
A General Purpose Lossless Data Compression Scheme
with Improved Compression Ratio and Decompression

Time and Optimized for Searching and Retrieval of String
Randomly from Large Collection

A thesis submitted

for award of the degree of

Doctor of Philosophy
in

Electrical Engineering
By:

Bhadade Umesh Shantilal

DEPARTMENT OF ELECTRICAL ENGINEERING

FACULTY OF TECHNOLOGY & ENGINEERING

 THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

VADODARA – 390 001 GUJARAT, INDIA

DECEMBER 2010

 i

Acknowledgements
First and foremost, my utmost gratitude to the omnipresent God, for providing me

inspiration, strength, energy and patience to start and accomplish my goal.

I sincerely thanks with deep sense of gratitude to my guide Prof. A. I. Trivedi, who has

been the main source of inspiration. His guidance and motivation has been of the greatest

help to me in bringing out this work in its present shape. The direction, advice,

discussions and constant encouragement given by him have been so helpful that it

enabled me to complete work successfully. He created and pointed to the path and helped

in every way to reach this final destination.

I would like to show my gratitude towards Prof. S. K. Shah, Head of Electrical

Engineering Department, Faculty of Technology & Engineering, M.S. University of

Baroda, for extending his support and guidance. I also like to express my sincere thanks

to Dr. K.B. Pai, Dean Faculty of Technology & Engineering, M.S. University of Baroda,

who was remote, yet effective source of inspiration.

My parents showered love and affection on me. They guided me through my first steps

to this milestone in my life and always supported me. They taught me to read, think and

analyze.

I owe my deepest gratitude to my beloved brother Dnyanesh who constantly support me

during my entire time-span of Ph.D. work. His mental and moral support encouraged me

to all the time to do my work. I am also thankful to my sisters Babita and Suvarana for

their constant moral support. I express my sincere thanks to my friend Vinod who was

one of the motivator from Ph.D. registration to thesis submission.

I would also like to thank my institution, colleagues and other faculty members for their

direct and indirect support.

I express my thanks to my wife Swati and sweet daughter Minakshi and nephew Mohit

for all the support, inspiration and love given to me despite of all inconvenience caused to

them due to my preoccupation with Ph.D. work.

Finally, last but not least, I thank all persons, who helped me in my Ph.D. work, but

whose name may have been missed.

December 2010, Bhadade Umesh Shantilal

 ii

CERTIFICATE

This is to certify that the thesis titled, “A General Purpose Lossless Data Compression

Scheme with Improved Compression Ratio and Decompression Time and Optimized for

Searching and Retrieval of String Randomly from Large Collection” submitted by

BHADADE UMESH SHANTILAL in fulfillment of the degree of DOCTOR OF

PHILOSOPHY in the Department of Electrical Engineering, Faculty of Technology &

Engineering, The Maharaja Sayajirao University of Baroda, Vadodara is a bonafide

record of investigations carried out by him in the Department of Electrical Engineering,

Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda,

Vadodara under my guidance and supervision. In my opinion this work has attained the

standard fulfilling the requirements of the Ph.D. Degree as prescribed in the regulations

of the University.

Decemeber, 2010

Guide:

Prof. A. I. Trivedi
Department of Electrical Engineering,
Faculty of Technology & Engineering,
The Maharaja Sayajirao University of
Baroda, Vadodara – 390 001

Head: Dean:

Prof. S.K. Shah Dr. K.B. Pai
Department of Electrical Engineering, Faculty of Technology & Engineering,
Faculty of Technology & Engineering, The Maharaja Sayajirao University of
The Maharaja Sayajirao University of Baroda, Vadodara – 390 001
Baroda, Vadodara – 390 001

 iii

DECLARATION

I, Bhadade Umesh Shantilal hereby declare that the work reported in this thesis titled,

“A General Purpose Lossless Data Compression Scheme with Improved Compression

Ratio and Decompression Time and optimized for Searching and Retrieval of String

Randomly from Large Collection” submitted for the award of the degree of DOCTOR

OF PHILOSOPHY in Department of Electrical Engineering, Faculty of Technology &

Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, is original and

was carried out in the Department of Electrical Engineering, Faculty of Technology &

Engineering, The Maharaja Sayajirao University of Baroda, Vadodara. I further declare

that this thesis is not substantially the same as one, which has already been submitted in

part or in full for the award of any degree or academic qualification of this University or

any other Institution or examining body in India or abroad.

December, 2010 Bhadade Umesh Shantilal

 iv

Dedicated
To

My Parents
Late Shri. Shantilal Nandlal Bhadade

Smt. Sarla Shantilal Bhadade

 v

ABSTRACT

This thesis involves comprehensive study and implementation of text compression

techniques useful for direct searching the phrases in compressed form.

In the initial part of this thesis, we summarize our comprehensive study of different types

of compression methods including Arithmetic Coding method, Bzip2, Prediction by

Partial Match and Lempel-Ziv Markov-chain Algorithm.

In subsequent part, two categories of text compression techniques are implemented with

an objective of improved compression ratio and optimized for searching and retrieval of

strings randomly from compressed file.

We implement text compression techniques using three different types of dictionaries viz.

static, semi-dynamic and dynamic. We also study the string-matching algorithms such as

Karp-Rabin, Knuth-Morris-Pratt, Brute-Force, Boyer-Moore and Quick-Search

Algorithms.

Major contribution of the thesis is to propose pre-text compression technique Word based

Text Compression Technique using semi-dynamic dictionary (WBTC-C). This method

gives a better compression ratio when used as a pre-stage compression to standards

methods such as Bzip2, PPMd, PPMII and LZMA, and is also useful for searching the

strings directly from the compressed files. The decompression time is also improved in

WBTC-C method as compared to Bzip2 and PPMd. Other methods such as CBTC-A,

CBTC-B, WBTC-A, WBTC-B, WBTC-D and WBTC-E are also implemented, which

differ from WBTC-C. Those methods are implemented using single dimension

dictionary, double dimension dictionary and using static dictionary and dynamic

dictionary.

The techniques are useful for direct searching the pattern in the compressed form. The

text compression techniques implemented by us uses single and double dimension

dictionary. The text compression techniques are used as pre-stage compression to existing

standard methods such as Arithmetic Coding, Bzip2, PPMd, PPMII and LZMA. The

compression ratio is improved when our techniques are used as pre-stage to those

methods.

All techniques are implemented in VC++ 6.0 version.

 vi

TABLE OF CONTENTS

Acknowledgement i

Certificate ii

Declaration iii

Dedication iv

Abstract v

Table of Content vi

List of Figures xi

List of Tables xiv

CHAPTER 1 INTRODUCTION

1.0 Outline of this chapter 001

1.1 Origin of Data Compression 001

1.2 Introduction of Data Compression 002

1.3 Data Compression 004

1.4 Lossless Compression Algorithms 006

1.4.1 Statistical Methods 006

1.4.2 Dictionary Methods 011

1.4.3 Transform Based Methods 014

1.5 Searching in Compressed Files 015

1.6 Our Contribution 016

1.7 Organization of Thesis 016

CHAPTER 2 COMPRESSION TECHNIQUES

2.0 Outline of this chapter 018

2.1 Origins of Arithmetic Coding 018

2.2 Arithmetic Coding 020

2.2.1 Example of Arithmetic Coding 020

2.2.2 Practical Matters 024

2.2.3 Complication in Arithmetic Coding 026

2.2.4 Decoding 028

2.2.5 Comparison with Huffman Coding 029

 vii

2.3 Burrows Wheeler Transformation 030

2.3.1 The Reversible Transformation 031

2.3.2 Why the transformed string compressed well 034

2.3.3 Move-To-Front Coding 035

2.4 Prediction By Partial Match 036

2.5 Lempel-Ziv Markov-chain Algorithm 046

2.5.1 LZMA Algorithm 047

2.5.2 Range Encoding 048

2.5.3 Relationship with Arithmetic Coding 049

CHAPTER 3 STRING-MATCHING ALGORITHMS

3.0 Outline of this chapter 050

3.1 Introduction 050

3.2 String-matching Algorithms 051

3.2.1 From Left to Right 052

3.2.2 From Right to Left 053

3.2.3 In a specific order 053

3.2.4 In any order 054

3.3 Karp-Rabin Algorithm 054

3.4 Knuth-Morris-Pratt Algorithm 056

3.5 Boyer-Moore Algorithm 057

3.6 Quick Search Algorithm 062

CHAPTER 4 PROPOSED COMPRESSION METHODS

4.0 Outline of this chapter 064

4.1 Introduction 064

4.1.1 Dictionary Models 066

4.1.2 Related work for Preprocessing Texts 068

4.2 Idea of our Method 072

4.3 Proposed Compression Methods 074

4.3.1 Character based Text Compression method using Static

Dictionary (CBTC-A) 074

 viii

4.3.2 Character based Text Compression method using Semi-Dynamic

Dictionary (CBTC-B) 080

4.3.3 Word based Text Compression method using Semi-Dynamic

Dictionary (WBTC-A) 083

4.3.4 Word based Text Compression method using Semi-Dynamic

Dictionary (WBTC-B) 086

4.3.5 Word based Text Compression method using Two Dimensional

Semi-Dynamic Dictionary (WBTC-C) 087

4.3.6 Word based Text Compression method using Dynamic Dictionary

(WBTC-D) 090

4.3.7 Word based Text Compression method using Static Dictionary

(WBTC-E) 090

4.4 Comparison among Proposed Methods 093

CHAPTER 5 IMPLEMENTATION OF PROPOSED METHODS

5.0 Outline of this chapter 097

5.1 Implementation of CBTC-A 097

5.2 Implementation of CBTC-B 101

5.3 Implementation of WBTC-A 107

5.4 Implementation of WBTC-B 117

5.5 Implementation of WBTC-C 122

5.6 Implementation of WBTC-D 126

5.7 Implementation of WBTC-E 129

5.8 Implementing Searching in compressed form. 134

CHAPTER 6 EXPERIMENTAL RESULTS

6.0 Outline of this chapter 135

6.1 List of Files used for Testing 135

6.1.1 E-Text Corpus 135

6.1.2 European Parliament Corpus 136

6.1.3 Enronsent Corpus 137

6.1.4 Project Gutenberg Corpus 138

6.1.5 Mixed Corpus 138

 ix

6.1.6 Summary of Corpus 139

6.2 Comparison of Word based Methods with Bzip2 139

6.2.1 Compression statistics of E-Text Corpus 139

6.2.2 Compression statistics of European Parliament Corpus 140

6.2.3 Compression statistics of Enronsent Corpus 141

6.2.4 Compression statistics of Project Gutenberg Corpus 142

6.2.5 Compression statistics of Mixed Corpus 143

6.2.6 Compression statistics of All Corpus 143

6.3 Comparison of Word based Methods with PPMd 148

6.3.1 Compression statistics of E-Text Corpus 148

6.3.2 Compression statistics of European Parliament Corpus 149

6.3.3 Compression statistics of Enronsent Corpus 150

6.3.4 Compression statistics of Project Gutenberg Corpus 151

6.3.5 Compression statistics of Mixed Corpus 151

6.3.6 Compression statistics of All Corpus 152

6.4 Comparison of Word based Methods with PPMII 156

6.4.1 Compression statistics of E-Text Corpus 156

6.4.2 Compression statistics of European Parliament Corpus 157

6.4.3 Compression statistics of Enronsent Corpus 158

6.4.4 Compression statistics of Project Gutenberg Corpus 159

6.4.5 Compression statistics of Mixed Corpus 159

6.4.6 Compression statistics of All Corpus 160

6.5 Comparison of Word based Methods with LZMA 164

6.5.1 Compression statistics of E-Text Corpus 164

6.5.2 Compression statistics of European Parliament Corpus 165

6.5.3 Compression statistics of Enronsent Corpus 166

6.5.4 Compression statistics of Project Gutenberg Corpus 167

6.5.5 Compression statistics of Mixed Corpus 167

6.5.6 Compression statistics of All Corpus 168

6.6 Comparison of CBTC-B with Arithmetic Coding 172

6.6.1 Compression statistics of E-Text Corpus 172

 x

6.6.2 Compression statistics of European Parliament Corpus 173

6.6.3 Compression statistics of Enronsent Corpus 174

6.6.4 Compression statistics of Project Gutenberg Corpus 175

6.6.5 Compression statistics of Mixed Corpus 175

6.6.6 Compression statistics of All Corpus 176

6.7 Searching Phrase in Compressed File 180

6.7.1 Searching Phrase using Karp-Rabin Algorithm 181

6.7.2 Searching Phrase using Knuth-Morris-Pratt Algorithm 181

6.7.3 Searching Phrase using Brute-Force Algorithm 182

6.7.4 Searching Phrase using Boyer-Moore Algorithm 182

6.7.5 Searching Phrase using Quick Search Algorithm 183

6.7.6 Overall Comparison of Searching Algorithm 183

6.8 Decompression Time 186

6.8.1 Decompression Time for E-Text Corpus 186

6.8.2 Decompression Time for European Parliament Corpus 187

6.8.3 Decompression Time for Enronsent Corpus 189

6.8.4 Decompression Time for Project Gutenberg Corpus 191

6.8.5 Decompression Time for Mixed Corpus 192

6.8.6 Decompression Time for All Corpus 192

CHAPTER 7 CONCLUSION AND FUTURE WORK 197

BIBLIOGRAPHY 201

APPENDIX A Coding of CBTC-B 208

APPENDIX B Coding of WBTC-A 221

APPENDIX C Coding of WBTC-B 233

APPENDIX D Coding of WBTC-C 239

APPENDIX E Coding of WBTC-D 248

APPENDIX F Coding of WBTC-E 254

APPENDIX G Coding of Searching Phrase 262

 xi

LIST OF FIGURES

Figure No. Figure Details Page No.

2.1 Algorithm for encoding the symbols (Arithmetic Coding) 022

2.2 Algorithm for decoding the symbols (Arithmetic Coding) 023

3.1 The brute force string-matching algorithm 052

3.2 The Karp-Rabin string-matching algorithm 055

3.3 Shift in the Knuth-Morris-Pratt algorithm (v suffix of u) 056

3.4 The Knuth-Morris-Pratt string-matching algorithm 057

3.5 Preprocessing phase of the Knuth-Morris-Pratt algorithm: computing next. 058

3.6 Good-suffix shift, u reappears preceded by a character different from b. 058

3.7 Good-suffix shift, only a suffix of u reappears as a prefix of x. 058

3.8 Bad-character shift, a appears in x. 059

3.9 Bad-character shift, a does not appears in x. 059

3.10 The Boyer-Moore string-matching algorithm. 060

3.11 Computation of the bad-character shift. 061

3.12 Computation of the good-suffix shift 061

3.13 The Quick Search string-matching algorithm. 063

4.1 Structure of two-dimension dictionary 073

4.2 Structure of two dimension character dictionary. 075

4.3 First six rows of single character 077

4.4 4-character groups 078

4.5 3-character groups 078

4.6 2-character groups 078

4.7 Structure of two-dimension word dictionary (WBTC-C) 088

4.8. Structure of two-dimension word dictionary (WBTC-E) 092

5.1 Flowchart for compression (CBTC-B) 105

5.2 Flowchart for decompression (CBTC-B) 106

5.3 Flow chart of creating the word dictionary (WBTC-A) 109

5.4 Flowchart of creating the prefix word dictionary (WBTC-A) 111

5.5 Flowchart for compressing a word (WBTC-A) 114

 xii

5.6 Flowchart of decompressing a normal character or word (WBTC-A) 116

5.7 Flowchart of compressing a word (WBTC-B) 119

5.8 Flowchart of decompressing a normal character or word (WBTC-B) 121

5.9 Flowchart of compressing a word (WBTC-C) 123

5.10 Flowchart of decompressing a normal character or word (WBTC-C) 125

5.11 Flowchart of compressing a word (WBTC-D) 127

5.12 Flowchart of decompressing a normal character or word (WBTC-D) 128

5.13 Flowchart of compressing a word (WBTC-E) 131

5.14 Flowchart of decompressing a normal character or word (WBTC-E) 133

6.1 Compression ratios of E-Text Corpus (Bzip2) 144

6.2 Compression ratios of European Parliament Corpus (Bzip2) 145

6.3 Compression ratios for Enronsent Corpus (Bzip2) 146

6.4 Compression ratios for Project Gutenberg Corpus (Bzip2) 147

6.5 Compression ratios for Mixed Corpus (Bzip2) 147

6.6 Compression ratios for all Corpus (Bzip2) 148

6.7 Compression ratios of E-Text Corpus (PPMd) 153

6.8 Compression ratios of European Parliament Corpus (PPMd) 153

6.9 Compression ratios for Enronsent Corpus (PPMd) 154

6.10 Compression ratios for Project Gutenberg Corpus (PPMd) 155

6.11 Compression ratios for Mixed Corpus (PPMd) 155

6.12 Compression ratios for all Corpus (PPMd) 156

6.13 Compression ratios of E-Text Corpus (PPMII) 160

6.14 Compression ratios of European Parliament Corpus (PPMII) 161

6.15 Compression ratios for Enronsent Corpus (PPMII) 162

6.16 Compression ratios for Project Gutenberg Corpus (PPMII) 163

6.17 Compression ratios for Mixed Corpus (PPMII) 163

6.18 Compression ratios for all Corpus (PPMII) 164

6.19 Compression ratios of E-Text Corpus (LZMA) 169

6.20 Compression ratios of European Parliament Corpus (LZMA) 169

6.21 Compression ratios for Enronsent Corpus (LZMA) 170

6.22 Compression ratios for Project Gutenberg Corpus (LZMA) 171

 xiii

6.23 Compression ratios for Mixed Corpus (LZMA) 171

6.24 Compression ratios for all Corpus (LZMA) 172

6.25 Compression ratios of E-Text Corpus (Arithmetic Coding) 176

6.26 Compression ratios of European Parliament Corpus (Arithmetic Coding) 177

6.27 Compression ratios for Enronsent Corpus (Arithmetic Coding) 178

6.28 Compression ratios for Project Gutenberg Corpus (Arithmetic Coding) 179

6.29 Compression ratios for Mixed Corpus (Arithmetic Coding) 179

6.30 Compression ratios for all Corpus (Arithmetic Coding) 180

6.31 Number of Comparisons for Normal and Proposed Methods (K-R) 184

6.32 Number of Comparisons for Normal and Proposed Methods (KMP) 184

6.33 Number of Comparisons for Normal and Proposed Methods (B-F) 185

6.34 Number of Comparisons for Normal and Proposed Methods (B-M) 185

6.35 Number of Comparisons for Normal and Proposed Methods (QS) 186

6.36 Decompression Time for E-Text Corpus 193

6.37 Decompression Time for European Parliament Corpus 194

6.38 Decompression Time for Enronsent Corpus 194

6.39 Decompression Time for Project Gutenberg Corpus 195

6.40 Decompression Time for Mixed Corpus 195

6.41 Decompression Time for all Corpus 196

 xiv

LIST OF TABLES

Table No. Table Details Page No.

2.1 Probability Distribution of message “BILL GATES” 021

2.2 Probability range of message “BILL GATES” 021

2.3 Encoded values of Characters 023

2.4 Decoded values of characters 024

2.5 Cumulative output of message 027

2.6 Underflow Situation 028

2.7 Encoding process of message “AAAAAAA” 029

2.8 Count array for -1 order context 038

2.9 Count array for zero-order context. 039

2.10 Count array for first-order contexts. 040

2.11 Count array for second-order contexts. 041

2.12 Count array for zero-order context. 041

2.13 Count array for first-order contexts. 042

2.14 Count array for second-order contexts. 043

2.15 Counts using Method – A. 044

2.16 Counts using Method – B. 045

2.17 Counts using Method C 045

2.18 List of Packets used in LZMA 047

2.19 Encoding of Length 048

6.1 File Information of E-Text Corpus 136

6.2 File Information of European Parliament Corpus 136

6.3 File Information of Enronsent Corpus 137

6.4 File Information of Project Gutenberg Corpus 138

6.5 File Information of Mixed Corpus 138

6.6 Summary of all Corpus 139

6.7 Compression ratios for E-Text Corpus (Bzip2) 139

6.8 Compression ratios for European Parliament Corpus (Bzip2) 140

6.9 Compression ratios for Enronsent Corpus (Bzip2) 141

 xv

6.10 Compression ratios for Project Gutenberg Corpus (Bzip2) 142

6.11 Compression ratios for Mixed Corpus (Bzip2) 143

6.12 Compression ratios for all Corpus (Bzip2) 143

6.13 Compression ratios for E-Text Corpus (PPMd) 148

6.14 Compression ratios for European Parliament Corpus (PPMd) 149

6.15 Compression ratios for Enronsent Corpus (PPMd) 150

6.16 Compression ratios for Project Gutenberg Corpus (PPMd) 151

6.17 Compression ratios for Mixed Corpus (PPMd) 151

6.18 Compression ratios for all Corpus (PPMd) 152

6.19 Compression ratios for E-Text Corpus (PPMII) 156

6.20 Compression ratios for European Parliament Corpus (PPMII) 157

6.21 Compression ratios for Enronsent Corpus (PPMII) 158

6.22 Compression ratios for Project Gutenberg Corpus (PPMII) 159

6.23 Compression ratios for Mixed Corpus (PPMII) 159

6.24 Compression ratios for all Corpus (PPMII) 160

6.25 Compression ratios for E-Text Corpus (LZMA) 164

6.26 Compression ratios for European Parliament Corpus (LZMA) 165

6.27 Compression ratios for Enronsent Corpus (LZMA) 166

6.28 Compression ratios for Project Gutenberg Corpus (LZMA) 167

6.29 Compression ratios for Mixed Corpus (LZMA) 167

6.30 Compression ratios for all Corpus (LZMA) 168

6.31 Compression ratios for E-Text Corpus (Arithmetic Coding) 172

6.32 Compression ratios for European Parliament Corpus (Arithmetic Coding) 173

6.33 Compression ratios for Enronsent Corpus (Arithmetic Coding) 174

6.34 Compression ratios for Project Gutenberg Corpus (Arithmetic Coding) 175

6.35 Compression ratios for Mixed Corpus (Arithmetic Coding) 175

6.36 Compression ratios for all Corpus (Arithmetic Coding) 176

6.37 Phrases for searching directly in the compressed file. 181

6.38 Comparison of Number of Comparison of searching phrases (K-R) 181

6.39 Comparison of Number of Comparison of searching phrases (KMP) 181

6.40 Comparison of Number of Comparison of searching phrases (B-F) 182

 xvi

6.41 Comparison of Number of Comparison of searching phrases (B-M) 182

6.42 Comparison of Number of Comparison of searching phrases (Q-S) 183

6.43 Overall comparison of searching algorithms for proposed methods 183

6.44 Decompression Time for E-Text Corpus (Bzip method) 186

6.45 Decompression Time for E-Text Corpus (WBTC-C method) 187

6.46 Decompression Time for European Parliament Corpus (Bzip method) 187

6.47 Decompression Time for European Parliament Corpus (WBTC-C method) 188

6.48 Decompression Time for Enronsent Corpus (Bzip method) 189

6.49 Decompression Time for Enronsent Corpus (WBTC-C method) 190

6.50 Decompression Time for Project Gutenberg Corpus (Bzip method) 191

6.51 Decompression Time for Project Gutenberg Corpus (WBTC-C method) 191

6.52 Decompression Time for Mixed Corpus (Bzip method) 192

6.53 Decompression Time for Mixed Corpus (WBTC-C method) 192

6.54 Decompression Time for all Corpus (Bzip method) 192

6.55 Decompression Time for all Corpus (WBTC-C method) 193

CHAPTER 1

INTRODUCTION

 1

1

INTRODUCTION

1.0 OUTLINE OF THIS CHAPTER

This chapter discusses the origin and the usefulness of the data compression.

Compression techniques based on statistical methods, dictionary based, transform based

are briefly discussed. It includes the discussion of the problem of pattern searching in

compressed form. It also focuses on our contribution to the field of text compression.

Finally, the organization of the thesis is given at the end.

1.1 ORIGIN OF DATA COMPRESSION

Giambattista della Porta, a Renaissance scientist, was the author in 1558 of Magia

Naturalis (Natural Magic), a book in which he discusses many subjects, including

demonology, magnetism, and the camera obscura. The book mentions an imaginary

device that has since become known as the “sympathetic telegraph”. This device was to

have consisted of two circular boxes, similar to compasses, each with a magnetic needle.

Each box was to be labeled with the 26 letters, instead of the usual directions, and the

main point was that the two needles were supposed be magnetized by the same lodestone.

Porta assumed that this would somehow coordinate the needles such that when a letter

was dialed in one box, the needle in the other box would swing to point to the same letter.

Needles to say, such a device does not work (this, after all, was about 300 years before

Samuel Morse), but in 1711 a worried wife wrote to the Spectator, a London periodical,

asking for advice on how to bear the long absences of her beloved husband. The adviser,

Joseph Addison, offered some practical ideas, then mentioned Porta’s device, adding that

a pair of such boxes might enable her and her husband to communicate with each other

even when they “were guarded by spies and watches, or separated by castles and

adventures.” Mr. Addison then added that in addition to the 26 letters, the sympathetic

telegraph dials should contain, when used by lovers, “several entire words which always

have a place in passionate epistles.” The message “I Love You,” for example, would, in

such a case, require sending just three symbols instead of ten. This advice is an early

 2

example of text compression achieved by using short codes for common messages and

longer codes for other messages. Even more importantly, this shows how the concept of

data compression comes naturally to people who are interested in communications.

1.2 INTRODUCTION OF DATA COMPRESSION

In the modern digital age, information is mostly processed by the machine automatically.

Hence the need for compact, precise, and efficient representation of the information is

also applicable to the computers. With tremendous amount of information accumulated

especially in the last few decades, data compression schemes are playing an increasingly

significant role in developing compact representation of information. Moreover, finding

the useful information from the mass storage has emerged as another major problem

today.

People are good at producing data. In recent times, the growth of textual information via

the Internet, digital libraries and archival text data in many applications is unprecedented.

The estimation of the growth rate is reflected by the Parkinson's Law on data that "data

expands to fill the space available for storage". The TREC [1] database holds around 800

million static pages having 6 trillion bytes of plain text equal to the size of a million

books. The Google system routinely accumulates millions of pages of new text

information every week. The web site Alexa.com is collecting over 1,000GB of

information each day from the web and had collected over 35 billion web pages. There

have been extensive needs to deal with the overwhelming data.

It is estimated that the memory usage of the computer systems tends to double roughly

once every 18 months [2].

Text compression provides a transformed representation of the text data that is

understandable only by the computer (in this sense, it relates to cryptography to some

extent.) The higher the compression ratio, the less disk space is needed to store the data.

The advantage of the idea is twofold. First, we use less space to store the information. For

example, English text can be compressed to about 20 to 30% of the original size, and

images may be compressed by a factor of several hundred times. Normally, lossless

compression must be used for text because we expect the full text to be recovered from

the compressed form, unlike audio/video and images which have a much higher degree of

 3

redundancy and can be compressed with lossy compression algorithms. Second, we

require less bandwidth in the internet transmission compared with transmitting raw data.

Obviously, it takes less time to download the text in its compressed form. It will be a

considerable saving for the network traffic if the data are transmitted with a much smaller

size.

Storage is not the only purpose of keeping the data because we also need to find useful

information hidden in the data for different purposes. For example, data mining is a new

area catering to the need for extracting the information from the sleeping data. The initial

step of mining the knowledge is to retrieve the portion of the text by sending a query,

typically using keywords. Then algorithms will be performed on the raw or preprocessed

text. Pattern matching is the most popularly used method to search the text using

keywords. Although there have been comprehensive studies on text information retrieval

[3, 4, 5], not much work has been done on searching directly on compressed text. The

compact representation of text is unreadable for human beings. In order to read the data

we need to reproduce the original text from the compressed text. Therefore, it is an extra

overhead of decompression process rather than mining directly from the original form.

Current research on compression shows little consideration for the relationship between

the compression algorithm and searching algorithm. We will be focusing on minimizing

the overhead by considering the optimal combination of compression and searching

schemes. Pattern matching is a typical starting point for knowledge discovering in large

databases. There have been various exact and approximate pattern matching algorithms

available in the literature. Boyer-Moore (BM) [6] and Knuth-Morris-Pratt (KMP) [7]

pattern matching algorithms are among the best of them. However, pattern matching on

compressed text has not been thoroughly explored with the known compression methods.

Efficient storage, transmission, searching, and mining the knowledge have become

critical and difficult problems to deal with the tremendous data flow. In this thesis, we

will deal with the problems related to the lossless text compression and compressed

pattern matching.

 4

1.3 DATA COMPRESSION

Data compression is perhaps the fundamental expression of Information Theory.

Information Theory is a branch of mathematics that had its genesis in the late 1940s with

the work of Claude Shannon at Bell Labs. It concerns itself with various questions about

information, including different ways of storing and communicating messages.

Data compression enters into the field of Information Theory because of its concern with

redundancy. Redundant information in a message takes extra bits to encode, and if we

can get rid of that extra information, we will have reduced the size of the message.

Information Theory uses the term Entropy as a measure of how much information is

encoded in a message. The word entropy was borrowed from thermodynamics, and it has

a similar meaning. The higher the entropy of a message, the more information it contains.

The entropy of a symbol is defined as the negative logarithm of its probability. To

determine the information content of a message in bits, the entropy is expressed using the

base2 logarithm:

Number of bits = - Log base2 (probability)

The entropy of an entire message is simply the sum of the entropy of all individual

symbols. Entropy fits with data compression in its determination of how many bits of

information are actually present in a message. If the probability of the character ‘e’

appearing in this manuscript is 1/16, for example, the information content of the character

is four bits. So the character string “eeeee” has a total content of 20 bits. If we are using

standard 8-bit ASCII characters to encode this message, we are actually using 40 bits.

The difference between the 20 bits of entropy and the 40 bits used to encode the message

is where the potential for data compression arises. One important fact to note about

entropy is that, unlike the thermodynamic measure of entropy, we can not use an absolute

number for the information content of a given message. The problem is that when we

calculate Entropy, we use a number that gives us the probability of a given symbol. The

probability figure we use is actually the probability for a given model, not an absolute

number. If we change the model, the probability will change with it.

How probabilities changes can be seen clearly when using different orders with a

statistical model. A statistical model tracks the probability of a symbol based on what

 5

symbols appeared previously in the input stream. The order of the model determines how

many previous symbols are taken into account. An order-0 model, for example, will not

look at previous characters. An order-1 model looks at the one previous character, and so

on.

The different order models can yield drastically different probabilities for a character.

The letter ‘u’ under an order-0 model, for example, may have only a 1 percent probability

of occurrence. But under an order-1 model, if the previous character was ‘q,’ the ‘u’ may

have a 95 percent probability. This seemingly unstable notion of a character’s probability

proves troublesome for many people. They prefer that a character have a fixed “true”

probability which tells them what are the chances of its “really” occurring. Claude

Shannon attempted to determine the true information content of the English language

with a “party game” experiment. He would uncover a message concealed from his

audience a single character at a time. The audience guessed what the next character

would be, one guess at a time, until they got it right. Shannon could then determine the

entropy of the message as a whole by taking the logarithm of the guess count. Other

researchers have done more experiments using similar techniques.

In order to compress data well, it needs to select models that predict symbols with high

probabilities. A symbol that has a high probability has low information content and will

need fewer bits to encode. Once the model is producing high probabilities, the next step

is to encode the symbols using an appropriate number of bits.

Data compression is the process of converting an input data stream (the source stream or

the original raw data) into another data stream (the output, or the compressed stream) that

has a smaller size. A stream is either a file or buffer in memory.

There are many methods for data compression. They are based on different ideas, are

suitable for different types of data, and produce different results, but they are all based on

the same principle, namely, they compress the data by removing redundancy from the

original data in the source file. Any nonrandom collection data has some structure, and

this structure can be exploited to achieve a smaller representation of the data, a

representation where no structure is discernible. Thus, redundancy is an important

concept in any discussion of data compression. [8]

 6

Lossless compression or text compression refers to a class of reversible compression

algorithms that allow the compressed text to be decompressed into a message identical to

the original. They are particularly tailored to use a linear data stream. These properties

make text compression applicable to computer programs, which are linear sequences of

instructions. Surveys of text compression techniques have been written by Lelewer and

Hirschberg [9] and Witten et al. [10]. Compression algorithms that are not lossless are

called lossy. These algorithms are used for compressing data (typically images) that can

tolerate some data loss in the decompressed message in exchange for a smaller

compressed representation. Since computer programs must be executed without

ambiguity, lossy compression is not suitable for them.

1.4 LOSSLESS COMPRESSION ALGORITHMS

No compression algorithm has yet been discovered that consistently attain the predictions

of lower bound of data compression [12] over wide classes of text files. The goal in the

lossless text compression area is to find better algorithms to explore the redundancy of

the context and achieve a better compression ratio with a good time complexity. Besides

the basic techniques such as Run Length Coding (RLC) and Move-to-Front (MTF), etc.

the lossless algorithms can be classified into three broad categories: statistical methods,

dictionary methods and transform based methods. There are several criteria used to

select between using dictionary and statistical compression techniques. Two very

important factors are the decode efficiency and the overall compression ratio. The decode

efficiency is a measure of the work required to re-expand a compressed text. The

compression ratio is defined by the formula:

compression ratio = compressed size / original size

1.4.1 STATISTICAL METHODS

In the late 1940s, the early years of Information Theory, the idea of developing efficient

new coding techniques was just starting to be fleshed out. Researchers were exploring the

ideas of entropy, information content, and redundancy. One popular notion held that if

the probability of symbols in a message were known, there ought to be a way to code the

symbols so that the message would take up less space.

 7

This early work in data compression was being done before the advent of the modern

digital computer. Today it seems natural that information theory goes hand in hand with

computer programming, but just after World War II, for all practical purposes, there were

no digital computers. So the idea of developing algorithms using base 2 arithmetic for

coding symbols was really a great leap forward.

The first well-known method for effectively coding symbols is now known as Shannon-

Fano coding. Claude Shannon at Bell Labs and R.M. Fano at MIT developed this

method nearly simultaneously.

In Shannon-Fano coding, the symbols are arranged in order from most probable to least

probable, and then divided into two sets whose total probabilities are as close as possible

to being equal. All symbols then have the first digits of their codes assigned; symbols in

the first set receive "0" and symbols in the second set receive "1". As long as any sets

with more than one member remain, the same process is repeated on those sets, to

determine successive digits of their codes. When a set has been reduced to one symbol, of

course, this means the symbol's code is complete and will not form the prefix of any other

symbol's code.

The algorithm works, and it produces fairly efficient variable-length encodings; when the

two smaller sets produced by a partitioning are in fact of equal probability, the one bit of

information used to distinguish them is used most efficiently. The Shannon-Fano tree is

built from the top down, starting by assigning the most significant bits to each code and

working down the tree until finished. Shannon-Fano does not always produce optimal

prefix codes. For this reason, Shannon-Fano is almost never used.

The other method of statistical coding is Huffman coding [13]. Huffman coding shares

most characteristics of Shannon-Fano coding. It creates variable length codes that are an

integral number of bits. Symbols with higher probabilities get shorter codes. Huffman

codes have the unique prefix attribute, which means they can be correctly decoded

despite being variable length. Decoding a stream of Huffman codes is generally done by

following a binary decoder tree.

Building the Huffman decoding tree is done using a completely different algorithm from

that of the Shannon-Fano method. Huffman codes are built from the bottom up, starting

with the leaves of the tree and working progressively closer to the root. The procedure for

 8

building the tree is simple and elegant. The individual symbols are laid out as a string of

leaf nodes that are going to be connected by a binary tree. Each node has a weight, which

is simply the frequency or probability of the symbol’s appearance. The tree is then built

with the following steps:

• The two free nodes with the lowest weights are located.

• A parent node for these two nodes is created. It is assigned a weight equal to the sum of

the two child nodes.

• The parent node is added to the list of free nodes, and the two child nodes are removed

from the list.

• One of the child nodes is designated as the path taken from the parent node when

decoding a 0 bit. The other is arbitrarily set to the 1 bit.

• The previous steps are repeated until only one free node is left. This free node is

designated the root of the tree.

The codes have the unique prefix property. Since no code is a prefix to another code,

Huffman codes can be unambiguously decoded as they arrive in a stream.

Note, however, that the Huffman codes differ in length from Shannon-Fano codes.

In general, Shannon-Fano and Huffman coding are close in performance. But Huffman

coding will always at least equal the efficiency of Shannon-Fano coding, so it has

become the predominant coding method of its type. Since both algorithms take a similar

amount of processing power, it seems sensible to take the one that gives slightly better

performance. And Huffman was able to prove that this coding method cannot be

improved on with any other integral bit-width coding stream.

 In effect, the tree behaves like a dictionary that has to be transmitted once from the

sender to receiver and this constitutes an initial overhead of the algorithm. This overhead

is usually ignored in publishing the BPC results for Huffman code in literature. There are

also Huffman codes called canonical Huffman codes which uses a look up table or

dictionary rather than a binary tree for fast encoding and decoding [8].

