer memory which is used in multiprocessing in which the access time of memory

depends on the memory location relative to the processor. In NUMA architecture, a processor can

read/write from its local memory faster than non-local memory, i.e., the local memory of other

processor or shared memory between processors. The benefits of NUMA are limited to particular

workloads, notably on servers where the data is often strongly associated with certain tasks or

users.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 17

 In high-performance computing generation, NUMA is the future of SMP, but its

architecture is clumsier than the Symmetric multiprocessor. Figure 3.2 shows simple NUMA

architecture where only two nodes are available in which each node contains more than one

processor and they all are sharing one memory. They may have their local memory as well. The

complex architectures are also available which can have 4 or 8 nodes. 4 nodes architecture has

been considered for this proposed memory allocator, but it is merely easy to scale it up to 8 nodes.

 There are different strategies for different size of block in which has been explained in this

section.

3.1.1 Multiple strategies for different sizes of blocks (for SMP & NUMA)

 As discussed earlier, various strategies have been used for allocating the different size of

blocks to achieve advantages of all policies, strategies, and mechanisms.

I. A small block whose size of memory block < 512 bytes

II. A normal block whose size of memory block < threshold (Some predefined size, i.e., 2Mb)

III. A large block whose size for request exceeding the threshold or (Some predefined size)

3.1.2 Search Policies and Mechanisms (for SMP & NUMA)

 After defining the strategies, now its turn to which policies and mechanisms will be used

to implement these strategies.

I. For small blocks, the best-fit policy is used which have been implemented by exact-fit

mechanisms to reduce the fragmentation in small sizes of blocks generated by rounding up

the request size of the memory block.

II. For normal blocks, the good-fit policy is used which has been implemented by segregated

lists, which use an array of unallocated block lists.

III. For large blocks, the worst-fit policy is used.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 18

3.1.3 Arrangement of blocks (for SMP & NUMA)

 DmRT implements the exact-fit mechanism to increase the efficiency of small memory

block allocation and to decrease internal fragmentation. It also implements the segregated-fit

mechanisms to employ a good-fit and a first-fit policy for searching the nearest segregated size

class. Thus it can ignore the requirement of a thorough search. Actually, two types of bitmaps have

been used to keep track of unallocated blocks in the implementation of DmRT. Furthermore, this

allocator is predictable as it has employed segregated list with bitmap policies and it provides

confined execution time.

 Among the bitmaps, use of one bitmap is to keep track of small memory blocks, and this

bitmap is employed as a two-dimensional array for holding unallocated memory blocks according

to the memory block size. In this proposed memory allocator (DmRT), for effective memory

allocation, the block size is set apart 4 bytes from 4 bytes to 512 bytes. To check whether a specific

size of a memory block is unallocated or not, two mechanisms have been employed. One is in two

bitmaps total 64-bits and second is maintaining a pointer array to hold unallocated blocks as shown

in Figure 3.3.

 The second type of bitmap comprises a two-dimensional bitmap array directing to

unallocated memory blocks. The primary bitmap which is indexed by i, specifies unallocated

memory blocks whose sizes available between 2i to 2i+1 − 1, and the secondary bitmap which is

indexed by j, splits each primary level range in similar width of a number of ranges. For the

easiness, the number of ranges in the secondary level is signified as the power of two: 2range. For

this allocator, the default value of the range is taken as 6. The variable range splits the primary

level ranges in an equal number of ranges. For example, if value of range is 4 then there are 16

segregated lists inside the provided size ranges, if value of range is 5 then there are 32 segregated

lists inside the provided size ranges and so on and if value of range is 1 then the allocator

accomplishes unallocated blocks as powerfully as the binary buddy allocator.

 The value of the range is crucial to specify the performance of the allocator. Because it is

important to decide the minimum size of the memory block. If the value of the range is big, then

it causes more consumption of memory space for the storing information like extra bits and

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 19

pointers. Conversely, If the value of the range is too small, then it increases the internal

fragmentation accordingly.

