

Appendix A

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

115

APPENDIX A

SOFTWARE DEVELOPMENT

List of software and developed files for multiple model adaptive controllers are as below.

A1:List Software used to develop the algorithm

Version of software Description Company

MATLABVersion

R2013a, 8.1,

32-bit (win 32)

For simulation & overall

development of whole

algorithm

Mathwork, USA

www.mathwork.com

CCS

Platinum v3.3

32-bit (win 32)

For interface real time

system & MATLAB

Texas Instrument

www.ti.com

A2:Graphical user interface development (GUI)

Name of files Description

MAIN_GUI.fig Main screen of GUI

COMPARISION.fig Comparisons of all developed controller

MMAC.fig GUI for Multiple model adaptive controller

OPTIMIZATIO_GA.fig Optimization using Genetic algorithm

OPTIMIZATIO_PSO.fig Optimization using particle swarm optimization

Speed.fig GUI shows the speed calculation

angle.fig GUI shows the Rotor angle calculation

torque.fig GUI shows the torque calculation

Dwm1.fig GUI for change in speed of m/c 1 & 2 for MMAC

linepower.fig GUI for line power of multimachine system for MMAC

terminalvoltage.fig GUI for terminal voltage of multimachine system for MMAC

Appendix A

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

116

A3:Simulink files

Name of files Description

Without_PSS.slx Heffron Philips model without PSS for SMIB system

CPSScase1.slx Conventional power system stabilizer for light loading condition

CPSScase2.slx Conventional power system stabilizer for normal loading condition

CPSScase3.slx Conventional power system stabilizer for heavy loading condition

DualPSScase1.slx Dual i/p PSS for light loading condition

DualPSScase2.slx Dual i/p PSS for normal loading condition

DualPSScase3.slx Dual i/p PSS for heavy loading condition

FPSScase1.slx Fuzzy PSS for light loading condition

FPSScase2.slx Fuzzy PSS for normal loading condition

FPSScase3.slx Fuzzy PSS for heavy loading condition

ANNPSScase1.slx Artificial Neural network based PSS for light loading condition

ANNPSScase2.slx Artificial Neural network based PSS for normal loading condition

ANNPSScase3.slx Artificial Neural network based PSS for heavy loading condition

gacase1.slx Genetic algorithm based PSS for light loading condition

gacase2.slx Genetic algorithm based PSS for normal loading condition

gacase3.slx Genetic algorithm based PSS for heavy loading condition

without_mmc.slx Multimachine system without PSS

conventional_pss.slx Multimachine system with PSS

neural_pss.slx ANN based PSS for Multimachine system

fuzzy_pss.slx Fuzzy logic based PSS for Multimachine system

ga_pss.slx Genetic algorithm based PSS for Multimachine system

Only_pss_discrete.slx Discrete system model for SMIB system

mmc_pss_discrete.slx Discrete system model for Multimachine system

Pso_smib.slx Particle swarm optimization model for SMIB system

Appendix A

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

117

Pso_mmc.slx Particle swarm optimization model for Multimachine system

A4:MATLAB files

Name of files Description

b10to2.m Conversion of base 10 to base 2

calculateobj.m Calculate the main objective function for GA

gapgm.m Main file for GA

decode1.m Conversion from binary to variable representation

encode1.m Conversion from variable to binary representation

init.m Creation of random population

mate.m Randomly reorders (mates) OLD_GEN

mutate.m Changes a gene of the OLD_GEN with probability Pm

reproduce.m selects individuals proportional to their fitness

score3.m computes the fitness and the objective function values of a population

xover.m Creates a NEW_GEN from OLD_GEN

nn_con.m Artificial neural network coding for conventional PSS

nnbkp.m Artificial neural network coding for conventional PSS using back

propagation algorithm

calculate.m Calculate the main objective function for GA

main_PSO.m Main file for PSO

A5:FUZZY files

Name of files Description

RMMAC.fis Fuzzy file for multiple model adaptive control

RMMAC_A.fis Fuzzy file for multiple model adaptive controller for Intelligent control

RMMAC_Ss.fis Fuzzy file for multiple model adaptive controller for Smart control

Psssmib.fis Fuzzy file for single machine infinite bus system

Multimachinepss.fis Fuzzy file for multimachine infinite bus system

Appendix B

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

118

APPENDIX B

SYSTEM DATA

List of software and developed files for multiple model adaptive controllers are as below.

B1:Single Machine Data

The Generator data:

Xd 1.6

 Xq 1.55

x’d 0.32

T’d0 6.0

H 5

F 50 Hz.