Another respectable candidate to replace Huffman coding been successfully

demonstrated: arithmetic coding [15]. Arithmetic coding bypasses the idea of replacing

an input symbol with a specific code. It replaces a stream of input symbols with a single

floating-point output number. More bits are needed in the output number for longer,

 9

complex messages. The output from an arithmetic coding process is a single number less

than 1 and greater than or equal to 0. This single number can be uniquely decoded to

create the exact stream of symbols that went into its construction.

Arithmetic code is inherently adaptive, does not use any lookup table or dictionary and in

theory can be optimal for a machine with unlimited precision of arithmetic computation.

The basic idea can be explained as follows: at the beginning the semi-closed interval [0;

1) is partitioned into |A| equal sized semi-closed intervals under the equiprobability

assumption and each symbol is assigned one of these intervals. The first symbol, say a1 of

the message can be represented by a point in the real number interval assigned to it. To

encode the next symbol a2 in the message, the new probabilities of all symbols are

calculated recognizing that the first symbol has occurred one extra time and then the

interval assigned to a1 is partitioned (as if it were the entire interval) into |A| sub-intervals

in accordance with the new probability distribution. The sequence a1a2 can now be

represented without ambiguity by any real number in the new sub-interval for a2. The

process can be continued for succeeding symbols in the message as long as the intervals

are within the specified arithmetic precision of the computer. The number generated at

the final iteration is then a code for the message received so far. The machine returns to

its initial state and the process is repeated for the next block of symbol. A simpler version

of this algorithm could use the same static distribution of probability at each iteration

avoiding re-computation of probabilities. The arithmetic coding method is explained in

detail in chapter 2.

The Huffman and arithmetic coders are sometimes referred to as the entropy coders.

These methods normally use an order (0) model. If a good model with low entropy can be

built external to the algorithms, these algorithms can generate the binary codes very

efficiently.

One of the most well known modeler is “Prediction by Partial Match" (PPM) [17, 18].

It is capable of very good compression on a wide variety of source data.

The main idea of PPM (Prediction by Partial Matching) is to take advantage of the

previous k characters to generate a conditional probability of the current character. The

simplest way to do this would be to keep a dictionary for every possible string s of k

characters, and for each string have counts for every character x that follows s. The

 10

conditional probability of x in the context s is then C(x|s) / C(s), where C(x/s) is the

number of times x follows s and C(s) is the number of times s appears. The probability

distributions can then be used by a Huffman or Arithmetic coder to generate a bit

sequence. For example, we might have a dictionary with qu appearing 100 times and e

appearing 45 times after qu. The conditional probability of the e is then .45 and the coder

should use about 1 bit to encode it. Note that the probability distribution will change from

character to character since each context has its own distribution. In terms of decoding, as

long as the context precedes the character being coded, the decoder will know the context

and therefore know which probability distribution to use. Because the probabilities tend

to be high, arithmetic codes work much better than Huffman codes for this approach.

There are two problems with the basic dictionary method described in the previous

paragraph. First, the dictionaries can become very large. There is no solution to this

problem other than to keep k small, typically 3 or 4. A second problem is what happens if

the count is zero. We cannot use zero probabilities in any of the coding methods (they

would imply infinitely long strings). One way to get around this is to assume a

probability of not having seen a sequence before and evenly distribute this probability

among the possible following characters that have not been seen. Unfortunately this gives

a completely even distribution, when in reality we might know that a is more likely than

b, even without knowing its context.

The PPM algorithm has a clever way to deal with the case when a context has not been

seen before, and is based on the idea of partial matching. The algorithm builds the

dictionary on the fly starting with an empty dictionary, and every time the algorithm

comes across a string it has not seen before it tries to match a string of one shorter length.

This is repeated for shorter and shorter lengths until a match is found. For each length

0,1,. . .,k. the algorithm keeps statistics of patterns it has seen before and counts of the

following characters. In practice this can all be implemented in a single trial. In the case

of the length-1 contexts the counts are just counts of each character seen assuming no

context. The method is explained in more detail with example in chapter 2.

Dynamic Markov Compression (DMC) [19] is another modeling scheme that is

equivalent to finite context model but uses finite state machine to estimate the

probabilities of the input symbols which are bits rather than bytes as in PPM. The model

 11

starts with a single state machine with only one count of `0' and `1' transitions into itself

(the zero frequency state) and then the machine adopts to future inputs by accumulating

the transitions with 0's and 1's with revised estimates of probabilities. If a state is used

heavily for input transitions (caused either by 1 or 0 input), it is cloned into two states by

introducing a new state in which some of the transitions are directed and duplicating the

output transitions from the original states for the cloned state in the same ratio of 0 and 1

transitions as the original state. The bit-wise encoding takes longer time and therefore

DMC is very slow but the implementation is much simpler than PPM and it has been

shown that the PPM and DMC models are equivalent [20].

1.4.2 DICTIONARY METHODS

Dictionary decompression uses a codeword as an index into the dictionary table, and then

inserts the dictionary entry into the decompressed text stream. If codewords are aligned

with machine words, the dictionary lookup is a constant time operation. Statistical

compression, on the other hand, uses codewords that have different bit sizes, so they do

not align to machine word boundaries. Since codewords are not aligned, the statistical

decompression stage must first establish the range of bits comprising a codeword before

text expansion can proceed. It can be shown that for every dictionary method there is an

equivalent statistical method which achieves equal compression and can be improved

upon to give better compression [11]. Thus statistical methods can always achieve better

compression than dictionary methods albeit at the expense of additional computation

requirements for decompression. It should be noted, however, that dictionary

compression yields good results in systems with memory and time constraints because

one entry expands to several characters. In general, dictionary compression provides for

faster (and simpler) decoding, while statistical compression yields a better compression

ratio.

A dictionary-based compression scheme uses a different concept. It reads in input data

and looks for groups of symbols that appear in a dictionary. If a string match is found, a

pointer or index into the dictionary can be output instead of the code for the symbol. The

longer the match, the better the compression ratio. This method of encoding changes the

 12

focus of dictionary compression. Simple coding methods are generally used, and the

focus of the program is on the modeling.

A static dictionary is used like the list of references in an academic paper. Through the

text of a paper, the author may simply substitute a number that points to a list of

references instead of writing out the full title of a referenced work. The dictionary is

static because it is built up and transmitted with the text of work—the reader does not

have to build it on the fly. The first time a number is seen in the text like this—[2] — it

points to the static dictionary. The problem with a static dictionary is identical to the

problem the user of a statistical model faces: The dictionary needs to be transmitted along

with the text, resulting in a certain amount of overhead added to the compressed text. An

adaptive dictionary scheme helps avoid this problem.

Generally, a type of adaptive dictionary is used when performing acronym replacements

in technical literature. The standard way to use this adaptive dictionary is to spell out the

acronym, then put its abbreviated substitution in parentheses. So the first time if

Maharaja Sayajirao University (MSU) is mentioned then, both the dictionary string and

its substitution are defined. From then on, referring to MSU in the text should

automatically invoke a mental substitution.

The most widely used compression algorithms (Gzip and Gif) are based on Ziv-Lempel

or LZ77 coding [21] in which the text prior to the current symbol constitute the

dictionary and a greedy search is initiated to determine whether the characters following

the current character have already been encountered in the text before, and if yes, they are

replaced by a reference giving its relative starting position in the text. Because of the

pattern matching operation the encoding takes longer time but the process has been fine

tuned with the use of hashing techniques and special data structures. The decoding

process is straightforward and fast because it involves a random access of an array to

retrieve the character string. A variation of the LZ77 theme, called the LZ78 coding [22],

includes one extra character to a previously coded string in the encoding scheme. A more

popular variant of LZ78 family is the so-called LZW algorithm [23] which leads to

widely used Compress utility. This method uses a suffix tree to store the strings

previously encountered and the text is encoded as a sequence of node numbers in this

tree. To encode a string the algorithm will traverse the existing tree as far as possible and

 13

a new node is created when the last character in the string fails to traverse a path any

more. At this point the last encountered node number is used to compress the string up to

that node and a new node is created appending the character that did not lead to a valid

path to traverse. In other words, at every step of the process the length of the recognizable

strings in the dictionary gets incrementally stretched and is made available to future steps.

Many other variants of LZ77 and LZ78 compression family have been reported in the

literature. [8, 16].

Kruse and Mukherjee [24] devised a dictionary-based scheme called Star encoding. In

this method the words are replaced with sequences of * symbols accompanied with

references to an external dictionary. The dictionary is arranged according to word

lengths, and the proper sub-dictionary is selected by the length of the sequence of “stars”.

There have been several minor variations of such a scheme from the same authors, most

popular of which is a length index preserving transformation (LIPT). In LIPT, the word-

length-related sub-dictionary is pointed by a single byte value (as opposed to a sequence

of “stars”).

Smirnov [25] proposed two modifications to LIPT. One is to use non-intersecting

alphabet ranges for word lengths, word indices, and letters in words absent from the

dictionary. The other idea is more complex: apart from non-intersecting alphabets, also

more sub-dictionaries are considered, determined now not only by word lengths but also

part-of-speech tags. For an LZ77 compressor, the original LIPT performed best.

StarNT [26] is the most recent algorithm from the presented family. A word in StarNT

dictionary is a sequence of symbols over the alphabet [a..z]. There is no need to use

uppercase letters in the dictionary, as there are two one-byte flags (reserved symbols), fcl

and fuw, in the output alphabet to indicate that either a given word starts with a capital

letter while the following letters are all lowercase, or a given word consists of capitals

only. Another introduced flag, for, prepends an unknown word. Finally, there is yet a

collision-handling flag, fesc, used for encoding occurrences of flags fcl, fuw, for, and fesc in

the text.

The ordering of words in the dictionary D, as well as mapping the words to unique

codewords, is important for the compression effectiveness. StarNT uses the following

rules:

 14

• The most popular words are stored at the beginning of the dictionary. This group has

312 words.

• The remaining words are stored in D according to their increasing lengths. Words of

same length are sorted according to their frequency of occurrence in some training

corpus.

• Only letters [a..zA..Z] are used to represent the codeword (with the intention to achieve

better compression performance with the backend compressor).

Each word in D has assigned a corresponding codeword. Codewords’ length varies from

one to three bytes. As only the range [a. . z, A . . Z] for codeword bytes is used, there can

be up to [52 + (52 x 52) + (52 x 52 x 52)] = 143, 364 entries in the dictionary. The first

52 words have codewords: a, b, . . . , z, A, B, . . . , Z. Words from the 53rd to the 2756th

have codewords of length 2: aa, ab, . . . , ZY, ZZ; and so on.

1.4.3 TRANSFORM BASED METHODS

The Burrows-Wheeler transform [27] is a block-sorting, lossless data compression

algorithm that works by applying a reversible transformation to a block of input data. The

transform does not perform any compression but modifies the data in a way to make it

easy to compress with a secondary algorithm such as “move-to-front” coding and then

Huffman, or arithmetic coding. The BWT algorithm achieves compression performance

within a few percent of statistical compressors but at speeds comparable to the LZ based

algorithms. The BWT algorithm does not process data sequentially but takes blocks of

data as a single unit, which may lend itself to parallel processing. The transformed block

contains the same characters as the original block but in a form that is easy to compress

by simple algorithms. Same characters in the original block are often grouped together in

the transformed block.

Several authors have presented improvements to the original algorithm. Andersson and

Nilsson have published several papers about Radix Sort, which can be used as a first

sorting step during the BWT [28, 29]. In his final BWT research report, Fenwick

described some BWT sort improvements including sorting long words instead of single

bytes [30]. Kurtz presented several papers about BWT sorting stages with suffix trees,

which needed less space than other suffix tree implementations and are linear in time [31,

 15

32]. Sadakane described a fast suffix array sorting scheme in [33] and [34]. In [35],

Larsson presented an extended suffix array sorting scheme. Based on already sorted

suffices, Seward developed two fast suffix sorting algorithms called "copy" and "cache"

[36]. Itoh and Tanaka presented a fast sorting algorithm called the two stage suffix sort

[37]. Kao improved the two stage suffix sort by some new techniques which are very fast

for sequences of repeat symbols [38]. Manzini and Ferragina published some improved

suffix array sorting techniques based on the results of Seward and of Itoh and Tanaka

[39]. Several techniques for the post BWT stages have been also published. Besides the

MTF improvements from Schindler [40], and from Balkenhol and Shtarkov [41], an MTF

replacement, called Inversion Frequencies, was introduced by Arnavut and Magliveras

[42] and Deorowicz [43] presented another MTF replacement, named Weighted

Frequency Count. Various modeling techniques for the entropy coding at the end of the

compression process were presented by Fenwick [44,45], Balkenhol and Shtarkov [46].

The Burrows-Wheeler-Transform method is explained in detail in Chapter 2.

1.5 SEARCHING IN COMPRESSED FILES

With compressed files becoming more commonplace, the problem of how to search

within them is becoming increasingly important [47]. There are two options to consider

when deciding how to approach compressed pattern matching. The first is a `decompress-

then-search' approach, where the compressed file is first decompressed, and then a

traditional pattern-matching algorithm applied. This approach has the advantage of

simplicity, but brings with it tremendous overheads, in terms of both computation time

and storage requirements. Firstly, the entire file must be decompressed – often a lengthy

process, especially when considering files several megabytes in size. Additionally, the

decompressed file must be stored somewhere once decompressed, so that pattern

matching may occur.

The second alternative is to search the compressed file without decompressing it, or at

least only partially decompress it. This approach is known as compressed-domain pattern

matching, and offers several enticing advantages. The file is smaller, so a pattern

matching algorithm should take less time to search the full text. It also avoids the work

that would be needed to completely decompress the file.

 16

The main difficulty in compressed-domain pattern matching is that the compression

process may have removed a great deal of the structure of the file. The more structure

removed, the better the compression likely to be achieved. There is therefore a subtly

balanced compromise between obtaining good compression and leaving enough `hints' to

allow pattern-matching to proceed. It would appear that these two goals are in constant

opposition, but in fact compression is very closely related to pattern matching, in that

many compression systems use some sort of pattern matching technique to find

repetitions in the input, which can be exploited to give better compression. The effect of

this is that these patterns are coded in a special manner, which, if suitably represented,

may actually aid in pattern matching. Searching techniques are discussed in detail in

chapter 3.

1.6 OUR CONTRIBUTION

We have proposed text compression techniques which are used as a pre-compression

stage to well known standard methods such as Arithmetic Coding, Bzip2, PPM variants

(PPMd and PPMII), and LZMA. The compression ratio is improved when we use our

technique as pre-compression stage. The proposed compression techniques use the

concept of static, semi-dynamic and dynamic dictionary, which is arranged in the form of

one-dimension and two-dimension. The idea behind using the two-dimension instead of

one-dimension is that elements in the two-dimension matrix can be represented in shorter

code as compared to elements in one-dimension. Also the number of possible codes

reduces in case of two-dimension. The compression techniques proposed here are also

suitable for searching the phrase directly in the compressed form, instead of decompress

and then search.

1.7 ORGANIZATION OF THESIS

The remaining thesis is organized as given below:

Chapter 2

This chapter discusses compression technique such as arithmetic coding, BWT, PPM

variants (PPMd and PPMII) and LZMA in detail.

 17

Chapter 3

This chapter describes various searching algorithms useful for searching the pattern from

the file.

Chapter 4

This chapter includes the detailed description of the proposed compression techniques,

Character Based Text Compression method using Static Dictionary (CBTC-A)

Character Based Text Compression Technique using Semi Dynamic Dictionary(CBTC-B)

Word Based Text Compression Technique using Semi Dynamic Dictionary (WBTC-A)

Word Based Text Compression Technique using Semi Dynamic Dictionary (WBTC-B)

Word Based Text Compression Technique using Two-Dimension Semi-Dynamic

Dictionary (WBTC-C)

Word Based Text Compression Technique using Dynamic Dictionary (WBTC-D)

Word Based Text Compression Technique using Static Dictionary (WBTC-E)

This chapter includes the process of dictionary creation, and discusses the compression

and decompression algorithms along with searching algorithms.

Chapter 5

This chapter describes the implementation of the proposed compression techniques

explained in chapter 4. The algorithms are implemented in VC++.

Chapter 6

This chapter includes the comparison of the results of proposed compression techniques.

Different set of corpus namely Gutenberg, Enronsent, European Parliament, E-Text, are

taken for comparing the results with the existing compression techniques. Also it includes

the comparison of searching the string from the compressed file and normal file using

different string-matching algorithms described in chapter 3. The experimental results of

decompression time of proposed method WBTC-C and Bzip2 is given at the end of this

chapter

Chapter 7

This chapter concludes the thesis and discusses about probable future work.

CHAPTER 2

COMPRESSION TECHNIQUES

 18

2

COMPRESSION TECHNIQUES

2.0 OUTLINE OF THIS CHAPTER

This chapter describes various methods of compression techniques. Generating variable-

length codes: arithmetic coding, followed by transform based method BWT which is used

by BZIP2. The context based method Prediction by Partial Match (PPM) and its variants

are described in section 2.4 followed by in improved version of LZ77 method – Lempel

Ziv Markov-chain Algorithm (LZMA) in section 2.5

2.1 ORIGINS OF ARITHMETIC CODING

The first step toward arithmetic coding was taken by Shannon [48], who observed in a

1948 paper that messages N symbols long could be encoded by first sorting the messages

in order of their probabilities and then sending the cumulative probability of the

preceding messages in the ordering. The code string was a binary fraction and was

decoded by magnitude comparison. The next step was taken by Peter Elias in an

unpublished result; Abramson [49] described Elias’ improvement in 1963. Elias observed

that Shannon’s scheme worked without sorting the messages, and that the cumulative

probability of a message of N symbols could be recursively calculated from individual

symbol probabilities and the cumulative probability of the message of N - 1 symbols.

Elias’ code was studied by Jelinek [50]. The codes of Shannon and Elias suffered from a

serious problem: As the message increased in length the arithmetic involved required

increasing precision. By using fixed-width arithmetic units for these codes, the time to

encode each symbol is increased linearly with the length of the code string.

Meanwhile, another approach to coding was having a similar problem with precision. In

1972, Schalkwijk [51] studied coding from the standpoint of providing an index to the

encoded string within a set of, possible strings. As symbols were added to the string, the

index increased in size. This is a last-in-first-out (LIFO) code, because the last symbol

encoded was the first symbol decoded. Cover [52] made improvements to this scheme,

 19

which is now called enumerative coding. These codes suffered from the same precision

problem.

Both Shannon’s code and the Schalkwijk-Cover code can be viewed as a mapping of

strings to a number, forming two branches of pre-arithmetic codes, called FIFO (first-in-

first-out) and LIFO. Both branches use a double recursion, and both have a precision

problem. Rissanen [53] alleviated the precision problem by suitable approximations in

designing a LIFO arithmetic code. Code strings of any length could be generated with a

fixed calculation time per data symbol using fixed-precision arithmetic.

Pasco [54] discovered a FIFO arithmetic code, discussed earlier, which controlled the

precision problem by essentially the same idea proposed by Rissanen. In Pasco’s work,

the code string was kept in computer memory until the last symbol was encoded. This

strategy allowed a carry-over to be propagated over a long carry chain. Pasco [54] also

conjectured on the family of arithmetic codes based on their mechanization.

In Rissanen [53] and Pasco [54], the original (given, or presumed) symbol probabilities

were used. (In practice, we use estimates of the relative frequencies. However, the notion

of an imaginary “source” emitting symbols according to given probabilities is commonly

found in the coding literature.) In [15] and [55], Rissanen and Langdon introduced the

notion of coding parameters “based” on the symbol probabilities. The uncoupling of the

coding parameters from the symbol probabilities simplifies the implementation of the

code at very little compression loss, and gives the code designer some tradeoff

possibilities. In [15] it was stated that there were ways to block the carry-over, and in [55]

bit-stuffing was presented. In [56] F. Rubin also improved Pasco’s code by preventing

carry-overs. The result was called a “stream” code. Jones [57] and Martin [58] have

independently discovered P-based FIFO arithmetic codes.

Rissanen and Langdon [15] successfully generalized and characterized the family of

arithmetic codes through the notion of the decodability criterion which applies to all such

codes, be they LIFO or FIFO, L-based or P-based. The arithmetic coding family is seen

to be a practical generalization of many pre-arithmetic coding algorithms, including

Elias’ code, Schalkwijk [51], and Cover [52]. In [59], Rissanen presents an interesting

view of an arithmetic code as a number-representation system, and shows that Elias’ code

and enumerative codes are duals.

 20

2.2 ARITHMETIC CODING

In comparison to the well-known Huffman Coding algorithm, Arithmetic Coding

overcomes the constraint that the symbol to be encoded has to be coded by a whole

number of bits. This leads to higher efficiency and a better compression ratio in general.

Indeed Arithmetic Coding can be proven to almost reach the best compression ratio

possible, which is bounded by the entropy of the data being encoded. Though during

encoding the algorithm generates one code for the whole input stream, this is done in a

fully sequential manner, symbol after symbol.

Compared to other fields of Computer Science, Arithmetic Coding is still very young,

however already mature and efficient principle for lossless data encoding, which satisfies

all the requirements of what people understand of a modern compression algorithm: Data

input streams can be compressed symbol wise, enabling on-the-fly data compression.

Also Arithmetic Coding works in linear time with only constant use of memory. As

mentioned above, finite precision integer arithmetic suffices for all calculations. These

and other properties make it straightforward to derive hardware-based solutions.

Arithmetic Coding is also known to reach a best-possible compression ratio, provided the

single symbols of the input stream are statistically independent, which should be the case

for most data streams. Also it can be enhanced very simple by allowing simple plug-in of

optimized statistical models. The decoder uses almost the same source code as the

encoder which also makes the implementation straightforward.

2.2.1 EXAMPLE OF ARITHMETIC CODING

Arithmetic coding bypasses the idea of replacing an input symbol with a specific code. It

replaces a stream of input symbols with a single floating-point output number. More bits

are needed in the output number for longer, complex messages. This concept has been

known for some time, but only recently were practical methods found to implement

arithmetic coding on computers with fixed sized registers.

The output from an arithmetic coding process is a single number less than 1 and greater

than or equal to 0. This single number can be uniquely decoded to create the exact stream

of symbols that went into its construction. To construct the output number, the symbols

 21

are assigned set probabilities. The message “BILL GATES,” for example, would have a

probability distribution as shown in Table 2.1

Table 2.1 Probability Distribution of message “BILL GATES”

Character Probability
SPACE 1/10

A 1/10
B 1/10
E 1/10
G 1/10
I 1/10
L 2/10
S 1/10
T 1/10

Once character probabilities are known, individual symbols need to be assigned a range

along a “probability line,” nominally 0 to 1. It doesn’t matter which characters are

assigned which segment of the range, as long as it is done in the same manner by both the

encoder and the decoder. The nine-character symbol set used here would look like as

shown in Table 2.2.

Table 2.2 Probability range of message “BILL GATES”

Character Probability Range
SPACE 1/10 0.00 - 0.10
A 1/10 0.10 - 0.20
B 1/10 0.20 - 0.30
E 1/10 0.30 - 0.40
G 1/10 0.40 - 0.50
I 1/10 0.50 - 0.60
L 2/10 0.60 - 0.80
S 1/10 0.80 - 0.90
T 1/10 0.90 - 1.00

Each character is assigned the portion of the 0 to 1 range that corresponds to its

probability of appearance. The character “owns” everything up to, but not including, the

higher number. So the letter T in fact has the range .90 to .9999… The most significant

portion of an arithmetic-coded message belongs to the first symbols—or B, in the

message “BILL GATES.” To decode the first character properly, the final coded message

has to be a number greater than or equal to .20 and less than .30. To encode this number,

 22

track the range it could fall in. After the first character is encoded, the low end for this

range is .20 and the high end is .30. During the rest of the encoding process, each new

symbol will further restrict the possible range of the output number. The next character to

be encoded, the letter I, owns the range .50 to .60 in the new subrange of .2 to .3. So the

new encoded number will fall somewhere in the 50th to 60th percentile of the currently

established range. Applying this logic will further restrict the number to .25 to .26. The

algorithm to accomplish this for a message of any length is shown in figure 2.1

low = 0.0;

high = 1.0;

while ((c = getc(input)) != EOF) {

range = high - low;

high = low + range * high_range(c);

low = low + range * low_range(c);

}

output (low);

Figure 2.1 Algorithm for encoding symbols (Arithmetic Coding)

Following this process to its natural conclusion with message results in the following

table 2.3.

So the final low value, .2572167752, will uniquely encode the message “BILL GATES”

using coding scheme explained above.

Given this encoding scheme, it is relatively easy to see how the decoding process

operates. Find the first symbol in the message by seeing which symbol owns the space

our encoded message falls in. Since .2572167752 falls between .2 and .3, the first

character must be B. Then remove B from the encoded number. Since the low and high

range of B is known, remove their effects by reversing the process that put them in. First,

subtract the low value of B, giving .0572167752. Then divide by the width of the range

of B, or .1. This gives a value of .572167752. Then calculate where that lands, which is in

the range of the next letter, I. The algorithm for decoding the incoming number is shown

figure 2.2

 23

Table 2.3 Encoded values of Characters

New Character Low Value High Value

 0.0 1.0

B 0.2 0.3

I 0.25 0.26

L 0.256 0.258

L 0.2572 0.2576

SPACE 0.25720 0.25724

G 0.257216 0.257220

A 0.2572164 0.2572168

T 0.25721676 0.2572168

E 0.257216772 0.257216776

S 0.2572167752 0.2572167756

number = input_code();

for (; ;) {

symbol = find_symbol_straddling_this_range(number);

putc(symbol);

range = high_range(symbol) - low_range(symbol);

number = number - low_range(symbol);

number = number / range;

}

Figure 2.2 Algorithm for decoding symbols (Arithmetic Coding)

The problem of how to decide when there are no more symbols left to decode can be

handled either by encoding a special end-of-file symbol or by carrying the stream length

with the encoded message. The decoding algorithm for the “BILL GATES” message will

proceed as shown in Table 2.4

In summary, the encoding process is simply one of narrowing the range of possible

numbers with every new symbol. The new range is proportional to the predefined

probability attached to that symbol. Decoding is the inverse procedure, in which the

range is expanded in proportion to the probability of each symbol as it is extracted.

 24

Table 2.4 Decoded values of characters

Encoded Number Output Symbol Low High Range

0.2572167752 B 0.2 0.3 0.1

0.572167752 I 0.5 0.6 0.1

0.72167752 L 0.6 0.8 0.2

0.6083876 L 0.6 0.8 0.2

0.041938 SPACE 0.0 0.1 0.1

0.41938 G 0.4 0.5 0.1

0.1938 A 0.1 0.2 0.1

0.938 T 0.9 1.0 0.1

0.38 E 0.3 0.4 0.1

0.8 S 0.8 0.9 0.1

0.0

2.2.2 PRACTICAL MATTERS

Encoding and decoding a stream of symbols using arithmetic coding is not too

complicated. But at first glance it seems completely impractical. Most computers support

floating-point numbers of around 80 bits. So is it necessary to start over every time you

encode ten or fifteen symbols? Whether floating-point processor is needed? Can

machines with different floating-point formats communicate through arithmetic coding?

As it turns out, arithmetic coding is best accomplished using standard 16-bit and 32-bit

integer math. Floating-point math is neither required nor helpful. What is required is an

incremental transmission scheme in which fixed-size integer state variables receive new

bits at the low end and shift them out at the high end, forming a single number that can be

as long as necessary, conceivably millions or billions of bits.

Earlier, it has been shown that the algorithm works by keeping track of a high and low

number that brackets the range of the possible output number. When the algorithm first

starts, the low number is set to 0 and the high number is set to 1. The first simplification

made to work with integer math is to change the 1 to .999 …, or .111… in binary.

 25

Mathematicians agree that .111… binary is exactly the same as 1 binary, and this

assurance is taken at face value. It simplifies encoding and decoding. To store these

numbers in integer registers, first justify them so the implied decimal point is on the left

side of the word. Then load as much of the initial high and low values as will fit into the

word size we are working with. If the implementation is done using 16-bit unsigned

math, then initial value of high will be 0xFFFF, and low will be 0. It is known that the

high value continues with Fs forever, and the low continues with zeros forever; so those

extra bits can be shifted in with impunity when needed.

Consider the example of the message “BILL GATES” in a five-decimal digit register, the

decimal equivalent would look like as shown below:

HIGH: 99999 implied digits => 999999999...

LOW: 00000 implied digits => 000000000...

To find the new range of numbers, apply the encoding algorithm shown in figure 2.1.

First, calculate the range between the low and high values. The difference between the

two registers will be 100000, not 99999. This is because the high register has an infinite

number of 9s added to it, so it is needed to increment the calculated difference. Then

compute the new high value using the formula

high = low + high_range(symbol)

In this case, the high range was .30, which gives a new value for high of 30000. Before

storing the new value of high, it is needed to decrement it, once again because of the

implied digits appended to the integer value. So the new value of high is 29999. The

calculation of low follows the same procedure, with a resulting new value of 20000. So

now high and low look like this:

high: 29999 (999...)

low: 20000 (000...)

At this point, the most significant digits of high and low match. Due to the nature of

algorithm, high and low can continue to grow closer together without quite ever

matching.

 26

So once they match in the most significant digit, that digit will never change. That digit

can be now output as the first digit of the encoded number. This is done by shifting both

high and low left by one digit and shifting in a 9 in the least significant digit of high. As

this process continues, high and low continually grow closer together, shifting digits out

into the coded word. The process for message “BILL GATES” is shown in Table 2.5

After all the letters are accounted for, two extra digits need to be shifted out of either the

high or low value to finish the output word. This is so the decoder can properly track the

input data. Part of the information about the data stream is still in the high and low

registers, and we need to shift that information to the file for the decoder to use later.

2.2.3 COMPLICATION IN ARITHMETIC CODING

This scheme works well for incrementally encoding a message. Enough accuracy is

retained during the double-precision integer calculations to ensure that the message is

accurately encoded. But there is potential for a loss of precision under certain

circumstances. If the encoded word has a string of 0s or 9s in it, the high and low values

will slowly converge on a value, but they may not see their most significant digits match

immediately. High may be 700004, and low may be 699995. At this point, the calculated

range will be only a single digit long, which means the output word will not have enough

precision to be accurately encoded. Worse, after a few more iterations, high could be

70000, and low could be 69999. At this point, the values are permanently stuck. The

range between high and low has become so small that any iteration through another

symbol will leave high and low at their same values. But since the most significant digits

of both words are not equal, the algorithm can’t output the digit and shift. It seems to

have reached an impasse.

This underflow problem can be solved by preventing things from ever getting bad. The

original algorithm said something like, “If the most significant digit of high and low

match, shift it out.” If the two digits don’t match, but are now on adjacent numbers, a

second test needs to be applied. If high and low are one apart, then the second most

 27

Table 2.5 Cumulative output of message

 High Low Range Cumulative Output

Initial State 99999 00000 100000

Encode B (0.2 – 0.3) 29999 20000

Shift out 2 99999 00000 10000 .2

Encode I (0.5 – 0.6) 59999 50000 .2

Shift out 5 99999 00000 10000 .25

Encode L (0.6 – 0.8) 79999 60000 20000 .25

Encode L (0.6 – 0.8) 75999 72000 .25

Shift out 7 59999 20000 40000 .257

Encode SPACE (0.0 – 0.1) 23999 20000 0.257

Shift out 2 39999 00000 40000 .2572

Encode G (0.4 – 0.5) 19999 16000 .2572

Shift out 1 99999 60000 40000 .25721

Encode A (0.1 – 0.2) 67999 64000 .25721

Shift out 6 79999 40000 40000 .257216

Encode T (0.9 – 1.0) 79999 76000 .257216

Shift out 7 99999 60000 40000 .2572167

Encode E (0.3 – 0.4) 75999 72000 .2572167

Shift out 7 59999 20000 40000 .25721677

Encode S (0.8 – 0.9) 55999 52000 .25721677

Shift out 5 59999 20000 .257216775

Shift out 2 .2572167752

Shift out 0 .25721677520

significant digit in high is tested for 0 and the second digit in low is tested for 0. If so, it

means that underflow problem has occurred and an action is needed. Head off underflow

with a slightly different shift operation. Instead of shifting the most significant digit out

of the word, delete the second digits from high and low and shift the rest of the digits left

to fill the space. The most significant digit stays in place. Then set an underflow counter

 28

to remember that a digit is threw away and it is not quite sure whether it was going to be

a 0 or a 9. This process is shown in Table 2.6.

Table 2.6 Underflow Situation

 Before After

High: 40344 43449

Low: 39810 38100

Underflow: 0 1

After every recalculation, check for underflow digits again if the most significant digit

doesn’t match. If underflow digits are present, shift them out and increment the counter.

When the most significant digits do finally converge to a single value, output that value.

Then output the underflow digits previously discarded. The underflow digits will all be 9s

or 0s, depending on whether high and low converged on the higher or lower value.

2.2.4 DECODING

In the “ideal” decoding process, the entire input number is to be work with, the entire

number is available to work with, and the algorithm had to do things like “divide the

encoded number by the symbol probability.” In practice, it is not possible to perform an

operation like that on a number that could be billions of bytes long. As in the encoding

process, however, the decoder can operate using 16- and 32-bit integers for calculations.

Instead of using just two numbers, high and low, the decoder has to use three numbers.

The first two, high and low, correspond exactly to the high and low values maintained by

the encoder. The third number, code, contains the current bits being read in from the

input bit stream. The code value always falls between the high and low values. As they

come closer and closer to it, new shift operations will take place, and high and low will

move back away from code.

The high and low values in the decoder will be updated after every symbol, just as they

were in the encoder, and they should have exactly the same values. By performing the

same comparison test on the upper digit of high and low, the decoder knows when it is

time to shift a new digit into the incoming code. The same underflow tests are performed

as well.

 29

In the ideal algorithm, it was possible to determine what the current encoded symbol was

just by finding the symbol whose probabilities enclosed the present value of the code. In

the integer math algorithm, things are somewhat more complicated. In this case, the

probability scale is determined by the difference between high and low. So instead of the

range being between .0 and 1.0, the range will be between two positive 16-bit integer

counts. Where the present code value falls along that range determines current

probability. Divide (value - low) by (high - low + 1) to get the actual probability for the

present symbol.

2.2.5 COMPARISON WITH HUFFMAN CODING

It is not immediately obvious why this encoding process is an improvement over

Huffman coding. It becomes clear when we examine a case in which the probabilities are

a little different. If we have to encode the stream “AAAAAAA,” and the probability of A

is known to be .9, there is a 90 percent chance that any incoming character will be the

letter A. The Probability table is setup so that A occupies the 0.0 to 0.9 range, and the end

of-message symbol occupies the 0.9 to 1.0 range. The encoding process is shown in

Table 2.7.

Table 2.7 Encoding process of message “AAAAAAA”

New Character Low Value High Value

 0.0 0.1

A 0.0 0.9

A 0.0 0.81

A 0.0 0.729

A 0.0 0.6561

A 0.0 0.59049

A 0.0 0.531441

A 0.0 0.4782969

END 0.43046721 0.4782969

Now that the range of high and low values is known, all that remains is to pick a number

to encode this message. The number .45 will make this message uniquely decode to

 30

“AAAAAAA.” Those two decimal digits take slightly less than seven bits to specify,

which means that eight symbols are encoded in less than eight bits. An optimal Huffman

message would have taken a minimum of nine bits.

To take this point to an even further extreme, consider a example that had only two

symbols. In it, 0 had a 16382/16383 probability, and an end-of-file symbol had a 1/16383

probability. Create a file filled with 100,000 0s. After compression using arithmetic

coding, the output file was only three bytes long! The minimum size using Huffman

coding would have been 12,501 bytes. This is obviously a contrived example, but it

shows that arithmetic coding compresses data at rates much better than one bit per byte

when the symbol probabilities are right.

2.3. BURROWS WHEELER TRANSFORMATION

The BWT algorithm does not process its input sequentially, but instead processes a block

of text as a single unit. The idea is to apply a reversible transformation to a block of text

to form a new block that contains the same characters, but is easier to compress by simple

compression algorithms. The transformation tends to group characters together so that the

probability of finding a character close to another instance of the same character is

increased substantially. Text of this kind can easily be compressed with fast locally-

adaptive algorithms, such as move-to-front coding [60] in combination with Huffman or

arithmetic coding.

Briefly, the algorithm transforms a string S of N characters by forming the N rotations

(cyclic shifts) of S, sorting them lexicographically, and extracting the last character of

each of the rotations. A string L is formed from these characters, where the ith character

of L is the last character of the ith sorted rotation. In addition to L, the algorithm

computes the index I of the original string S in the sorted list of rotations. Surprisingly,

there is an efficient algorithm to compute the original string S given only L and I .

The sorting operation brings together rotations with the same initial characters. Since the

initial characters of the rotations are adjacent to the final characters, consecutive

characters in L are adjacent to similar strings in S. If the context of a character is a good

predictor for the character, L will be easy to compress with a simple locally-adaptive

compression algorithm.