Figure 3.3: DmRT Structure for Small Block Allocation

Figure 3.4: DmRT Structure for Normal Block Allocation

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 20

 Therefore, the index i denotes the existing maximum size of a memory block: 2i+1 − 1,

while the number of segregated lists in the provide sizes can be defined by the number of ranges:

2range. Furthermore, a specific segregated list can be identified by the value of index I (i, j), and the

value of index I specify whether the list (i, j) encompasses any unallocated blocks or not. Hence,

all bitmaps do not comprise unallocated memory blocks, but they specify the probable availability

of a particular size of the memory block. All pointers to unallocated memory blocks are kept in

two-dimensional pointer array which is known as matrix.

 As discussed, for this proposed allocate, the value of range is set to 6 by default, each and

every component of the array indicates to a list which has unallocated memory blocks of sizes in

a range from 2i +2(i−range) × j to 2i + 2(i−range) × (j+1) −1.

 According to the employment of this allocator, it employs two-dimensional bitmap arrays,

which needs a 64-bit variable for the primary bitmap and two-time 64-bit variables for the

secondary bitmaps, therefore total 66 variables of 64-bit to specify the unallocated block lists are

required. Also in each secondary level range, all available memory blocks arranged in AVL tree

inorder to balance the tree structure.

 The Primary Level is intended to accomplish the time of execution in a constant manner

for allocation of memory blocks. Every segregated list keep the specific size of unallocated

memory blocks, and the proposed algorithm can find an unallocated block by an index computed

using equation 3.1. The Primary Level is designed using bitmaps and singular linked lists which

contain small sizes of memory blocks, and also it is designed using a bitmap, arrays of pointers to

unallocated blocks and doubly-linked lists for normal sizes of memory blocks. Sharing a single

global heap between more than one threads having a tendency to raise the possibility of lock

conflicts. To decrease this, every thread of the application should have a private thread heap.

ISL (PI, SI) = {

𝑃𝐼 = ⌊log2 𝑅𝐵⌋ 𝑤ℎ𝑒𝑟𝑒 𝑃𝐼 ∈ [9,31]

𝑆𝐼 = ⌊
(𝑅𝐵 − 2𝑃𝐼)

2𝑃𝐼−𝑟𝑎𝑛𝑔𝑒
⌋ 𝑤ℎ𝑒𝑟𝑒 𝑆𝐼 ∈ [0, 63]

 3.1

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 21

3.1.4 Strategy for selecting Remote Memory

 We have proposed one memory allocator which can work on NUMA based

architecture for the real-time operating system. Figure 3.5 shows a schematic diagram of NUMA

based architecture for RTOS. As shown in the figure, there are total four nodes where each node

having two processors, each processor within a node are connected with a bus, and all nodes are

connected with shared memory. Also, each processor having their own local (private) memory.

 Whenever any processor requires any memory block it will first check into its local

memory, if the required memory block is available then it will allocate the same block from the

local memory and if not then it will try to access from the shared memory, if the memory block is

there in shared memory then it will allocate but if it is not there then it will ask for another processor

which is lightly loaded in terms of memory. Now, what is lightly loaded processor? Let’s check it.

Figure 3.5: Complex NUMA Structure (4 Nodes)

 According to memory utilization, each processor will be categorized into four categories.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 22

 1) Ideal

 2) Heavily Loaded

 3) Normal Loaded

 4) Lightly Loaded

 The first step is to calculate the load average for memory utilization for all processors using

following equation [32] [38].

𝑀𝑒𝑚𝑢_𝑎𝑣𝑔 =
𝑀𝑒𝑚𝑢1+ 𝑀𝑒𝑚𝑢2+ 𝑀𝑒𝑚𝑢3+⋯+ 𝑀𝑒𝑚𝑢𝑛

𝑛
 3.2

 The second step is to find the upper and lower threshold value for memory utilization using

following equation.

TU = H × Mem u_avg

TL = L × Mem u_avg

3.3

Where, TU = upper limit of threshold,

 TL = lower limit of threshold,

 U and L are constants. (U >1 and L< 1)

 In the proposed algorithm, U and L are set to be 1.3 and 0.7 respectively which interpret if

memory utilization is 30% above the 𝑀𝑒𝑚𝑢_𝑎𝑣𝑔, it is heavily loaded. And if memory utilization is

70% of the 𝑀𝑒𝑚𝑢_𝑎𝑣𝑔, it is lightly loaded; otherwise, it is normally loaded.