The Transmission line data:

Re 0

Xe 0.4

AVR data:

KA 200

TA 0

PSS data:

T1 0.154 sec

T2sec 0.033 sec

TW 1.4 sec

Kstab 9.5

Appendix B

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

119

Dual PSS data:
Ks1 -0.5

Ks2 48.25

T1 0.05 sec

T2 0.25 sec

Tw1,Tw2 0.2 s

The calculation of K1 to K6:

 ̂

 ̂

 () ()

 ̂ ̂

 ()

 () ()

 ()

()

()

()

()

()

()

()

()

Appendix B

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

120

B2:Multimachine Data

Generator-1 Data

Nominal Power (Pn)VA 1000 MVA

Line-line Voltage Vn (rms) 13800

Xd 1.305

Xd’ 0.296

Xd” 0.252

Xq 0.474

Xq” 0.243

Xl 0.18

Inertia Constant H 3.7

Friction Factor 0

Pole Pair P 4

Theta -16.68 (degree)

Rotor Type Salient Pole

Generator-2 Data

Nominal Power (Pn)VA 500 MVA

Line-line Voltage Vn (rms) 1380

Xd 1.305

Xd’ 0.296

Xd” 0.252

Xq 0.474

Xq” 0.243

Xl 0.18

Inertia Constant H 3.7

Friction Factor 0

Pole Pair P 32

Theta -69.6

Rotor Type Salient Pole

Appendix C

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

121

APPENDIX C

LIST OF RESEARCH PUBLICATIONS

Following is the list of our publications, presentations relevant to the work included in the thesis.

C1:International Journal

(1) Ami Patel, Prof. S.K.Shah, “Design and Analysis of Switched Multiple Model Adaptive

Control for Local Controllers” at International Journal of Engineering Associates, ISSN: 2320-

0804, Vol. 1 Issue 4,

2012.http://www.advanceresearchlibrary.com/temp/downloads/ijea/feb2013/rk32.pdf)

(2) Ami Patel, Prof. S.K.Shah, “Development of Real time controller of a Single Machine

Infinite Bus system with PSS”, International Journal of Electrical Engineering (IIJEE), ISSN

2321-600X, Volume 2, Issue 9, September 2014,Impact Factor: 1.318.

(3) Ami Patel, Hemisha Patel, “Comparison of Different Design Methods for power System

Stabilizer Design - A Review”, International Journal for Scientific Research & Development,

ISSN (online): 2321-0613, Vol. 2, Issue 08, 2014.

C2:Peer-reviewed international conferences

(4) Ami Patel, Prof. S.K.Shah, Hardik A Shah, “Design of fuzzy logic power system

stabilizers in a multimachine power system using Particle swarm optimization based optimal

control algorithm”, Discovery International Daily journal ISSN 2278 – 5469.

(5) Ami Patel, Hemisha Patel, Jay S Tandel, “Development of Intelligent controller for

Power System stabilization for Single Machine Infinite Bus system”, Discovery International

Daily journal ISSN 2278 – 5469.

Appendix C

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

122

(6) Ami Patel, Hemisha Patel “Performance Evaluation of PSS Under Different Loading

Condition”, Global Conference on communication technologies GCCT, IEEE Conference at

Tamilnadu during 23-24 April,2015.

C3:Conference Proceeding

(7) Ami Patel, Prof. S.K.Shah, Hardik A Shah “Improvement of Transient stability of SMIB

system using Fuzzy & ANFIS based STATCOM damping stabilizer”, Target -2014, Institution

of electrical and electronics engineers, Vadodara, March 8
th

 2014.

C4: Under preparation

(8) Ami Patel, Prof. S.K.Shah, “Real time implementation of power system stabilizer for

SMIB system”, IEEE International conference on Electrical, Computer and Communication

Technologies, Feb 22-24, 2017

(9) Ami Patel, Prof. S.K.Shah, “Multiobjective optimization of Single machine infinite bus

system for power system stabilization”, IEEE International conference on communications, ICC

2017, May 21-25, 2017

Appendix D

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

123

APPENDIX D

PHOTOGALLERY

Following is the photographs of the developed graphical user interface.

The summary of work is presented in the form of MMAC having a graphical user interface

shown in Fig. D.1 to D.8. The thesis & synopsis are also embedded in the software for on-line

help. The graphical user interface shows with various option menus for robust multiple model

adaptive controllers.