 31

2.3.1 THE REVERSIBLE TRANSFORMATION

Two sub-algorithms are described here. Algorithm 2.3.1 performs the reversible

transformation that is applied to a block of text before compressing it, and Algorithm

2.3.2 performs the inverse operation. In the description below, strings is treated as vectors

whose elements are characters.

ALGORITHM 2.3.1: COMPRESSION TRANSFORMATION

This algorithm takes as input a string S of N characters S[0],,,,,,, S[N-1] selected from an

ordered alphabet X of characters. To illustrate the technique, consider a example, using

the string S = ‘abraca’, N = 6, and the alphabet X = {‘a’,’b’,’c’,’r’}

Step 1: Sort rotations

Form a conceptual N x N matrix M whose elements are characters, and whose rows are

the rotations (cyclic shifts) of S, sorted in lexicographical order. At least one of the rows

of M contains the original string S. Let I be the index of the first such row, numbering

from zero. In this example, the index I = 1 and the matrix M is row

0 aabrac

1 abraca

2 acaabr

3 bracaa

4 caabra

5 racaab

Step 2: Find last characters of rotations

Let the string L be the last column of M, with characters L[0],,,,,,L[N-1] (equal to M[0, N

- 1], , , , ,M[N – 1, N - 1]). The output of the transformation is the pair (L, I). In this

example, L = ‘caraab’ and I = 1 (from step C1).

 32

ALGORITHM 2.3.2: DECOMPRESSION TRANSFORMATION

The same example and notation used in Algorithm 2.3.1 is considered here. Algorithm

2.3.2 uses the output (L, I) of Algorithm 2.3.1 to reconstruct its input, the string S of

length N.

Step 1: Find first characters of rotations

This step calculates the first column F of the matrix M of Algorithm 2.3.1. This is done

by sorting the characters of L to form F. It is observed that any column of the matrix M is

a permutation of the original string S. Thus, L and F are both permutations of S, and

therefore of one another. Furthermore, because the rows of M are sorted, and F is the first

column of M, the characters in F are also sorted.

In this example, F = ‘aaabcr’.

Step 2: Build list of predecessor characters

To explain in detail, this step is described in terms of the contents of the matrix M. It

should be remember that the complete matrix is not available to the decompressor; only

the strings F, L, and the index I (from the input) are needed by this step.

Consider the rows of the matrix M that start with some given character ch. Algorithm C

ensured that the rows of matrix M are sorted lexicographically, so the rows that start with

ch are ordered lexicographically.

Let us define the matrix M’ formed by rotating each row of M one character to the right,

so for each i = 0, , , , ,N - 1, and each j = 0, , , , ,N -1,

M’ [i; j] = M[i, (j -1) mod N]

In this example, M and M’ are:

 row M M’

0 aabrac caabra

1 abraca aabrac

2 acaabr racaab

3 bracaa abraca

4 caabra acaabr

5 racaab bracaa

 33

Like M, each row of M’ is a rotation of S and for each row of M there is a corresponding

row in M’. M’ is constructed from M, so that the rows of M’ are sorted lexicographically

starting with their second character. So, if only those rows in M’ are considered that start

with a character ch, they must appear in lexicographical order relative to one another;

they have been sorted lexicographically starting with their second characters, and their

first characters are all the same and so do not affect the sort order. Therefore, for any

given character ch, the rows in M that begin with ch appear in the same order as the rows

in M’ that begin with ch.

In this example, this is demonstrated by the rows that begin with ‘a’. The rows ‘aabrac’,

‘abraca’, and ‘acaabr’ are rows 0, 1, 2 in M and correspond to rows 1, 3, 4 in M’.

Using F and L, the first columns of M and M’ respectively, a vector T is calculated that

indicates the correspondence between the rows of the two matrices, in the sense that for

each j = 0, , , , , ,N-1, row j of M’ corresponds to row T [j] of M.

If L[j] is the kth instance of ch in L, then T[j] = i where F[i] is the kth instance of ch in F.

Note that T represents a one-to-one correspondence between elements of F and elements

of L, and F[T[j]] = L[j].

In this example, T is: (4 0 5 1 2 3).

Step 3: Form output S

Now, for each i = 0, , , , , N - 1, the characters L[i] and F[i] are the last and first characters

of the row i of M. Since each row is a rotation of S, the character L[i] cyclicly precedes

the character F[i] in S. From the construction of T, we have F[T[j]] = L[j]. Substituting

i = T[j], we have L[T[j]] cyclicly precedes L[j] in S.

The index I is defined by Algorithm 2.3.1 such that row I of M is S. Thus, the last

character of S is L[I]. The vector T is used to give the predecessors of each character:

for each i = 0, , , , , , N - 1: S[N - 1 - i] = L[T i [I]].

where T0[x] = x, and Ti+1[x] = T[Ti[x]]. This yields S, the original input to the compressor.

In this example, S = ‘abraca’.

Let us define T such that the string S would be generated from front to back, rather than

the other way around.

The sequence Ti [I] for i = 0, , , , , N - 1 is not necessarily a permutation of the numbers 0,

, , , , N - 1. If the original string S is of the form Z p for some substring Z and some p > 1,

 34

then the sequence Ti [I] for i = 0, , , , , N - 1 will also be of the form Z’p for some

subsequence Z’. That is, the repetitions in S will be generated by visiting the same

elements of T repeatedly. For example, if S = ‘cancan’, Z = ‘can’ and p = 2, the sequence

Ti [I] for i = 0, , , , , N - 1 will be [2, 4, 0, 2, 4, 0].

2.3.2 WHY THE TRANSFORMED STRING COMPRESSES WELL

Algorithm 2.3.1 sorts the rotations of an input string S, and generates the string L

consisting of the last character of each rotation.

To see why this might lead to effective compression, consider the effect on a single letter

in a common word in a block of English text. Consider the example of the letter ‘t’ in the

word ‘the’, and assume an input string containing many instances of ‘the’.

When the list of rotations of the input is sorted, all the rotations starting with ‘he ’ will

sort together; a large proportion of them are likely to end in ‘t’. One region of the string L

will therefore contain a disproportionately large number of ‘t’ characters, intermingled

with other characters that can proceed ‘he ’ in English, such as space, ‘s’, ‘T’, and ‘S’.

The same argument can be applied to all characters in all words, so any localized region

of the string L is likely to contain a large number of a few distinct characters. The overall

effect is that the probability that given character ch will occur at a given point in L is very

high if ch occurs near that point in L, and is low otherwise. This property is exactly the

one needed for effective compression by a move-to-front coder, which encodes an

instance of character ch by the count of distinct characters seen since the next previous

occurrence of ch. When applied to the string L, the output of a move-to-front coder will

be dominated by low numbers, which can be efficiently encoded with a Huffman or

arithmetic coder.

For completeness, one of the possible ways is to use Move-to-Front coding technique to

encode the output of Algorithm 2.3.1 and the corresponding inverse operation. A

complete compression algorithm is created by combining these encoding and decoding

operations with Algorithms 2.3.1 and 2.3.2.

 35

2.3.3 MOVE-TO-FRONT CODING

This is a technique that is ideal for sequences with the property that the occurrence of a

character indicates it is more likely to occur immediately afterwards. The sequence of

characters is converted to a list of numbers as follows: The list of characters maintained,

represent characters by their position in the list. On encoding a character, it is moved to

the front of the list. Thus smaller numbers are more likely to occur than larger numbers.

ALGORITHM 2.3.3: MOVE-TO-FRONT CODING

This algorithm encodes the output (L, I) of Algorithm C, where L is a string of length N

and I is an index. It encodes L using a move-to-front algorithm and a Huffman or

arithmetic coder.

The example used in Algorithm 2.3.1 is continued here.

Step 1: Move-to-front coding

This step encodes each of the characters in L by applying the move-to-front technique to

the individual characters. Let us define a vector of integers R[0], , , , , R[N-1], which are

the codes for the characters L[0], , , , , L[N- 1].

Initialize a list Y of characters to contain each character in the alphabet X exactly once.

For each i = 0, , , , , ,N-1 in turn, set R[i] to the number of characters preceding character

L[i] in the list Y, then move character L[i] to the front of Y.

Taking Y = [‘a’,’b’,’c’,’r’] initially, and L = ‘caraab’, compute the vector R: (2 1 3 1 0 3).

Step 2: Encode

Apply Huffman or arithmetic coding to the elements of R, treating each element as a

separate token to be coded. Any coding technique can be applied as long as the

decompressor can perform the inverse operation. Call the output of this coding process

OUT. The output of Algorithm 2.3.1 is the pair (OUT ,I) where I is the value computed in

step 1 of algorithm 2.3.1.

 36

ALGORITHM 2.3.4: MOVE-TO-FRONT DECODING

This algorithm is the inverse of Algorithm 2.3.3. It computes the pair (L,I) from the pair .

(OUT ,I).

Here it is assumed that the initial value of the list Y used in step 1 of algorithm 2.3.3 is

available to the decompressor, and that the coding scheme used in step 2 of algorithm

2.3.3 has an inverse operation.

Step 1: Decode

Decode the coded stream OUT using the inverse of the coding scheme used in step 2 of

algorithm 2.3.3. The result is a vector R of N integers.

In our example, R is: (2 1 3 1 0 3).

Step 2: Inverse move-to-front coding

The goal of this step is to calculate a string L of N characters, given the move-to-front

codes R[0], , , , ,R[N -1].

Initialize a list Y of characters to contain the characters of the alphabet X in the same

order as in step 1 of Algorithm 2.3.3.

For each i = 0, , , , , N - 1 in turn, set L[i] to be the character at position R[i] in list Y

(numbering from 0), then move that character to the front of Y. The resulting string L is

the last column of matrix M of Algorithm 2.3.1. The output of this algorithm is the pair

(L,I), which is the input to Algorithm 2.3.2.

Taking Y = [‘a’,’b’,’c’,’r’] initially (as in Algorithm M), we compute the string L =

‘caraab’.

2.4. PREDICTION BY PARTIAL MATCH

The best known context-based algorithm is the ppm algorithm, first proposed by Cleary

and Witten in 1984 [17]. It has not been popular as the various Ziv-Lempel based

algorithms mainly because of the faster execution speeds of the latter algorithms. Lately

with the development of more efficient variants, ppm-based algorithms are becoming

increasingly more popular.

The idea of the ppm algorithm is elegantly simple. We would like to use large contexts to

determine the probability of the symbol being encoded.

 37

The basic algorithm initially attempts to use the largest context. The size of the largest

context is predetermined. If the symbol to be encoded has not previously been

encountered in this context, an escape symbol is encoded and the algorithm attempts to

use the next smaller context. If the symbol has not occurred in this context earlier, the

size of the context is further reduced. This process, continues until either we obtain a

context that has previously been encountered with this symbol, or we arrive at the

conclusion that the symbol has not been encountered previously in any context. In this

case, we use a probability of 1/X to encode the symbol, where X is the size of the source

alphabet. For example, when coding the a of probability, we would first attempt to see if

the string proba has previously occurred – that is, if a had previously occurred in the

context of prob. If not, we would encode an escape and see if a had occurred in the

context of rob. If the string roba had not occurred previously, we would again send an

escape symbol and try the context ob. Continuing in this manner, we would try the

context b, and failing that we would see if the letter a (with zero-order context) had

occurred previously. If a was being encountered for the first time, we would use a model

in which all letters occur with equal probability to encode a. This equiprobable model is

sometimes referred to as the context of order -1.

As the development of the probabilities with respect to each context is an adaptive

process each time a symbol is encountered, the count corresponding to that symbol is

updated. The number of counts to be assigned to the escape symbol is not obvious, and a

number of different approaches have been used. One approach used by Cleary and Witten

is to give the escape symbol a count of one, thus inflating the total count by one. Cleary

and Witten call this method – A, and the resulting algorithm ppma.

Example

Lets encode the sequence

thisbisbthebtithe

Assuming we have already encoded the initial seven characters thisbis, the various counts

and Cum_Counts arrays to be used in the arithmetic coding of the symbols are shown in

Tables 2.8 – 2.11. In this example, we are assuming that the longest context length is two.

This is a rather small value and is used here to keep the size of the example reasonable

small. A more common value for the longest context length is five.

 38

We will assume that the word length for arithmetic coding is four. Thus, l = 0000 and u

= 1111. As thisbis, has already been encoded, the next letter to be encoded is b. The

second order context for this letter is is. Looking at Table 2.11, we can see that the letter

b is the first letter in this context with a Cum_Count value of 1. As the Total_Count in

this case is 2, the update equations for the lower and upper limits are

l = 0 + [(15-0+1) * 0/2] = 0 = 0000

u - 0 +[(15 – 0 + 1) * 1/2] – 1 = 7 = 0111.

As the MSBs of both l and u are the same, we shift that bit our, shift a 0 into the LSB of l,

and a 1 into the LSB of u. The transmitted sequence, lower limit, and upper limit after

the update are:

Transmitted sequence: 0

 l:0000

 u:1111

Table 2.8 Count array for -1 order context

Letter Count Cum_Count

t 1 1

h 1 2

i 1 3

s 1 4

e 1 5

b 1 6

Total Count 6

 39

Table 2.9 Count array for zero-order context.

Letter Count Cum_Count

t 1 1

h 1 2

i 2 4

s 1 5

b 1 6

<esc> 1 7

Total Count 7

We also update the counts in Tables 2.9 – 2.11.

The next letter to be encoded in the sequence is t. The second-order context is sb.

Looking at Table 2.11, we can see that t has not appeared before in this context. We

therefore encode an escape symbol. Using the counts listed in Table 2.11, we update the

lower and upper limits:

l = 0 + [(15 – 0 + 1) * 1/2] = 8 = 1000

u – 0 + [(15 – 0 + 1) * 2/2] -1 = 15 = 1111.

Again, the MSBs of l and u are the same, so we shift the bit out and shift 0 into the LSB

of l, and 1 into u, restoring l to a value of 0 and u to a value of 15. The transmitted

sequence is now 01. After transmitting the escape, we look at the first order context of t,

which is b. Looking at Table 2.10, we can see that t has not previously occurred in this

context. To let the decoder know this, we transmit another escape. Updating the limits,

we get

l = 0 + [(15 – 0 + 1) * 1/2] = 8 = 1000

u – 0 + [(15 – 0 + 1) * 2/2] – 1 = 15 = 1111

As the MSBs of l and u are the same, we shift the MSB out and shift 0 into the LSB of l

and 1 into the LSB of u. The transmitted sequence is now 011. Having escaped out of the

first-order contexts, we examine Table 2.9 to see if we can encode t using zero-order

context. Indeed we can, and using the Cum-Count array, we can update l and u:

l = 0 + [(15 – 0 + 1) * 0/2] = 0 = 0000

u – 0 + [(15 – 0 + 1) * 1/7] – 1 = 1 = 0001.

 40

Table 2.10 Count array for first-order contexts.

Context Letter Count Cum_Count

h 1 1
t

<Esc> 1 2

Total Count 2

i 1 1
h

<Esc> 1 2

Total Count 2

s 2 2
i

<Esc> 1 3

Total Count 3

i 1 1
b

<Esc> 1 2

Total Count 2

b 1 1
s

<Esc> 1 2

Total Count 2

 41

Table 2.11 Count array for second-order contexts.

Context Letter Count Cum_Count

i 1 1
th

<Esc> 1 2

Total Count 2

s 1 1
hi

<Esc> 1 2

Total Count 2

b 1 1
is

<Esc> 1 2

Total Count 2

i 1 1
sb

<Esc> 1 2

Total Count 2

s 1 1
bi

<Esc> 1 2

Total Count 2

Table 2.12 Count array for zero-order context.

Letter Count Cum_Count

t 2 2

h 1 3

i 2 5

s 1 6

b 1 7

<esc> 1 8

Total Count 8

 42

Table 2.13 Count array for first-order contexts.

Context Letter Count Cum_Count

h 2 2
t

<Esc> 1 3

Total Count 3

i 1 1
h

<Esc> 1 2

Total Count 2

s 2 2
i

<Esc> 1 3

Total Count 3

i 1 1

i 1 2 b

<Esc> 1 3

Total Count 3

b 1 1
s

<Esc> 1 2

Total Count 2

 43

Table 2.14 Count array for second-order contexts.

Context Letter Count Cum_Count

i 1 1
th

<Esc> 1 2

Total Count 2

s 1 1
hi

<Esc> 1 2

Total Count 2

b 2 2
is

<Esc> 1 3

Total Count 3

i 1 1

i 1 2 sb

<Esc> 1 3

Total Count 3

s 1 1
bi

<Esc> 1 2

Total Count 2

h 1 1
bi

<Esc> 1 2

Total Count 2

The three most significant bits of both l and u are the same, so we shift them out. After

the update we get

Transmitted sequence: 011000

l:0000

u:1111

The next letter to be encoded is h. The second-order context bt has not occurred

previously, so we move directly to the first-order context t. the letter h has occurred

previously in this context, so we update l and u and obtain

 44

Transmitted sequence: 0110000

l:0000

u:1111

The method of encoding should now be clear. At this point the various counts are shown

in Tables 2.12 – 2.14.

The Escape Symbol

In our example we used a count of one for the escape symbol, thus inflating the total

count in each context by one. Cleary and Witten call this Method A, and the

corresponding algorithm is referred to as PPMA. There is really no obvious justification

for assigning a count of one to the escape symbol. For that matter, there is no obvious

method of assigning counts to the escape symbol. There have been various methods

reported in the literature.

Another method described by Cleary and Witten is to reduce the counts of each symbol

by one and assign these counts to the escape symbol. For example, suppose in a given

sequence a occurs 10 times in the context of prob, l occurs 9 times, and o occurs 3 times

in the same context (e.g., problem, proboscis etc.). In method A we assign a count of one

to the escape symbol, resulting in a total count of 23, which is one more than the number

of times prob has occurred. The situation is shown in Table 2.15

In this second method, known as Method – B, we reduce the count of each of the symbols

a, l, and o by one and give the escape symbol a count of three, resulting in the counts

shown in Table 2.16 The reasoning behind this approach is that if in a particular context

more symbols can occur, there is a greater likelihood that there is a symbol in this context

that has not occurred before. This increase the likelihood that the escape symbol will be

used. Therefore, we should assign a higher probability to the escape symbol.

Table 2.15 Counts using Method – A.

Context Symbol Count

a 10

l 9

o 3
prob

<Esc> 1

Total Count 23

 45

Table 2.16 Counts using Method – B.

Context Symbol Count

a 9

l 8

o 2
prob

<Esc> 3

Total Count 22

A variant of method B, appropriately named Method C, was proposed by Moffat [61]. In

method C, the count assigned to the escape symbol is the number of symbols that have

occurred in that context. In this respect, Method C, is similar to the Method B. The

difference comes in the fact that instead of “robbing” this from the counts of individual

symbols, the total count is inflated by this amount. This situation is shown in Table 2.17.

While there is some variation in the performance depending on the characteristics of the

data being encoded of the three methods for assigning counts to the escape symbols, on

the average, Method C seems to provide the best performance.

Table 2.17 Counts using Method C

Context Symbol Count

a 10

l 9

o 3
prob

<Esc> 3

Total 25

Another variant of PPM is PPMD method proposed by Paul Glor Howard [62] is slightly

improved method for estimating the escape probability. Moffat’s PPMC method is

widely considered to be the best method of estimating escape probabilities. In the PPMC,

each symbol’s count in a context is taken to be number of times it has occurred so far in

the context. The escape “event,” that is, the occurrence of a symbol for the first time in

the context, is also treated as a “symbol,” with its own count. When a letter occurs for the

 46

first time, its count becomes 1; the escape count is incremented by 1, so the total count

increases by 2, and at all other times the total count increases by 1.

PPMD is similar to PPMC except that it makes the treatment of new symbols more

consistent by adding ½ instead of 1 to both the escape count and the new symbol’s count

when a new symbol occurs; hence the total count always increases by 1.

In 2002, Shkarin proposed a variation of PPM algorithm – PPM with Information

Inheritance [63]. This algorithm sets a new standard on the compression performance.

The estimation of probability for the escape symbol is a very important and difficult task.

As the higher order causes deterioration in the compression performance, the most often

applied order for widely used PPMD is five. This is caused by frequent occurrence of the

escape symbol and its bad estimation. However, estimation of the escape symbol’s

frequency for PPMII is much better. PPMII uses orders even up to 64, but the main

reason allowing to use such high orders is much better estimation of ordinary symbols’

probability. Escape estimation in PPMII is adaptive. It uses a secondary escape model

(SEE [64]). SEE is a special, separate model used for better evaluation of probability for

escape symbols only. Most PPM models use statistics from the longest matching context.

PPMII inherits the statistics of shorter contexts when a longer context is encountered for

the first time. The shorter (the last longest matching) context’s statistics are used to

estimate the statistics of the longer context. The executable version of PPMII method is

implemented as PPMII.exe

2.5 LEMPEL ZIV MARKOV CHAIN ALGORITHM

LZMA (Lempel-Ziv-Markov chain-Algorithm) is an optimized version of LZ77 [65].

LZMA uses a dictionary compression algorithm (a variant of LZ77), whose output is then

encoded with a range encoder. It raises the compression ratio dramatically while

maintaining high decompression speed and low memory requirements for decompression.

The dictionary compressor produces a stream of literal symbols and phrase references,

which is encoded one bit at a time by the range encoder, using a model to make a

probability prediction of each bit. Prior to LZMA, most encoder models were byte-based

(i.e. they coded each bit using a cascade of contexts to represent the dependencies on

previous bits from the same byte). The main innovation of LZMA is that instead of a

 47

generic byte-based model, LZMA's model uses contexts specific to the bitfields in each

representation of a literal or phrase. This is nearly as simple as a generic byte-based

model, but gives much better compression because it avoids mixing unrelated bits

together in the same context.

2.5.1 LZMA Algorithm

In LZMA compression, the compressed stream is a stream of bits, encoded using

adaptive binary range coder. The stream is divided into packets, each packet describing

either a single byte, or an LZ77 sequence with its length and distance implicitly or

explicitly encoded. Each part of each packet is modeled with independent contexts, so the

probability predictions for each bit are correlated with the values of that bit (and related

bits from the same field) in previous packets of the same type.

There are 7 types of packets as shown in Table 2.18

Table 2.18 List of Packets used in LZMA

Packed code (bit
sequence) Packet description

0 + byteCode

A single byte encoded using an adaptive binary range coder. The range

coder uses context based on some number of the most significant bits of

the previous byte. Depending on the state machine, this can also be a

single byte encoded as a difference from the byte at the last used LZ77

distance.

1+0 + len + dist A typical LZ77 sequence describing sequence length and distance.

1+1+0+0
A one-byte LZ77 sequence. Distance is equal to the last used LZ77

distance.

1+1+0+1 + len An LZ77 sequence. Distance is equal to the last used LZ77 distance.

1+1+1+0 + len
An LZ77 sequence. Distance is equal to the second last used LZ77

distance.

1+1+1+1+0 + len
An LZ77 sequence. Distance is equal to the third last used LZ77

distance.

1+1+1+1+1 + len
An LZ77 sequence. Distance is equal to the fourth last used LZ77

distance.

The length is encoded as shown in Table 2.19

 48

Table 2.19 Encoding of Length

Length code (bit
sequence) Description

0+ 3 bits
The length encoded using 3 bits, gives the lengths range from

2 to 9.

1+0+ 3 bits
The length encoded using 3 bits, gives the lengths range from

10 to 17.

1+1+ 8 bits
The length encoded using 8 bits, gives the lengths range from

18 to 273.

The distance is encoded as follows:

First a distance class is encoded using 6 bits. The 5 other bits of the distance code encode

the information about how many direct distance bits need to be extracted from the stream.

2.5.2 RANGE ENCODING

Range encoding conceptually encodes all the symbols of the message into one number,

unlike Huffman coding which assigns each symbol a bit-pattern and concatenates all the

bit-patterns together. Thus range encoding can achieve greater compression ratios than

the one-bit-per-symbol upper bound on Huffman encoding and it does not suffer the

inefficiencies that Huffman does when dealing with probabilities that are not exact

powers of two.

The central concept behind range encoding is this: given a large-enough range of

integers, and probability estimation for the symbols, the initial range can easily be

divided into sub-ranges whose sizes are proportional to the probability of the symbol they

represent. Each symbol of the message can then be encoded in turn, by reducing the

current range down to just that sub-range which corresponds to the next symbol to be

encoded. The decoder must have the same probability estimation the encoder used, which

can either be sent in advance, derived from already transferred data or be part of the

compressor and decompressor.

When all symbols have been encoded, merely identifying the sub-range is enough to

communicate the entire message (presuming of course that the decoder is somehow

notified when it has extracted the entire message). A single integer is actually sufficient

 49

to identify the sub-range, and it may not even be necessary to transmit the entire integer;

if there is a sequence of digits such that every integer beginning with that prefix falls

within the sub-range, then the prefix alone is all that's needed to identify the sub-range

and thus transmit the message.

2.5.3 RELATIONSHIP WITH ARITHMETIC CODING

Arithmetic coding is the same as range encoding, but with the integers taken as being the

numerators of fractions. These fractions have an implicit, common denominator, such

that all the fractions fall in the range (0,1). Accordingly, the resulting arithmetic code is

interpreted as beginning with an implicit "0.". As these are just different interpretations of

the same coding methods, and as the resulting arithmetic and range codes are identical,

each arithmetic coder is its corresponding range encoder, and vice-versa. In other words,

arithmetic coding and range encoding are just two, slightly different ways of

understanding the same thing.

An often noted feature of such range encoders is the tendency to perform renormalization

a byte at a time, rather than one bit at a time (as is usually the case). In other words, range

encoders tend to use bytes as encoding digits, rather than bits. While this does reduce the

amount of compression that can be achieved by a very small amount, it is faster than

when performing renormalization for each bit.

CHAPTER 3

STRING-MATCHING ALGORITHMS

 50

3

STRING-MATCHING ALGORITHMS

3.0 OUTLINE OF THIS CHAPTER

This chapter is concerned with string matching methods for locating patterns occurring

as a sub-string of a particular string. Such keywords searches are a common requirement

in, for example, word processing and information retrieval applications. This chapter

discusses the most popular string matching algorithms.

• Brute-Force Algorithm

• Karp-Rabin Algorithm

• Knuth-Morris-Pratt Algorithm

• Boyer-Moore Algorithm

• Quick Search Algorithm

3.1 INTRODUCTION

The general approach for looking for a pattern in a file that is stored in its compressed

form is first decompressing and then applying one of the known pattern matching

algorithms in the decoded file. In many cases, however, in particular on the Internet, files

are stored in their original form, for if they were compressed, the host computer would

have to provide memory space for each user in order to store the decoded file. This

requirement is not reasonable, as many user scan simultaneously quest the same

information reservoir which will demand an astronomical quantity of free memory.

Another possibility is transferring the compressed files to the personal computer of the

user, and then decoding the files. However, we then assume that the user knows the exact

location of the information he is looking for; if this is not the case, much unneeded

information will be transferred.

There is therefore a need to develop methods for directly searching within a compressed

file. For a given text S and pattern P and complementary encoding and decoding

functions E and D, our aim is to search E(P) in E(S), rather than the usual approach

which searches for the pattern P in the decompressed text D(E(S)). But this is not always

 51

straightforward, since an instance of E(P) in the compressed text is not necessarily the

encoding of instance of P in the original text S. This so-called compressed matching

problem has been introduced by Amir and Benson [47]. The algorithms proposed in

chapter 4 are useful for searching E(P) in E(S), with any conventional string-matching

algorithm discussed in this chapter.

3.2 STRING-MATCHING ALGORITHMS

String matching consists of finding one, or more generally, all the occurrences of a

pattern in a text. The pattern and the text are both strings built over a finite alphabet (a

finite set of symbols). Each algorithm describe here outputs all occurrences of the pattern

in the text. The pattern is denoted by P = P[0…m-1]; its length is equal to m. The text is

denoted by S = S[0…n-1]; its length is equal to n. The alphabet is denoted by ∑ and its

size equal toσ .

String-matching algorithms work as follows: they first align the left ends of the pattern

and the text, then compare the aligned symbols of the text and the pattern — this specific

work is called an attempt or a scan — and after a whole match of the pattern or after a

mismatch they shift the pattern to the right. They repeat the same procedure again until

the right end of the pattern goes beyond the right end of the text. This is called the scan

and shift mechanism. Each attempt is associated with the position i in the text when the

pattern is aligned with S[i…i+m-1].

The brute force algorithm consists of checking, at all positions in the text between 0 and

n-m, whether an occurrence of the pattern starts there or not. Then, after each attempt, it

shifts the pattern exactly one position to the right. This is the simplest algorithm, which is

described in Figure 3.1.

The time complexity of the brute force algorithm is O(mn) in the worst case but its

behavior in practice is often linear on specific data.

Four categories arise: the most natural way to perform the comparisons is from left to

right, which is the reading direction; performing the comparisons from right to left

generally leads to the best algorithms in practice; the best theoretical bounds are reached

when comparisons are done in a specific order; finally there exist some algorithms for

 52

which the order in which the comparisons are done is not relevant (such is the brute force

algorithm)

void BF(char *s, char *p, int n, int m)
{

int i, j;
/* Searching */
for (i=0; i <= n-m; i++)
{

j=0;
while (j < m && s[i+j] == p[j])

j++;
if (j >= m)

OUTPUT(i);
}

}
Figure 3.1 The Brute Force string-matching algorithm.

3.2.1 From left to right

Hashing provides a simple method that avoids the quadratic number of character

comparisons in most practical situations_ and that runs in linear time under reasonable

probabilistic assumptions. It has been introduced by Harrison and later fully analyzed by

Karp and Rabin[66].

Assuming that the pattern length is no longer than the memory-word size of the machine,

the Shift-Or algorithm is an efficient algorithm to solve the exact string-matching

problem and it adapts easily to a wide range of approximate string-matching problems.

The first linear-time string matching algorithm is from Morris and Pratt [67]. It has been

improved by Knuth, Morris, and Pratt [7]. The search behaves like a recognition process

by automaton and a character of the text is compared to a character of the pattern no more

than logφ (m+1) (φ is the golden ratio (1+ 5)/ 2). Hancart proved that this delay of a

related algorithm discovered by Simon makes no more than 1+log2m comparisons per

text character. Those three algorithms perform at most 2n-1 text character comparisons in

the worst case.

The search with a Deterministic Finite Automaton performs exactly n text character

inspections but it requires an extra space in O(m x σ). The Forward Dawg Matching

algorithm performs exactly the same number of text character inspections using the suffix

automaton of the pattern.

 53

The Apostolico-Crochemore algorithm is a simple algorithm which performs 3/2n text

character comparisons in the worst case.

The Not So Naive algorithm is a very simple algorithm with a quadratic worst case time

complexity but it requires a preprocessing phase in constant time and space and is slightly

sub-linear in the average case.

3.2.2 From right to left

The Boyer-Moore algorithm[6] is considered as the most efficient string matching

algorithm in usual applications. A simplified version of it (or the entire algorithm) is

often implemented in text editors for the “search” and “substitute” commands. Cole

proved that the maximum number of character comparisons is tightly bounded by 3n after

the preprocessing for non-periodic patterns. It has a quadratic worst case time for periodic

patterns.

Several variants of the Boyer-Moore algorithm avoid its quadratic behavior. The most

efficient solutions in term of number of character comparisons have been designed by

Apostolico and Giancarlo, Crochemore et alii (TurboBM) and Colussi (Reverse Colussi).

Empirical results show that variations of the Boyer-Moore algorithm and algorithms

based on the suffix automaton by Crochemore et alii (Reverse Factor and Turbo Reverse

Factor) or the suffix oracle by Crochemore et alii (Backward Oracle Matching) are the

most efficient in practice.

The Zhu-Takaoka and Berry-Ravindran algorithms are variants of the Boyer-Moore

algorithm which require an extra space in O(σ 2)

3.2.3 In a specific order

The two first linear optimal space string-matching algorithms are due to Galil-Seiferas

and Crochemore-Perrin (Two Way). They partition the pattern in two part, they first

search for the right part of the pattern from left to right and then if no mismatch occurs

they search for the left part.

The algorithms of Colussi and Galil-Giancarlo partition the set of pattern positions into

two subsets. They first search for the pattern characters which positions are in the first

subset from left to right and then if no mismatch occurs they search for the remaining

 54

characters from left to right. The Colussi algorithm is an improvement over the Knuth-

Morris-Pratt algorithm and performs at most 3/2n text character comparisons in the worst

case. The Galil-Giancarlo algorithm improves the Colussi algorithm in one special case

which enables it to perform at most 4/3n text character comparisons in the worst case.

Sunday’s Optimal Mismatch and Maximal Shift algorithms sort the pattern positions

according their character frequency and their leading shift respectively.

Skip Search, KmPSkip Search and Alpha Skip Search algorithms by Charras et alii use

buckets to determine starting positions on the pattern in the text.

3.2.4 In any order

The Horspool algorithm is a variant of the Boyer-Moore algorithm. It uses only one of its

shift functions and the order in which the text character comparisons are performed is

irrelevant. This is also true for other variants such as the Quick Search algorithm of

Sunday[68], Tuned Boyer Moore of Hume and Sunday, the Smith algorithm and the

Raita algorithm.

3.3 KARP-RABIN ALGORITHM

Hashing provides a simple method for avoiding a quadratic number of symbol

comparisons in most practical situations. Instead of checking at each position of the text

whether the pattern occurs, it seems to be more efficient to check only if the portion of

the text aligned with the pattern “looks like” the pattern. In order to check the

resemblance between these portions a hashing function is used. To be helpful for the

string-matching problem the hashing function should have the following properties:

• _efficiently computable,

• _highly discriminating for strings,

• hash (s[i+1. . . i+m]) must easily computable from hash(s[i+1. . .i+m-1]):
 hash (s[i+1. . . i+m]) = rehash(s[i],s[i+m],hash(s[i. . .i+m-1])).

For a word w of length k, its symbols can be considered as digits, and we define hash(w)

by:

hash(w[0. . .k-1]) = (w[0] * 2k-1 + w[1] * 2k-2+. . .+w[k-1] mod q,

 55

where q is a large number.

Then, rehash has a simple expression

rehash(a,b,h) = ((h-a*d) *2+b) mod q,

where d = 2k-1.

During the search for the pattern P, it is enough to compare hash(p) with hash(s[i. . .i+m-

1]) for 0 ≤ i ≤ n-m. If an equality is found, it is still necessary to check the equality P =

s[i. . .i+m-1] symbol by symbol.

In the algorithm of Figure 3.2 all the multiplications by 2 are implemented by shifts.

Furthermore, the computation of the modulus function is avoided by using the implicit

modular arithmetic given by the hardware that forgets carries in integer operations. So, q

is chosen as the maximum value of an integer.

#define REHASH(a, b, h) (((h-a*d)<<1)+b)
void KR(char *s, char *p, int n, int m)
{

int hs, hp, d, i;
/* Preprocessing */
/* computes d = 2ˆ(m-1) with the left-shift operator */
d=1;
for (i=1; i < m; i++)

d<<=1;
hs=hp=0;
for (i=0; i < m; i++)
{

hp=((hp<<1)+p[i]);
hs=((hs<<1)+s[i]);

}
/* Searching */
for (i=m; i <= n; i++)
{

if (hs == hp && strncmp(s+i-m, p, m) == 0) OUTPUT(i-m);
hs=REHASH(s[i-m], s[i], hs);

}
}

Figure 3.2 The Karp-Rabin string-matching algorithm.

The worst-case time complexity of the Karp-Rabin algorithm is quadratic in the worst

case (as it is for the brute force algorithm) but its expected running time is O(m+n)

Example 3.1:

Let P = ing.

Then hash(p) = 105 * 22 + 110*2 + 103 = 743 (symbols are assimilated with their

ASCII codes).

 56

Figure 3.3 Shift in the Knuth-Morris-Pratt algorithm (v suffix of u).

S = s t r i n g m a t c h i n g
hash = 806 797 776 743 678 585 443 746 719 766 709 736 743

3.4 KNUTH-MORRIS-PRATT ALGORITHM

This section presents the first discovered linear-time string-matching algorithm. Its

design follows a tight analysis of the brute force algorithm, and especially on the way this

latter algorithm wastes the information gathered during the scan of the text.

Let us look more closely at the brute force algorithm. It is possible to improve the length

of shifts and simultaneously remember some portions of the text that match the pattern.

This saves comparisons between characters of the text and of the pattern, and

consequently increases the speed of the search.