 Hence, Light weight Memory <= 35% of Threshold value

 Heavy weight Memory >= 65% of Threshold value

 Average Memory node > 35% to < 65%

 Ideal Memory < 10% Threshold value

And then select appropriate processor’s memory for allocating memory.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 23

Chapter 4

Results & MemSimRT

4.1 MemSimRT

 There are so many simulators available to simulate different test cases for scheduling in a

real-time operating system like Litmus-RT, Mark3 etc. But till date, no such simulator is available

for simulating memory management algorithm for RTOS. So MemSimRT has been designed to

simulate various memory allocators for both SMP as well as NUMA architecture based RTOS. Its

front end created in C# while back-end developed using python.

Download MemSimRT using this QRcode:

Figure 4.1: The welcome screen of MemSimRT

 Figure 5.1 shows the welcome screen of MemSimRT. So it is the Home screen of the

simulator. As per our dynamic memory allocator, it has two alternatives. One is SMP, i.e.,

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 24

Symmetric multiprocessor and second is NUMA, i.e., Non-uniform memory access based

architecture. Basically, in this simulator, NUMA is designed for eight processors, but it can be

modified as per requirement by slightly changing the script.

4.2 Results

There are five different test cases.

1. SMP

Case 1: Existing allocators and DmRT allocate from Local Memory

 As it is a Symmetric MultiProcessor architecture, all processors will share the same

memory which is known as local memory for them. And whenever any request for the memory

block is raised then, the memory manager will search and allocate memory block from the same

local memory.

2. NUMA

Case 2: Existing from Local and DmRT Follow Local → Shared → Ideal

Existing allocators means Dlmalloc, tcmalloc and TLSF will allocate the memory block

from local memory while DmRT will first try to allocate block from local memory; if it fails then

it will attempt the same from shared memory and still if it will get failure then it will find ideal

memory which has been discussed earlier and then it will allocate block from it. As DmRT tries

to find memory block from three different types of memory, its execution time will be more than

the other allocators, but it provides consistent execution time. And also it will satisfy a maximum

number of the request as well as it will have less fragmentation due to proposed allocator structure.

Case 3: Existing allocators from Local and DmRT from Ideal

In this case, all existing allocator will allocate memory block from Local memory only.

While DmRT first finds the idle memory and then it will allocate memory block from it. Here,

existing allocators allocating blocks only from local memory that’s why it can have less number

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 25

of request satisfaction while DmRT will have a maximum number of request satisfaction. Also,

other parameters will be best due to its structure.

Case 4: Existing allocators and DmRT both from Ideal

In this case, existing allocators and DmRT both will first find idle memory and then allocate

a block from it. As existing allocators and DmRT, both allocate memory from ideal memory,

execution time will be moreover same, but still, DmRT will have a maximum number of request

satisfaction and less fragmentation.

Case 5: Existing allocators and DmRT follow Local → Shared → Ideal

In this case, existing allocators and DmRT both will first try to allocate memory block from

local; if they fail then they will try to allocate the same block from shared memory and still got the

failure then they will find idle memory and try to allocate same memory block from it. Though

both existing allocators and DmRT follow the same path from allocating memory, proposed

allocator defeats all of them in each parameter.

In each case, there are three different test categories have been selected.

a. Best case, i.e. test has been taken for 100 memory blocks request.

b. Average case, i.e. test has been taken for 1000 memory blocks request.

c. Worst case, i.e. test has been taken for 2000 memory blocks request.

There are three main parameters are considered for the results.

 Parameter 1: Execution time. It should be consistent and minimum.

 Parameter 2: Fragmentation. It should be as low as possible.

 Parameter 3: Number of requests satisfied: It should be as high as possible.

Here, total four memory management algorithms have been compared.

a. Dlmalloc b. tcmalloc c. TLSF d. DmRT

 All tests have been done on MemSimRT.