Fig. D. 1 GUI for Controller performance for Normal Loading Condition

Appendix D

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

124

Fig. D. 2 Main Layout 1 of Graphical User Interface

Fig. D. 3 Main Layout 2 of Graphical User Interface

Appendix D

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

125

Fig. D. 4 GUI for Processor in loop configuration for SMIB system

Fig. D. 5 Hardware in loop configuration for multimachine system

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

126

APPENDIX E

SOFT COMPUTATIONAL FIELDS

It provides a comprehensive study of the work done by the researchers using soft computational

fields by using MATLAB Simulink for the design of single/Multi Machine system. The general

preview of the soft computational fields such as: Fuzzy logic, Artificial Neural Network, Genetic

Algorithm and Particle Swarm Optimization provided in this chapter with reference to observer,

estimator and Controllers. It also describes the software tools available for development of

FUZZY, ANN models, genetic algorithm and particle swarm optimization for parameter

optimization and to carry out their simulation study. SIMULINK is used for testing the

performance of the compensator.

E.1Introdution

Soft computational fields are an artificial intelligence which relies on the algorithms such as

fuzzy systems, neural networks genetic algorithm and particle swarm optimization. This chapter

describes these methods and tools used for the development.

Fig. E. 1 Soft Computational Fields

Soft
Computational

Fields

Fuzzy Logic
Local/Global

Minima

Particle Swarm
Optimization

Artificial
Neural

Network

Evolutionary
Algorithm

Genetic
Algorithm

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

127

E.2 MATLAB development tools

E.2.1 Main features and capabilities of MATLAB

Fig. E. 2 Schematic diagrams of MATLAB‟s main features

MATLAB

User written functions Built-

in functionsMultiple Model

Adaptive control

Graphics

 2-D Graphics

 3-D Graphics

 Color & Lighting

AnimationPerfor

mance

Criteria:

Optimization

Computations

 Linear Algebra

 Data Analysis

 Signal Processing

 Quadrature

Solution of

ODEsReal Time

Implementatio

n using DSP

28335

External Interface

(Mex-files)

Interface with C

and FORTRAN

ProgramsPerfor

mance Analysis

of Robust

Multiple model

Adaptive

Controller Signal Processing

 Statistics

 Control System

 System Identification

Neural

NetworksConclusion

and future scopes

Toolboxes (Collections of specialized Functions)

Bibliography Image Processing

 Splines

 Robust Control

 Optimization

 Financial And many more

E

X

T

R

A

F

U

N

C

T

I

O

N

E

X

T

R

A

F

U

N

C

T

I

O

N

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

128

When the MATLAB desktop appears, containing tools (graphical user interfaces) for managing

files, variables, and applications associated with MATLAB. Default configuration of the

MATLAB desktop as shown in Fig E.3.

Fig. E. 3 MATLAB Desktop

Click the start

button to quick

access

Drag the separator bar

to resize the window

Menu changes

depending on

tool choice Enter

Matlab

statement

at

prompt

View or

change the

current

directory

Get Help

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

129

Command window is the main window. It is characterized by the MATLAB command prompt

“>>”. Command Window is used to enter variables and run functions and M-files as shown in

Fig E.4.

Fig. E. 4 Command Window

E.2.2Simulink

Simulink is a software package for modeling, simulating, and analyzing dynamic systems. This

package provides linear and nonlinear systems, modeled in continuous time, sampled time, or a

hybrid of the two. Systems can also be multirate, i.e., have different parts that are Simulink has

following features:

 Availability of extensive library of different blocks.

Type variables and

Functions at the

MATLAB prompt

MATLAB

displays the

results

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

130

 Models can be grouped to hierarchies of create a simplified view of components of

subsystems. A Simulink block diagram model is a graphical representation of a mathematical

model of a dynamic system which is shown by Fig E.5.

Fig. E. 5 Facilities of Simulink

Simulink provides a richest of modeling capabilities for dynamic systems, which can further be

extended by domain specific products such as State flow for event driven systems,

SimMechanics for modeling physical systems, and many Block sets such as the DSP Blockset

Simulink

State flow, SimMechanics, Blockset,

And other

modelling and Simulation tools

MATLAB

And

toolboxes

Design

and

Analysis

Real-Time Workshop

Technology can be

used to perform rapid

simulations

Real-Time Workshop

 Generation and Real-Time Tools

Real- Time System “Target”

Math Woks provides several

targets

External mode

communication

between Target and

Simulink

For monitoring and

parameter tuning

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

131

for signal processing. At any point during the design cycle, it can be use the power of MATLAB

and the many toolboxes to analyze the simulation or real-time results or improve designs. Using

Simulink:

 Build a block diagram.

 Simulate the system‟s behaviour

Evaluate its performance and refine the design

.