Consider an attempt at position i, that is, when the pattern P[0. . .m-1]]is aligned with

the window S[i. . .i+m-1] on the text. Assume that the first mismatch occurs between

symbols S[i+j] and P[j] for 1 < j < m. Then, S[i. . .i+j-1] = P[0. . .j-1] = u and a =

S[i+j]≠ P[j] = b. When shifting, it is reasonable to expect that a prefix v of the pattern

matches some suffix of the portion u of the text. Moreover, to avoid another immediate

mismatch, the letter following the prefix v in the pattern must be different from b. The

longest such prefix v is called the border u (it occurs at both ends of u). This introduces

the notation: let next[j] be the length of the longest (proper) border of P[0. . .j-1]

followed by a character c different from P[j]. Then, after a shift, the comparisons can

resume between characters S[i+j] and P[next[j]] without missing any occurrence P in S,

and avoiding a backtrack on the text (see Figure 3.3).

Example 3.2:
S = . . . a b a b a a . . .
P = a b a b a b a
P = a b a b a b a

S

P

P

 57

Compared symbols are underlined. Note that the empty string is the suitable border of

ababa. Other borders of ababa are aba and a.

The Knuth-Morris-Pratt algorithm is displayed in Figure 3.4. The table next it uses is

computed in O(m) time before the search phase, applying the same searching algorithm to

the pattern itself, as if (S=P) (see Figure 3.5). The worst-case running time of the

algorithm is O(m+n) and it requires O(m) extra space. These quantities are independent

of the size of the underlying alphabet.
void KMP(char *s, char *p, int n, int m)
{

/* XSIZE is the maximum size of a pattern */
int i, j, next[XSIZE];
/* Preprocessing */
PRE_KMP(p, m, next);
/* Searching */
i=j=0;
while (i < n)
{

while (j > -1 && p[j] != s[i]) j=next[j];
i++; j++;
if (j >= m)
{

OUTPUT(i-j);
j=next[m];

}
}

}
Figure 3.4 The Knuth-Morris-Pratt string-matching algorithm.

3.5 BOYER-MOORE ALGORITHM

The Boyer-Moore algorithm is considered the most efficient string-matching algorithm in

usual applications. A simplified version of it, or the entire algorithm, is often

implemented in text editors for the “search” and “substitute” commands.

The algorithm scans the characters of the pattern from right to left beginning with the

rightmost symbol. In case of a mismatch (or a complete match of the whole pattern) it

uses two precomputed functions to shift the pattern to the right. These two shift functions

are called the bad-character shift and the good-suffix shift. They are based on the

following observations.

 58

void PRE_KMP(char *p, int m, int next[])
{

int i, j;
i=0; j=next[0]=-1;
while (i < m)
{

while (j > -1 && p[i] != p[j])
j=next[j];

i++; j++;
if (i < m && p[i] == p[j])

next[i]=next[j];
else

next[i]=j;
}

}
Figure 3.5 Preprocessing phase of the Knuth-Morris-Pratt algorithm: computing

next.

Figure 3.6 Good-suffix shift, u reappears preceded by a character different from b.

Figure 3.7 Good-suffix shift, only a suffix of u reappears as a prefix of P.

Assume that a mismatch occurs between the character P[j] = b of the patter and the

character S[i+j] = a of the text during an attempt at position i. Then, S[i+j+1. . .i+m-1]

P[j+1. . .m-1] = u and S[i+j]≠ P[j].

The good-suffix shift consists of aligning the segment S[i+j+1. . .i+m- 1] = P[j+1. . .m-

1] with its rightmost occurrence in P that is preceded by a character different from P[j]

(see figure 3.6) if there exists no such segment, the shift consists of aligning the longest

suffix v of S[i+j+1. . .i+m-1] with a matching prefix of P (see figure 3.7).

S

P

P

S

P

P

 59

Figure 3.8 Bad-character shift, a appears in P.

Figure 3.9 Bad-character shift, a does not appears in P.

Example 3.3:
S = . . . a b b a a b b a b b a . . .
P = a b b a a b b a b b a
P = a b b a a b b a b b a

The shift is driven by the suffix abba of P found in the text. After the shift, the segment

abba in the middle of S matches a segment of P as in figure 3.6. The same mismatch does

not reoccur.

Example 3.4:
S = . . . a b b a a b b a b b a b b a . . .
P = b b a b b a b b a
P = b b a b b a b b a

The segment abba found in S partially matches a prefix of P after the shift, like in Figure

3.7.

The bad-character shift consists of aligning the text character S[i+j] with its rightmost

occurrence in P[0. . .m-2] (see figure 3.8) If S[i+j] does not appear in the pattern P, no

occurrence of P in S can overlap the symbol S[i+j], then, the left end of the pattern is

aligned with the character at position i+j+1 (see figure 3.9)

S

P

P

S

P

P

 60

Example 3.5:
S = a b c d
P = c d a h g f e b c d
P = c d a h g f e b c d
The shift aligns the symbol a in P with the mismatch symbol a in the text S (Figure 3.8).

Example 3.6:
S = a b c d
P = c d h g f e b c d
P = c d h g f e b c d
The shift positions the left end of P right after the symbol a of S (Figure 3.9).

The Boyer-Moore algorithm is shown in Figure 3.10. For shifting the pattern, it applies

the maximum between the bad-character shift and the good-suffix shift. More formally,

the two shift functions are defined as follows. The bad-character shift is stored in a table

bc of size σ and the good-suffix shift is stored in a table gs of size m+1. For a ∈ ∑ :

⎩
⎨
⎧ =≤

=
otherwise m

in x appears a }if a j]-1- x[mand 1/min{
][

mj
abc

void BM(char *s, char *p, int n, int m)
{

/* XSIZE is the maximum size of a pattern */
/* ASIZE is the size of the alphabet */
int i, j, gs[XSIZE], bc[ASIZE];
/* Preprocessing */
PRE_GS(p, m, gs);
PRE_BC(p, m, bc);
/* Searching */
i=0;
while (i <= n-m)
{

j=m-1;
while (j >= 0 && p[j] == s[i+j])

j--;
if (j < 0)

OUTPUT(i);
i+=MAX(gs[j+1];
bc[s[i+j]]-m+j+1); /* shift */

}
}

Figure 3.10 The Boyer-Moore string-matching algorithm.

Let us define two conditions:

cond1(j;s): for each k such that j<k<m, s≥ k or p[k - s]=p[k]
cond2(j,s): if s<j then p[j - s] ≠ p[j]

Then, for 0 ≤ j< m:

 gs[j+1]=min{s>0 / cond1(j, s)and cond2(j, s) hold}

 61

and define gs[0]as the length of the smallest period of p.

void PRE_BC(char *p, int m, int bc[])
{

/* ASIZE is the size of the alphabet */
int j;
for (j=0; j < ASIZE; j++) bc[j]=m;
for (j=0; j < m-1; j++) bc[p[j]]=m-j-1;

}
Figure 3.11 Computation of the bad-character shift.

Tables bc and gs can be precomputed in time O(m+σ)before the search phase and

require an extra-space in O(m+σ)(see Figures 3.12 and 3.11). The worst-case running

time of the algorithm is quadratic. However, on large alphabets (relative to the length of

the pattern) the algorithm is extremely fast. Slight modifications of the strategy yield

linear-time algorithms

When searching for am-1b in an the algorithm makes only O(n/m) comparisons, which is

the absolute minimum for any string-matching algorithm in the model where the pattern

only is preprocessed.

void PRE_GS(char *p, int m, int gs[])
{

/* XSIZE is the maximum size of a pattern */
int i, j, p, f[XSIZE];
for (i=0; i <= m; i++) gs[i]=0;

f[m]=j=m+1;
for (i=m; i > 0; i--)
{

while (j <= m && p[i-1] != p[j-1])
{

if (!gs[j]) gs[j]=j-i;
j=f[j];

}
f[i-1]=--j;

}
p=f[0];
for (j=0; j <= m; j++)
{

if (!gs[j]) gs[j]=p;
if (j == p) p=f[p];

}
}

Figure 3.12 Computation of the good-suffix shift.

 62

3.6 QUICK SEARCH ALGORITHM

The bad-character shift used in the Boyer-Moore algorithm is not very efficient for small

alphabets, but when the alphabet is large compared with the length of the pattern, as it is

often the case with the ASCII table and ordinary searches made under a text editor, it

becomes very useful. Using it only produces a very efficient algorithm in practice that is

described now.

After an attempt where P is aligned with S[i. . .i+m-1], the length of the shift is at least

equal to one. So, the character S[i+m] is necessarily involved in the next attempt, and

thus can be used for the bad-character shift of the current attempt. In the present

algorithm, the bad-character shift is slightly modified to take into account the observation

as follows (a ∈ ∑):

⎩
⎨
⎧ =≤

=
otherwise m

in x appears a }if a j]-1- x[mand 0/min{
][

mj
abc

Indeed, the comparisons between text and pattern characters during each attempt can be

done in any order. The algorithm of Figure 3.13 performs the comparisons from left to

right. It is called Quick Search after its inventor and has a quadratic worst-case time

complexity but a good practical behavior.

Example 3.7:
S = s t r i n g – m a t c h i n g
P = i n g
P = i n g
P = i n g
P = i n g
P = i n g

Quick Search algorithm makes 9 comparisons to find the two occurrences of ing inside

the text of length 15.

For direct searching with simple text, the linear BF algorithm is a proper choice because

it produces relatively good running time results despite its striking simplicity. In addition,

the BF algorithm has no special memory requirements and needs no preprocessing or

complex coding and thus can be surprisingly fast. But this algorithm shouldn’t use for the

binary alphabet in applications such as image processing or software systems.

 63

void QS(char *s, char *p, int n, int m)
{

/* ASIZE is the size of the alphabet */
int i, j, bc[ASIZE];
/* Preprocessing */
for (j=0; j < ASIZE; j++)

bc[j]=m;
for (j=0; j < m; j++)

bc[p[j]]=m-j-1;
/* Searching */
i=0;
while (i <= n-m)
{

j=0;
while (j < m && p[j] == s[i+j])

j++;
if (j >= m)

OUTPUT(i);
i+=bc[s[i+m]]+1; /* shift */

}
}

Figure 3.13 The Quick Search string-matching algorithm.

From the empirical evidence it can be concluded that the KR algorithm is linear in the

number character comparisons but it has higher running time and it shouldn’t be used for

pattern matching in strings. However, the main advantage of this algorithm lies in its

extension to higher dimensional string matching. It may be used for pattern recognition

and image processing and thus in the expanding field of computer graphics.

Despite its theoretical elegance, the KMP algorithm provides no significant speedup

advantage over the BF algorithm in practice unless the pattern has highly repetitive

subpatterns. However the KMP algorithm guarantees a linear bound and it is well suited

to extensions for more difficult problems. It may be a good choice when the alphabet size

is near the text size or when dealing with the binary alphabet.

Based on empirical results, it is clear that the QS algorithm is proved to be much faster

algorithm in practice than the rest BM-like, suffix automata and bit-parallelism

algorithms for large alphabets and short patterns. Therefore it is typically suited for

search in the English alphabet. In addition, the BM algorithm is faster than its variations

(such as BMH, QS, BMS and TBM) for small alphabets and long patterns. However, in

theory BMS and QS are better algorithms than BM-like and suffix automata algorithms

for short patterns and large alphabets [69].

CHAPTER 4

PROPOSED COMPRESSION METHODS

 64

4

PROPOSED COMPRESSION METHODS

4.0 OUTLINE OF THIS CHAPTER

This chapter describes the character and word based compression methods proposed and

investigated by us. Two character based methods and five word based methods are

described. These methods are based on dictionaries created statically, semi-dynamically

and dynamically. The concept of two-dimensional dictionary is the novel idea used by us

in different methods proposed here. The first character method is based on static

dictionary, and uses the two-dimensional static dictionary. The method does not give an

effective compression ratio by itself, but forms the basis for other methods developed by

us. The second character based method is using semi-dynamic dictionary wherein instead

of full words and partial words, groups of characters such as 4, 3 and 2 character groups

are stored in the dictionary. This method gives improved compression when it is used as

pre-compression stage to Arithmetic Coding. The first word based method uses a semi-

dynamic dictionary wherein words and partial words are stored. This method gives better

compression when used as pre-compression stage to methods such as Bzip2, PPM

variants (PPMd and PPMII), and LZMA. The second word based method is using single

dimensional semi-dynamic dictionary and the third word based method is using the two-

dimensional semi-dynamic dictionary. This method outperforms over other methods when

used with Bzip2 and PPMd. The fourth word based method illustrates the dynmamic

dictionary approach while the fifth one illustrates the use of static dictionary approach.

All the methods are giving an improved compression ratio, when they are used as pre-

compression stage to methods such as Bzip2, PPMd, PPMII and LZMA. All the proposed

methods except the fourth word based method are useful for direct searching the phrases

in the compressed file. The comparison of methods is given at the end.

4.1 INTRODUCTION

There are two distinct approaches to text compression. One is to design a “text aware”

compressor; the other is to write a text preprocessor / precompressor (filter) which

transforms the original input into a representation having greater redundancy for general-

 65

purpose compressors. The first approach of specialized text compressors are potentially

more powerful, both from the viewpoint of compression performance and the

compression speed at a given compression rate, as there are virtually no restrictions

imposed on the implemented ideas, as in the case of precompressor (second approach),

one has to take into consideration how the compression takes place in the subsequent

methods. Nevertheless, text preprocessing / pre-compressing is more flexible, as the

filtered text can be better compressed with most existing (and hopefully future) general-

purpose compressors, so with relatively little programming effort various compression

speed / decompression speed / compression ratio compromises can be achieved. One of

the attractive ways to increase text compression is to replace words with references to a

predefined text dictionary. In our thesis, we are focusing on text pre-compression

approach using dictionary based methods.

In some of the dictionary based methods phrases consisting of sub-strings are used,

whereas in our methods we are using words i.e. group of alphabetic characters, instead of

phrases.

Word-based compression methods parse a document into “words” (typically, contiguous

alphanumeric characters) and “non-words” (typically, punctuation and white-space

characters) between the words. The words and non-words become the symbols to be

compressed. There are various ways to compress them. Generally, the most effective

approach is to form a zero-order model for words and another for non-words. It is

assumed that the text consists of strictly alternating words and non-words (the parsing

method needs to ensure this, and so the two models are used alternately. If the models are

adaptive, a means of transmitting previously unseen words and non-words is required.

Usually, some escape symbol is transmitted, and then the novel word is spelled out

character by character. The explicit characters can be compressed using a simple model,

typically a zero-order model of the characters.

There are many different ways to break English text into words and the intervening non-

words. One scheme is to treat any string of contiguous alphabetic characters as a word

and anything else as a non-word. More sophisticated schemes could take into account

punctuation that is part of a word, such as apostrophes and hyphens, and even

 66

accommodate some likely sequences, such as a capital letter following a period. This

kind of improvement does not have much effect on compression but may make the

resulting list of words more useful for indexing purposes in a full-text retrieval system.

One aspect of parsing that deserves attention is the processing of numbers. If digits are

treated in the same way as letters, a sequence of digits will be parsed as a word. This can

cause problems if a document contains many numbers – such as tables of financial

figures. The same situation occurs, and can easily be overlooked, when a large document

contains page numbers – with 100,000 pages, the page number will generate 100,000

“words”, each of which occurs only once. Such a host of unique words can have a serious

impact on operation: in an adaptive system, each one must be spelled out explicitly, and

in static system, each will be stored in the compression model. In both cases, this is

grossly inefficient because the frequency distribution of these numbers is quite different

from the frequency distribution of normal words for which the system is designed. One

solution is to limit the length of numbers to just a few digits. Longer numbers are broken

up into shorter ones, with a null punctuation marker in between. The other is to treat these

digits as non-words. The later one is adopted in our methods.

4.1.1. Dictionary Models

Dictionary-based compression methods use the principles of replacing sub-strings in a

text with a codeword that identifies that sub-string in a dictionary, or codebook. The

dictionary contains a list of sub-string and a codeword for each sub-string. This type of

substitution is used naturally in everyday life, for example, in the substitution of the

number 12 for the word December, or representing “the chord of B minor with seventh

added” as Bm7. Unlike symbol based methods, dictionary methods often used fixed

codewords rather than explicit probability distributions because reasonable compression

can be obtained even if little attention is paid to the coding component.

The simplest dictionary compression methods use small codebooks. For example, in

digram coding, selected groups of letters are replaced with codewords. A codebook for

the ASCII character set might contain the 128 ASCII characters, as well as 128 common

letter pairs. The output codewords are eight bits each, and the presence of the full ASCII

 67

character set in the codebook ensures that any input can be represented. At best, every

group of characters is replaced with a codeword, reducing the input from seven bits per

character to four bits per character. At worst, each seven-bit character will be expanded to

eight bits. Furthermore, a straightforward extension caters to files that might contain

some non-ASCII bytes – one codeword is reserved as an escape, to indicate that the next

byte should be interpreted as a single eight-bit character rather than as a codeword for a

group of ASCII characters. Of course, a file consisting of mainly binary data will be

expanded significantly by this approach; this is the inevitable price that must be paid for

use of a static model.

Another natural extension of this system is to put even larger entries in the codebook –

perhaps common words like and and the, or common components of words, such as pre

and tion. Strings like these that appear in the dictionary are sometimes called phrases. A

phrase may sometimes be as short as one or two characters, or it may include several

words. Unfortunately, having a dictionary with a predetermined set of phrases does not

give very good compression because the entries must usually be quite short if input

independence is to be achieved. In fact, the more suitable the dictionary is for one sort of

test, the less suitable it is for others. For example, if this thesis were to be compressed,

then we would do well if the codebook contained phrases like compress, dictionary, and

even arithmetic coding, but such a codebook would be unsuitable for a text on, say,

business management.

One way to avoid the problem of the dictionary being unsuitable for the text at hands is to

use semi-static dictionary scheme, constructing a new codebook for each text that is to be

compressed. However, the overhead of transmitting or storing the dictionary is

significant, and deciding which phrases should be put in the codebook to maximize

compression is a surprisingly difficult problem. In our methods, we decide to keep the

words, instead of phrases, having frequency count greater than 2.

The concept of replacing words with shorter codewords from a given static dictionary has

at least two shortcomings. First, the dictionary must be quite large—at least tens of

thousands words—and is appropriate for a single language only (our experiments

 68

described in this thesis concern English text only). Second, no “higher level”, e.g., related

to grammar, correlations are implicitly taken into account. In spite of those drawbacks,

such an approach to text compression turns out to be an attractive one, and has not been

given as much attention as it deserves. The benefits of dictionary-based text compression

schemes are the ease of producing the dictionary (assuming enough training text in a

given language), clarity of ideas, high processing speed, cooperation with a wide range of

existing compressors, and—last but not least—competitive compression ratios.

Why Transformation is beneficial

There are three considerations that lead us to our transform algorithm. First, we gathered

data of word frequency and length of words information from our collected corpora. It is

clear that almost more than 60% of the words in English text have the lengths greater

than three and more than 80% of the words in English text have the lengths greater than

two [14]. There exists a list of the 1000 most frequently used words in the English

language. The second consideration is that the transformed output should be compressible

to the backend compression algorithm. In other words, the transformed intermediate

output should maintain some of the original context information as well as provide some

kind of “artificial” but strong context. The reason behind this is that we choose BWT and

PPM algorithms as our backend compression tools. Both of them predict symbols based

on context information.

Finally, the transformed code words can be treated as the offset of words in the transform

dictionary. Thus, in the transform decoding phase we can directly search the word with

0(1) time complexity in the dictionary. Based on this consideration, we use a

continuously addressed dictionary in our algorithm.

4.1.2. Related Work for Preprocessing Texts

The preprocessing of textual data is a subject of many publications. In some articles, the

treatment of textual data is embedded within the compression scheme itself but could

easily be separated into two independent parts: a preprocessing algorithm and a standard

compression algorithm, which are processed sequentially one after the other.

 69

Bentley et al. [60] describe a word based compression scheme, where words are replaced

by an index into an MTF list. The dictionary of the words is transmitted implicitly by

transmitting the word during its first occurrence. This scheme can be divided into a

parsing preprocessing part and a standard MTF ranking scheme. A word based variation

of the PPM scheme is presented by Moffat [70]. He uses order-0, order-1 and order-2

word models to achieve better compression than the MTF scheme from Bentley et al.

Similar schemes, which differentiate between alphanumeric strings and punctuation

strings, and which also use an implicit dictionary, are presented by Horspool and

Cormack [71]. Again, these schemes can be divided into a parsing part and a coding part

using Huffman codes.

Teahan and Cleary describe several methods for enlarging the alphabet of the textual data

[72]. Besides the replacement of common bigrams by a one symbol token, they propose

methods for encoding special forms of bigrams called digrams (two letters representing a

single sound as ea in "bread" or ng in "sing"). The replacements are processed using a

fixed set of the frequently used bigrams in the English language, which makes this

attempt language dependent. Teahan and Cleary [73] describe a word based compression

scheme where the word dictionary is adaptively built from the already processed input

data. This can also be achieved by a preprocessing stage if the words are replaced by

corresponding tokens. Teahan presents a further comparison between two different word

based compression schemes in his PhD thesis [74]. The first scheme uses function words,

which include articles, prepositions, pronouns, numbers, conjunctions, auxiliary verbs

and certain irregular forms. The second scheme uses the most frequently used words in

the English language. Both schemes require external dictionaries and are language

dependent.

A special case of word encoding is the star encoding method from Kruse and Mukherjee

[24]. This method replaces words by a symbols sequence that mostly consist of

repetitions of the single symbol '*'. This requires the use of an external dictionary that

must be known by the receiver as well as the sender. Inside the dictionary, the words are

first sorted by their length and second by their frequency in the English language using

information obtained from Horspool and Cormack [71]. All sorted words of the same

 70

length are then encoded by sequences "*…*", "A*…*", … , "Z*…*", "a*…*", …,

"z*…*", "*A*…*", … where the length of the encoded sequence is equal to the length of

the word being encoded. The requirement of an external dictionary makes this method

again language dependent.

Preprocessing methods, specialized for a specific compression scheme, are presented by

Chapin and Tate [75] and later by Chapin [76]. They describe several methods for

alphabet reordering prior to using the BWCA in order to place letters with similar

contexts close to one another. Since the Burrows-Wheeler transformation (BWT) is a

permutation of the input symbols based on a lexicographic sorting of the suffices, this

reordering places areas of similar contexts at the BWT output stage closer together, and

these can be exploited by the latter stages of the BWCA. The paper compares several

heuristic and computed reorderings where the heuristic approaches always achieve a

better result on text files than the computed approaches. Balkenhol and Shtarkov use a

very similar heuristic alphabet reordering for preprocessing with BWCA [77]. A different

alphabet reordering for BWCA is used in the paper from Kruse and Mukherjee [78]. It

also describes a bigram encoding method and a word encoding method which is based on

their star encoding.

Grabowski proposes several text preprocessing methods in his publication [79], which

focuses on improvements for BWCA but some techniques can also be used for other

compression schemes. Besides the already mentioned techniques like alphabet

reordering, bigram-, trigram- and quadgram replacement, Grabowski suggests three new

algorithms.

The first one is capital conversion. An escape symbol and the corresponding lower letter

replace capital letters at the beginning of a word. If the second letter of the word is

capitalized too, the replacement is omitted. This technique increases context

dependencies and similarities between words, which can be exploited by standard

compression schemes. The second algorithm is space stuffing, where a space symbol is

placed at the beginning of each line in order to change the context that follows the end of

line symbol (EOL) to one space instead of various symbols. The last algorithm is EOL

 71

coding, which replaces EOL symbols by space symbols and separately encodes the

former EOL positions, which is represented by the number of blanks since the previous

EOL symbol. These numbers are encoded either within the symbol stream itself or in a

separate data stream. Grabowski suggests using either space stuffing or EOL coding for

preprocessing text files, but because of unstable side effects, he decides to omit EOL

coding in his comparisons.

Franceschini et al. extend the star encoding method by using different schemes for the

indices into the dictionary [80], called Length-Preserving Transform (LPT), Reverse

Length-Preserving Transform (RLPT) and Shortened-Context Length-Preserving

Transform (SCLPT). All of these require an external dictionary and are language

dependent. A further improvement of the star encoding method, presented by Awan et al.

[81], is called Length Index Preserving Transform (LIPT). LIPT encodes a word as a

string that can be interpreted as an index into a dictionary. The string consists of three

parts: a single symbol '*', a symbol between 'a' and 'z', and a sequence of symbol from the

set 'a'…'z', 'A'…'Z'. The second part of the string, the single symbol, represents the length

l of the word, where 'a' stands for length 1 and 'z' for length 26. The third part is the

encoded index inside the set of words with length l. They are encoded as a number

representation of base 52 decremented by 1, where 'a' represents 0, …, 'z' represents 25,

'A' represents 26, …, and 'Z' represents 51. An empty substring represents the number 0.

Therefore, a word of length 3 with index 0 is encoded as "*c", a word of length 3 with

index 1 as "*ca", a word of length 3 with index 27 as "*cA" and so on.

Isal and Moffat present different text preprocessing schemes for bigrams and words [82]

using internal and external dictionaries. In their paper, tokens are used with values above

255, so they can be used together with normal symbols, as the compression scheme needs

to handle alphabets with more than 8 bits. For text files, the word based schemes with

internal dictionaries give the highest compression gain. Later Isal et al. combine the word

preprocessing scheme with different global structure transformations and entropy coding

schemes [83]. Because of the use of an internal dictionary, where each word is spelt out

the first time it occurred, the schemes of Isal and Moffat are all language independent.

 72

Teahan and Harper propose a switching algorithm for combining both dynamic and static

PPM models that also involves an initial text preprocessing step [84]. In this step that

occurs prior to the encoding step, the text is essentially marked up by additional switch

symbols to indicate when the compression algorithm should switch to another model. A

greedy search algorithm which minimizes the overall code length of the encoded stream

(of both the original symbols and additional switch symbols) is used to determine the

positions of the markup symbols. This scheme is only relevant to context based schemes

such as PPM, and it requires a modification of the subsequent PPM compression scheme.

In all the above methods, the dictionary is considered as a single dimension. We propose

an alternative approach here to develop a reversible transformation that can be applied to

a source text that improves existing algorithm’s ability to compress with two dimension

dictionary. The basic idea behind our approach is to encode every word in the input text

file, whose length is greater than 2, as a word in our transformed static/semi-

dynamic/dynamic dictionary. These transformed words give shorter length for the input

words and also retain some context and redundancy. Thus we achieve some compression

at the preprocessing stage as well as retain enough context and redundancy for the

compression algorithms to give better results.

Our main focus is to develop a method based on words replacement, which can be used

as pre-compression stage to several standard compression methods such Bzip2, PPMd,

PPMII and LZMA. All these methods are explained in chapter 2 in detail. This pre-

compressed file is then given as an input to existing methods which yields in better

compression ratio. The experimental results are given in chapter 6. It has been found that

the compression ratio is being improved comparatively by 2.89% in case of Bzip2, 2.56%

in case of PPMd, 3.68% in case of PPMII and 1.26 % in case of LZMA.

4.2. IDEA OF OUR METHOD

The main objective is to reduce the total number of possible byte values used in a text

file. The idea used in our methods is to use two-dimension dictionary instead of using

one-dimension dictionary. Consider for example, if there are 16K words in the dictionary

then every individual word will require 14-bits (214 = 16K) for encoding it if one

 73

dimension dictionary is used. But if a two-dimension matrix is used then it is possible to

encode the individual word in 8-bits only. Thus there is a saving of 6-bits per word. How

this can be achieved is explained here.

If all the 16K words are stored in one dimension (i.e. single dimension array), then the

dictionary will look like

word0, word1, word2, . . ., word16381, word16382, word16383

But if the 16K words are stored in the two-dimension (row X column) with few most

probable words in each row, then the dictionary will look like

 Col 0 Col1 Col 62 Col63 Col64 Col126

Row 0 word0, word1, . . . , word62, word63, word64,, word126

Row 1 word0, word1, . . . , word62, word127, word128,, word190

.

.

.

Row 254 word0, word1, . . . , word62, word16319, word16320, . . ., word16382

Row 255 word0, word1, . . . , word62, word16383, word16384, . . ., word16446

Figure 4.1 Structure of two-dimension dictionary

Thus the above dictionary is of 256 * 127 where number of rows are 256 and number of

columns are 127. Here even though the column number can be encoded in 7-bits still we

are using 8-bits, 1-extra bit to indicate that the code is from the dictionary. This extra bit

will always be kept to 1. Normally in text files, the ASCII character are having code

value in between 0 to 127, and they are coded in 8-bits instead of 7-bits, there most

significant bit is always 0. To take advantage of this, our coding methods use this extra

bit to differentiate between the normal ASCII character and the code of column number.

Hence instead of 256 columns we are taking only 127 columns, one less than 128,

because the 128th column code will be used as an escape symbol for indicating change in

row number.

 74

The idea behind using two-dimensional dictionary is to code the dictionary with the row

number and column number. The most frequent words are stored in each row along with

some other unique words, therefore the probability of finding the consecutive words in

same row increases and we will be able to code the word with 8-bit only without storing

the row number, because row number is same and hence will not be stored. This

assumption will be taken into consideration by decoder while decompressing the file. We

will need to specify the row number only when two consecutive words are not found in

the same row. In this case, the escape symbol is to be stored to indicate the change in row

number and then followed by the row number in which the word is found, along with the

column number. Thus compression is achieved when the consecutive word are found in

the same row, because only 8-bit code is needed instead of 14-bit code.

The total number of possible byte values is reduced to 128 only, wherein if the single

dimension dictionary is used then the possible combination will be 16384. Our objective

of reducing the possible number of bytes is thus achieved by using two dimension

dictionary. Experimental results show that two-dimension method works better than

single dimension method.

The different methods proposed here, are using static dictionary, semi-dynamic

dictionary, and dynamic dictionary.

4.3. PROPOSED TEXT COMPRESSION METHODS

4.3.1. Character Based Text Compression Method using Static Dictionary

(CBTC-A)

We had tried here to reduce the number of bits assigned to a normal ASCII character.

Ordinary text files, at least English ones, consist solely of ASCII symbols not exceeding

127 in total. Therefore, an ASCII character requires 7-bits to encode it, but instead of 7-

bit, in our method we had assigned only 5-bits to ASCII character thereby restricting the

number of characters to 32. Now question is how to assign codes to 128 different ASCII

characters with just 32 codes. The solution which we have found is to assign same code

to multiple ASCII characters in such a way that whenever they will be decoded, we will

 75

exactly come to know the original ASCII character. The idea is to use a two-dimension

array as explained in section 4.2., wherein we will store 32 characters in each row. To

accommodate all 128 characters we will require 4 rows, but instead of storing all 32

characters in a single row, we decided to repeat some characters in each row for getting

effective compression. Along with single characters, we had kept one row each for 4-

characters group, 3-characters group and 2-characters group in the dictionary to improve

compression. These character groups will be kept in separate rows. 3 different escape

symbols will be required to differentiate between the character and character groups. The

structure of dictionary is shown in Figure 4.2.

 C0 C1 C12 C13 C14 C27

 ↓ ↓ . . . ↓ ↓ ↓ . . . ↓

R0 →ch0, ch1,, ch12, ch13, ch14 . . ., ch27

R1 → ch0, ch1,, ch12, ch28, ch29, . . ., ch42

R2 → ch0, ch1,, ch12, ch43, ch44, . . ., ch57

R3 →ch0, ch1,, ch12, ch58, ch59, . . ., ch72

R4 → ch0, ch1,, ch12, ch73, ch74, . . ., ch87

R5 →ch0, ch1,, ch12, ch88, ch89, . . ., ch102

R6 →ch0, ch1, . . ., ch12, ch103, ch104, . . ., ch117

R7 → ch0, ch1, . . ., ch12, ch118, ch119, . . ., ch132

Figure 4.2 Structure of two dimension character dictionary.

The idea used here is that a character will be encoded by 5-bits only i.e. only column

number is stored in the compressed file. From the figure 4.2 it can be easily seen that

characters such as ch13, ch28, . . ., ch103 and ch118 are having same column number i.e.

they will be encode by same code. Thus the same code is allotted to different characters,

but with different row numbers. Let us consider an example to elaborate this idea. If we

are having a sequence of characters in this way

ch1 ch3 ch28 ch0 ch27 ch0 ch104

Then to encode this sequence we will follow the procedure as given below:

 76

Initially we will assume row number to be 0. To first encode ch1, we see that ch1 is

found in row 0 at position 2 (i.e. at offset of 1). Therefore we will encode it in 5-bits as

‘00001’. The next character is ch3, it is found in row 0 at position 4 (i.e. at offset of 3),

and so we will encode it in 5-bits as‘00011’. Here we had seen that two consecutive

characters ch1 and ch3 are found in the same row, so we had encoded them with column

numbers only. Next character to encode is ch28, it is found in row 1 which is different

from previous row number, and hence we have to now encode row number also. First an

escape symbol will be stored to indicate a change in row and then new row number will

be stored followed by column number of ch28 i.e. 14. The coding sequence for encoding

ch28 will be ‘11111’, ‘00001’, ‘01110’. In this case instead of compression, expansion

has occurred i.e. 15-bits are required to encode a single character. But this won’t happen

always. Next character to encode is ch0, which is present at position 0 in every row, so

this time only column number is stored i.e. ‘00000’. The searching of the character in the

dictionary will start from the same row in which previous character was found and we

had store most probable 13 characters in every row. Therefore the probability of getting

the characters in the same row increases, thereby achieving compression. Thus we are

succeeded in encoding the characters in 5-bits instead of 7-bits i.e. we had reduce the

number of symbols from 128 to 32.

In order to further improve compression, the dictionary will also contains 256 most

probable 2-character, 3-character and 4-character groups from the set of corpus. Before

searching the single characters in the dictionary first the characters will be searched in 4-

character, 3-character and 2-character groups respectively. If it is not found, then single

character dictionary will be searched. If a 4-character group is found then to encode it

will require 5-bits escape symbol and 8-bit code to indicate the position of 4-character

group, i.e. 13-bits will be required, a saving of 15-bits (4 characters will require 28-bits to

save it normally). Thus a saving of 9-bits is achieved in case of 3-character group and

that of 1-bit in case of 2-character groups which is negligible but yet helps in

compression.

The character groups such as ‘tion’, ‘ing’, ‘th’, and many more normally appears in every

text files. This property of text file is taken into consideration for creating the dictionary

 77

of 4-characters, 3-characters and 2-characters dictionary. Also the frequency of some

characters is very high as compared to frequency of others, for e.g., the frequency of ‘e’

is much more than frequency of ‘z’. The same static dictionary will be used both by

encoder and decoder, therefore the overhead which occurs in case of semi-dynamic

dictionary is reduced and the process of decompression will be fast enough.

Dictionary creation

At first, the files are selected from the corpus. Every file is scanned and the frequency of

each character is counted. The characters are then arranged in descending order with

respect to frequency counts. Thus in general for plain ASCII text files we will get

maximum 128 characters with different frequency counts. The characters are then divided

into rows and columns as explained in figure 4.2. The dictionary of single character is

shown in Figure 4.3 (Source file – bible.txt)

b e t h a o n s i r d l u m , w y c g b p v . k A I: ;
b e t h a o n s i r d l u f L O D T R G J S B ? H M E j
b e t h a o n s i r d l u f W F ' z N P C x q Z Y K ! U
b e t h a o n s i r d l u f () V- Q @ " X # $ [\] ^
b e t h a o n s i r d l u _ ` % & * + / 0 1 2 3 4 5 6
b e t h a o n s i r d l u 7 8 9 < = > { | } ~

 Figure 4.3 First six rows of single character

In the Figure 4.3, it is seen that bethaonsirdlu are repeated in each row. This repetition of

single characters helps in achieving compression because their probability is more as

compared to other characters and hence the probability of getting characters in the same

row increased.

Then the most probable four character groups are found from the same corpus. The first

256 four character groups are stored in the separate row as shown below in Figure 4.4.

Whenever the 4-character groups match occurs, the index position of the 4-character

groups is stored in the compressed file. For e.g. if text ‘agai’ is in the source file, the 4-

character groups ‘agai’ is at 2nd position in the column, therefore 2 will be stored in the

compressed file along with special symbol ‘11110’. The above process is repeated for 3-

characters groups and 2- characters groups. The dictionary for 3-character group and 2-

character group is shown in figure 4.5 and figure 4.6.