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 26

Table 4.1: Results of All Allocators in All Test cases

As shown in the table, DmRT performs better concerning all other allocators (Dlmalloc, tcmalloc and TLSF) in all cases. Only

in Case 2 where all existing allocators allocate memory from Local memory only and DmRT allocates from Local, Shared and Ideal in

which execution time is more than Dlmalloc and TLSF but in same case number of request satisfied is maximum than others as well

fragmentation is minimum than other allocators.

Parameter Execution Time Fragmentation Request Satisfied

Test No. Cases Dlmalloc Tcmalloc TLSF DmRT Dlmalloc tcmalloc TLSF DmRT Dlmalloc Tcmalloc TLSF DmRT

Case 1

Best Case 287.8581 330.3003 268.598 234.6128 43.6472 29.684 22.4791 17.5031 56.6156 62.5883 81.5737 87.6169

Average Case 1904.826 2890.503 1461.272 1067.995 52.3926 35.157 27.0205 22.0902 45.458 57.4617 74.9894 83.109

Worst Case 3204.577 4352.133 2153.912 1847.152 60.4389 43.6719 32.0433 26.9948 34.903 52.783 70.9776 77.3786

Case 2

Best Case 326.2426 410.8068 290.2026 374.3901 43.5037 36.6849 21.5874 10.5141 57.5068 62.3301 76.6088 94.6614

Average Case 2013.324 2988.474 1522.335 2303.212 52.5491 44.4944 29.5867 15.6241 45.2403 54.2546 65.6095 87.4181

Worst Case 3202.561 4348.651 2049.025 3361.854 61.4645 43.3702 36.5828 20.5572 35.5009 50.4204 61.5822 83.7309

Case 3

Best Case 338.0589 420.5202 296.4418 245.4583 45.2763 33.6326 24.0237 15.4697 57.7885 64.1904 76.9458 89.9526

Average Case 2054.716 2995.241 1539.964 1115.835 53.8153 44.9067 30.2955 19.5226 46.4232 54.5453 65.9168 82.8598

Worst Case 3283.047 4288.159 2064.704 1785.676 60.4389 43.6719 32.0433 26.9948 34.903 52.783 70.9776 77.3786

Case 4

Best Case 374.8572 444.5905 319.6948 249.566 35.2178 26.3902 19.2872 14.5781 67.5358 72.1999 83.1096 89.1851

Average Case 2110.58 3240.527 1530.277 1149.484 43.0248 35.5497 26.3408 19.7854 55.5939 64.722 73.3219 81.1776

Worst Case 3277.428 4467.102 2172.658 1860.321 52.6015 43.6602 35.9747 25.1212 45.1788 53.4233 65.3064 74.1789

Case 5

Best Case 528.5204 636.5573 480.8449 385.8492 31.4948 23.8764 17.5356 10.4119 71.7431 78.1612 86.8777 93.7361

Average Case 2928.034 4166.439 2541.517 2252.019 38.895 31.6255 22.913 15.0111 62.0389 70.6678 79.9134 87.5092

Worst Case 4231.555 5107.635 3684.495 3367.702 47.3835 38.2598 30.8472 19.1314 52.5833 61.8889 74.2487 83.9386

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 27

Figure 4.2: Fragmentation in % of all Allocators in All Test cases

Figure 4.3: Execution time in (ms) of all Allocators in All Test cases

0

10

20

30

40

50

60

70

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

Case 1 Case 2 Case 3 Case 4 Case 5

F
R

A
G

M
E

N
T

A
T

IO
N

 (
%

)

MEMORY ALLOCATORS IN DIFFRENT TEST CASES

Fragmentation (%)

Fragmentation Dlmalloc Fragmentation tcmalloc Fragmentation TLSF Fragmentation DmRT

0

1000

2000

3000

4000

5000

6000

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

Case 1 Case 2 Case 3 Case 4 Case 5

E
X

E
C

U
T

IO
N

 T
IM

E
 (

M
S

)

MEMORY ALLOCATORS IN DIFFRENT TEST CASES

Execution Time (ms)