Fig. E. 6 Simulink library browser

New Model

Open

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

132

E.2.3Toolboxes

 Fuzzy Logic toolbox

Table E. 1Functions used to create fuzzy system

Functions Description

Addmf Add a membership function to an FIS

Addrule Add a rule to an FIS

Addvar Add a variable to an FIS

Evalfis Perform fuzzy inference calculations

Newfis Create new FIS

Trimf Triangular membership function

Fuzzy Logic Toolbox™ provides MATLAB functions, graphical tools, and a Simulink block for

analyzing, designing, and simulating systems based on fuzzy logic. The product guides you

through the steps of designing fuzzy inference systems. Functions are provided for many

common methods, including fuzzy clustering and adaptive neuro-fuzzy learning. Fuzzy inference

blocks used in Simulink and simulate the fuzzy systems within a comprehensive model of the

entire dynamic system [4].

 Artificial Neural Network Toolbox

Table E. 2Functions used from ANN toolbox

Functions Description

newff Create feed forward backpropagation network

Purelin Linear transfer function

tansig Hyperbolic tangent sigmoid transfer function

Traingd Gradient descent backpropagation

sim Simulation of Simulink model

gensim Generate Simulink block simulate a neural network

Train Trains a network according to NET.trainFcn and NET.trainParam

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

133

Neural Network Toolbox™ provides functions and apps for modeling complex nonlinear

systems that are not easily modeled with a closed-form equation [5]. Neural Network Toolbox

supports supervised learning with feed forward, radial basis, and dynamic networks. It also

supports unsupervised learning with self-organizing maps and competitive layers. With the

toolbox you can design, train, visualize, and simulate neural networks. Neural Network Toolbox

can be used for applications such as data fitting, pattern recognition, clustering, time-series

prediction, and dynamic system modeling and control. To speed up training and handle large

data sets, you can distribute computations and data across multicore processors, GPUs, and

computer clusters using Parallel Computing Toolbox™

 Global Optimization Toolbox

Global Optimization Toolbox provides methods that search for global solutions to problems that

contain multiple maxima or minima. It includes global search, multistart, pattern search, genetic

algorithm, and simulated annealing solvers. You can use these solvers to solve optimization

problems where the objective or constraint function iscontinuous, discontinuous, and stochastic,

does not possess derivatives, or includes simulations or black-box functions with undefined

values for some parameter settings.

Table E. 3Functions used for global optimization toolbox

Functions Description

createoptimProblem Create optimization problem structure

CustomStartPointSet User-supplied start points

GlobalOptimSolution Optimization solution

GlobalSearch Find global minimum

MultiStart Find multiple local minima

RandomStartPointSet Random start points

Genetic algorithm and pattern search solvers support algorithmic customization. You can create

a custom genetic algorithm variant by modifying initial population and fitness scaling options or

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

134

by defining parent selection, crossover, and mutation functions. You can customize pattern

search by defining polling, searching, and other functions [6].

 Optimization Problem Setup

Choose solver, define objective function and constraints, and compute in parallel

 Global or Multiple Starting Point Search

Multiple starting point solvers for gradient-based optimization, constrained or unconstrained

 Direct Search

Pattern search solver for derivative-free optimization, constrained or unconstrained

 Genetic Algorithm

Table E. 4Genetic algorithm Functions

Functions Description

gab Find the minimum of a function using the genetic algorithm

gaoptimget Get values of a genetic options structure

gaoptimset Create a genetic algorithm options structure

gatool Open the genetic algorithm tool

Genetic algorithm solver for mixed-integer or continuous-variable optimization, constrained or

unconstrained

 Particle Swarm :Particle swarm solver for derivative-free unconstrained optimization or

optimization with bounds

 Simulated Annealing : Simulated annealing solver for derivative-free unconstrained

optimization or optimization with bounds

 Multiobjective Optimization:Pareto sets via genetic algorithm with or without constraints (2).

E.3 Fuzzy logic control system

Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is approximate rather

than precisely deduced from classical predicate logic. It can be thought of as the application side

http://in.mathworks.com/help/gads/optimization-problem-setup.html
http://in.mathworks.com/help/gads/global-or-multiple-starting-point-search.html
http://in.mathworks.com/help/gads/direct-search.html
http://in.mathworks.com/help/gads/genetic-algorithm.html
http://in.mathworks.com/help/gads/particle-swarm.html
http://in.mathworks.com/help/gads/simulated-annealing.html
http://in.mathworks.com/help/gads/multiobjective-optimization.html

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

135

of fuzzy set theory dealing with well thought out real world expert values for a complex problem