 78

athe atio agai ains ause also aith ayin afte arth avid aven ange alle amon away acco augh ance ater abou
alem ants befo beca brou brea brin beho burn come came chil caus comm call cord city ccor cove dren ding
down days dest dwel deli dred efor ever eopl even eart ered eref ehol erin ecau eave ereo esus erva esse eith
ence elve east erus ethe evil ears ents eard from fore ffer fath fter fort feri gain give ghte grea good gypt
geth hall here hich heir have hous hear hath hing hand hild hold halt hese hast hine hose houl heav hers
hund ight ings into ildr inst ithe ions iver iest ites irst ince judg king know ldre land live lled lace like less
lves ment made make msel mong mand mman migh mine more mber ness name nder ning neit nger nati
nded noth ndre nswe ough ouse ople over othe ould offe ound orth ount omma oses ordi oice outh ophe
peop pass plac prie part peak rael ring roug refo reat righ reth ries rvan reof read rdin rusa shal said srae
serv sayi sait sons self shou side sent stro sale stan ssed spea selv seve swer that ther they them thou thei
thee thin tion this thre then take thes tain turn thro than tter time ters took tand unto upon ught unde urne
usal udah very vant with whic will were when word went ward wher what work well whom wate your ying
year

Figure 4.4 4-character groups

the and all hat ing her tha for sha hal ere his nto unt hou ith not hey him hem wit tho eth ear thi ave ver ath
ent ght our hen sai ter ill man you eve ore thy out was ich whi ain est ord aid ive wil are hic igh one ame
ion com hea ven hee ess hav hei use ake ers eir ous wer red ast rom ove son ine hin kin men whe fro rea rin
efo han eat ugh art oth wor ple tio ome oun old ren und nes int hil pon dre nce upo ons ild ose chi day ins
she ael ati rth hol but oug rae sra rou ies say les ate alt str cam gai ngs led aga ong who ace had thr der own
sel eri now ard ead eop mon nde peo opl ant oul urn off ted con ass eas ood ret rie ise hes lan res way ned
see ite als sse nst ort gre hos ait ldr pri ell bef ser min lso pro sed ref ffe bro cau ses yin ese ble aus eho tes
wen fer rit lle lea erv ity ice ery giv tte ade let any nge des uld fat ide tre nts ris din fte sen ves ten ayi gat
ree sta ist bre pas ans ure kno pla war tan mad eca ook hte ene avi sin rne har cor usa pea liv ken pre ste has
tur ale abo dow ish hre

Figure 4.5 3-character groups

th he nd an in er ha re of hi at ou en or to al ll on es is it se nt ve ed ar ea ng sh st ho

Figure 4.6 2-character groups

Compression

In order to encode the dictionary symbols, the following strategy is used. To encode four

character groups, the column position will be preceded by a unique symbol ‘11110’. For

example to encode the four character groups ‘athe’, the code will be ‘11110’ and

‘00000000’ (8-bit code), where unique code ‘11110’ indicates that following code relates

to column position of four character group. Similarly, to encode two character groups,

the column position will be preceded by a special symbol ‘11100’. For example to

encode the two character groups ‘to’, the code will be ‘11100’ and ‘000’, where ‘11100’

indicates that the next code means for column position of two character groups.

Before encoding starts, initially the row number is assumed to be zero both for encoding

and for decoding also. To encode, the single character, the character is first searched

 79

among the rows. After a match is found, it is first checked whether the new row number

matches with the row number in which previous character was found, if previous and

new row numbers are equal then only the column position is stored and if the row number

differs an escape symbol ‘11111’ is generated to indicate the change in row and then new

row number is stored followed by column position. Compression is achieved when the

groups of four, characters, three characters, two characters is found, and also when the

single characters are found in the same row.

Decompression

The decompression process is very simple and fast. The same dictionary is used for

decompression. The row number is assumed to be first by default as in the case of

compression. First the code is read and then compared with special symbol for 4-

character, 3-character groups or 2-character groups; if it is then the next code read is the

column position for that groups. The appropriate character groups from the dictionary is

then read and stored in the uncompressed file. If the special symbol indicates change in

row then the next code is treated as row number followed by column code. The character

is thus retrieved from the appropriate row and column from the dictionary and stored in

the uncompressed file. Thus decompression process is very fast and the only overhead,

which it requires, is the dictionary, the size of which is negligible as compared to large

files.

Searching

To search a phrase of words (P) in the compressed file directly, first we have to compress

the P using the same method explained above, and then search the compressed pattern

directly in the compressed file without decompressing it. The standard searching

algorithms explained in chapter 3 can be used directly to search the compressed pattern in

the compressed file. Thus the searching pattern in the compressed file will be faster as

there is no need to decompress the original file and then perform a search operation.

Thus we can say that number of comparison to be made for searching in compressed file

as compared to normal file will be less enough, thereby saving the time for searching.

 80

This method if used as pre-compression stage to other standards methods such Bzip2,

PPM, PPMII and LZMA does not give improved results because there is no redundancy

left in the pre-compressed file. In this method 5-bit coding is used and normally the text

compressor such as Bzip2, PPM, PPMII and LZMA works on byte boundary. Therefore,

normally when this method is used as pre-compression stage then it expands instead of

compressing. Hence we drop the idea of using the 5-bit code mechanism for a single

character instead we proposed another method in which instead of 5-bit coding, an 8-bit

multiple coding is used to encode the words and partial words. This method is explained

in section 4.3.2.

 4.3.2. Character Based Text Compression Method Using Semi Dynamic

Dictionary (CBTC-B)

This method is similar to the above mentioned character based method, the only

difference is that instead of writing 5-bit code, the codes written are in multiples of 8-bits,

and instead of limited number of 4-Char group, 3-Char group, here all possible 4-Char

groups and 3-Char groups are considered. The frequency of all possible 4-Char groups,

3-Char groups and 2-Char groups is computed. After counting the frequency of all

possible groups, all the groups are sorted in descending order so that most probable

groups will have index values in the lower range.

Dictionary Creation

Create the dictionary of character groups in the following way:

2-Character Dictionary: Store only first 32 double character groups in the dictionary.

As in normal case to store the 2Characters we require 2 bytes, so if we use index value of

16-bit, then we won’t get compression. Hence in our method we decided to use only 32

most frequent 2Char groups and it will be coded as 8-bit, as explained later in this

section.

3-Character Dictionary: For achieving compression, it is wise to store all triple

character groups having frequency count > 3. In this dictionary the maximum triple

character group, which we can store, is 8192 and it will be coded as 16-bit.

 81

4-Character Dictionary: For achieving compression, it is wise to store all quad

character groups having frequency count > 2. In this dictionary the maximum quad char

group, which we can store is 16384 and it will be coded as 16-bit.

Compression

Scan the entire file (read at least 4Char at a time). Search 4Char group in the dictionary,

If found construct code value and store it in compressed file, else search 3Char group in

the dictionary, if found construct code value and store it in compressed file, else search

2Char group in the dictionary, if found construct code value and store it in compressed

file, else store the character as it is in the compressed file. Thus certain context of

redundancy is provided by storing the single character as it is in the compressed file, for

achieving the improved compression ratio when the compressed output of this method is

applied to standard method such as Arithmetic Coding. The Arithmetic Coding has been

explained in detail in chapter 2. The experimental results are given in chapter 6.

Construction of code value

2-Character group

The code is of 8-bit only, because if we use 16-bit code, then we won’t get compression

as normally it requires 16-bit to store 2 characters. MSB bit of 8-bit code is set to ‘1’, to

distinguish it from normal ASCII character. Next two bits are kept to ’00’, to indicate

2Char group code. Remaining 5-bits are used to store index value of 2Char group. Since

only 5-bits are used to indicate the index value, 32 – 2Char group can be stored in the

dictionary.

1 0 0 5-bit index value of 2Char group

 82

3-Character group

Code is constructed in this way: MSB set to ‘1’, to distinguish it from normal ASCII

character. Next two bits to ’01’ to indicate 3Char group code. The range of the code value

varies from 40960 to 49151 i.e. we can store 8192 – 3Char groups in the dictionary.

1 0 1 13-bit index value of 3Char group

4-Character group

Code is constructed in this way: MSB set to ‘1’, to distinguish it from normal ASCII

character. Next bit is set to ‘1’ to indicate 4Char group code. The range of the code value

varies from 49152 to 65535 i.e. we can store 16384 – 4Char groups in the dictionary.

1 1 14-bit index value of 4Char group

Decompression

Read dictionaries of double character group, triple character group and quad character

group. Read 1 byte from compressed file. Check MSB bit, if 0 then store that byte as it is

in the decompressed file. If 1 then check next two bits are 00 or not, if yes the next five

bits will be the index value of the double group dictionary. Store two characters from the

double character group dictionary in the decompressed file stored at that index value in

the dictionary.

If next two bits are 01 then read another byte to form an index value for triple character

group. Store three character from the triple character group dictionary in the

decompressed file stored at that index value in the dictionary.

Else if next bit is 1, then read another byte to form an index value for quad character

group. Store four character from the quadruple group dictionary in the decompressed file

stored at that index value in the dictionary.

Repeat the process till all the bytes are read from the compressed file.

 83

Example

If the byte read is say ‘01000101’ i.e. 65, then in this case the MSB is ‘0’ so store value

65 directly in the decompressed file.

If the byte read is say ‘10000010’ i.e.130, then in this case the MSB is ‘1’, check another

two bits, i.e. ’00’, hence the next five bits (‘00010’) will indicate the index value in the

double char dictionary.

If the byte read is say ‘10100000’ i.e. 160, then in this case the MSB is ‘1’, another two

bits are ’01’, so read another byte say ‘00000100’ combine both bytes to form 16-bit data

‘10100000 00000100’ the lower 13-bit value is 4, indicating the index value of the triple

char dictionary.

If the byte read is say ‘11000000’ i.e. 1192, then in this case the MSB is ‘1’, another bit

is ‘1’, so read another byte say ‘00001111’ combine both bytes to form 16-bit data

‘11000000 00001111’ the lower 14-bit value is 15, indicating the index value of the quad

char dictionary.

This method is used as a precompression stage to arithmetic coding, which yields a better

compression ratio as compared to arithmetic coding when used as alone. As the codes

stored in this file are byte boundary, this method is useful for direct searching in the

compressed form.

4.3.3. Word Based Text Compression Method Using Semi Dynamic

Dictionary (WBTC-A)

The algorithm is based on the idea that most of the words repeat in text. The repetition

arises from the structure of the natural language. This is similar to LZW compression

where compression is based on the assumption that repetitions of sequences of characters

occurs in text. [85,86].

The dictionary of the WBTC-A consists of words and non-words. Horspool and Cormack

[71] implemented the word based LZW algorithms using only the single pass through the

text, whereas we are implementing in two pass.

 84

Definition of words and non-words

A word is defined as maximal string of alphabetic characters (letters) and non-word is

defined as maximal string of other characters (punctuations, spaces and digits). For

example sentence

InbthebbeginningbGodbcreatedbthebheavenbandbthebearth.

can be divided into word, non-word sequence: “In”, “b”, “the”, “b”, “beginning”, “b”,

“God”, “b”, “God”, “b”, “created”, “b”, “the”, “b”, “heaven”, “b”, “and”, “b”, “the”, “b”,

“earth”, ”.” (where b represents space). It is clear that words and non-words from input

strictly alternate. The alternating of words and non-words is important piece of

information. With this knowledge kind of next word or non-word can be predicted.

When using two passes variant it is necessary to store the dictionary of words and non-

words together with the compressed text.

The file to be compressed is scan first to accumulate the statistics of words to form four

dictionaries. The first dictionary is for storing words with frequency greater than 1. The

second dictionary is for storing the prefix part of the words, which occurs only once, but

then in those words some part of word is appearing twice or more. Third for storing the

suffix part of the words, which occurs only once, but then in those words some part of

word is appearing twice or more. The fourth dictionary is for storing the non-words.

Let us say that word ‘coming’ and ‘going’ is appearing only once in the source file. In

both of the words the suffix string ‘ing’ is appearing, therefore the sub-word ‘ing’ will be

added to the suffix sub-word dictionary. In the similar way the prefix words are added to

the prefix sub-word dictionary.

Also the dictionary of non-words is also created, which includes words of non-alphabets.

For e.g. say after the word ‘going’ there is full stop and carriage return, then both the

symbols full stop and carriage return will be considered as one non-word and will be

added to dictionary of non-words.

After creating all four dictionaries, the words in the dictionaries are arranged in

descending order, so that the most probable words will appear in the start of the

dictionary. The same idea of creating two dimensional arrays as explained in 4.3.1 is used

here.

 85

Compression

In first pass Word Based Dictionary is created for words, sub-words and non-words. In

Second pass, the words are scanned from the source file and is searched first in the word

dictionary and if found the index value of the corresponding word is stored in the

compressed file, else the sub-word dictionary is searched for finding the presence of the

prefix or suffix part of the word read from the source file, if found then the index value of

the word will be stored in the compressed file, else the word is stored as it is in the

compressed file. Similar process is adopted for non-words. The searching of the words

and non-words is done alternatively, as in any file after word there will be a non-word

and after every non-word, there will be word.

Making of the index value

Whenever the word is found in the dictionary, the index value is converted into two-

dimensional value viz. row and column. Here we are considering the two-dimensional

matrix of N rows by 256 Columns. For example, if the index value of word is say 356,

then the row = 2 and column = 100. If the current index value points to the same row as

that of previous, then only the column value i.e. 100 is written in the compressed file,

otherwise row value 2 preceding with change in row will be written in the compressed

file.

Example of Prefix Searching

Let us assume the current word to be compressed is ‘singing’. Prefix sub-word dictionary

will be used to find the occurrence of first few characters of ‘singing’. In the prefix sub-

word dictionary, the word ‘sing’ is added because of another word ‘singer’. ‘sing’ of

‘singing’ will be replace by the index value of ‘sing’

Example of Suffix Searching

Let us assume the current word to be compressed is ‘welcome’ Suffix sub-word

dictionary will be used to find the occurrence of last few characters of ‘welcome’. In the

 86

suffix sub-word dictionary, the word ‘come’ is added because of another word ‘become’.

‘come’ of ‘welcome’ will be replace by the index value of ‘come’.

In the remaining methods developed and discussed, there is variation in the creation of

dictionary and encoding the words in the dictionary.

Decompression

In decompression, the bytes are read from the compressed one by one. If the byte is seem

to be a normal ASCII character then it is stored as it is in the decompressed file. Else the

code is checked for the word, prefix word or suffix word and accordingly the dictionary

is read and the corresponding word is written in the decompressed file. As in the case of

compression it is assumed that words and non-words are alternate, the same assumption

is done while decompression is in progress.

4.3.4. Word Based Text Compression Method Using Semi Dynamic

Dictionary (WBTC-B).

This method is developed only for comparison purpose, to show the effect of two-

dimension dictionary over one-dimension dictionary and the experimental results given in

chapter 6, shows that the compression ratio is improved when two-dimension dictionary

is used instead of one-dimension.

In this method, the dictionary is created of words in single dimension array. The words

are separated by symbol ‘#’ in the dictionary. In this method, simultaneously the

dictionary is created and the file is compressed. This method is simply introduced here to

compare it with other methods proposed by us, which is using the two-dimensional

dictionary. This method is also used as pre-compression stage to standard methods such

Bzip2, PPM giving better result as compared to Bzip2, PPM, when used alone.

Dictionary Creation

In this method, instead of character groups, the whole word is stored in the dictionary of

one dimension. The length of the word is not stored; instead separator character ‘#’ is

stored in between the words to distinguish it. The word scanned is first searched in the

 87

single array, if not found the word is added to the dictionary. The length of the word is

checked, if greater than two, then, only it is added to the dictionary. For comparison

purpose, the numbers of words kept in the dictionary are restricted to 64K only. The

dictionary created will be integrated in the compressed file.

Compression

The compression is done in single pass. The entire file is scanned word by word. The

scanned word is searched in the dictionary. The separator character ‘#’ helps in

identifying the boundaries of the words. The searching process goes on counting the

number of ‘#’ it encounters till it founds the word to be searched. If found then the index

value of that word is stored, else that word is added to the dictionary and then the

corresponding index value is stored in the compressed file. Thus the dictionary consists

of all the words appearing in the file irrespective of its frequency counts. In the previous

methods the words having frequency count greater than 2 were included in the dictionary,

but here even if the word occurs once, still it is added to the dictionary, thereby

sacrificing the compression. The time required will be less as the compression is done in

single pass as compared to two pass in previous method.

Decompression

The dictionary of the words is first read from the compressed file. The decompression

process is very simple and fast. The compressed file is read byte by byte, if the read byte

is normal character then store as it is in the decompressed file. If it is index value of word

from the dictionary, then the word is fetched from the dictionary and written to the

decompressed file.

4.3.5 Word Based Text Compression Method using Two-Dimension Semi-

Dynamic Dictionary (WBTC-C)

In WBTC-B method the word stored in dictionary was encoded with 16-bit value. In this

method we are reducing the length from 16-bit to 8-bit by converting the dictionary from

one dimension to two dimensions. The number of words kept in each row is restricted to

 88

128 only. If we are using only 8-bit code, then the MSB is used to differentiate between

the normal ASCII character and encoded value of the words. Therefore, only 7-bit

remains to point to the word in the dictionary, hence 27 – 1 i.e. 127 words are kept in one

row. Out of these 127 words, half of the words (i.e. 63) are repeated in each row and

remaining 64 words are unique to the dictionary. Thus if we keep row size to 256 for

ensuring again an 8-bit code to row number, than the total number of words which can be

kept in dictionary are 64 * 256 + 63 = 16447, which is plenty enough, as we had seen that

the number of words (having frequency of 2 or more) which we found normally in the

files, of different corpus, of size varying from 2 MB to 10 MB is ranging in between

10,000 to 22,000. So the average value comes to be around 16000. The structure of the

dictionary will look like as shown in Figure 4.7 below.

 Col 0 Col1 Col 62 Col63 Col64 Col126

 ↓ ↓ ↓ ↓ ↓ ↓

Row 0 → word0, word1, . . . , word62, word63, word64,, word126

Row 1→ word0, word1, . . . , word62, word127, word128,, word190

.

.

.

Row 254→ word0, word1, . . . , word62, word16319, word16320, . . ., word16382

Row 255→ word0, word1, . . . , word62, word16383, word16384, . . ., word16446

Figure 4.7 Structure of two-dimension word dictionary (WBTC-C)

Even though it seems that word0, word1,. . . ., word62 are repeated in each row, but

actually they are stored only once and are assume logically to be present in every row.

The idea behind using two-dimension dictionary is to code the dictionary with the row

number and column number. The most frequent words are stored in each row along with

some other unique words, therefore the probability of finding the consecutive words in

same row increases and we will be able to code the word with 8-bit only. We will need to

specify the row number only when two consecutive words are not found in the same row.

In this case, the escape symbol is to be stored to indicate the change in row and then

 89

followed by the row number in which the word is found, along with the column number.

Thus more compression is achieved when the consecutive word are found in the same

row, because only 8-bit code is needed instead of 16-bit code.

The dictionary is created in the same way as explained in previous method 4.3.4, the only

difference is in the way it is now interpreted as two-dimension instead of single

dimension in this method.

Compression

The source file is scanned word by word. The scanned word is searched in the dictionary,

and if found the index value will be computed by the equation given below:

row number = (position – 63) / 64

column number = (position – 63) mod 64

where position, is the location of word in the dictionary from starting.

If the newly computed row number is equal to previous row number (initially the row

number is zero), then only the column number is converted to codeword by making its

MSB to 1 (i.e. by adding 128 to it) and is stored in the compressed file or else if there is a

mismatch in previous and current row number, then an escape symbol ‘11111111B’ is

stored followed by new row and column number. This new row number now becomes

the old row number or previous row number.

If the word is not found in the dictionary, then it is stored as it is in the compressed file.

Similarly, all non-words are also stored as it is in the compressed file. The only part

which is compressed is the word found in the dictionary. Thus, we achieve compression

upto certain extent and also keeping the redundancy by storing some words as it is in the

compressed file.

Decompression

The decompression process is very simple. The word dictionary is read from the

dictionary file. The bytes are read from the compressed file. If it is plain ASCII character

then it is stored in the decompressed file as it is. If it is an escape symbol for change in

row, then new row number is read from the compressed file followed by column number.

 90

If it is not escape symbol, then the byte value is treated as column number, and the new

row number is equal to the previous row number. The index value (i.e. position) of the

word in the dictionary is calculated by the equation given below:

index value = (row * 64) + 63 + column number

The entire word of the dictionary located at the index is stored in the decompressed file.

Thus, the file is decompressed after reading every byte.

4.3.6. Word Based Text Compression Method using Dynamic Dictionary

(WBTC-D)

In the above two methods, the dictionary is built explicitly and is stored along with the

compressed file. But in this method the dictionary is built on-the-fly and in the similar

way the dictionary is to be built during decompression process. The overhead of external

dictionary is reduced, but then we won’t be able to search the phrase in the compressed

file, which was possible in above methods.

The file is scanned only once. Initially the dictionary is null. The first word read from the

source file is stored as it is in the compressed file and at the same time it is stored in the

dictionary. From the next word, the word is first search in the dictionary, and if found the

index value of that word is stored in the compressed file, else that word is written as it is

in the compressed file, and then added to the dictionary. The similar process is adopted in

the decompression program, where the dictionary is created in the similar way it is

created in the compression program. Hence in this method, we can say that there is no

overhead of the dictionary.

4.3.7. Word Based Text Compression Method using Static Dictionary

(WBTC-E)

A static dictionary method uses the same dictionary for all files to be compressed, thus

such dictionaries are used only in specific applications where the files to be compressed

contain many common words. A static dictionary is simply a set of words from the input

alphabet with corresponding codewords. Ideally the dictionary should consist of words

common to input strings which are typically encountered in the application domain.

 91

Clearly the dictionary used need to be available to both the compression algorithm and its

corresponding decompression algorithm. The static dictionary is created from the set of

different corpus. This method is equivalent to method WBTC-C, but the only difference

here is that in this method the dictionary is static and will not be considered as overhead

to the compressed file, but will be an integral part of compression program, whereas in

method WBTC-C the dictionary is created for a particular file and is considered as a

integral part of compressed file, thereby increasing the overhead of the dictionary created.

In WBTC-C method, the word stored in dictionary was encoded with 8-bit value. The

numbers of words used in WBTC-C method are 16447 and that is justifiable because the

dictionary belongs to a single file. But in the case where static dictionary is to be build up

from multiple files the number of words will be far more than 16447. Hence we decide to

encode the word by 16-bit instead of 8-bits. The number of words kept in each row is

restricted to 32768 only. If we are using only 16-bit code, then the MSB is used to

differentiate between the normal ASCII character and encoded value of the words.

Therefore, only 15-bit remains to point to the word in the dictionary, hence 215 – 1 i.e.

32767 words are kept in one row. But to indicate a change in row an escape symbol 0xFF

(i.e. 11111111B) is used and the corresponding 256 combinations are omitted Therefore

number of words which can be kept in dictionary are 32767 – 256 = 32511. Out of these

32511 words, 32000 words are repeated in each row and remaining 511 words are unique

to the dictionary. Thus if we keep row size to 256 for ensuring again an 8-bit code to row

number, than the total number of words which can be kept in dictionary are 511 * 256 +

32000 = 162816, which is plenty enough. We had collected words of frequency greater

than 2 from 45 files of different corpus and the number of words found is maximum

130000. The structure of the dictionary will look like as shown in Figure 4.8 below.

 92

 Col 0 Col1 Col 62 Col63 Col64 Col126

 ↓ ↓ ↓ ↓ ↓ ↓

Row 0 → word0, word1, . . , word31999, word32000,, word32510

Row 1→ word0, word1, . . , word31999, word32511,, word33021

.

.

.

Row 254→ word0, word1, . . , word31999, word161794,, word162304

Row 255→ word0, word1, . . , word31999, word162305,, word162815

Figure 4.8 Structure of two-dimension word dictionary (WBTC-E)

Even though it seems that word0, word1,. . . ., word31999 are repeated in each row, but

actually they are stored only once and are assume logically to be present in every row.

The idea behind using two-dimension dictionary is to code the dictionary with the row

number and column number. The most frequent words are stored in each row along with

some other unique words, therefore the probability of finding the consecutive words in

same row increases and we will be able to code the word with 16-bit only. We will need

to specify the row number only when two consecutive words are not found in the same

row. In this case, the escape symbol is to be stored to indicate the change in row and then

followed by the row number in which the word is found, along with the column number.

Thus more compression is achieved when the consecutive word are found in the same

row, because only 16-bit code is needed instead of 18-bit code.

Dictionary Creation

The files are selected from the different set of the corpus. Every file is scanned and the

number of words having frequency count > 2 is stored in corresponding dictionary of that

file. Thus all possible words are stored in the dictionaries of respective file. Now again all

those dictionaries are scanned and the frequency of common words from different

dictionaries is added. The new formed dictionary is sorted with respect to frequency in

descending order so most probable words will appear in the front of the dictionary. The

 93

dictionary created will be part of the compression program and will be available to the

decompression program.

The compression and decompression process is similar to that of method WBTC-C.

4.4. COMPARISON AMONG PROPOSED METHODS

In all the methods except CBTC-A, we are getting improved compression ratio when they

are used as pre-compression stage to several standard existing compression methods such

Arithmetic Coding, Bzip2, PPMD, PPMII and LZMA.

In CBTC-A, 5-bit coding is used to encode a character. Every character is encoded by 5-

bits. Although some character groups were encoded by 8-bits, but then it was again

preceded by 5-bit escape symbol. If another program read this stream of 5-bits, it will

read byte by byte, therefore the numbers of symbols are thus not minimized but are

maximized to full extent i.e. 256. All combinations of bytes from 0 through 255 are

generated because of continous stream of 5-bits. In Arithmetic coding, the probability of

occurrence of symbol (byte) is considered and therefore we can say that this method is

not suitable to use as a pre-compression stage to arithmetic coding method. The

experimental results shows that compression ratio achieved is very poor than Bzip2,

Arithmetic Coding, PPMd, PPMII and LZMA. The dictionary used here is static and

hence there is no overhead of dictionary in this method. Because of static dictionary, it

becomes useful for searching the pattern directly in the compressed file.

In CBTC-B, 8-bit coding was used to encode 2-character groups, where as 16-bit coding

was used to encode 3 & 4 character groups. The single characters were not encoded but

were stored as it is in the compressed file. Thus creating some sort of context redundancy

in the compressed file. This redundancy is exploited in Arithmetic Coding method giving

improved compression ratio. In this method all possible 4-character and 3-character

groups are stored in the dictionary and only 32 most probable 2-character groups are

stored. The dictionary is overhead to the compress file and is integral part of the

compressed file. This method is also suitable for direct searching the pattern in the

 94

compressed file without decompressing it. The method is used as pre-compression stage

to Arithmetic Coding technique and gives 5.38% of improvement in compression ratio.

In WBTC-A, 16-bit coding is used to encode the words, partial words and non-words.

The dictionary is created for words, prefix words, suffix words and non-words. The

words with frequency greater than 2 are stored in the dictionary. Similarly, the prefix and

suffix words with frequency greater than 2 are stored in the dictionary. This method is

used as pre-compression stage to standard methods such as Bzip2, PPMd, PPMII and

LZMA etc. This method gives 1% of improvement in compression ratio when used as

pre-compression stage to Bzip2, 0.67% of improvement in compression ratio when used

as pre-compression stage to PPMd, 1.92% of improvement in compression ratio when

used as pre-compression stage to PPMII, and 0.16% of improvement in compression ratio

when used as pre-compression stage to LZMA. This method is also suitable for direct

searching the pattern in the compressed file without decompressing it and the

experimental results shows that time required to search the phrase in compressed form is

49% less than that of normal searching .

In WBTC-B, again 16-bit coding is used similar to that of method WBTC-A. The only

difference with WBTC-A is that here all the words occurring in the source file are stored

in the dictionary with maximum limit of 32768 words (i.e. 215 only). The dictionary is

assumed to be single dimension with index value ranging from 0 to 32767. This method

gives 1.22% of improvement in compression ratio when used as pre-compression stage to

Bzip2 and PPMd, 2.39% of improvement in compression ratio when used as pre-

compression stage to PPMII, and 0.55% of improvement in compression ratio when used

as pre-compression stage to LZMA.This method is also suitable for direct searching the

pattern in the compressed file without decompressing it and the experimental results

shows that time required to search the phrase in compressed form is 40% less than that of

normal searching .

In WBTC-C, an 8-bit coding is used to encode the words in the dictionary. The dictionary

is assumed to be of two dimensions instead of one dimension as in the case of method

WBTC-A and method WBTC-B. The numbers of words are restricted to 16447 whereas

 95

in method WBTC-A and WBTC-B they were up to 32768. This method gives 1.32% of

improvement in compression ratio when used as pre-compression stage to Bzip2, 1.23%

of improvement in compression ratio when used as pre-compression stage to PPMd,

2.12% of improvement in compression ratio when used as pre-compression stage to

PPMII, and 0.46% of improvement in compression ratio when used as pre-compression

stage to LZMA. This method is also suitable for direct searching the pattern in the

compressed file and the experimental results shows that time required to search the

phrase in compressed form is 39% less than that of normal searching.

In WBTC-D, the dictionary is built dynamically i.e. when the file is parse for

compression at that time itself the dictionary is created. Again the number of words is

restricted to 32768 words. The dictionary is assumed to be of single dimension. This

method gives 1.72% of improvement in compression ratio when used as pre-compression

stage to Bzip2, 1.75% of improvement in compression ratio when used as pre-

compression stage to PPMd, 2.75% of improvement in compression ratio when used as

pre-compression stage to PPMII, and 3.49% of deterioration in compression ratio when

used as pre-compression stage to LZMA. But as the dictionary is built on the fly, this

method is not suitable for searching the pattern directly in the compressed form

In WBTC-E, the dictionary is static. The static dictionary is build separately from the

particular application domain. All the files are scanned and the statistics of words are

collected and a common dictionary is build from all the files. This dictionary is then used

for compressing all the files from that application domain. There is no overhead of the

dictionary in this method as compared to CBTC-B, WBTC-A, WBTC-B, and WBTC-C.

This method gives 9.18% of improvement in compression ratio when used as pre-

compression stage to Bzip2, 7.93% of improvement in compression ratio when used as

pre-compression stage to PPMd, 9.24% of improvement in compression ratio when used

as pre-compression stage to PPMII, and 8.62% of improvement in compression ratio

when used as pre-compression stage to LZMA.This method is also suitable for direct

searching the pattern in the compressed file without decompressing it and the

experimental results shows that time required to search the phrase in compressed form is

41% less than that of normal searching. The limitation of this method is that it can

 96

perform well only when the source file to be compressed is from the same application

domain. As compared to other methods, this method outperforms over all other methods,

if at all the file to be compressed is from the particular application domain.

 In next chapter the implementations issues of the proposed methods are discussed,

whereas in chapter 6, the experimental results and comparison of the results with other

standard methods are given.

CHAPTER 5

IMPLEMENTATION OF PROPOSED
METHODS

 97

5

IMPLEMENTATION OF PROPOSED METHODS

5.0 OUTLINE OF THIS CHAPTER

This chapter describes the implementation of different compression methods proposed by

us. The methods are already discussed in chapter 4. In this chapter certain issues related

to implementation part is discussed and flow charts of each methods are drawn. All these

methods are implemented in VC++ 6.0.

5.1 Implementation of CBTC-A

This method is based on static dictionary created from the set of corpus (Large Corpus,

E-Text, Enronsent, European Parliament and Gutenberg). The probability of all single

characters is computed and the characters are arranged in the descending order. In the

similar way, the probability of all possible 4-character group, 3-character group and 2

character group is computed and are arranged in descending order. The first 256 groups

are taken into consideration. The static dictionary of characters will be as shown in figure

4.3 and that of 4-character group, 3-character group and 2 character group will be as

shown in fig. 4.4., 4.5, and 4.6 respectively. (All these figures are shown in chapter 4).

Compression

During the compression process, we have to specify the change in row number, or the

encoded sequence is pointing to group of 4-character, group of 3-character or group of 2-

character. This we will do by sending special escape symbols. The number of characters

kept in one row is 28 and we are using 5-bit coding sequence i.e. we can point to 25 = 32

total combinations. Now, 28 combinations (0 – through – 27) are used for pointing to

characters in row, and remaining 4 combinations are used for pointing the presence of 2-

character group (28 i.e. binary ‘11100’), 3-character group (29 i.e. binary ‘11101’), 4-

character group (30 i.e. binary ‘11110’) and change in row number (31 i.e. ‘11111’).

Thus we can say that the 28, 29, 30 and 31 are special unique escape symbols. The escape

symbols will be followed by the position of 2-character group, or by the position of 3-

character group or by the position of 4-character group in the dictionary.

 98

Step 1: Read the static dictionary (The dictionary is stored in the form of two-dimension

dictionary).

Code for reading single characters from the file in the form of two-dimension dictionary

is given below:

 fptr = fopen("dict121.dat","r");

 while((ch = fgetc(fptr))!= EOF) {

 dict[i][j] = ch;

 j++;

 if(j>27) {

 j=0; i++;

 }

 }

The static dictionary file dict121.dat is opened in read mode. Since the number of

characters in the dictionary is not known in advance, while loop is used to read the

characters from the file. The array dict[][] is used to store the dictionary in two-

dimension. One-by-one, the characters are read from the file (using fgetc() function) and

are stored in dict[i][j], where i is pointing to the row index and j is pointing to the

column index. After every 28 characters the row index i is incremented by 1 and column

index j is reset to zero. The process continues till all the characters are read from the

dictionary file. Now the static dictionary is available in the array dict[][].

Code for reading the dictionary of multiple characters (2, 3 and 4 characters group) from

the file is given below:

 fptr = fopen("dictionary432.dat","r");

for(i=0;i<1024;i++) {

 ch = fgetc(fptr);

 dictl4[i]=ch;

 }

for(i=0;i<768;i++) {

 ch = fgetc(fptr);

 dictl3[i] = ch;

 }

 99

 for(i=0;i<512;i++) {

 ch = fgetc(fptr);

 dictl2[i] = ch;

 }

 fclose(fptr);

As the number of character groups are fixed in the dictionary, we are using here for loop

to read the character groups from the dictionary. First for loop will iterate for 1024 times

as we want to read 256, 4-character groups. Second for loop will iterate for 768 times to

read 256, 3-character groups and third for loop will iterate for 512 times to read 256, 2-

character group.

Step 2: First read 4 characters from the source file in ch1, ch2, ch3 and ch4.

Step 3: Search the presence of these 4 characters in the dictionary of 4-character group. If

found, store the escape symbol ‘11110’ and then store the index value of that position in

the compressed file. The OutputBit() function is used to store the bits in the compressed

file. The Step 2 is repeated.

Step 4: If those 4 characters are not found in the 4-character group dictionary, then first

three characters ch1, ch2 and ch3 are searched in 3-character group dictionary. If found

store the escape symbol ‘11101’ and then store the index value of that position in the

compressed file. The ch4 is now stored in ch1 and next 3 characters are read in ch2, ch3

and ch4 and Step 3 is repeated.

Step 5: If those 3 characters are not found in the 3-character group dictionary, then first

two characters ch1 and ch2 are searched in the 2-character group dictionary. If found

store the escape symbol ‘11100’ and then store the index value of that position in the

compressed file. The ch3 and ch4 are now stored in ch1 and ch2 respectively and next

two characters are read from the source file in ch3 and ch4 and Step 2 is repeated.

Step 6: If those 2 characters are not found in the 2-character group dictionary, then the

first character ch1 is searched in the single dictionary and its column position is stored in

the compressed file. If the character is not found in the same row, then the escape symbol

‘11111’ is stored first which is followed by the new row number and column number.

The ch2, ch3 and ch4 are now stored in ch1, ch2 and ch3 respectively and next one

character is read from the source file in ch4 and Step 3 is repeated.

 100

The presence of the 4-character group is done in the following way.

int occur[];

void find4char() {

 int i,j;

 for(i=0;i<=len-4;i++) {

 for(j=0;j<256;j++) {

 if (strcmp (str, dict4[j]) == 0) {

 occur[i]=4;

 i+=3;

 break;

 }

 }

 }

}

In the above code, the word is scanned and 4-consecutive character groups of a word is

compared with 4-char group in dictionary, if found the presence of 4-character group in

the word is marked in occur[] array. In the similar way, the presence of 3-character group

and 2-character group is marked in occur[]. Thus while compressing the entire word the

occur[] array is checked first for the presence of the character groups and then their

respective index value is stored in the compressed file.

Decompression

Step 1: Read the dictionary of single character and multiple characters (2, 3 and 4

characters group)

Step 2: Read 5-bits from the compressed file.

Step 3: Compare these five bits with the escape symbols of 4-character, 3-character and

2-character group, if matched, then read next 8-bit code as an index value which points to

the position in the dictionary, to retrieve the characters from the respective dictionary and

store it in the decompressed file and repeat step 2.

Step 4: Compare these five bits with the escape symbol of change in row, if matched then

read next 3-bits to read the new row number and 5-bits to read the column number. If

those five bits are not matched with escape symbol of change in row, then those 5-bits

 101

code is assumed to be the column number of the previous row in the two-dimension

single character dictionary. Retrieve the character from the two-dimension single

character dictionary from respective row and column number and store it in the

decompressed file. Thus the entire file is scanned and decompressed.

5.2 IMPLEMENTATION OF CBTC-B

In this method main task is to accumulate the statistics of groups of 2, 3 and 4 ASCII

characters from the source file. The difference between CBTC – A and CBTC – B is that

in later, 16384 – 4-character and 8192 – 3-character groups are taken into consideration

whose frequency count is greater than certain threshold, whereas in CBTC – A only first

256 groups are taken into consideration.