Execution Time Dlmalloc Execution Time tcmalloc Execution Time TLSF Execution Time DmRT

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 28

Figure 4.4: No. of Request Satisfied in % of all Allocators in All Test cases

0

10

20

30

40

50

60

70

80

90

100

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

B
es

t
C

as
e

A
ve

ra
ge

 C
as

e

W
o

rs
t

C
as

e

Case 1 Case 2 Case 3 Case 4 Case 5

N
O

. O
F

 R
E

Q
U

E
S

T
 S

A
T

IS
F

IE
D

 (
%

)

MEMORY ALLOCATORS IN DIFFRENT TEST CASES

Request Satisfied (%)

Request Satisfied Dlmalloc Request Satisfied tcmalloc Request Satisfied TLSF Request Satisfied DmRT

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 29

References

[1]. Bays, C. (1977). A comparison of next-fit, first-fit, and best-fit. Commun. ACM, 20(3): (pp. 191–192).

[2]. Berger, E. D., McKinley, K. S., Blumofe, R. D., and Wilson, P. R. (2000). Hoard: a scalable memory allocator

for multithreaded applications. SIGPLAN Not., 35(11): (pp. 117–128).

[3]. Christian Del Rosso. (2005). Dynamic Memory Management for Software Product Family Architectures in

Embedded Real-Time Systems. Fifth Working {IEEE} / {IFIP} Conference on Software Architecture (pp.

211-212)

[4]. Dipti Diwase, Shraddha Shah, Tushar Diwase and Priya Rathod. (2012). Survey Report on Memory

Allocation Strategies for Real-time Operating System in Context with Embedded Devices. International

Journal of Engineering Research and Applications, Vol. 2, Issue 3, (pp.1151-1156).

[5]. Edge, J. (2009). Perfcounters added to the mainline. http://lwn.net/Articles/336542/.

[6]. Ferreira, T., Matias, R., Macedo, A., and Araujo, L. (2011). An experimental study on memory allocators in

multicore and multithreaded applications. In Parallel and Distributed Computing, Applications and

Technologies (PDCAT), 2011 12th International Conference on, (pp. 92 –98).

[7]. FSF, F. s. f. (2012a). Glibc, the gnu c library. ”http://www.gnu.org/software/libc/libc.html”.

[8]. FSF, F. s. f. (2012b). The gnu c++ library manual. “http://gcc.gnu.org/onlinedocs/libstdc++”.

[9]. Gergov, J. (1996). Approximation algorithms for dynamic storage allocation. In Algorithms — ESA ’96,

volume 1136, pages 52–61. Springer Berlin / Heidelberg.

[10]. Gloger, W. (2006). ptmalloc2. ”http://www.malloc.de/en/”.

[11]. Hans-Georg Eßer. (2011) Combining memory management and filesystems in an operating systems course.

Proceedings of the 16th Annual {SIGCSE} Conference on Innovation and Technology in Computer Science

Education, Darmstadt, Germany.

[12]. Hasan, Y. and Chang, M. (2005). A study of best-fit memory allocators. Computer Languages, Systems &

Structures, 31(1): (pp. 35 – 48).

[13]. Hasan, Y., Chen, W.-M., Chang, J. M., and Gharaibeh, B. M. (2010). Upper bounds for dynamic memory

allocation. IEEE Trans. Comput., 59(4): (pp. 468–477).

[14]. Hewlett-Packard Corporation (2012). HP Pro-Liant DL980 G7 server with HP PREMA Architecture

PREMA Architecture. Technical Whitepaper.

[15]. Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation, Phoenix Technologies Ltd., and

Toshiba Corporation (2011). Advanced configuration and power interface specification.

[16]. Hirschberg, D. S. (1973). A class of dynamic memory allocation algorithms. Commun. ACM, 16(10): (pp.

615–618).

[17]. Jane W. S. Liu. (2000). “Real-time System”, 1st Edition published by Person Education.

[18]. Johnstone, M. S. and Wilson, P. R. (1998). The memory fragmentation problem: solved? SIGPLAN Not.,

34(3): (pp. 26–36).