[7]. In this context, FL is a problem-solving control system methodology that lends itself to

implementation in systems ranging from simple, small, embedded micro-controllers to large,

networked, multi-channel PC or workstation-based data acquisition and control systems. The

Fuzzy Logic tool was introduced in 1965, also by LOTFI ZADEH, and is a mathematical tool for

dealing with uncertainty. It offers to a soft computing partnership the important concept of

computing with words‟. It provides a technique to deal with imprecision and information

granularity. The fuzzy theory provides a mechanism for representing linguistic constructs such as

“many,” “low,” “medium,” “often,” “few.” In general, the fuzzy logic provides an inference

structure that enables appropriate human reasoning capabilities [8].

Fuzzy logic system

Imprecise data

Vague statements

Decisions

Fig. E. 7 Basic structure of fuzzy logic system

Fuzzy logic means approximate reasoning, information granulation, computing with words and

so on. Ambiguity is always present in any realistic process. Fuzzy logic provides an inference

structure that enables the human reasoning capabilities to be applied to artificial knowledge-

based systems [9]. Fuzzy logic provides a means for converting linguistic strategy into control

actions and thus offers high-level computation.

Fuzzy logic provides mathematical strength to the emulation of certain perceptual and linguistic

attributes associated with human cognition, whereas the science of neural networks provides a

new computing tool with learning and adaptation capabilities. The theory of fuzzy logic provides

an inference mechanism under cognitive uncertainty; computational neural networks offer

exciting advantages such as learning, adaptation, fault tolerance, parallelism, and generalization

[10].A fuzzy logic system which accepts imprecise data and vague statements such as low,

medium, high and provides decisions which is shown in Fig E.7

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

136

E.3.1 Design of fuzzy logic controller

 A typical fuzzy system consists of a rule base, membership functions and an inference system.

The design of a fuzzy logic controller which consist of a fuzzification interface, a knowledge

base, decision making logic, and a defuzzification interface.

Fig. E. 8 Components of Fuzzy controller

In fuzzification the value of input variables are measured and then converts input data into

suitable linguistic values which may be viewed as label fuzzy sets. The knowledge base

comprises knowledge of application domain and attendant control goals. It consists of a database

and linguistic control rule base. The database provides the necessary definitions, which are used

to define linguistic control rules and fuzzy data manipulation in an FLC. The rule base are the

control strategy of the FIS system. The FIS system formulates suitable rules and based upon the

rules the decision is made. There are two methods MAMDANI and SUGENO for fuzzification

[11]. After fuzzification, the fuzzy output is converted into crisp output by defuzzification

method. The different methods of defuzzification are weighted average method, mean of maxima

method and centroid method, centre of sums method etc.

(2) Paper entitled, “Development of Real time controller of a Single Machine Infinite Bus system with

PSS”, International Journal of Electrical Engineering (IIJEE), ISSN 2321-600X, Volume 2, Issue 9,

September 2014,Impact Factor: 1.318.

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

137

E.3.2 Fuzzy implication methods

 Mamdani or Max-min method

The max-min algorithm operates on each rule (min fashion) and combining all the rule (max

fashion). In the min composition, for each rule, the algorithm matches the membership degrees

to the antecedent membership function, and finds the minimum. The minimum function is the

equivalent of the AND logical function. For each output variable, a matrix is constructed where

each row corresponds to a rule and each column corresponds to a crisp value in the fuzzy set. In

the max composition, the combined output fuzzy subset is constructed by taking the maximum

over all of the fuzzy subsets assigned to the output variable by the inference rule. The maximum

of each column is then calculated, which yields a composite or inferred membership function

that is then passed to the defuzzification procedure.

 Sugeno Method

The Takagi-sugeno fuzzy model (Takagi and sugeno 1985) uses crisp functions as the

consequences of the rules. This is the difference between the mamdani and sugeno method. The

antecedent of each rule is a set of fuzzy propositions connected with the AND operator (for more

than one input). The consequent of each rule is a crisp function of the input vector. By means of

the fuzzy sets of the antecedent propositions the input domain is softly partitioned into smaller

regions where the mapping is locally approximated by the crisp functions. Takagi- sugeno rule

aggregation and their effects considerably differ from the Mamdani method. One variation of the

Takagi- sugeno inference system uses the weighted mean criterion to combine all the local

representations in a global approximate.

E.4 Artificial Neural Network

Almost all information-processing needs of today are met by digital computers. Neural networks

are constructed with neurons that connected to each other [12].A more formal definition of an

ANN according to Haykin is: “A neural network is a massively parallel distributed processor that

has a natural propensity for storing experiential knowledge and making it available for use” [12].