Dictionary Creation

The arrays are declared for all possible combinations of groups of 2, 3 and 4, ASCII

characters. For e.g. the possible group of 2 ASCII characters are aa, ab, ac,. . ., za, zb,. . .

zz. The possible group of 3 ASCII characters are aaa, aab,. . ., aza, azb, . . ., azz, . . ., zaa,

zab, . . ., zzz. The possible group of 4 ASCII characters are aaaa, aaab, . . ., azaa, azab, . .

., azzz, zaaa, zaab, . . ., zzzz. The frequency of such groups of ASCII characters is initially

set to zero. The source file is then scanned in the following manner.

Step 1: First four characters are read from the source file in ch1, ch2, ch3 and ch4.

If all the four characters are ASCII characters, then the frequency count of that group of

4-character in array is incremented by 1.

If all four characters are not ASCII, then check whether first 3 characters are ASCII or

not, if yes then the frequency count of that group of 3-character in array is incremented

by 1, or else first two characters are checked for ASCII and if yes, then the frequency

count of that group is incremented by 1.

In this way, all the characters from the file are scanned and the frequency count of the 4-

character array, 3-character array and 2-character array is updated.

Step 2: Next, the groups of ASCII characters with frequency count zero is removed.

Example: Suppose 4 character group say ‘zzzz’ does not exist in the source file, then that

group will be removed from the array.

 102

Step 3: Thus after removing the zero frequency character groups, the remaining character

groups will be sorted according to their frequency counts in descending order.

Step 4: In order to achieve compression, we have to take decision which character groups

shall be kept in the dictionary. For example, if 4-character group say ‘zing’ appears only

twice or less, then it should be removed from the dictionary. Because, even if we keep in

the dictionary, we won’t get compression, as 4 bytes are required to store the 4-character

group in the dictionary, and to encode it twice each time 2 bytes will be required so

overall 8 bytes are required for compression. In original file, it will consume 8 bytes,

since the 4-character group occurs twice. Therefore it won’t be wise to keep the 4-

character group whose frequency count is less than or equal to 2 to keep it in the

dictionary. Similarly, the 3-character group whose frequency count is less than or equal

to 3 shall not be kept in the dictionary. Thus, now we will have the 4-character and 3-

character groups in the dictionary in the descending order with respect to frequency of

their occurrence in the source file.

Step 5: Similarly, we have to think about 2-character group. If we consider all possible 2-

character group, it will take 2 bytes to represent it. Thus we won’t achieve compression

in case of 2-character groups. In order to get compression for 2-character group, if we can

encode any how in 1 byte then we will get compression. To encode it in one byte, we

have to explicitly specify that this byte contains the index value pointing to the 2-

character dictionary. In order to do this some bits will have to be kept reserved for that.

Already 1-bit is kept reserved for indicating a normal ASCII character and an encoded

value. There are three possibilities in encoded value, one is either it can be a value

pointing to 4-character group dictionary, or 3-character group dictionary or else 2-

character group dictionary. So, further 2-bits will required for specifying three possible

values. Hence, only 5-bits remain to encode the 2-character group. Thus, we will be able

to keep only first 32 2-character group in the dictionary.

Compression

Step 1: First read 4 characters from the source file in ch1, ch2, ch3 and ch4.

Step 2: Search the presence of these 4 characters in the dictionary of 4-character group. If

found store the index value of that position in the compressed file. The OutputBit()

function is used to store the bits in the compressed file. The Step 1 is repeated.

 103

Step 3: If those 4 characters are not found in the 4-character group dictionary, then first

three characters ch1, ch2 and ch3 are searched in 3-character group dictionary. If found

store the index value of that position in the compressed file. The ch4 is now stored in ch1

and next 3 characters are read in ch2, ch3 and ch4 and Step 2 is repeated.

Step 4: If those 3 characters are not found in the 3-character group dictionary, then first

two characters ch1 and ch2 are searched in the 2-character group dictionary. If found

store the index value of that position in the compressed file. The ch3 and ch4 are now

stored in ch1 and ch2 respectively and next two characters are read from the source file in

ch3 and ch4 and Step 2 is repeated.

Step 5: If those 2 characters are not found in the 2-character group dictionary, then the

first character ch1 is stored as it is in the compressed file. The ch2, ch3 and ch4 are now

stored in ch1, ch2 and ch3 respectively and next one character is read from the source file

in ch4 and Step 2 is repeated.

In this way the entire file is scanned and compressed. The flowchart for compressing the

character groups is shown in figure 5.1.

Decompression

Step 1: Read the dictionary of 4-character group, 3-character group and 2-character

group.

Step 2: Read code of one byte from the compressed file.

Step 3: If the code value is less than 128, it means that a normal ASCII character was

stored during compression process. Store that code value in the decompressed file as it is

and repeat Step 2.

Step 4: If the code value is greater than or equal to 128 and less than or equal to 159, then

it indicates the index value of 2-character group dictionary. Subtract the biased value 128

from it and get the two characters from the 2-character group dictionary and repeat Step

2.

Step 5: Read another byte of code and combine it previous read code byte to form 16-bit

index value. If this index value is in between 40960 and 41951, then it indicates the index

value of 3-character group dictionary. Subtract the biased value of 40960 from it and get

the 3 characters from the 3-character group dictionary and repeat Step 2.

 104

Step 5: If the value of 16-bit code is greater than or equal to 49152, then it indicates the

index value of 4-character group dictionary. Subtract the biased value of 49152 from it

and get the 4 characters from the 4-character group dictionary and repeat Step 2.

Thus the entire file is scanned byte by byte and is decompressed. The flow chart for

decompression is shown in figure 5.2.

 105

Figure 5.1 Flowchart for compression (CBTC-B)

 106

Figure 5.2 Flow chart for decompression (CBTC-B)

 107

5.3 IMPLEMENTATION OF WBTC-A

In this method, the dictionaries of full words and partial words are created from the

source file to be compressed. The words having frequency greater than 1 are considered.

The remaining words with frequency of 1 then are used to create dictionaries of partial

words.

Creation of Word Dictionary

At the outset, we have to decide how many words shall be stored in the dictionary. As

pointed in the algorithm 4.3.3, the words stored in the dictionary will be encoded by their

position in the dictionary. The ASCII character comprises the code value from 0 through

127. Therefore it requires only 7-bits to store it in memory. After studying various

corpuses (for e.g. Gutenberg, Enronsent, European Parliament, Large and Etext files), it

is found that at the most there are 20000 to 25000 words, 3000 to 5000 prefix and suffix

partial words, in file of size varying from 2 MB to 10 MB. Hence to encode the 25000

words it requires bits in between 8 to 16. Therefore we decided to encode the words in

the dictionary with 16-bit, including 1-bit to differentiate between the normal ASCII

character and the encoded index value of the words position in the dictionary.

Considering the above situation we have only 15-bits left to store the index value, hence

we can store only 32K words i.e. 215 words in the dictionary. Therefore we decide to keep

4000 Prefix partial words, 4000 Suffix partial words, and 24000 full words to store in the

dictionary. Remaining 768 codewords are kept reserved for non-words.
The words of length greater than 2 are only taken into consideration for storing in the

dictionary, because if we consider words of length 2 in the dictionary, then we won’t

achieve any compression, as to store words of 2 characters, it will require 2 bytes and

also to encode the word in the dictionary, it will require 2 bytes. The same thing applies

to partial prefix and suffix words. The length of partial prefix and suffix words is kept to

minimum of 3 characters.

Step 1: Declare a constant DICTCONSTANT with value 24000. Allocate the memory for

the dictionary using statement

char dictionary[DICTCONSTANT][50];

 108

The size of the dictionary considered here is having maximum 32768 words, comprising

of 24000 full words and each of 4000 prefix and suffix partial words.

Step 2: Read the words from the source file and add it to the dictionary.

After reading the word from the source file, the length of the word is checked and if

greater than 2, then the addword() function is invoked to check whether the word exists

in the dictionary. If exist, then the count value of the word is increased by 1 else the word

is added to the dictionary and the count value is set to 1. This process is shown in

Flowchart in fig. 5.3.

Step 3: After scanning all the words from the source file to be compressed, sort the

dictionary with respect to the count values of the word in the descending order by calling

the sort() function. The sort() functions is implemented by linear sorting technique.

Step 4: Keep the words with frequency more than or equal to 2 in the dictionary.

The entire dictionary created in Step 3 is scanned till the first word with frequency of 1 is

encountered. If the total number of words with frequency 2 or more exceeds

DICTCONSTANT, then only DICTCONSTANT words are kept in the dictionary and

remaining words are used for creating partial words. Any how the words stored in the

dictionary are less than or equal to DICTCONSTANT. The index value of the first word

with frequency 1 is stored in variable startofonelengthword, or else if the total number of

words with frequency 2 or more exceeds DICTCONSTANT, then the value DICTCONSTANT

is stored in startofonelengthword. The size of the dictionary is stored in variable

trackdictionary.

 109

Figure 5.3 Flow chart of creating word dictionary (WBTC-A)

 110

 Creation of Partial words (Prefix and Suffix) Dictionary

Here the dictionaries of partial words either from starting (Prefix) or from end (Suffix) of

the words are taken into consideration.

Step 1: Declare a constant PREFIXCONSTANT with value 4000. Allocate the memory for

the dictionary using statement. Maximum 4000 words are stored in the prefix dictionary.

Step 2: The words are scanned in the reverse order i.e. from last word of the dictionary

towards the first words of the dictionary of frequency 1. The characters from the words

are compared with characters from every other word. The maximum number of

characters matched is considered and that sub-word is stored in the prefix dictionary.

The flowchart of creating the prefix dictionary is shown in figure 5.4.

Example: Consider that words ‘complicate’, ‘complications’, ‘complicated’ are having

frequency count 1. Then at first, the last word complicated will be compared with word

complications, it is seen that first 9 characters complicat are matching, then again the

word ‘complicated’ is compared with word ‘complicate’, now it is seen that first 10

characters of complicated are matched with complicate, so instead of complicat, the word

complicate will be store in the partial word prefix dictionary.

Step 3: The maximum prefix words stored in the prefix dictionary are checked with

PREFIXCONSTANT, if less then that count value is kept, otherwise PREFIXCONSTANT

value is stored at the maximum count of partial words stored in the dictionary.

Similarly, the suffix dictionary is created. The only difference is that the characters are

compared from first character to last character in the prefix dictionary, but in suffix

dictionary, the characters will be compared from last character to first character.

Example: Consider the words ‘welcome’, ‘awesome’, ‘outcome’, are having frequency

count 1. Then at first, the last word outcome will be compared with word awesome, it is

seen that last 3 characters ome are matching, then again the word ‘outcome’ is compared

with word ‘welcome’, now it is seen that last 4 characters of welcome are matched with

outcome, so instead of ome, the word come will be store in the partial word suffix

dictionary.

 111

Figure 5.4 Flowchart of creating the prefix word dictionary (WBTC-A)

 112

Compression

The compression process starts with reading the source file again. Only the words which

are found in the word dictionary and in the prefix and suffix dictionary are coded with

index value of the dictionary and the remaining characters are stored as it is in the

compressed file.

Step 1: The words read one by one are stored in the string variable str. If the length of str

is greater than two than only it is search in the dictionary otherwise it is written as it is in

the compressed file.

Step 2: If the word is found in the word dictionary, then the index value of the word in

the dictionary is store in the compressed file after adding the constant 32768 to it. The

function OutputBits() is used to write the bits in the compressed file, and the process

repeats for next word. The value 32768 is added to the index value, so that the MSB of 16

bit index value will be ‘1’, which will differentiate between the normal ASCII character

and the index value of the word placed in the dictionary.

Step 3: If the word is not found in the dictionary, then first the word is scanned in the

prefix dictionary. The word is compared with every word of the prefix dictionary and the

longest match of prefix word found is considered. Then the index value of the prefix part

is store in the compressed file after adding the constant 32768+24000 i.e., 56768. Again

the same function OutputBits() is used to store the bits in the compressed file. Now the

prefix part is removed from the str. Now the str contains only remaining portion of the

word.

Step 4: Now the str is scanned for the suffix part of the word in the suffix dictionary. If

not found then the entire str is written as it is in the compressed file. Else characters other

than suffix part are first stored as it is and then the index value of the suffix word is

stored in the compressed file after adding 32768+24000+4000 i.e. 60768. The function

OutputBits() is used to store the bits in the compressed file. The flowchart of writing the

word is shown in figure 5.5.

 113

Example: Suppose the prefix word dictionary contains words such as ‘seme’, ‘sing’,

‘singer’. And the suffix dictionary contains words such as ‘ing’, ‘ter’ ‘one’.

Now the word, say ‘semester’ is to be compressed, then first the word semester will be

compared with word ‘seme’, in this case there is match of first 4 characters. Again the

word ‘semester’ is compared with next word ‘sing’, here there is a match of only first

character of the word ‘semester’. Hence the index value of ‘seme’ will be written to the

compressed file. The remaining str of the word ‘semester’, after removing the partial

word ‘seme’ now becomes the string ‘ster’. This word ‘ster’ is now searched in the

suffix dictionary. It is clear that only 3 characters are matched when compared with all

the words of the suffix dictionary and it is ‘ter’. Now before storing the index value of the

suffix word ‘ter’ in the compressed file, we have to check whether all characters from the

str is taken or some characters are left. In our example, after writing seme and before

writing ‘ter’, the character which is left is ‘s’, so first this ‘s’ will be written in the

compressed file as it is. And then the index value of the ‘ter’ will be written to the

compressed file. Thus the word semester is compressed by first writing the index value

of the prefix partial word ‘seme’ and then writing ‘s’ as it is, and finally the index value

of the ‘ter’ is written to the compressed file.

Thus, compression is achieved when the word is found in the dictionary, and when the

sub-words are found in prefix and/or suffix dictionary.

 114

Figure 5.5 Flowchart for compressing a word (WBTC-A)

 115

Decompression

The process of decompression is simple and fast. The flowchart of the decompressing a

single normal character and decompressing a single word is shown in figure 5.6. The file

to be decompressed is open in binary read mode. At first, one byte is read and is

compared with value 128. If it is less than 128, then the read byte is normal character and

it is written as it is in the decompressed file. If the value of that byte is greater than or

equal to 128 then the read byte is a part of the encoded word of 16-bit. To form the

complete value of encoded word another byte is read from the file and a 16-bit value is

formed which indicates the offset of the word in the dictionary. This 16-bit value is first

compared with the range of offset of suffix dictionary i.e. in between 60768 and 64768. if

it is in that range, then the suffix word is retrieved from the suffix dictionary and written

to the decompressed file. If the range is in between 56768 and 60768 then the prefix word

is retrieved from the prefix dictionary and written to the decompressed file, otherwise the

value indicates the offset of the full word of the word dictionary. Then that word is

retrieved and written to the decompressed file. In this way the entire file is scanned and

the file is decompressed.

 116

Figure 5.6 Flowchart of decompressing a normal character or word (WBTC-A)

 117

5.4 IMPLEMENTATION OF WBTC-B

In this method, the dictionary is created of words in single dimension array. The words

are separated by symbol ‘#’ in the dictionary. We have used here symbol ‘#’ as a

separator because we had defined word as sequence of ASCII characters only, therefore

symbol ‘#’ won’t occur in word, and if ‘#’ symbol is occurring in the source file then it

will be stored as it is. The ‘#’ symbol is used in the dictionary only and not in the

compressed file. It is used simply to distinguish between the words in the dictionary only.

In this method, simultaneously the dictionary is created and the file is compressed. This

method is very simple, but introduced here to compare it with another method WBTC-C,

which is using the two-dimensional dictionary.

Dictionary Creation and Compression

Step 1: The word is read from the source file.

Step 2: The word read from the source file is searched in the dictionary, if found the

index value of that word is written in the compressed file. Searching of the word is

explained next.

Step 3: If the word read is not found then, first the word is added to the dictionary and

then the index value of that word is written in the compressed file.

Searching Word in Dictionary

Step 1: Calculate the length of the word to be searched.

Step 2: Scan for the word separator character ‘#’.

Step 3: Compare all characters of the entire word with the characters succeeding the

symbol ‘#”. If all the characters are matched then check the next character in the

dictionary, if it is ‘#’ (i.e. the full word is matched), then the word is said to be found. If

the next character is not ‘#’ than it means that the partial word of the dictionary is

matched with the word read from the source file and hence the index value of the word in

the dictionary cannot be stored in the compressed file. In this case the word read from the

source file is added to the dictionary and the separator symbol ‘#’ is also added to the end

of the dictionary to indicate the end of the word.

Example

If the words in the dictionary are say ‘welcome#become#’ etc., and the word read from

the file is ‘be’. In word ‘become’ the first two characters are matching with the word ‘be’,

 118

so one can say that the word is found in the dictionary, but that is not the case, because

after ‘be’ instead of terminating symbol ‘#’, there are some characters in the word

‘become’ from the dictionary, hence we cannot say that complete word ‘be’ is found as it

is in the dictionary. If word ‘become’ is read form the source file, then only we can say

that the word is found in the dictionary.

So if word is not found in the dictionary then that word is added to the end of the

dictionary with the ‘#’ separator in between. The flowchart of compressing the word is

shown in figure 5.7.

 119

Figure 5.7 Flowchart for compressing a word (WBTC-B)

 120

Decompression

Step 1: Read the dictionary of words from the dictionary file.

Step 2: Read code of one byte from the compressed file.

Step 3: If the code value is less than 128, it means that a normal ASCII character was

stored during compression process. Store it in the decompressed file as it is and repeat

Step 2.

Step 4: If the code value is greater than or equal to 128 then read another byte of code

and combine it with previous read code byte to form 16-bit index value. Subtract the bias

value 32768 form it. This 16-bit index value is now pointing to the corresponding word in

the dictionary.

Step 5: Scan the dictionary, increment the counter of the ‘#’ symbol every time it

encounters till it matches the 16-bit index value. Read the characters from the dictionary

from that point till another ‘#’ symbol encounter to indicate the end of the word.

Thus the entire file is scanned byte by byte and is decompressed. The flowchart for

decompressing the word is shown in figure 5.8.

 121

Figure 5.8 Flowchart of decompressing a normal character or word (WBTC-B)

 122

5.5 IMPLEMENTATION OF WBTC-C

In this method two-dimension semi-dynamic dictionary is created. Thus, as explained in

chapter 4, the length of the code assigned to word reduces from 16-bit to 8-bit. The

dictionary structure is shown in figure 4.7 (Chapter 4). The total numbers of words to be

stored in the dictionary are 16447.

Compression

Step 1: The word is read from the source file. The single characters or non-alphabetic

characters, or words with length less than 3 are stored in the compressed file as it is.

Step 2: The word read from the source file is searched in the dictionary, if found the

index value of that word is computed and written in the compressed file.

Computing the index value

If the word is found in first 63 words, then the index value is simply stored in the

compressed file. If the word is found at a position greater than or equal to 63, then the

row number and column number are computed as below:

rownumber = (found – 63) / 64

columnnumber = (found – 63) mod 64

If the previous row number and the current row number are same, then only the column

number is written in the compressed file, else the escape symbol (0xFF) is written in the

compressed file followed by the new row number and the column number.

Step 3: If the word is not found in the dictionary, then it is stored as it is in the

compressed file.

Thus the entire file is scanned and compressed. The flowchart of compressing a single

word is shown in figure 5.9.

 123

Figure 5.9 Flowchart for compressing a word (WBTC-C)

 124

Decompression

Step 1: Read the dictionary of words from the dictionary file.

Step 2: Read code of one byte from the compressed file.

Step 3: If the code value is less than 128, it means that a normal ASCII character was

stored during compression process. Store it in the decompressed file as it is and repeat

Step 2.

Step 4: If the code value is greater than or equal to 128, check if the escape symbol is

there for change in row. If yes, then read another two consecutive bytes for getting new

row number and column number respectively. Subtract bias value 128 from the code to

get actual row number and column number.

Step 5: Now calculate the position of the word in the dictionary from these row number

and column number by the equation

Position = (row number * 64) + 63 + column number

 Thus word at that position is read from the dictionary and stored in the decompressed

file. Thus the entire file is scanned byte by byte and is decompressed. The flowchart of

decompressing a normal character or compressed word is shown in figure 5.10.

 125

Figure 5.10 Flowchart of decompressing a normal character or word (WBTC-C)

 126

5.6. IMPLEMENTATION OF WBTC-D

In the above methods described, the dictionary is built explicitly and is stored external to

the compressed file. But in this method the dictionary is built on-the-fly and in the similar

way the dictionary is to be built during decompression process. The overhead of external

dictionary is reduced, but then we won’t be able to search the phrase in the compressed

file, which was possible in above methods.

Compression

Step 1: Create a null dictionary

Step 2: Read the words from the source file. The single characters or non-alphabetic

characters, or words with length of 2 are stored in the compressed file as it is.

Step 3: Search the word in the dictionary, if not found write the word as it is in the

compressed file and add that word to the dictionary.

Step 4: If word is found in the dictionary, then write the index value of the word in the

compressed file after adding 32768 to it i.e., making the MSB bit of 16-bit index value to

1. This MSB will differentiate it from the normal ASCII code.

Thus the entire file is scanned and compressed. The flowchart for compressing a word is

shown in figure 5.11

Decompression

Step 1: Create the null dictionary.

Step 2: Read code of one byte from the compressed file.

Step 3: If the code value is less than 128, it means that a normal ASCII character was

stored during compression process. Store it in the decompressed file as it is and repeat

Step 2.

Step 4: If the code value is greater than or equal to 128. If yes, then read another byte for

getting the complete two byte index value. Subtract bias value 32768 from the code to get

actual position of the word in the dictionary. Store that word from the dictionary to the

decompressed file.

Thus the entire file is scanned byte by byte and is decompressed. The flowchart for

decompressing a normal character or compressed word is shown in figure 5.12.

 127

Figure 5.11 Flowchart for compressing a word (WBTC-D)

 128

Figure 5.12 Flowchart of decompressing a normal character or word (WBTC-D)

 129

5.7. IMPLEMENTATION OF WBTC-E

In this method the static dictionary is created from the set of different corpus. This

method is equivalent to method 5.5, but the only difference here is that in this method the

dictionary is static and will not be considered as overhead but as a part of compression

program, whereas in method 5.5 the dictionary is created for that particular file and is

considered as a part of compressed file, thereby increasing the overhead.

Creating Dictionary

Step 1: Prepare a list of files from the different corpus. Here we are considering files

from the Gutenberg corpus, Enronsent Corpus, Etextfile corpus and large corpus.

Step 2: First of all the dictionary of all the words of frequency greater than 2 from each

individual file is created.

Step 3: Then all the dictionary are merged into single dictionary, which consists of all

words from the entire dictionaries of all files and their frequency count is also added.

Step 4: The dictionary is then sorted according to the frequency count in the descending

order.

Here again we consider to code the index value of the position of the word in the

dictionary by 16-bit, i.e., MSB is reserved for indicating the difference between the

normal ASCII character and the index value of the word. We are getting only 15-bits to

encode the index value of the word from the dictionary. The same idea used in method

5.4.2 is adopted here with a difference in the number of bits required to encode the index

value of the word. In method 5.4.2 only 8-bits were used to encode the index value,

whereas in this method 16-bit index value is used and therefore the capacity of dictionary

storing the words increases from 16,477 to 1,62,816. How this figures come is explained

below:

The dictionary is considered as two dimensional dictionary. There are 256 rows and in

each row we can have 32768 words. If we decide to keep 0xFF as an escape symbol for

change in row of the dictionary, then we cannot use combination of 0xFF XX as a 16-bit

combination for storing the index value, where XX varies in between 0x00 to 0xFF.

Therefore, the total combination which can be store in 16-bit index value is 0x80 00

through 0xFEFF i.e. total word which we can store in a row is 32511. We decide here to

 130

keep most frequent 32000 words common in each row and remaining 511 words to be

unique in 256 rows. So the total number of words will be 32000 + (256 * 511) = 162816.

Step 1: The word is read from the source file. The single characters or non-alphabetic

characters, or words with length of 2 are stored in the compressed file as it is.

Step 2: The word read from the source file is searched in the dictionary, if found the

index value of that word is computed and written in the compressed file.

Computing the index value

If the word is found in first 32000 words, then the index value is simply stored in the

compressed file. If the word is found at a position greater then or equal to 32000, then the

row number and column number are computed as below:

rownumber = (found – 32000) / 511

columnnumber = (found – 32000) mod 511

If the previous row number and the current row number are same, then only the column

number is written in the compressed file, else the escape symbol (0xFF) is written in the

compressed file followed by the new row number and the column number.

Step 3: If the word is not found in the dictionary, then it is stored as it is in the

compressed file.

Thus the entire file is scanned and compressed. The flowchart for compressing the single

word is shown in figure 5.13.

 131

Figure 5.13 Flowchart for compressing a word (WBTC-E)

 132

Decompression

Step 1: Read the dictionary of words from the dictionary file.

Step 2: Read code of one byte from the compressed file.

Step 3: If the code value is less than 128, it means that a normal ASCII character was

stored during compression process. Store it in the decompressed file as it is and repeat

Step 2.

Step 4: If the code value is greater than or equal to 128, check if the escape symbol is

there for change in row. If yes, then read another three consecutive bytes for getting new

row number and column number respectively.

Step 5: Now calculate the position of the word in the dictionary from these row number

and column number by the equation

Position = (row number * 511) + 32000 + column number

 Thus word at that position is read from the dictionary and stored in the decompressed

file. Thus the entire file is scanned byte by byte and is decompressed. The flowchart for

decompressing a normal character or compressed word is shown in figure 5.14.

 133

Figure 5.14 Flowchart of decompressing a normal character or word (WBTC-E)

 134

5.8. IMPLEMENTING SEARCHING IN COMPRESSED FORM

Besides improving the compression ratio, our intention was to develop a technique in

such a way so that it can be useful for searching the phrases from the compressed file

directly without decompressing it. Thus, if the phrases are to be searched in the

compressed files (relatively smaller than normal files), then number of comparison to be

done will be comparatively less and thus time taken will be less. In the proposed

methods only WBTC – D is not suitable for searching the phrases directly in the

compressed form, because it is using the dynamic dictionary and hence it is not possible

to search the phrases without decompressing it. All other methods are useful for

searching the phrases without decompressing the compressed file.

In Chapter 3, we have seen different string matching algorithms. We have used Karp –

Rabin, Knuth – Morris – Pratt, Brute – Force , Boyer – Moore and Quick Search

algorithm for searching the phrases directly in the compressed form. The results are

shown in Chapter 6.

Following are the steps required to search the phrases directly in the compressed form

irrespective of any of the above methods.

Step 1: Read the phrase to be searched.

Step 2: Compress the phrase use the compression technique which is used to compress

the file in which we have to search the phrase. This compression process is little different

from the compression process of the source file. Here, there is no need to create the

dictionaries as in the normal case to compress the file, instead the source dictionaries of

that compressed files are read and accordingly the compression is done. In all the

methods above the dictionaries required are different in different cases.

Step 3: Perform any standard phrase – matching algorithm (Karp – Rabin, Knuth –

Morris – Pratt, Brute – Force, Boyer – Moore and Quick Search Algorithm).

The searching of phrase directly in the compressed form is possible because of the

encoding technique we have adopted in our methods. We have used always either 8-bit

encoding or 16-bit encoding, like in some other techniques such as Huffman wherein the

number of bits are different for different characters. The byte boundary is always

maintained.

CHAPTER 6

EXPERIMENTAL RESULTS

 135

 6

EXPERIMENTAL RESULTS

6.0 OUTLINE OF THIS CHAPTER

The character based algorithm and word based algorithm described in this thesis have

been implemented and tested on several text files. For comparison purposes, we were

primarily concerned with Bzip2 version 1.0.2, a version of PPM called PPMD and

PPMII, LZMA as a benchmark. PPMd and PPMII were run in order-4 with 10 MB

memory limit. LZMA was run with dictionary size of 8MB. The compression ratios are

expressed in percentage (%). All tests were carried out on Microsoft Windows XP, Intel

Pentium processor 1.60 GHz and 256 MB RAM. The overall result is that performance is

consistently better than the benchmark excluding where the size of the file is small (few

hundred Kilobytes) in some cases. At the end of this chapter the testing of searching the

phrases directly in the compressed form is done using Karp-Rabin algorithm, Knuth-

Morris-Pratt algorithm and Brute-Force algorithm. The overall number of comparisons

required to search the phrase in the compressed form is much less than that if searched

in the normal (decompressed) file. The time taken for searching is also comparatively

less than in the case of normal file. The results shows that average decompression time of

word based method (WBTC-C) is less than time taken by Bzip2 to decompress.

6.1 LIST OF FILES USED FOR TESTING

6.1.1. E-Text Corpus

In this corpus the E-Text files are taken from the corpus from the internet. There are total

9 files taken in this corpus. The list of the files and their size is given in Table 6.1.

 136

Table 6.1 File Information of E-Text Corpus

Sr.No Name of File Size (Bytes)

1 Burroughst.txt 9,923,450

2 Dickens.txt 4,186,334

3 Doyle.txt 4,273,166

4 Emerson.txt 2,654,470

5 Hawthorne.txt 2,534,557

6 Irving.txt 3,159,365

7 Kant.txt 4,966,366

8 Milton.txt 2,392,226

9 Plato.txt 3,044,145

Total Size in Bytes 37,134,079

6.1.2. European Parliament Corpus

 In this corpus 10 files are taken of equal size. The basic corpus was of 3 GB size. The

corpus was broken into files each of 5MB size. Out of those files 10 files are selected.

The list of the files and their size is given in Table 6.2.

Table 6.2 File Information of European Parliament Corpus

Sr.No Name of File Size (Bytes)

1 europarl1 5,242,880

2 europarl2 5,242,880

3 europarl3 5,242,880

4 europarl4 5,242,880

5 europarl5 5,242,880

6 europarl6 5,242,880

7 europarl7 5,242,880

8 europarl8 5,242,880

9 europarl9 5,242,880

10 europarl10 5,242,880

Total Size in Bytes 52,428,800

 137

6.1.3. Enronsent Corpus

19 different files are taken from this corpus. The list of the files and their size is given in

Table 6.3.

Table 6.3 File Information of Enronsent Corpus

Sr.No Name of File Size (Bytes)

1 enronsent00 1,977,255

2 enronsent01 1,747,204

3 enronsent02 2,556,530

4 enronsent03 2,128,069

5 enronsent04 2,450,083

6 enronsent05 2,049,856

7 enronsent06 1,978,373

8 enronsent07 2,566,926

9 enronsent08 2,064,851

10 enronsent09 2,124,877

11 enronsent10 2,246,081

12 enronsent11 1,826,427

13 enronsent12 2,035,599

14 enronsent13 1,991,442

15 enronsent14 1,962,961

16 enronsent15 1,673,901

17 enronsent16 1,716,634

18 enronsent17 1,610,800

19 enronsent18 1,646,888

Total Size in Bytes 38,354,757

 138

6.1.4. Project Gutenberg Corpus

 8 different files are taken from this corpus. The list of the files and their size is given in

Table 6.4.

Table 6.4 File Information of Project Gutenberg Corpus

Sr.No Name of File Size (Bytes)

1 leonard 1,423,740

2 pg1342 704,139

3 pg1399 2,039,729

4 pg2981 6,840,209

5 pg3207 1,254,848

6 pg33 517,294

7 pg514 1,053,432

8 pg76 597,586

Total Size in Bytes 14,430,977

6.1.5 Mixed Corpus

5 files are taken from different corpus viz., Large Corpus, Gutenberg Corpus, Enronsent

Corpus. The list of the files and their size is given in Table 6.5.

Table 6.5 File Information of Mixed Corpus

Sr.No

Name of

File

Size

(Bytes)

1 bible.txt 4,047,392

2 world192.txt 2,473,400

3 anne11.txt 258,420

4 enronsent02 2,556,530

5 pg10.txt 4,445,256

Total Size in Bytes 13,780,998

 139

6.1.6 Summary of Corpus

The summary of all corpus is given in Table 6.6.

Table 6.6 Summary of all Corpus.

Sr.No Corpus Org Size

1 E-Text 37,134,079

2 Europarl 52,428,800

3 Enronsent 38,354,757

4 Gutenberg 14,430,977

5 Mixed 13,780,998

Total Size in Bytes 156,129,611

6.2 COMPARISON OF WORD BASED METHODS WITH BZIP2

6.2.1. Compression Statistics of E-Text Corpus

Table 6.7 Compression ratios for E-Text Corpus (Bzip2)

 Compression ratio in %

Sr.

No Name of file Bzip2

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 burroughst 26.15 23.73 23.74 24.64 23.54 23.46

2 dickens 28.05 27.56 27.33 27.13 26.62 25.98

3 doyle 27.17 25.55 25.41 25.37 25.05 24.26

4 emerson 28.85 28.57 28.16 27.43 26.93 25.88

5 hawthorne 26.72 25.92 25.71 25.51 25.16 24.12

6 irving 27.02 18.86 18.77 20.36 19.82 17.66

7 Kant 20.31 18.33 18.40 18.62 18.38 17.92

8 milton 15.06 15.21 14.91 14.45 15.01 13.56

9 Plato 24.57 19.66 19.66 19.75 20.29 18.96

 Total 25.16 22.85 22.75 23.04 22.59 21.81

The test was executed on E-Text corpus and the results are shown in Table 6.7. For all

the files our all methods outperforms Bzip2. WBTC-A achieves average gain of 2.31%.

 140

WBTC-B achieves average gain of 2.41%. WBTC-C achieves average gain of 2.12%.

WBTC-D achieves average gain of 2.57%. WBTC-E achieves average gain of 3.35%.

6.2.2. Compression Statistics of European Parliament Corpus

Table 6.8 Compression ratios for European Parliament Corpus (Bzip2)

 Compression ratio in %

Sr.

No Name of file Bzip2

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

1 europarl1 22.17 21.18 20.92 20.83 20.21

2 europarl2 21.75 20.87 20.63 20.49 19.93

3 europarl3 22.23 21.28 21.05 20.90 20.39

4 europarl4 22.05 21.12 20.86 20.76 20.18

5 europarl5 21.99 21.02 20.75 20.72 20.13

6 europarl6 22.18 21.13 20.88 20.80 20.20

7 europarl7 22.33 21.32 21.02 20.99 20.38

8 europarl8 21.65 20.65 20.37 20.30 19.70

9 europarl9 22.18 21.19 20.93 20.83 20.22

10 europarl10 21.91 20.94 20.68 20.59 19.99

 Total 22.04 21.07 20.81 20.72 20.13

The test was executed on European Parliament corpus and the results are shown in Table

6.8. For all the files our all methods outperforms Bzip2. WBTC-A achieves average gain

of 0.97%. WBTC-B achieves average gain of 1.23%. WBTC-C achieves average gain of

1.32%. WBTC-D achieves average gain of 1.91%.

 141

6.2.3. Compression Statistics of Enronsent Corpus

Table 6.9 Compression ratios for Enronsent Corpus (Bzip2)

 Compression ratio in %

Sr.

No Name of file Bzip2

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 enronsent00 26.45 26.12 25.79 25.34 25.28 23.65

2 enronsent01 26.50 27.04 26.80 26.13 26.01 24.32

3 enronsent02 24.39 23.70 23.44 23.07 23.16 21.74

4 enronsent03 25.56 25.27 24.99 24.40 24.30 22.84

5 enronsent04 23.32 23.00 22.79 22.17 22.18 20.74

6 enronsent05 24.31 23.51 23.19 23.10 22.78 21.30

7 enronsent06 25.78 25.22 24.95 24.52 24.38 22.80

8 enronsent07 23.34 22.41 22.17 21.95 22.05 20.34

9 enronsent08 24.35 24.06 23.75 23.28 23.19 21.55

10 enronsent09 11.86 12.28 12.19 11.99 12.15 10.98

11 enronsent10 21.89 21.64 21.39 21.03 21.03 19.66

12 enronsent11 23.53 23.25 23.06 22.93 22.83 21.37

13 enronsent12 25.40 25.63 25.32 24.64 24.70 22.99

14 enronsent13 25.04 24.81 24.58 23.93 23.72 22.38

15 enronsent14 25.88 26.22 25.85 25.19 25.14 23.59

16 enronsent15 21.31 20.53 20.39 20.38 20.33 18.74

17 enronsent16 24.59 25.02 24.68 24.16 24.26 22.17

18 enronsent17 26.19 26.00 25.50 25.18 25.00 22.99

19 enronsent18 25.54 25.22 24.91 24.61 24.73 22.18

 Total 23.87 23.62 23.35 22.94 22.90 21.30

The test was executed on Enronsent corpus and the results are shown in Table 6.9. For all

the files our all methods outperforms Bzip2. WBTC-A achieves average gain of 0.25%.

WBTC-B achieves average gain of 0.52%. WBTC-C achieves average gain of 0.93%.

WBTC-D achieves average gain of 0.97%. WBTC-E achieves average gain of 2.57%.