[19]. Knuth, D. (1997). The art of computer programming: Fundamental Algorithms, volume 1. addison-Wesley,

2 edition.

[20]. Lea, D. (1996). A memory allocator. ”http://g.oswego.edu/dl/html/malloc.html”. Unix/Mail December, 1996.

[21]. Lei Liu, Mengyao Xie, Hao Yang. (2017). Memos: Revisiting Hybrid Memory Management in Modern

Operating System. CoRR abs/1703.07725

[22]. Lei Liu, Yong Li, Chen Ding, Hao Yang, Chengyong Wu. (2016). Rethinking Memory Management in

Modern Operating System: Horizontal, Vertical or Random? IEEE Trans. Computers 65(6): (pp. 1921-1935)

[23]. Linus Torvalds, e. (2011). Source codes of linux kernel v3.0.4. ”http://lxr. linux.no/linux+v3.0.4/”.

http://lwn.net/Articles/336542/

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 30

[24]. Marchand, A., Balbastre, P., Ripoll, I., Masmano, M., and Crespo, A. (2007). Memory resource management

for real-time systems. In Real-Time Systems, 2007. ECRTS ’07. 19th Euromicro Conference, (pp. 201 –

210).

[25]. Masmano (2012). The lastest version of TLSF source. http://wks.gii.upv.es/tlsf/files/src/TLSF-2.4.6.tbz2.

[26]. Masmano, M., Ripoll, I., and Crespo, A. (2003). Dynamic storage allocation for real-time embedded systems.

Proc. of Real-Time System Simposium WIP.

[27]. Masmano, M., Ripoll, I., Balbastre, P., and Crespo, A. (2008a). A constant-time dynamic storage allocator

for real-time systems. Real-Time Systems, 40(2): (pp. 149–179).

[28]. Masmano, M., Ripoll, I., Real, J., Crespo, A., and Wellings, A. (2008b). Implementation of a constant-time

dynamic storage allocator. Software: Practice and Experience, 38(10): (pp. 995–1026).

[29]. Ogasawara, T. (1995). An algorithm with constant execution time for dynamic storage allocation. In RTCSA

’95: Proceedings of the 2nd International Workshop on Real-Time Computing Systems and Applications,

pages 21–25, Washington, DC, USA. IEEE Computer Society.

[30]. Ogasawara, T. (2009). Numa-aware memory manager with dominant-threadbased copying gc. SIGPLAN

Not., 44(10): (pp. 377–390).

[31]. Page, I. and Hagins, J. (1986). Improving the performance of buddy systems. Computers, IEEE Transactions

on, C-35(5): (pp. 441 –447).

[32]. Paul Werstein, Hailing Situ, Zhiyi Huang. (2006). "Load Balancing in a Cluster Computer", Seventh

International Conference on Parallel and Distributed Computing, Applications and Technologies

(PDCAT'06).

[33]. Puaut, I. (2002). Real-Time Performance of Dynamic Memory Allocation Algorithms. In ECRTS ’02:

Proceedings of the 14th Euromicro Conference on Real-Time Systems, (pp. 41–49), Washington, DC, USA.

IEEE Computer Society.

[34]. Puaut, I. and Hardy, D. (2007). Predictable paging in real-time systems: A compiler approach. In Real-Time

Systems, 2007. ECRTS ’07. 19th Euromicro Conference on, (pp. 169 –178).

[35]. Robart L. Budzinski, Edward S. Davidson. (1981). A Comparison of Dynamic and Static Virtual Memory

Allocation Algorithms” IEEE Transactions on software Engineering, Vol. SE-7, NO. 1.

[36]. Sanjay Ghemawat, P. M. (2010). Tcmalloc: Thread-caching malloc. http://goog-

perftools.sourceforge.net/doc/tcmalloc.html.

[37]. Seyeon Kim. (2013). Node-oriented dynamic memory management for real-time systems on ccNUMA

architecture systems. University of York, UK.

[38]. Vatsal Shah, Kanu Patel. (2012). Load Balancing algorithm by Process Migration in Distributed Operating

System. International Journal of Computer Science and Information Technology & Security (IJCSITS),

ISSN: 2249-9555, Vol. 2, No.6.