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

138

E.4.1 The Biological Inspiration

The brain is principally composed of a very large number of neurons, massively interconnected.

Each neuron is a specialized cell which can propagate an electrochemical signal. The neuron has

a branching input structure (the dendrites), a cell body, and a branching output structure (the

axon). The axons of one cell connect to the dendrites of another via a synapse. Neuron is

activated, it fireman electrochemical signal along the axon. This signal crosses the synapses to

other neurons, which may in turn fire [13].

Fig. E. 9The Biological Neurons

It receives a number of inputs either from original data, or from the output of other neurons in

the neural network. Each input comes via a connection that has strength (weight); these weights

correspond to synaptic efficacy in a biological neuron. Each neuron also has a single threshold

value. The weighted sum of the inputs is formed, and the threshold subtracted, to compose the

activation of the neuron (also known as the post-synaptic potential, or PSP, of the neuron).The

activation signal is passed through an activation function (also known as a transfer function) to

produce the output of the neuron [14] [15].

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

139

Fig. E. 10Simple model of an Artificial Neuron

E.4.2 Single layer and multi-layer networks

 Single layer networks

For single layer neural network, the output signals of the neurons in the first layer are the output

signals of the network.

Here each neuron adjusts its weights according to what output was expected of it, and the output

it gave.

 Multi-layer networks

Multilayerperception‟s are feed forward nets with one or more layers of nodes between the input

and output nodes. Multilayer feed forward networks normally consist of three or four layers;

there is always one input layer and one output layer and usually one or more hidden layers. The

term input layer neurons are a misnomer; no sigmoid unit is applied to the value of each of these

neurons. Their raw values are fed into the layer downstream the input layer (the hidden layer).

Once the neurons for the hidden layer are computed, their activations are then fed downstream to

the next layer, until all the activations eventually reach the output layer, in which each output

layer neuron is associated with a specific classification category [16].

+

W

W1

W

W2

W

Wn

X1

X2

.

.

.

Xn Inputs
 Weights

y

Net output

Summer

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

140

Fig. E. 11 Multilayer Networks

E.4.3 Types of neural network learning

“The algorithmic process of weight adjustments is called learning rule”.

They can be grouped into two groups:

1. Supervised learning and

2. Unsupervised learning.

 Supervised learning:

Supervised learning is a process of training a neural network by giving it examples of the task we

want it to learn. i.e. it is a learning with a teacher. The way this is done is by providing a set of

pairs of vectors (patterns), where the first pattern of each pair is an example of an input pattern

that the network might have to process and the second pattern is the output pattern that the

network should produce for that input which is known as a target output pattern for whatever

input pattern.

X1

X2

X3

Input layer
First

hidden

layer

Second

hidden

layer

Output

layer

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

141

 Unsupervised learning:

It is the learning process in which changes in a network's weights and biases are not due to the

intervention of any external teacher. Commonly changes are a function of the current network

input vectors, output vectors, and previous weights and biases. In this the network is able to

discover statistical regularities in its input space and automatically develops different modes of

behavior to represent different classes of inputs (in practical applications some labeling is

required after training, since it is not known at the outset which mode of behavior will be

associated with a given input class). In this type of learning due to absence of desired output it is

difficult to predict what type of features network will extract [17].

E.4.4 Procedure for ANN Implementation

The general steps can be summarized as follows:

1. Analyze the problem and find whether it has sufficient elements for a neural network.

2. If the ANN is to represent a static function then a three layer feed forward network should be

sufficient. For a dynamic function, select either a recurrent neural network or a time delayed

network.

3. Select an input and output signals. For a feed forward network, select the hidden layer

neurons.

4. Select generally a sigmoid transfer network for unipolar output and a hyperbolic tan function

for bipolar output.

5. Select a development system such as Neural Network toolbox in MATLAB.

6. Select appropriate learning coefficient (η) and momentum factor (μ).

7. Select an acceptable training error ξ and a no. Of epochs.

8. After the training is complete with all patterns, test the network performance.

E.5 Genetic Algorithm

Genetic algorithms (GAs), which uses the concept of Darwin‟s theory, have been widely

introduced to deal with nonlinear control difficulties and to solve complicated optimization

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

142

problems. Darwin‟s theory basically stressed the fact that the existence of all living things is

based on the rule of ‟survival of the fittest‟. In the theory of evolution, different possible

solutions to a problem are selected first to a population of binary strings encoding the parameter

space. The selected solutions undergo a parallel global search process of reproduction, crossover

and mutation to create a new generation with the highest fitness function [11].Genetic algorithms

(GAs) are computer-based search techniques patterned after the genetic mechanisms of

biological organisms which have allowed such organisms (GAs), to adapt and flourish in

changing, highly competitive environments for millions of years.