 142

6.2.4. Compression Statistics of Project Gutenberg Corpus

Table 6.10 Compression ratios for Project Gutenberg Corpus (Bzip2)

 Compression ratio in %

Sr.No Name of file Bzip2

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 leonard 28.59 29.93 29.49 28.48 27.61 26.33

2 pg1342 25.89 27.06 26.65 26.35 25.53 24.17

3 pg1399 26.33 26.02 25.78 25.54 25.02 24.19

4 pg2981 26.24 24.77 24.62 24.65 24.22 23.86

5 pg3207 25.79 26.76 26.27 25.72 24.89 24.01

6 pg33 28.95 32.09 31.28 30.08 28.78 26.24

7 pg514 28.41 29.35 28.97 28.38 27.40 26.15

8 pg76 27.88 29.64 29.25 28.73 27.77 26.74

 Total 26.75 26.54 26.26 25.97 25.33 24.55

The test was executed on Project Gutenberg corpus and the results are shown in Table

6.10. For all the files our all methods outperforms Bzip2. WBTC-A achieves average

gain of 0.21%. WBTC-B achieves average gain of 0.49%. WBTC-C achieves average

gain of 0.78%. WBTC-D achieves average gain of 1.42%. WBTC-E achieves average

gain of 2.20%. From Table 6.10, it is seen the compression ratio deteriorates for files of

smaller size as compared to files of larger size. This is because of the overhead of the

dictionary associated with the compressed file.

 143

6.2.5. Compression Statistics of Mixed Corpus

Table 6.11 Compression ratios for Mixed Corpus (Bzip2)

 Compression ratio in %

Sr.

No Name of file Bzip2

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 bible.txt 20.89 20.02 19.82 20.05 19.66 19.36

2 world192.txt 19.79 19.56 19.23 18.55 18.19 17.42

3 anne11.txt 29.71 32.93 32.36 30.87 29.58 27.20

4 enronsent02 24.39 23.70 23.44 23.07 23.16 21.74

5 pg10.txt 22.52 21.91 21.77 21.88 21.48 21.24

 Total 22.04 21.47 21.25 21.13 20.82 20.20

The test was executed on Mixed Corpus and the results are shown in Table 6.11. For all

the files our all methods outperforms Bzip2. WBTC-A achieves average gain of 0.57%.

WBTC-B achieves average gain of 0.79%. WBTC-C achieves average gain of 0.91%.

WBTC-D achieves average gain of 1.22%. WBTC-E achieves average gain of 1.84%.

From Table 6.11, it is seen the compression ratio deteriorates for files of smaller size as

compared to files of larger size. This is because of the overhead of the dictionary

associated with the compressed file.

6.2.6. Compression Statistics of all Corpus

Table 6.12 Compression ratios for all Corpus (Bzip2)

 Compression ratio in %

Sr.

No

Name of

Corpus Bzip2

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 E-Text 25.16 22.87 22.76 23.05 22.60 21.82

2 Europarl 22.04 21.07 20.81 20.72 20.13 -----*

3 Enronsent 23.87 23.62 23.35 22.94 22.90 21.30

4 Gutenberg 26.75 26.54 26.26 25.97 25.33 24.55

5 Mixed 22.04 21.47 21.25 21.13 20.82 20.20

 Total 23.67 22.66 22.44 22.34 21.94 21.79

 144

The overall compression ratio for the corpus is summarized in Table 6.12 and the results

are shown in Table 6.12. For all the files our all methods outperforms Bzip2. WBTC-A

achieves average gain of 1.01%. WBTC-B achieves average gain of 1.23%. WBTC-C

achieves average gain of 1.33%. WBTC-D achieves average gain of 1.73%. The average

compression ratio of Bzip2 method without European Parliament corpus is 24.49%

therefore, WBTC-E achieves average gain of 2.70%.

* - For WBTC-E method, the European parliament corpus was not considered, as it was

not in the same domain as compared to other corpus

Comparison of Proposed Methods with Bzip2

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000

burroughst

dickens

doyle

emerson

hawthorne

irving

kant

milton

plato

E-
Te

xt
 C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBCT-A
Bzip2

Figure 6.1 Compression ratios of E-Text Corpus (Bzip2)

 145

Comparison of Proposed Methods with Bzip2

950,000 1,000,000 1,050,000 1,100,000 1,150,000 1,200,000

europarl1

europarl2

europarl3

europarl4

europarl5

europarl6

europarl7

europarl8

europarl9

europarl10
Eu

ro
pe

an
 P

ar
lia

m
en

t C
or

pu
s

Compressed Size

Method4_3
Method4_2
Method4_1
Method2_1
Bzip2

Figure 6.2 Compression ratios of European Parliament Corpus (Bzip2)

 146

Comparison of Proposed Methods with Bzip2

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000

enronsent00

enronsent01

enronsent02

enronsent03

enronsent04

enronsent05

enronsent06

enronsent07

enronsent08

enronsent09

enronsent10

enronsent11

enronsent12

enronsent13

enronsent14

enronsent15

enronsent16

enronsent17

enronsent18
En

ro
ns

en
t C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
Bzip2

Figure 6.3 Compression ratios for Enronsent Corpus (Bzip2)

 147

Comparison of Proposed Methods with Bzip2

0 500,000 1,000,000 1,500,000 2,000,000

leonard

pg1342

pg1399

pg2981

pg3207

pg33

pg514

pg76
G

ut
en

be
rg

 C
or

pu
s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
Bzip2

Figure 6.4 Compression ratios for Project Gutenberg Corpus (Bzip2)

Comparison of Proposed Methods with Bzip2

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

bible.txt

world192.txt

anne11.txt

enronsent02

pg10.txt

M
ix

ed
 C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
Bzip2

Figure 6.5 Compression ratios for Mixed Corpus (Bzip2)

 148

Comparison of Proposed Methods with Bzip2

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000

E-Text

Europarl

Enronsent

Gutenberg

Mixed
C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
Bzip2

Figure 6.6 Compression ratios for all Corpus (Bzip2)

6.3 COMPARISON OF WORD BASED METHODS WITH PPMd

6.3.1. Compression Statistics of E-Text Corpus

Table 6.13 Compression ratios for E-Text Corpus (PPMd)

 Compression ration in %

Sr.No
Name of
File PPMd

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 burroughst 24.05 23.33 22.96 23.60 22.80 22.80
2 dickens 25.67 26.53 26.03 25.59 25.40 25.04
3 doyle 24.67 24.71 24.14 24.28 23.77 23.42
4 emerson 26.52 28.34 27.38 26.92 26.28 25.65
5 hawthorne 25.51 25.60 25.10 23.79 24.54 24.00
6 irving 24.47 18.95 18.57 19.86 18.79 17.81
7 kant 18.67 16.50 16.42 17.05 16.49 16.05
8 milton 23.28 18.64 18.05 18.45 17.80 17.05
9 plato 22.65 19.36 19.08 19.70 19.18 18.54

 Total 23.73 22.45 22.02 22.31 21.77 21.36

 149

The test was executed on E-Text Corpus and the results are shown in Table 6.13. For the

entire corpus our all methods outperforms PPMd. WBTC-A achieves average gain of

1.28%. WBTC-B achieves average gain of 1.71%. WBTC-C achieves average gain of

1.42%. WBTC-D achieves average gain of 1.96%. WBTC-E achieves average gain of

2.37%.

6.3.2. Compression Statistics of European Parliament Corpus

Table 6.14 Compression ratios for European Parliament Corpus (PPMd)

 Compression ration in %

Sr.No Name of File PPMd

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

1 europarl1 21.39 20.70 20.29 19.76 19.55

2 europarl2 21.00 20.35 19.89 19.33 19.02

3 europarl3 21.44 20.80 20.34 19.80 19.56

4 europarl4 21.32 20.68 20.16 19.68 19.41

5 europarl5 21.27 20.53 20.02 19.62 19.30

6 europarl6 21.34 20.66 20.20 19.70 19.44

7 europarl7 21.46 20.86 20.37 19.89 19.64

8 europarl8 20.98 20.20 19.64 19.19 18.89

9 europarl9 21.39 20.70 20.24 19.70 19.46

10 europarl10 21.12 20.49 20.00 19.52 19.24

 Total 21.27 20.60 20.12 19.62 19.35

The test was executed on European Parliament Corpus and the results are shown in Table

6.14. For the entire corpus, our all methods outperforms PPMd. WBTC-A achieves

average gain of 0.67%. WBTC-B achieves average gain of 1.15%. WBTC-C achieves

average gain of 1.65%. WBTC-D achieves average gain of 1.77%.

 150

6.3.3. Compression Statistics of Enronsent Corpus

Table 6.15 Compression ratios for Enronsent Corpus (PPMd)

 Compression ration in %

Sr.No Name of File PPMd

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 enronsent00 26.45 26.32 25.51 25.36 24.98 23.80

2 enronsent01 26.77 26.99 26.11 26.24 25.59 24.38

3 enronsent02 24.80 23.91 23.38 23.57 23.09 22.10

4 enronsent03 25.30 25.17 24.36 24.38 23.87 22.81

5 enronsent04 23.91 23.46 22.94 23.02 22.48 21.50

6 enronsent05 24.51 23.68 22.81 23.26 22.55 21.45

7 enronsent06 25.47 25.24 24.39 24.57 24.04 22.90

8 enronsent07 24.53 23.23 22.73 22.99 22.27 21.20

9 enronsent08 25.01 24.35 23.64 23.91 23.14 21.98

10 enronsent09 14.13 13.67 13.37 13.54 13.26 12.41

11 enronsent10 22.24 21.81 21.20 21.51 20.91 19.91

12 enronsent11 24.46 23.13 22.67 23.23 22.39 21.21

13 enronsent12 26.01 25.93 25.12 25.09 24.70 23.46

14 enronsent13 25.01 24.70 23.82 24.08 23.33 22.41

15 enronsent14 25.80 26.15 25.36 25.29 24.81 23.64

16 enronsent15 22.65 20.91 20.52 21.26 20.30 19.16

17 enronsent16 25.48 25.09 24.21 24.56 23.72 22.25

18 enronsent17 26.15 26.21 25.13 25.34 24.50 22.99

19 enronsent18 25.90 25.61 24.53 24.86 24.09 22.39

 Total 24.37 23.88 23.17 23.38 22.76 21.62

The test was executed on Enronsent Corpus and the results are shown in Table 6.15. For

the entire corpus our all methods outperforms PPMd. WBTC-A achieves average gain of

0.49%. WBTC-B achieves average gain of 0.49%. WBTC-C achieves average gain of

0.99%. WBTC-D achieves average gain of 1.61%. WBTC-E achieves average gain of

2.75%.

 151

6.3.4. Compression Statistics of Project Gutenberg Corpus

Table 6.16 Compression ratios for Project Gutenberg Corpus (PPMd)

 Compression ration in %

Sr.No Name of File PPMd
WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 leonard 26.64 28.76 27.64 27.41 26.02 25.27
2 pg1342 25.05 26.20 25.44 25.80 24.42 23.51
3 pg1399 24.41 24.71 23.92 24.22 23.20 22.66
4 pg2981 23.97 23.59 23.05 23.09 22.70 22.56
5 pg3207 24.15 25.74 24.83 24.95 23.65 23.19
6 pg33 27.73 31.40 30.05 29.74 27.66 25.89
7 pg514 26.60 28.31 27.52 27.64 26.16 25.33
8 pg76 26.69 28.61 27.79 28.03 26.49 25.80

 Total 24.80 25.41 24.67 24.75 23.85 23.40

The test was executed on Project Gutenberg corpus and the results are shown in Table

6.16. For the entire corpus our all methods outperforms PPMd except WBTC-A. WBTC-

A ratio deteriorates by average gain of -0.61%. WBTC-B achieves average gain of

0.13%. WBTC-C achieves average gain of 0.05%. WBTC-D achieves average gain of

0.95%. WBTC-E achieves average gain of 1.4%

6.3.5. Compression Statistics of Mixed Corpus

Table 6.17 Compression ratios for Mixed Corpus (PPMd)

 Compression ration in %

Sr.No Name of File PPMd
WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 bible.txt 20.67 19.46 18.98 19.55 18.73 18.50
2 world192.txt 20.69 19.55 18.83 19.05 17.87 17.15
3 anne11.txt 28.45 32.34 31.06 30.67 28.62 26.72
4 enronsent02 24.80 23.91 23.38 23.57 23.09 22.10
5 pg10.txt 21.45 20.59 20.20 20.52 19.95 19.80

 Total 21.84 20.91 20.39 20.73 19.96 19.50

The test was executed on Mixed Corpus and the results are shown in Table 6.17. For all

the files our all methods outperforms PPMd. WBTC-A achieves average gain of 0.93%.

WBTC-B achieves average gain of 1.45%. WBTC-C achieves average gain of 1.11%.

 152

WBTC-D achieves average gain of 1.88%. WBTC-E achieves average gain of 2.34%.

From Table 6.17, it is seen the compression ratio deteriorates for files of smaller size as

compared to files of larger size. This is because of the overhead of the dictionary

associated with the compressed file.

6.3.6. Compression Statistics of all Corpus

Table 6.18 Compression ratios for all Corpus (PPMd)

 Compression ration in %

Sr.No

Name of

File PPMd

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 E-Text 23.73 22.45 22.02 22.31 21.77 21.36

2 Europarl 21.27 20.60 20.12 19.62 19.35 -------

3 Enronsent 24.37 23.88 23.17 23.38 22.76 21.62

4 Gutenberg 24.80 25.41 24.67 24.75 23.85 23.40

5 Mixed 21.84 20.91 20.39 20.73 19.96 19.50

 Total 22.99 22.31 21.76 21.76 21.23 21.49

The overall compression ratio for the corpus is summarized in Table 6.18 For the entire

corpus our all methods outperforms PPMd. WBTC-A achieves average gain of 0.68%.

WBTC-B achieves average gain of 1.23%. WBTC-C achieves average gain of 1.23%.

WBTC-D achieves average gain of 1.76%. The average compression ratio of PPMd

method without European Parliament corpus is 23.86% therefore, WBTC-E achieves

average gain of 2.37%.

 153

Comparison of Proposed Methods with PPMd

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000

burroughst

dickens

doyle

emerson

hawthorne

irving

kant

milton

plato
E-

Te
xt

 C
or

pu
s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMd

Figure 6.7 Compression ratios for E-Text Corpus (PPMd)

Comparison of Proposed Methods with PPMd

900,000 950,000 1,000,000 1,050,000 1,100,000 1,150,000

europarl1

europarl2

europarl3

europarl4

europarl5

europarl6

europarl7

europarl8

europarl9

europarl10

Eu
ro

pe
an

 P
ar

lia
m

en
t C

or
pu

s

Compressed Size

WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMd

Figure 6.8 Compression ratios for European Parliament Corpus (PPMd)

 154

Comparison of Proposed Methods with PPMd

0.00 100,000.00 200,000.00 300,000.00 400,000.00 500,000.00 600,000.00 700,000.00

enronsent00

enronsent01

enronsent02

enronsent03

enronsent04

enronsent05

enronsent06

enronsent07

enronsent08

enronsent09

enronsent10

enronsent11

enronsent12

enronsent13

enronsent14

enronsent15

enronsent16

enronsent17

enronsent18
En

ro
ns

en
t C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMd

Figure 6.9 Compression ratios for Enronsent Corpus (PPMd)

 155

Comparison of Proposed Methods with PPMd

0 500,000 1,000,000 1,500,000 2,000,000

leonard

pg1342

pg1399

pg2981

pg3207

pg33

pg514

pg76
G

ut
en

be
rg

 C
or

pu
s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMd

Figure 6.10 Compression ratios for Project Gutenberg Corpus (PPMd)

Comparison of Proposed Methods with PPMd

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

bible.txt

world192.txt

anne11.txt

enronsent02

pg10.txt

M
ix

ed
 C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMd

Figure 6.11 Compression ratios for Mixed Corpus (PPMd)

 156

Comparison of Proposed Methods with PPMd

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000

E-Text

Europarl

Enronsent

Gutenberg

Mixed

C
or

pu
s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMd

Figure 6.12 Compression ratios for all Corpus (PPMd)

6.4 COMPARISON OF WORD BASED METHODS WITH PPMII

6.4.1. Compression Statistics of E-Text Corpus

Table 6.19 Compression ratio for E-Text Corpus (PPMII)

 Compression ration in %

Sr.No
Name of
File PPMII

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 burroughst 23.80 20.36 20.48 20.99 21.01 20.75
2 dickens 25.27 24.84 24.42 24.16 23.91 23.40
3 doyle 24.32 22.70 22.31 22.57 22.13 21.45
4 emerson 26.07 26.16 25.49 25.00 24.44 23.67
5 hawthorne 24.95 22.37 21.87 22.40 21.98 20.70
6 irving 24.01 17.79 17.31 18.61 17.71 16.69
7 kant 18.36 15.84 15.73 16.32 15.89 15.39
8 milton 22.24 17.14 16.44 16.83 16.36 15.60
9 plato 22.28 18.48 18.15 18.64 18.38 17.68

 Total 23.33 20.50 20.23 20.63 20.30 19.69

 157

The test was executed on E-Text Corpus and the results are shown in Table 6.19. For all

the files, our all methods outperforms PPMII. WBTC-A achieves average gain of 2.83%.

WBTC-B achieves average gain of 3.1%. WBTC-C achieves average gain of 2.7%.

WBTC-D achieves average gain of 3.03%. WBTC-E achieves average gain of 3.64%.

6.4.2. Compression Statistics of European Parliament Corpus

Table 6.20 Compression ratio for European Parliament Corpus (PPMII)

 Compression ration in %

Sr.No

Name of

File PPMII

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

1 europarl1 21.14 18.97 18.57 18.59 17.98

2 europarl2 20.76 18.57 18.12 18.28 17.45

3 europarl3 21.21 19.04 18.58 18.67 17.95

4 europarl4 21.09 18.90 18.43 18.55 17.82

5 europarl5 21.03 18.81 18.34 18.50 17.75

6 europarl6 21.11 18.87 18.41 18.58 17.79

7 europarl7 21.22 19.15 18.67 18.73 18.07

8 europarl8 20.74 18.39 17.87 18.17 17.30

9 europarl9 21.17 18.92 18.48 18.59 17.85

10 europarl10 20.88 18.74 18.26 18.40 17.62

 Total 21.04 18.84 18.37 18.51 17.76

The test was executed on European Parliament Corpus and the results are shown in Table

6.20. For all the files, our all methods outperform PPMII. WBTC-A achieves average

gain of 2.20%. WBTC-B achieves average gain of 2.67%. WBTC-C achieves average

gain of 2.53%. WBTC-D achieves average gain of 3.28%.

 158

6.4.3. Compression Statistics of Enronsent Corpus

Table 6.21 Compression ratio for Enronsent Corpus (PPMII)

 Compression ration in %

Sr.No Name of File PPMII

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 enronsent00 25.60 24.21 23.51 23.82 23.14 21.84

2 enronsent01 25.83 24.98 24.31 24.58 23.90 22.47

3 enronsent02 24.07 22.24 21.69 22.17 21.56 20.45

4 enronsent03 24.56 23.41 22.71 22.99 22.28 21.16

5 enronsent04 23.12 21.79 21.19 21.60 20.88 19.74

6 enronsent05 23.73 21.87 21.30 21.80 21.07 19.84

7 enronsent06 24.66 23.25 22.62 23.02 22.32 21.02

8 enronsent07 23.70 21.52 20.94 21.42 20.77 19.55

9 enronsent08 24.19 22.72 21.99 22.40 21.70 20.42

10 enronsent09 13.57 12.84 12.51 12.74 12.56 11.68

11 enronsent10 21.58 20.33 19.79 20.23 19.56 18.51

12 enronsent11 23.49 21.61 21.09 21.63 21.09 19.77

13 enronsent12 25.08 24.02 23.32 23.53 22.99 21.63

14 enronsent13 24.30 23.01 22.38 22.73 21.90 20.80

15 enronsent14 24.95 24.21 23.50 23.77 23.10 21.78

16 enronsent15 21.87 19.64 19.18 19.89 19.17 17.93

17 enronsent16 24.48 23.23 22.51 22.87 22.30 20.65

18 enronsent17 25.18 24.20 23.41 23.66 22.98 21.43

19 enronsent18 24.88 23.53 22.77 23.12 22.63 20.80

 Total 23.55 22.15 21.53 21.92 21.28 20.01

The test was executed on Enronsent Corpus and the results are shown in Table 6.21. For

all the files, our all methods outperform PPMII. WBTC-A achieves average gain of

1.40%. WBTC-B achieves average gain of 2.02%. WBTC-C achieves average gain of

1.63%. WBTC-D achieves average gain of 2.27%. WBTC-E achieves average gain of

3.54%.

 159

6.4.4. Compression Statistics of Project Gutenberg Corpus

Table 6.22 Compression ratio for Project Gutenberg Corpus (PPMII)

 Compression ration in %

Sr.No Name of File PPMII
WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 leonard 26.00 27.19 26.16 25.98 24.84 24.03
2 pg1342 24.36 24.74 23.99 24.28 23.17 22.25
3 pg1399 23.98 23.38 22.88 23.11 22.25 21.68
4 pg2981 23.73 22.05 21.77 21.69 21.47 21.18
5 pg3207 23.62 24.44 23.53 23.61 22.55 22.04
6 pg33 26.81 29.38 28.03 27.70 26.06 24.12
7 pg514 25.96 26.80 26.04 26.10 24.88 24.02
8 pg76 25.92 27.07 26.26 26.40 25.19 24.53

 Total 24.38 23.90 23.34 23.34 22.66 22.11

The test was executed on Project Gutenberg Corpus and the results are shown in Table

6.22. For all the files, our all methods outperform PPMII. WBTC-A achieves average

gain of 0.48%. WBTC-B achieves average gain of 1.04%. WBTC-C achieves average

gain of 1.04%. WBTC-D achieves average gain of 1.72%. WBTC-E achieves average

gain of 2.27%.

6.4.5. Compression Statistics of Mixed Corpus

Table 6.23 Compression ratio for Mixed Corpus (PPMII)

 Compression ration in %

Sr.No FileName PPMII
WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 bible.txt 20.39 18.66 18.33 18.84 18.12 17.87
2 world192.txt 20.21 18.54 17.96 18.22 17.12 16.39
3 anne11.txt 27.29 30.15 28.85 28.57 26.88 24.96
4 enronsent02 24.07 22.24 21.69 22.17 21.56 20.45
5 pg10.txt 21.11 19.63 19.34 19.75 19.10 18.90

 Total 21.40 19.83 19.41 19.82 19.06 18.55

The test was executed on Mixed Corpus and the results are shown in Table 6.23. For all

the files, our all methods outperform PPMII. WBTC-A achieves average gain of 1.57%.

WBTC-B achieves average gain of 1.99%. WBTC-C achieves average gain of 1.58%.

WBTC-D achieves average gain of 2.34%. WBTC-E achieves average gain of 2.85%.

 160

6.4.6. Compression Statistics of all Corpus

Table 6.24 Compression ratio for all Corpus (PPMII)

Sr.No
Name of
File PPMII

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 E-Text 23.33 20.50 20.23 20.63 20.30 19.69
2 Europarl 21.04 18.84 18.37 18.51 17.76 0.00
3 Enronsent 23.55 22.15 21.53 21.92 21.28 20.01
4 Gutenberg 24.38 23.90 23.34 23.34 22.66 22.11
5 Mixed 21.40 19.83 19.41 19.82 19.06 18.55

 Total 22.54 20.60 20.14 20.41 19.79 19.99

The overall compression ratio for the corpus is summarized in Table 6.24 For the entire

corpus our all methods outperforms PPMII. WBTC-A achieves average gain of 1.94%.

WBTC-B achieves average gain of 2.4%. WBTC-C achieves average gain of 2.13%.

WBTC-D achieves average gain of 2.75%. The average compression ratio of PPMd

method without European Parliament corpus is 23.30% therefore, WBTC-E achieves

average gain of 3.31%.

Comparison of Proposed Methods with PPMII

0 500,000 1,000,000 1,500,000 2,000,000 2,500,000

burroughst

dickens

doyle

emerson

hawthorne

irving

kant

milton

plato

E-
Te

xt
 C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMonstr

Figure 6.13 Compression ratios for E-Text Corpus (PPMII)

 161

Comparison of Proposed Methods with PPM II

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

europarl1

europarl2

europarl3

europarl4

europarl5

europarl6

europarl7

europarl8

europarl9

europarl10
Eu

ro
pe

an
 P

ar
lia

m
en

t C
or

pu
s

Compressed Size

WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMonstr

Figure 6.14 Compression ratios for European Parliament Corpus (PPMII)

 162

Comparison of Proposed Methods with PPM II

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000

enronsent00

enronsent01

enronsent02

enronsent03

enronsent04

enronsent05

enronsent06

enronsent07

enronsent08

enronsent09

enronsent10

enronsent11

enronsent12

enronsent13

enronsent14

enronsent15

enronsent16

enronsent17

enronsent18
En

ro
ns

en
t C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMonstr

Figure 6.15 Compression ratios for Enronsent Corpus (PPMII)

 163

Comparison of Proposed Methods with PPM II

0 500,000 1,000,000 1,500,000 2,000,000

leonard

pg1342

pg1399

pg2981

pg3207

pg33

pg514

pg76
G
ut

en
be

rg
 C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMonstr

Figure 6.16 Compression ratios for Project Gutenberg Corpus (PPMII)

Comparison of Proposed Methods with PPM II

0 200,000 400,000 600,000 800,000 1,000,000

bible.txt

world192.txt

anne11.txt

enronsent02

pg10.txt

M
ix

ed
 C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMonstr

Figure 6.17 Compression ratios for Mixed Corpus (PPMII)

 164

Comparison of Proposed Methods with PPM II

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000

E-Text

Europarl

Enronsent

Gutenberg

Mixed

C
or

pu
s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
PPMonstr

Figure 6.18 Compression ratios for all Corpus (PPMII)

6.5 COMPARISON OF WORD BASED METHODS WITH LZMA

6.5.1. Compression Statistics of E-Text Corpus

Table 6.25 Compression ratio for E-Text Corpus (LZMA)

 Compression ration in %

Sr.No
Name of
File LZMA

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 burroughst 16.50 15.78 15.74 15.91 16.37 15.27
2 dickens 29.31 28.54 28.33 28.26 27.95 27.06
3 doyle 24.89 24.36 24.11 24.17 24.51 23.09
4 emerson 29.56 29.51 28.92 28.70 28.12 27.01
5 hawthorne 21.92 21.59 21.29 21.33 22.32 19.76
6 irving 10.53 10.71 10.52 10.55 11.70 9.38
7 kant 14.10 13.54 13.58 13.82 14.27 13.15
8 milton 11.36 12.18 11.79 11.67 12.09 10.40
9 plato 13.24 12.86 12.74 12.96 13.54 12.00

 Total 18.79 18.38 18.21 18.29 18.67 17.28

 165

The test was executed on E-Text Corpus and the results are shown in Table 6.25. For the

entire corpus our all methods outperforms LZMA. WBTC-A achieves average gain of

0.41%. WBTC-B achieves average gain of 0.58%. WBTC-C achieves average gain of

0.50%. WBTC-D achieves average gain of 0.12%. WBTC-E achieves average gain of

1.51%.

6.5.2. Compression Statistics of European Parliament Corpus

Table 6.26 Compression ratio for European Parliament Corpus (LZMA)

 Compression ration in %

Sr.No

Name of

File LZMA

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

1 europarl1 22.20 21.97 21.58 21.56 21.22

2 europarl2 21.95 21.76 21.38 21.35 20.97

3 europarl3 22.45 22.19 21.78 21.79 21.39

4 europarl4 22.25 21.98 21.56 21.60 21.21

5 europarl5 22.23 21.95 21.55 21.57 21.19

6 europarl6 22.33 22.05 21.63 21.66 21.26

7 europarl7 22.46 22.22 21.80 21.81 21.41

8 europarl8 21.84 21.57 21.14 21.19 20.79

9 europarl9 22.37 22.07 21.69 21.69 21.32

10 europarl10 22.12 21.86 21.45 21.47 21.08

 Total 22.22 21.96 21.56 21.57 21.18

The test was executed on European Parliament Corpus and the results are shown in Table

6.26. For the entire corpus our all methods outperforms LZMA. WBTC-A achieves

average gain of 0.26%. WBTC-B achieves average gain of 0.66%. WBTC-C achieves

average gain of 0.65%. WBTC-D achieves average gain of 1.04%.

 166

6.5.3. Compression Statistics of Enronsent Corpus

Table 6.27 Compression ratios for Enronsent Corpus (LZMA)

 Compression ration in %

Sr.No Name of File LZMA

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 enronsent00 23.72 24.29 23.64 23.73 23.73 21.79

2 enronsent01 25.39 25.94 25.32 25.43 25.33 23.29

3 enronsent02 22.29 22.32 21.81 21.96 22.10 20.46

4 enronsent03 23.82 24.22 23.59 23.67 23.57 21.86

5 enronsent04 21.05 21.44 20.87 20.93 20.99 19.23

6 enronsent05 22.17 22.21 21.69 21.90 21.80 20.08

7 enronsent06 23.96 24.16 23.56 23.71 23.65 21.78

8 enronsent07 20.71 20.99 20.48 20.50 20.72 18.89

9 enronsent08 22.56 22.98 22.33 22.45 22.41 20.51

10 enronsent09 11.52 11.77 11.48 11.69 11.70 10.49

11 enronsent10 20.43 20.53 20.09 20.25 20.26 18.62

12 enronsent11 20.07 20.40 19.96 20.25 20.42 18.47

13 enronsent12 23.58 24.23 23.53 23.63 23.64 21.66

14 enronsent13 23.82 24.01 23.42 23.57 23.32 21.67

15 enronsent14 24.26 24.80 24.16 24.22 24.22 22.18

16 enronsent15 19.61 19.59 19.19 19.61 19.50 17.83

17 enronsent16 22.82 23.48 22.75 22.90 23.03 20.67

18 enronsent17 23.97 24.79 23.97 24.04 23.99 21.82

19 enronsent18 23.15 23.88 23.14 23.24 23.45 20.90

 Total 21.95 22.31 21.74 21.87 21.88 20.03

The test was executed on Enronsent Corpus and the results are shown in Table 6.27. For

the entire corpus our all methods outperforms LZMA except WBTC-A. WBTC-A ratio

deteriorates by average gain of -0.36%. WBTC-B achieves average gain of 0.21%.

WBTC-C achieves average gain of 0.08%. WBTC-D achieves average gain of 0.07%.

WBTC-E achieves average gain of 1.92%.

 167

6.5.4. Compression Statistics of Project Gutenberg Corpus

Table 6.28 Compression ratios for Project Gutenberg Corpus (LZMA)

 Compression ration in %

Sr.No Name of File LZMA
WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 leonard 30.19 31.26 30.26 30.28 29.28 28.02
2 pg1342 29.76 29.39 28.75 29.10 28.03 26.52
3 pg1399 28.34 27.87 27.44 27.75 26.98 26.07
4 pg2981 26.75 25.70 25.66 25.70 25.46 24.90
5 pg3207 28.12 28.58 27.80 27.98 27.00 26.21
6 pg33 32.67 34.69 33.33 33.25 31.54 28.56
7 pg514 31.39 31.90 31.22 31.45 30.26 28.88
8 pg76 31.13 32.13 31.38 31.60 30.51 29.30

 Total 28.31 28.03 27.62 27.74 27.09 26.17

The test was executed on Project Gutenberg Corpus and the results are shown in Table

6.28. For the entire corpus our all methods outperforms LZMA. WBTC-A achieves

average gain of 0.28%. WBTC-B achieves average gain of 0.69%. WBTC-C achieves

average gain of 0.57%. WBTC-D achieves average gain of 1.22%. WBTC-E achieves

average gain of 2.14%.

6.5.5. Compression Statistics of Mixed Corpus

Table 6.29 Compression ratios for Mixed Corpus (LZMA)

 Compression ration in %

Sr.No Name of File LZMA
WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
D

WBTC-
E

1 bible.txt 21.87 20.86 20.68 21.07 20.66 20.30
2 world192.txt 19.60 20.00 19.31 19.43 18.95 18.06
3 anne11.txt 33.17 35.76 34.45 34.11 32.65 29.50
4 enronsent02 22.29 22.32 21.81 21.97 22.10 20.46
5 pg10.txt 23.79 22.72 22.64 22.92 22.61 22.22

 Total 22.37 21.85 21.54 21.78 21.48 20.72

The test was executed on Mixed Corpus and the results are shown in Table 6.29. For all

the files our all methods outperforms LZMA. WBTC-A achieves average gain of 0.52%.

WBTC-B achieves average gain of 0.83%. WBTC-C achieves average gain of 0.59%.

WBTC-D achieves average gain of 0.89%. WBTC-E achieves average gain of 1.65%.

 168

From Table 6.17, it is seen the compression ratio deteriorates for files of smaller size as

compared to files of larger size. This is because of the overhead of the dictionary

associated with the compressed file.

6.5.6. Compression Statistics of all Corpus

Table 6.30 Compression ratios all Corpus (LZMA)

 Compression ration in %

Sr.No Name of File LZMA

WBTC-

A

WBTC-

B

WBTC-

C

WBTC-

D

WBTC-

E

1 E-Text 18.79 18.38 18.21 18.29 18.67 17.28

2 Europarl 22.22 21.96 21.56 21.57 21.18 -------

3 Enronsent 21.95 22.31 21.74 21.87 21.88 20.03

4 Gutenberg 28.31 28.03 27.62 27.74 27.09 26.17

5 Mixed 22.37 21.85 21.54 21.78 21.48 20.72

 Total 21.91 21.75 21.36 21.45 21.33 19.99

The overall compression ratio for the corpus is summarized in Table 6.30. For the entire

corpus our all methods outperforms LZMA. WBTC-A achieves average gain of 0.16%.

WBTC-B achieves average gain of 0.55%. WBTC-C achieves average gain of 0.46%.

WBTC-D achieves average gain of 0.58%. The average compression ratio of LZMA

method without European Parliament corpus is 21.76% therefore, WBTC-E achieves

average gain of 1.77%.

 169

Comparison of Proposed Methods with LZMA

0 500,000 1,000,000 1,500,000 2,000,000

burroughst

dickens

doyle

emerson

hawthorne

irving

kant

milton

plato
E-

Te
xt

 C
or

pu
s

Compressed Size

Method4_4
Method4_3
Method4_2
Method4_!
Method2_1
LZMA

Figure 6.19 Compression ratios for E-Text Corpus (LZMA)

Comparison of Proposed Methods with LZMA

1,040,000 1,060,000 1,080,000 1,100,000 1,120,000 1,140,000 1,160,000 1,180,000 1,200,000

europarl1

europarl2

europarl3

europarl4

europarl5

europarl6

europarl7

europarl8

europarl9

europarl10

Eu
ro

pe
an

 P
ar

lia
m

en
t C

or
pu

s

Compressed Size

WBTC-D
WBTC-C
WBTC-B
WBTC-A
LZMA

Figure 6.20 Compression ratios for European Parliament Corpus (LZMA)

 170

Comparison of Proposed Methods with LZMA

0 100,000 200,000 300,000 400,000 500,000 600,000

enronsent00

enronsent01

enronsent02

enronsent03

enronsent04

enronsent05

enronsent06

enronsent07

enronsent08

enronsent09

enronsent10

enronsent11

enronsent12

enronsent13

enronsent14

enronsent15

enronsent16

enronsent17

enronsent18
En

ro
ns

en
t C

or
pu

s

Compressed Size

Method4_4
Method4_3
Method4_1
Method2_1
LZMA

Figure 6.21 Compression ratios for Enronsent Corpus (LZMA)

 171

Comparison of Proposed Methods with LZMA

0 500,000 1,000,000 1,500,000 2,000,000

leonard

pg1342

pg1399

pg2981

pg3207

pg33

pg514

pg76
G

ut
en

be
rg

 C
or

pu
s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
LZMA

Figure 6.22 Compression ratios for Project Gutenberg Corpus (LZMA)

Comparison of Proposed Methods with LZMA

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

bible.txt

world192.txt

anne11.txt

enronsent02

pg10.txt

M
ix

ed
 C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
LZMA

Figure 6.23 Compression ratios for Mixed Corpus (LZMA)

 172

Comparison of Proposed Methods with LZMA

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 14,000,000

E-Text

Europarl

Enronsent

Gutenberg

Mixed
C

or
pu

s

Compressed Size

WBTC-E
WBTC-D
WBTC-C
WBTC-B
WBTC-A
LZMA

Figure 6.24 Compression ratios for all Corpus (LZMA)

6.6 COMPARISON OF CBTC-B WITH ARITHMETIC CODING

6.6.1. Compression Statistics of E-Text Corpus

Table 6.31 Compression ratios of E-Text Corpus (Arithmetic Coding)

 Compression ratio in %

Sr.No
Name of
File

Arithmetic
Coding CBTC-B

1 burroughst 55.77 49.78
2 dickens 56.02 50.53
3 doyle 54.93 49.95
4 emerson 54.85 50.67
5 hawthorne 55.43 50.74
6 irving 55.13 50.28
7 kant 51.76 44.71
8 milton 54.24 49.89
9 plato 54.56 48.40

 Total 54.83 49.38

 173

The test was executed on E-Text Corpus and the results are shown in Table 6.31. For all

the files our all methods outperforms Arithmetic Coding. CBTC-B achieves average gain

of 5.45%.