[39]. V Shah, A Shah. (2017). Critical Analysis for Memory Management Algorithm for NUMA based Real-time

Operating System. IEEE Xplore.

[40]. V Shah, A Shah. (2018). Proposed Memory Allocation Algorithm for NUMA based Soft Real-time Operating

System. International Conference On Emerging Technologies In Data Mining And Information Security

(IEMIS 2018)

[41]. Vatsal Shah, Apurva Shah. (2016). An Analysis and Review on Memory Management Algorithms for Real-

time Operating System. International Journal of Computer Science and Information Security (IJCSIS), Vol.

14, No. 5.

[42]. Vee, V.-Y. and Hsu, W.-J. (1999). A scalable and efficient storage allocator on shared memory

multiprocessors. In Proceedings of the 1999 International Symposium on Parallel Architectures, Algorithms

and Networks, ISPAN ’99, Washington, DC, USA. IEEE Computer Society.

[43]. Wellings, A. J., Malik, A. H., Audsley, N. C., and Burns, A. (2010). Ada and cc-numa architectures what can

be achieved with ada 2005? Ada Lett., 30(1): (pp. 125–134).

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 31

[44]. Wilson, P. R., Johnstone, M. S., Neely, M., and Boles, D. (1995b). Dynamic Storage Allocation: A Survey

and Critical Review. In IWMM ’95: Proceedings of the International Workshop on Memory Management,

(pp. 1–116), London, UK. Springer-Verlag.

[45]. Wilson, P., Johnstone, M., Neely, M., and Boles, D. (1995a). Memory allocation policies reconsidered.

Technical report, Technical report, University of Texas at Austin Department of Computer Sciences.

[46]. XiaoHui Sun, JinLin Wang, xiao chan. (2007). “An Improvement of TLSF Algorithm”.

[47]. Youngki Chung, Ramakrishna M, Jisung Kim and Woohyong Lee. (2008). Smart Dynamic Memory

Allocator for embedded systems. Proceedings of 23rd International Symposium on Computer and

Information Sciences, ISCIS '08.

[48]. Zorn, B. and Grunwald, D. (1992). Empirical measurements of six allocation-intensive c programs.

SIGPLAN Not., 27(12): (pp .71–80).

[49]. Zorn, B. and Grunwald, D. (1994). Evaluating models of memory allocation. ACM Trans. Model. Comput.

Simul., 4(1): (pp. 107–131).

Memory Management in Real-time Operating System

Vatsal Shah (FOTE/878) 32

Publications

1. Vatsalkumar H. Shah, Dr. Apurva Shah, (May, 2016). "An Analysis and Review on Memory

Management Algorithms for Real-time Operating System" published in International

Journal of Computer Science and Information Security, Volume 14, Issue 5, (pp. 236-240)

(Web of Science Thomson Reuters, Scopus, DOAJ)

2. Vatsalkumar H. Shah, Dr. Apurva Shah, (December, 2017). "Critical Analysis for Memory

Management Algorithm for NUMA based Real-time Operating System". In Proceedings of

IEEE Conference, 2017 (International Conference on Intelligent Sustainable Systems 2017.).

(pp. 323-327). (INSPEC, Scopus Indexed)

3. Vatsalkumar H. Shah, Dr. Apurva Shah, (February, 2018). "Proposed Memory Allocation

Algorithm for NUMA based Soft Real-time Operating System". As a book chapter in

Advances in Intelligent Systems and Computing (AISC), Springer Series. (ISI, DBLP, EI-

Compendex, SCOPUS) (To be published)

4. Vatsalkumar H. Shah, Dr. Apurva Shah, (June, 2018). “Memory Allocator for SMP & NUMA

based Soft Real-time Operating System”. As a book chapter in Advances in Intelligent Systems

and Computing (AISC), Springer Series. (ISI, DBLP, EI-Compendex, SCOPUS) (To be

published)

	0-CoverPage.pdf
	TABLE OF CONTENTS.pdf
	Shrinatahji Synopsis.pdf