E.5.1 Solution Representation: The Chromosome Structure

Typically a bit-string or a string of some other kind is used to represent a solution in evolutionary

computing. The string data structure is most similar to the natural chromosome and therefore the

string can be manipulated in ways similar to natural chromosomes.

 Binary Encoding: -

The most commonly used representation of chromosomes in the GA is that of the single-level

binary string. Here, each decision variable in the parameter set is encoded as a binary string and

these are concatenated to form a chromosome. It is easy to implement and understand. It

supports implicit parallelism. In binary encoding, every chromosome is a string of bits 0 or 1.

 Real valued encoding: -

In real encoding, every chromosome is a sequence of some values. Values can be a real numbers,

chars or any objects.

E.g. - Chromosome A: 2.5 8.9 0.68 7.2

 Chromosome B: SWEFGRDJHFHF

Efficiency of the GA increases, as there is no need to convert chromosomes to phenotypes before

each function evaluation.

 Less memory is required as efficient floating-point internal computer representations can be

used directly;

There is no loss in precision by discritization to binary or other values.

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

143

There is greater freedom to use different genetic operators. The use of real-valued encoding is

described in detail in [18]

 Permutation encoding: -In this type of encoding every chromosome is a string of numbers i.e.

has real sequence in it, which represents position in a sequence and can be used in the ordering

problems, such as travelling salesman problem (distance optimization) or task ordering problem

(efficiency optimization).

E.g. - Chromosome A: 5 4 9 1 2 7 0 3 4 5 8

 Tree encoding: -

In the tree encoding every chromosome is a tree of some objects, such as functions or commands

in programming language. It is mainly used for evolving programs.

E.5.2 General Rules to Set Parameters of Genetic Algorithm

1. Population size: - It influences amount of search points in every generation. There is always a

trade-off between diversity of population and computation time. The more population size in the

Gas will increase the efficiency of searching, but it will time consuming. When the population is

less GA may converge in too few generations to ensure a good solution. The population size

usually ranges from five to ten times the number of searched variables. [20]

2. Crossover Probability: - The crossover probability controls the rate at which solutions are

subjected to crossover i.e. influences the efficiency of exchanging information. The higher the

crossover probability the quicker the new solutions are generated & lower crossover rate may

stagnate the search due to loss of exploration power. Typical values of the crossover probability

are in the range 0.5-1.0.

3. Mutation Probability: - A large value of the mutation probability transforms the GA into a

purely random search algorithm by eliminating the results of reproduction & crossover. While a

certain value of the mutation probability is required to prevent the convergence of the GA to sub

optimal solutions. A typical value of the mutation probability is in the range 0.0-0.1.

4. Chromosome length: - It influences the resolution of the searching result. The GAs with

longer chromosome length will have the higher resolution, but it will increase the search space.

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

144

5. Number of Generations: - which influences the searching time and searching result. The GAs

with larger search space and less population size, it needs more generations for a global

optimum. Additionally, the set of the number of generations is dependent on the problem [21].

E.6 Particle Swarm Optimization

E.6.1 Basic of Particle Swarm Optimization

Particle swarm is a population-based algorithm. In this respect it is similar to the genetic

algorithm. A collection of individuals called particles move in steps throughout a region. At each

step, the algorithm evaluates the objective function at each particle. After this evaluation, the

algorithm decides on the new velocity of each particle. The particles move, then the algorithm

re-evaluates. The inspiration for the algorithm is flocks of birds or insects swarming. Each

particle is attracted to some degree to the best location it has found so far, and also to the best

location any member of the swarm has found. After some steps, the population can coalesce

around one location, or can coalesce around a few locations, or can continue to move.

Theparticle swarm algorithm begins by creating the initial particles, and assigning them initial

velocities. It evaluates the objective function at each particle location, and determines the best

(lowest) function value and the best location. It chooses new velocities, based on the current

velocity, the particles' individual best locations, and the best locations of their neighbours. It then

iteratively updates the particle locations (the new location is the old one plus the velocity,

modified to keep particles within bounds), velocities, and neighbours. Iterations proceed until the

algorithm reaches a stopping criterion [22].

E.6.2 General Procedure of PSO algorithm

The algorithm updates the swarm as follows. For particle i, which is at position x (i):

1. Choose random subset S of N particles other than i.

2. Find fbest(S), the best objective function among the neighbors, and g(S), the position of the

neighbor with the best objective function.

3. For u1 and u2 uniformly (0,1) distributed random vectors of length nvars, update the velocity

a. v = W*v + y1*u1.*(p-x) + y2*u2.*(g-x).

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

145

b. This update uses a weighted sum of:

c. The previous velocity v

d. The difference between the current position and the best position the particle has seen p-x

e. The difference between the current position and the best position in the current

neighbourhood, g-x

4. Update the position x = x + v.

5. Enforce the bounds. If any component of x is outside a bound, set it equal to that bound.

6. Evaluate the objective function f = fun(x).

7. If f <fun(p), then set p = x. This step ensures p has the best position the particle has seen.

8. If f < b, then set b = f and d = x. This step ensures b has the best objective function in the

swarm, and d has the best location.

9. If, in the previous step, the best function value was lowered, then set flag = true. Otherwise,

flag = false. The value of flag is used in the next step.

10. Update the neighborhood. If flag = true:

a. Set c = max (0,c-1).

b. Set N to minNeighbourhoodSize.

c. If c < 2, then set W = 2*W.

d. If c > 5, then set W = W/2.

e. Ensure that W is in the bounds of the InertiaRange option.

f. If flag = false:

g. Set c = c+1.

h. Set N = min (N + minNeighbourhoodSize, SwarmSize).

E.7 Code Composer Studio

E.7.1 Integrated development environment (IDE)

Code Composer Studio is an integrated development environment (IDE) that supports TI's

Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of

tools used to develop and debug embedded applications. It includes an optimizing C/C++

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

146

compiler, source code editor, project build environment, debugger, profiler, and many other

features. The intuitive IDE provides a single user interface taking you through each step of the

application development flow. Familiar tools and interfaces allow users to get started faster than

ever before. Code Composer Studio combines the advantages of the Eclipse software framework

with advanced embedded debug capabilities from TI resulting in a compelling feature-rich

development environment for embedded developers.

Code Composer Studio is comprised of a suite of tools used to develop and debug embedded

applications. It includes a compiler source code editor, project build environment, debugger,

profiler and many other features. The intuitive IDE provides a single user interface taking you

through each step of the application development flow. Familiar tools and interfaces allow users

to get started faster than ever before and add functionality to their application [24].

E.7.2 DSP/BIOS

DSP/BIOS are a scalable, real-time kernel that is designed for applicationsthatrequire real-time

scheduling and synchronization, host-to-target communication, or real-time instrumentation. The

DSP/BIOS kernel is packaged as a set of modules that can be linked into an application. It is

integrated with Code Composer Studio Integrated Development Environment (IDE), requires no

runtime license fees, and is fully supported by Texas Instruments. The kernel is also a key

component of TI‟s expressDSP™ technology.

DSP/BIOS kernel enables you to develop and deploy sophisticated applications and eliminates

the need to develop and maintain custom operating systems or control loops. Because multi-

threading enables real-time applications to be cleanly partitioned, applications using

DSP/BIOSkernelareeasier to maintain and new functions can be added without disrupting real-

time response. DSP/BIOSkernel provides standardized APIs acrossTMS320C2000™,

TMS320C5000™ and TMS320C6000™ DSP platforms to support rapid application migration.

Additionally, it includes configuration support for EVMs, DSKs, simulators, and some third-

party boards. Existing configuration templates are easily adaptable to provide support for custom

Appendix E

Development, Simulation & Performance Analysis of Robust MMAC employing soft computing for

power system stabilization

147

boards and other third-party boards. DSP/BIOS kernel is integrated into the Code Composer

Studio IDE. Code Composer Studio‟s kernel object viewer and real-time analysis provide

powerful set of integrated tools specifically focused on debugging and tuning multitasking

applications [25].

E.7.3Analysis & Evaluation tools

The embedded link places a constraint that the algorithm must be developed in theSimulink

environment. Thus the algorithm was developed using the embedded mat labfunctioninSimulink.

Using the embedded function feature, a custom block in Simulink is created which contains the

algorithm. The algorithm was built onto the DSP using the CCS link available on Mat lab as

explained in the previous section [26].

E.8 Concluding Remarks

The Theoretical background of soft computational fields such as Fuzzy Logic, Artificial Neural

Network, Genetic Algorithm, Particle swarm optimization and Code composer studio is

summarized and described. Toolboxes available for deploying soft computational fields in

MATLAB, CCS v3.3 and used in our research work for the design and testing of proposed

techniques are described in detail. Procedural steps to be followed in each trait are discussed in

detail.