6.6.2. Compression Statistics of European Parliament Corpus

Table 6.32 Compression ratios of European Parliament Corpus (Arithmetic Coding)

 Compression ratio in %

Sr.No FileName Arithmetic Coding CBTC-B

1 europarl1 54.67 49.26

2 europarl2 54.65 49.52

3 europarl3 54.27 49.17

4 europarl4 54.37 49.30

5 europarl5 54.51 49.29

6 europarl6 54.35 49.30

7 europarl7 54.52 49.55

8 europarl8 54.33 48.99

9 europarl9 54.21 49.11

10 europarl10 54.25 48.89

 Total 54.41 49.24

The test was executed on European Parliament Corpus and the results are shown in Table

6.32. For all the files our all methods outperforms Arithmetic Coding. CBTC-B achieves

average gain of 5.17%.

 174

6.6.3. Compression Statistics of Enronsent Corpus

Table 6.33 Compression ratios of Enronsent Corpus (Arithmetic Coding)

 Compression ratio in %

Sr.No FileName Arithmetic Coding CBTC-B

1 enronsent00 59.81 55.15

2 enronsent01 60.03 55.30

3 enronsent02 59.07 53.54

4 enronsent04 59.90 55.30

5 enronsent05 59.63 54.42

6 enronsent06 60.30 55.38

7 enronsent07 59.50 54.16

8 enronsent08 59.27 54.43

9 enronsent09 62.75 55.60

10 enronsent10 59.93 54.35

11 enronsent11 61.50 55.99

12 enronsent12 60.98 56.04

13 enronsent13 59.91 54.87

14 enronsent14 59.65 54.72

15 enronsent15 61.32 55.64

16 enronsent16 61.15 56.35

17 enronsent17 61.16 56.51

18 enronsent18 60.90 56.44

19 enronsent19 61.02 56.55

 Total 60.34 55.21

The test was executed on Enronsent Corpus and the results are shown in Table 6.33. For

all the files our all methods outperforms Arithmetic Coding. CBTC-B achieves average

gain of 5.13%.

 175

6.6.4. Compression Statistics of Project Gutenberg Corpus

Table 6.34 Compression ratios of Project Gutenberg Corpus (Arithmetic Coding)

 Compression ratio in %
Sr.No FileName Arithmetic Coding CBTC-B

1 leonard 58.40 53.57
2 pg514 56.78 52.79
3 pg3207 57.31 51.89
4 pg33 56.32 53.87
5 pg1342 56.17 51.22
6 pg1399 56.82 51.15
7 pg76 57.21 52.87
8 pg2981 56.25 50.84

 Total 56.71 52.90

The test was executed on Project Gutenberg Corpus and the results are shown in Table

6.34. For all the files our all methods outperforms Arithmetic Coding. CBTC-B achieves

average gain of 3.81%.

6.6.5. Compression Statistics of Mixed Corpus

Table 6.35 Compression ratios of Mixed Corpus (Arithmetic Coding)

 Compression ratio in %
Sr.No FileName Arithmetic Coding CBTC-B

1 bible.txt 54.40 47.73
2 world192.txt 62.48 57.22
3 anne11.txt 57.68 56.16
4 enronsent02 59.07 53.54
5 pg10.txt 57.50 50.66

 Total 57.78 51.62

The test was executed on Mixed Corpus and the results are shown in Table 6.35. For all

the files our all methods outperforms Arithmetic Coding. CBTC-B achieves average gain

of 6.16%.

 176

6.6.6. Compression Statistics of all Corpus

Table 6.36 Compression ratios of all Corpus (Arithmetic Coding)

 Compression ratio in %
Sr.No Corpus Arithmetic Coding CBTC-B

1 E-Text 54.83 49.38
2 Europarl 56.30 50.94
3 Enronsent 60.34 55.21
4 Gutenberg 56.71 52.90
5 Mixed 57.78 51.62

 Total 57.10 51.85

The overall compression ratio for the corpus is summarized in Table 6.36. For the entire

corpus our all methods outperforms Arithmetic Coding. WBTC-A achieves average gain

of 5.25%.

Comparison of CBTC-B with Arithmetic Coding

0 2000000 4000000 6000000

burroughst

dickens

doyle

emerson

hawthorne

irving

kant

milton

plato

E-
Te

xt
 C

or
pu

s

Compressed Size

CBTC-B
Arithmetic Coding

Figure 6.25 Compression ratios for E-Text Corpus (Arithmetic Coding)

 177

Comparison of CBTC-B with Arithmetic Coding

2E+06 3E+06 3E+06 3E+06 3E+06 3E+06 3E+06

europarl1

europarl2

europarl3

europarl4

europarl5

europarl6

europarl7

europarl8

europarl9

europarl10
Eu

ro
pe

an
 P

ar
lia

m
en

t C
or

pu
s

Compressed Size

CBTC-B
Arithmetic Coding

Figure 6.26 Compression ratios for European Parliament Corpus (Arithmetic

Coding)

 178

Comparison of Method 3 with Arithmetic Coding

0 500000 1000000 1500000 2000000

enronsent00

enronsent02

enronsent05

enronsent07

enronsent09

enronsent11

enronsent13

enronsent15

enronsent17

enronsent19
En

ro
ns

en
t C

or
pu

s

Compressed Size

Method3
Arithmetic Coding

Figure 6.27 Compression ratios for Enronsent Corpus (Arithmetic Coding)

 179

Comparison of CBTC-B with Arithmetic Coding

0 1000000 2000000 3000000 4000000 5000000

leonard

pg514

pg3207

pg33

pg1342

pg1399

pg76

pg2981
G

ut
en

be
rg

 C
or

pu
s

Compressed Size

CBTC-B
Arithmetic Coding

Figure 6.28 Compression ratios for Project Gutenberg Corpus (Arithmetic Coding)

Comparison of CBTC-B with Arithmetic Coding

0 500000 1000000 1500000 2000000 2500000 3000000

bible.txt

world192.txt

anne11.txt

enronsent02

pg10.txt

M
ix

ed
 C

or
pu

s

Compressed Size

CBTC-B
Arithmetic Coding

Figure 6.29 Compression ratios for Mixed Corpus (Arithmetic Coding)

 180

Comparison of CBTC-B with Arithmetic Coding

0.E+00 5.E+06 1.E+07 2.E+07 2.E+07 3.E+07 3.E+07 4.E+07

E-Text

Europarl

Enronsent

Gutenberg

Mixed
Co

rp
us

Compressed Size

CBTC-B
Arithemtic Coding

Figure 6.30 Compression ratios for all Corpus (Arithmetic Coding)

6.7 SEARCHING PHRASE IN COMPRESSED FILE

The phrase can be searched in the compressed file directly without decompressing it. The

only method which can’t search the phrase in the compressed is WBTC-D, because the

method is compressing the file on-the-fly i.e. it uses the dynamic dictionary. All other

methods such CBTC – B, WBTC – A, WBTC – C and WBTC – E are useful for directly

searching the pattern in the compressed file. The test was carried out on Bible.txt file for

five different phrases listed in Table 6.37, using Karp-Rabin algorithm, Knuth-Morris-

Pratt algorithm, Brute-Force algorithm, Boyer-Moore algorithm and Quick Search

algorithm. The number of comparison and time required to search the phrase is given in

the following tables.

 181

Table 6.37 Phrases for searching directly in the compressed file.

Sr.No Phrase (From Bible.txt)
1 “that I will not overthrow this city”
2 “and he begat sons”

3
“And Cush begat Nimrod: he began to
be a mighty one in the earth.”

4
“Then saith he unto me, See thou do it
not:”

5 “LORD which exercise lovingkindness”

6.7.1 Searching phrase using Karp-Rabin Algorithm

Table 6.38 Comparison of Number of Comparison of searching phrases (K-R)

 Number of Comparison

Phrase Normal
CBTC-
B

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
E

1 4047359 2784540 2447965 2434818 2407200 2462877
2 4047379 2784553 2447975 2434828 2407207 2462887
3 4047330 2784515 2447942 2434795 2407172 2462850
4 4047352 2784531 2447953 2434806 2407190 2462865
5 4047360 2784540 2447973 2434826 2407206 2462885

The test was executed on five different phrases from Bible.txt using Karp – Rabin

searching algorithm and the results are shown in Table 6.38. For all the phrases, the

number of comparisons required to search the phrase from the source file is

comparatively very less. The graph of the same is shown in figure 6.31.

6.7.2 Searching phrase using Knuth-Morris-Pratt Algorithm

Table 6.39 Comparison of Number of Comparison of searching phrases (KMP)

 Number of Comparison

Phrase Normal
CBTC-
B

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
E

1 7905121 5542617 4869766 4843244 4796515 4899401
2 7943371 5491520 4803674 4772659 4769219 4847474
3 8057761 5544582 4871440 4844926 4794244 4901148
4 8080285 5562606 4892857 4866882 4810293 4922962
5 8071498 5544543 4885220 4857977 4807202 4913838

 182

The test was executed on five different phrases from Bible.txt using Knuth – Morris –

Pratt searching algorithm and the results are shown in Table 6.39. For all the phrases, the

number of comparisons required to search the phrase from the source file is

comparatively very less. The graph of the same is shown in figure 6.32.

6.7.3 Searching phrase using Brute-Force Algorithm

Table 6.40 Comparison of Number of Comparison of searching phrases (B-F)

 Number of Comparison

Phrase Normal
CBTC-
B

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
E

1 4535611 3045398 3020528 2876617 2459295 2875561
2 4447503 3071600 3094501 2946085 2524441 2927344
3 4101388 2828826 3018339 2874877 2466465 2873629
4 4069273 2800899 2997572 2474158 2416981 2851831
5 4079503 2819080 3007334 2862699 2430703 2861322

The test was executed on five different phrases from Bible.txt using Brute – Force

searching algorithm and the results are shown in Table 6.40. For all the phrases, the

number of comparisons required to search the phrase from the source file is

comparatively very less. The graph of the same is shown in figure 6.33.

6.7.4 Searching phrase using Boyer-Moore Algorithm

Table 6.41 Comparison of Number of Comparison of searching phrases (B-M)

 Number of Comparison

Phrase Normal
CBTC-
B

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
E

1 273094 181791 186317 175407 226627 182444
2 454241 346205 351386 316786 309123 292934
3 202058 117681 192259 181939 124314 169281
4 231102 178385 252056 245504 155997 242782
5 231727 163871 303440 297061 316005 300961

The test was executed on five different phrases from Bible.txt using Boyer - Moore

searching algorithm and the results are shown in Table 6.41. For all the phrases except

 183

phrase 5, the number of comparisons required to search the phrase from the source file is

comparatively very less. The graph of the same is shown in figure 6.34.

6.7.5 Searching phrase using Quick Search Algorithm

Table 6.42 Comparison of Number of Comparison of searching phrases (QS)

 Number of Comparison

Phrase Normal
CBTC-
B

WBTC-
A

WBTC-
B

WBTC-
C

WBTC-
E

1 286370 213096 330333 291865 244510 307122
2 463223 420863 641785 535412 329022 487222
3 196110 113781 221497 156797 115798 151438
4 217390 149461 229106 181978 144097 185361
5 221810 163649 527188 482589 307317 474608

The test was executed on five different phrases from Bible.txt using Quick Search

searching algorithm and the results are shown in Table 6.42. For CBTC-B and WBTC-C

the numbers of comparisons are less. The results are not outperforming for other

methods. The graph of the same is shown in figure 6.35.

 6.7.6 Overall Comparison of Searching Algorithms

Table 6.43 Overall comparison of searching algorithms for proposed methods

 Number of Comparison
Sr.
No

Searching
Methods Normal CBTC-B WBTC-A WBTC-B WBTC-C WBTC-E

1 KR 20236780 13922679 12239808 12174073 12035975 12314364
2 KMP 40058036 27685868 24322957 24185688 23977473 24484823
3 BF 21233278 14565803 15138274 14034436 12297885 14389687
4 BM 1392222 987933 1285458 1216697 1132066 1188402
5 QS 1384903 1060850 1949909 1648641 1140744 1605751

The summary of the number of comparisons of searching algorithms for different

proposed methods is given in Table 6.43. It is seen that the most effective method for

searching and retrieval of phrases from the compressed form is WBTC-C by using

Boyer-Moore algorithm.

 184

Number of Comparison (Karp-Rabin)

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

1 2 3 4 5

Phrases

C
om

pa
ris

on

Normal
CBTC-B
WBTC-A
WBTC-B
WBTC-C
WBTC-E

Figure 6.31 Number of Comparisons for Normal and Proposed Methods (K-R)

Number of Comparison (KMP)

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000
8000000
9000000

1 2 3 4 5

Phrases

C
om

pa
ris

on

Normal
CBTC-B
WBTC-A
WBTC-B
WBTC-C
WBTC-E

Figure 6.32 Number of Comparisons for Normal and Proposed Methods (KMP)

 185

Number of Comparison (Brute-Force)

0

1000000

2000000

3000000

4000000

5000000

1 2 3 4 5

Phrases

C
om

pa
ris

on

Normal
CBTC-B
WBTC-A
WBTC-B
WBTC-C
WBTC-E

Figure 6.33 Number of Comparisons for Normal and Proposed Methods (BF)

Number of Comparison (Boyer-Moore)

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

1 2 3 4 5

Phrases

C
om

pa
ris

on

Normal

CBTC-B

WBTC-A

WBTC-B

WBTC-C

WBTC-E

Figure 6.34 Number of Comparisons for Normal and Proposed Methods (BM)

 186

Number of Comparison (Quick Search)

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5

Phrases

C
om

pa
ris

on

Normal

CBTC-B

WBTC-A

WBTC-B

WBTC-C

WBTC-E

Figure 6.35 Number of Comparisons for Normal and Proposed Methods (QS)

6.8 DECOMPRESSION TIME

The time required for decompressing the file using Bzip method and using WBTC-C

method is computed for all corpuses. Five times the files were decompressed and the

average decompression time is computed. The results are shown in following tables.

6.8.1 Decompression Time for E-Text Corpus

Table 6.44 Decompression Time for E-Text Corpus (Bzip method)

Bzip Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 burroughst 1594 1610 1594 1594 1593 1597.00
2 dickens 734 703 719 719 704 715.80
3 doyle 828 750 703 703 703 737.40
4 emerson 547 500 500 500 500 509.40
5 hawthorne 469 469 469 469 468 468.80
6 irving 578 609 547 546 547 565.40
7 kant 735 734 734 750 766 743.80
8 milton 390 391 391 407 391 394.00
9 plato 516 516 515 531 515 518.60

 Total 6391 6282 6172 6219 6187 6250.20

 187

Table 6.45 Decompression Time for E-Text Corpus (WBTC-C method)

WBTC-C Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 burroughst 1219 1203 1203 1218 1203 1209.20
2 dickens 656 640 657 641 625 643.80
3 doyle 672 641 625 609 641 637.60
4 emerson 469 453 453 484 453 462.40
5 hawthorne 422 437 421 437 407 424.80
6 irving 469 485 469 469 484 475.20
7 kant 579 594 594 593 594 590.80
8 milton 375 360 344 344 345 353.60
9 plato 468 453 469 453 453 459.20

 Total 5329 5266 5235 5248 5205 5256.60

The test for calculating decompression time was executed on E-Text Corpus for both

methods Bzip2 and WBTC-C, and the results are shown in Table 6.44 and Table 6.45.

For the entire corpus, the total decompression time required for WBTC-C is less than

Bzip2 method. The time required to decompress WBTC-C compressed file is less than

15.90% by the time required to decompress Bzip2 compressed file.

6.8.2 Decompression Time for European Parliament Corpus

Table 6.46 Decompression Time for European Parliament Corpus (Bzip method)

Bzip Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 europarl1 812 797 812 797 813 806.20
2 europarl2 813 859 828 875 797 834.40
3 europarl3 812 828 860 812 937 849.80
4 europarl4 813 813 906 813 828 834.60
5 europarl5 844 812 812 860 813 828.20
6 europarl6 812 828 828 828 812 821.60
7 europarl7 859 875 829 875 828 853.20
8 europarl8 813 813 796 797 938 831.40
9 europarl9 812 828 954 828 828 850.00
10 europarl10 829 812 796 797 906 828.00

 Total 8219 8265 8421 8282 8500 8337.40

 188

Table 6.47 Decompression Time for European Parliament Corpus

(WBTC-C method)

WBTC-C Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 europarl1 641 640 625 625 625 631.20
2 europarl2 625 625 750 626 641 653.40
3 europarl3 657 641 625 655 625 640.60
4 europarl4 797 625 641 641 782 697.20
5 europarl5 625 641 640 641 624 634.20
6 europarl6 656 639 625 625 641 637.20
7 europarl7 656 625 672 641 641 647.00
8 europarl8 626 657 625 625 625 631.60
9 europarl9 639 625 640 703 641 649.60
10 europarl10 641 641 626 641 640 637.80

 Total 6563 6359 6469 6423 6485 6459.80

The test for calculating decompression time was executed on European Parliament

Corpus for both methods Bzip2 and WBTC-C, and the results are shown in Table 6.46

and Table 6.47. For the entire corpus, the total decompression time required for WBTC-C

is less than Bzip2 method. The time required to decompress WBTC-C compressed file is

less than 22.52% by the time required to decompress Bzip2 compressed file.

 189

6.8.3 Decompression Time for Enronsent Corpus

Table 6.48 Decompression Time for Enronsent Corpus (Bzip2 method)

Bzip Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 enronsent00 359 359 360 360 359 359.40
2 enronsent01 328 329 328 328 329 328.40
3 enronsent02 438 468 609 437 546 499.60
4 enronsent03 375 375 375 375 375 375.00
5 enronsent04 391 422 391 406 391 400.20
6 enronsent05 375 360 359 532 359 397.00
7 enronsent06 437 359 359 359 375 377.80
8 enronsent07 422 421 563 469 610 497.00
9 enronsent08 359 360 359 359 360 359.40
10 enronsent09 297 297 297 281 281 290.60
11 enronsent10 360 343 344 344 359 350.00
12 enronsent11 360 329 312 328 329 331.60
13 enronsent12 421 359 484 359 421 408.80
14 enronsent13 360 359 344 407 360 366.00
15 enronsent14 484 344 344 359 344 375.00
16 enronsent15 313 313 296 297 296 303.00
17 enronsent16 312 328 329 312 313 318.80
18 enronsent17 313 297 296 297 312 303.00
19 enronsent18 328 312 1454 312 406 562.40
 Total 7032 6734 8203 6921 7125 7203.00

 190

Table 6.49 Decompression Time for Enronsent Corpus (WBTC-C method)

WBTC-C Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 enronsent00 375 344 343 345 391 359.60
2 enronsent01 343 344 344 343 328 340.40
3 enronsent02 406 391 422 421 422 412.40
4 enronsent03 438 344 359 376 360 375.40
5 enronsent04 406 1390 390 374 390 590.00
6 enronsent05 344 344 345 391 344 353.60
7 enronsent06 359 358 530 437 358 408.40
8 enronsent07 406 392 391 407 407 400.60
9 enronsent08 360 374 360 359 344 359.40
10 enronsent09 297 281 297 297 312 296.80
11 enronsent10 375 392 343 360 438 381.60
12 enronsent11 344 343 344 344 343 343.60
13 enronsent12 359 343 360 359 391 362.40
14 enronsent13 360 376 359 453 344 378.40
15 enronsent14 390 1343 360 344 360 559.40
16 enronsent15 311 329 312 328 1296 515.20
17 enronsent16 345 328 328 328 327 331.20
18 enronsent17 327 1329 359 344 329 537.60
19 enronsent18 312 328 329 328 328 325.00

 Total 6857 9673 6875 6938 7812 7631.00

The test for calculating decompression time was executed on Enronsent Corpus for both

methods Bzip2 and WBTC-C, and the results are shown in Table 6.48 and Table 6.49. In

the case of Enronsent corpus only, the total decompression time required for WBTC-C is

slightly more than Bzip2 method. The time required to decompress WBTC-C compressed

file is more than5.94% by the time required to decompress Bzip2 compressed file.

 191

6.8.4 Decompression Time for Project Gutenberg Corpus

Table 6.50 Decompression Time for Project Gutenberg Corpus (Bzip method)

Bzip Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 leonard 282 282 281 281 1281 481.40
2 pg1342 218 172 172 172 172 181.20
3 pg1399 500 390 375 391 1375 606.20
4 pg2981 1125 1125 1110 1110 1125 1119.00
5 pg3207 250 250 250 250 250 250.00
6 pg33 250 141 140 140 140 162.20
7 pg514 266 281 250 250 235 256.40
8 pg76 156 156 250 172 156 178.00
 Total 3047 2797 2828 2766 4734 3234.40

Table 6.51 Decompression Time for Project Gutenberg Corpus (WBTC-C method)

WBTC-C Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 leonard 297 312 312 313 312 309.20
2 pg1342 220 281 219 203 203 225.20
3 pg1399 374 359 359 360 375 365.40
4 pg2981 891 890 922 906 890 899.80
5 pg3207 265 297 312 282 297 290.60
6 pg33 204 203 219 251 203 216.00
7 pg514 265 265 265 266 313 274.80
8 pg76 218 204 219 312 218 234.20
 Total 2734 2811 2827 2893 2811 2815.20

The test for calculating decompression time was executed on Project Gutenberg Corpus

for both methods Bzip2 and WBTC-C, and the results are shown in Table 6.50 and Table

6.51. For the entire corpus, the total decompression time required for WBTC-C is less

than Bzip2 method. The time required to decompress WBTC-C compressed file is less

than 12.96% by the time required to decompress Bzip2 compressed file.

 192

6.8.5 Decompression Time for Mixed Corpus

Table 6.52 Decompression Time for Mixed Corpus (Bzip method)

Bzip Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 bible.txt 671 625 625 687 609 643.40
2 world192.txt 422 421 421 422 422 421.60
3 anne11.txt 110 110 110 109 109 109.60
4 enronsent02 438 468 609 437 546 499.60
5 pg10.txt 687 687 687 672 688 684.20

 Total 2328 2311 2452 2327 2374 2358.40

Table 6.53 Decompression Time for Mixed Corpus (WBTC-C method)

WBTC-C Decompression Time (DT)
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 bible.txt 516 517 531 516 501 516.20
2 world192.txt 453 422 438 406 422 428.20
3 anne11.txt 187 186 187 173 187 184.00
4 enronsent02 406 391 422 421 422 412.40
5 pg10.txt 594 578 578 609 594 590.60
 Total 2156 2094 3173 2125 2126 2334.80

The test for calculating decompression time was executed on Mixed Corpus for both

methods Bzip2 and WBTC-C, and the results are shown in Table 6.52 and Table 6.53.

For the entire corpus, the total decompression time required for WBTC-C is slightly less

than Bzip2 method. The time required to decompress WBTC-C compressed file is less

than 1% by the time required to decompress Bzip2 compressed file.

6.8.6 Decompression Time for All Corpus

Table 6.54 Decompression Time for All corpuses (Bzip method)

Bzip Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 Common 2328 2311 2452 2327 2374 2358.40
2 Authors 6391 6282 6172 6219 6187 6250.20
3 Europarl 8219 8265 8421 8282 8500 8337.40
4 Enronsent 7032 6734 8203 6921 7125 7203.00
5 Gutenberg 3047 2797 2828 2766 4734 3234.40

 Total 27017 26389 28076 26515 28920 27383.40

 193

Table 6.55 Decompression Time for All corpuses (WBTC-C method)

WBTC-C Decompression Time (DT) in milliseconds
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average

1 Common 2156 2094 3173 2125 2126 2334.80
2 Authors 5329 5266 5235 5248 5205 5256.60
3 Europarl 6563 6359 6469 6423 6485 6459.80
4 Enronsent 6857 9673 6875 6938 7812 7631.00
5 Gutenberg 2734 2811 2827 2893 2811 2815.20

 Total 23639 26203 24579 23627 24439 24497.40

The overall decompression time required for all corpuses for both methods Bzip2 and

WBTC-C are shown in Table 6.54 and Table 6.55. For all corpuses, the total

decompression time required for WBTC-C is less than Bzip2 method. The time required

to decompress WBTC-C compressed file is less than 10.55% by the time required to

decompress Bzip2 compressed file. The graphs of decompression time for Bzip2 and

WBTC-C methods are shown in Figure 6.36 to Figure 6.41 for all corpuses.

Comparison of Decompression Time (E-Text Corpus)

1597.00

715.80

737.40

509.40

468.80

565.40

743.80

394.00

518.60

1209.20

643.80

637.60

462.40

424.80

475.20

590.80

353.60

459.20

0 200 400 600 800 1000 1200 1400 1600 1800

burroughst

dickens

doyle

emerson

hawthorne

irving

kant

milton

plato

Fi
le

 N
am

e

Time (ms)

WBTC-C
Bzip

Figure 6.36 Decompression time for E-Text Corpus

 194

Comparison of Decompression Time (European Parliament
Corpus)

806.20

834.40

849.80

834.60

828.20

821.60

853.20

831.40

850.00

828.00

631.20

653.40

640.60

697.20

634.20

637.20

647.00

631.60

649.60

637.80

600 650 700 750 800 850 900

europarl1

europarl2

europarl3

europarl4

europarl5

europarl6

europarl7

europarl8

europarl9

europarl10
Fi

le
 N

am
e

Time (ms)

WBTC-C
Bzip

Figure 6.37 Decompression time for European Parliament Corpus

Comparison of Decompression Time (Enronsent Corpus)

359.40

328.40

499.60

375.00

400.20

397.00

377.80

497.00

359.60

340.40

412.40

375.40

590.00

353.60

408.40

400.60

300 350 400 450 500 550 600 650

enronsent00

enronsent01

enronsent02

enronsent03

enronsent04

enronsent05

enronsent06

enronsent07

Fi
le

 N
am

e

Time (ms)

WBTC-C
Bzip

Figure 6.38 Decompression time for Enronsent Corpus

 195

Comparison of Decompression Time (Project Gutenberg
Corpus)

481.40

181.20

606.20

1119.00

250.00

162.20

256.40

178.00

309.20

225.20

365.40

899.80

290.60

216.00

274.80

234.20

100 300 500 700 900 1100 1300

leonard

pg1342

pg1399

pg2981

pg3207

pg33

pg514

pg76
Fi

le
 N

am
e

Time (ms)

WBTC-C
Bzip

Figure 6.39 Decompression time for Project Gutenberg Corpus

Comparison of Decompression Time (Mixed Corpus)

643.40

421.60

109.60

499.60

684.20

516.20

428.20

184.00

412.40

590.60

0 100 200 300 400 500 600 700 800

bible.txt

world192.txt

anne11.txt

enronsent02

pg10.txt

Fi
le

 N
am

e

Time (ms)

WBTC-C
Bzip

Figure 6.40 Decompression time for Mixed Corpus

 196

Comparison of Decompression Time (Overall)

2358.40

6250.20

8337.40

7203.00

3234.40

2334.80

5256.60

6459.80

7631.00

2815.20

2000 3000 4000 5000 6000 7000 8000 9000

Common

Authors

Europarl

Enronsent

Gutenberg
C

or
pu

s

Time (ms)

WBTC-C
Bzip

Figure 6.41 Decompression time for All Corpus

CHAPTER 7

CONCLUSION AND FUTURE WORK

 197

7

CONCLUSION AND FUTURE WORK

We had compared the performance of our algorithms to other text compression

algorithms, including standard compression algorithms such as Arithmetic Coding,

Bzip2, PPMd, PPMII and LZMA. We have tested our algorithms on 51 different text files

of different corpus. Our results show that in most cases our preprocessing algorithms lead

to significant improvement in compression ratio. The compression ratio of our methods

combined with a standard compression algorithm is typically 0.21% to 6.16% higher than

that of the same standard compression algorithm when used alone. All methods proposed

by us are language dependent and are useful for text files.

For large files the compression ratio improves where as for small files the compression

ratio bit deteriorates. Three types of dictionaries viz., static, semi-dynamic and dynamic

dictionary are used by us in proposed techniques. Except method WBTC-E all other

methods proposed by us are useful for direct searching the phrases in the compressed file.

The phrase to be searched is to be compressed first by respective method and then using

standard matching algorithm, we can search and retrieve the phrase directly from the

compressed file. From experimental results it is seen that the number of comparisons

normally required to search the phrases from a compressed file is less than that of

comparison required to search the phrase from a normal decompressed file. We have used

five methods to check this viz. Karp-Rabin algorithm, Knuth-Morris-Pratt algorithm,

Brute-Force algorithm, Boyer – Moore algorithm and Quick Search algorithm. In all five

algorithms it is seen that the number of comparisons to search the phrase in compressed

file are less than that searching the phrase from normal file.

We had compared among themselves all methods proposed by us and after considering

the different parameters such as compression ratio, generalness and suitability for

searching, we come to conclusion that method WBTC-C is optimum choice for

compressing the text file.

 198

The features of WBTC-C are that it uses two-dimensional dictionary. The total numbers

of codes representing the words are less than the method using the single dimension

dictionary. The dictionary is semi-dynamic i.e. created for a particular file and is a part of

compressed file and hence useful for searching the phrase directly from the compressed

file. The compression ratio is improved by 0.46% to 2.12% (on an average of 1.28%)

when combined with standard compression techniques such as Bzip2, PPMd, PPMII and

LZMA. We can retrieve the data randomly from any point in the compressed file. The

only limitation is that the retrieval can be done from the point where there is a change in

row, so that we will know the row number and then from that point onward the data can

be retrieved.

During compression process we store a unique symbol 0xFF (i.e. 255) to indicate change

in row followed by row number. If we try to retrieve from any random location, then at

that point we are not knowing the current row number, and without current row number

we cannot retrieve the words from the dictionary, therefore first we have to scan the

compressed file for code of change in row, because after that the new row number is

stored in compressed file. Once we get the new row number, then from that point

onwards we will keep track of row number so that we will be able to decompress the

words from the dictionary with the column number reads from the compressed file. The

method will fail in the case if there is no change in row number found in the compressed

file from the point from where we want to decompressed and retrieve the data. The

probability of such case will occur only if we will try to retrieve the data near to the end

of file. The decompression time required is also improved in WBTC-C method.

If we compare WBTC-C with other methods WBTC-A and WBTC-B, where the semi-

dynamic dictionary used is of single dimension, we find that the compression ratio of

former is better than the later ones when used with Bzip2 and PPMd. The compression

ratio of WBTC-D is more than that of WBTC-C, but it is not useful for direct searching

the phrases in the compressed form, as it is using the dynamic dictionary which is

implicitly build during the compression process and is not stored along with compressed

file, instead while decompressing the same kind of dynamic dictionary is build up during

the decompression process.

 199

The last method WBTC-E proposed by us is giving an average improvement of 8.74%

when used as pre-stage compression technique to standard compression techniques such

as Bzip2, PPMd, PPMII and LZMA. This technique is also using two-dimensional static

dictionary similar to that of WBTC-C. The searching of phrase directly in the compressed

file is also feasible in this technique. The only drawback of this technique is that it is

suitable for text files from a particular application domain, because in this technique, an

already created static dictionary is used instead of semi-dynamic dictionary.

For example, if we are having a history of medical records of patients in text files, then in

all the records the words related to medical fields will exists. Most of the words will be

repeated in all the text files. Static dictionary will be created from all the records and then

if we compress a single file by using this static dictionary, the compression ratio will be

outperforming. But at the same time, if we try to compress an another file not belonging

to the medical category, then even if we compress that file using static dictionary, we

won’t be able to find the words in the static dictionary and hence compression ratio won’t

be effective. That’s why we have said that method WBTC-E is suitable only to a

particular application domain, whereas in method WBTC-C an dictionary is created for

that particular file only which is to be compressed.

If we compare the compression ratio of WBTC-C and WBTC-E, then no doubt the

compression ratio of WBTC-E is comparatively more, but WBTC-C is applicable to any

kind of text file of any particular application domain, and also the compression ratio of

WBTC-C is better than CBTC-B, WBTC-A, WBTC-B. Therefore, we can say that the

method WBTC-C is the most versatile and robust among other methods proposed by us.

Another method CBTC-B proposed by us is giving better compression ratio when used as

pre-stage compression to Arithmetic Coding. The compression ratio achieved by this

method is improved by 5.38% as compared to Arithmetic Coding method when used

alone.

In WBTC-C method we have used 8-bit length to encode the words whereas in WBTC-E

method we have used 16-bit length to encode the words. Therefore the number of words

we had kept in the dictionary are 16,446 and 1,62,815 respectively. The maximum file

size from our corpus is up to 10MB. After analyzing the word statistics of the corpus, we

 200

come to conclusion that the numbers of words we have considered are sufficient for the

corpus taken and hence the length of encoding bits.

A number of areas for further development remain. It will be interesting to see the effect

of compression ratio if the dimension of the dictionary is increased from two-dimension

to three-dimension. The encoding length of word from the dictionary can be increased

from 16-bit to 32-bit thereby increasing the number of words to be kept in the dictionary.

The present implementation, keeps the dictionaries separately from the compressed file.

What will be the effect on compression ratio if dictionaries are merged in the compressed

file? Our implementation is executed as a separate process from the standard compression

techniques. It will be interesting to see the effect on the compression ratio if our method

implementations can be embedded with the implementation of Bzip2, PPMd, PPMII and

LZMA, so that an integrated compression can be performed on text files.

BIBLIOGRAPHY

 201

BIBLIOGRAPHY

[1] TREC. “Official webpage for TREC - Text REtrieval Conference series.
http://trec.nist.gov." 2000.

[2] P. Lyman, H. R. Varian, Kirsten Swearingen, Peter Charles, Nathan Good, Laheem
Lamar Jordan, and Joyojeet Pal. “How Much Information? 2003,
http://www.sims.berkeley.edu/research/projects/how-much-info-2003." Technical report,
School of Information Management and Systems at the University of California at
Berkeley, 2003.

[3] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

[4] William B. Franks and Ricardo Baeza-Yates. Information Retrieval: Data Structures
and Algorithms. Prentice Hall PTR, 1992.

[5] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kaufman, second edition, 1999.

[6] R.S. Boyer and J.S. Moore. “A fast string searching algorithm.” Communications of
the ACM, 20(10):762-772, October 1977.

[7] D.E. Knuth, J.H. Morris, and V.R. Pratt. “Fast pattern matching in strings." SIAM
Journal of Computing, 6(2):323-350, June 1977.

[8] David Salomon. “Data Compression: The Complete Reference.” Springer-Verlag, 2nd
edition, 2000.

[9] D. A. Lelewer and D. S. Hirschberg, “Data Compression”, ACM Computing Surveys,
19(3):261-296, September 1987.

[10] Witten, R. Neal, and J. Cleary, “Arithmetic Coding for Data Compression”,
Communications of the ACM, Vol. 30(6), pp. 520-540, June 1987.

[11] T. Bell, J. Cleary, I. Witten, “Text Compression”, Prentice Hall, 1990

[12] C.E. Shannon. “Prediction and Entropy of Printed English." Bell Systems Technical
Journal, 30:55, 1951.

[13] D.A. Huffman. A Method for the Construction of Minimum Redundancy Codes."
Proc. IRE, 40(9):1098-1101, September 1952.

[14] Md. Ziaul Karim Zia, Dewan Md. Fayzur Rahman, and Chowdhury Mofizur
Rahman “Two-Level Dictionary Based Text Compression Scheme”, Proceedings of 11th

 202

International Conference on Computer and Information Technology (ICCIT 2008),
Khulna, Bangladesh December, 2008, pp. 13-18

[15] J. Rissanen and G. G. Langdon. “Arithmetic Coding”, IBM Journal of Research and
Development, 23(2):149-162, 1979.

[16] Khalid Sayood. “Introduction to Data Compression”. Morgan Kaufmann, 2nd
edition, 2000.

[17] J.G. Cleary and I.H. Witten. “Data Compression using Adaptive Coding and Partial
String Matching." IEEE Transactions on Communications, COM-32:396-402, April
1984.

[18] A. Moffat. “Linear Time Adaptive Arithmetic Coding." IEEE Transactions on
Information Theory, 36(2):401-406, March 1990.

[19] Linda A Curl and Brent J Hussing. “Introductory Computing: a New Approach." In
Proc. SIGCSE 93, pp. 131-135, March 1993.

[20] T.C. Bell and A. Moffat. “A Note on the DMC Data Compression Scheme."
Computer Journal, 32(1):16-20, February 1989.

[21] J. Ziv and A. Lempel. “A Universal Algorithm for Sequential Data Compression."
IEEE Transactions on Information Theory, IT-23:337-343, 1977.

[22] J. Ziv and A. Lempel. “Compression of Individual Sequences via Variable Rate
Coding." IEEE Transactions on Information Theory, IT-24:530-536, 1978.

[23] T.A. Welch. “A Technique for High Performance Data Compression." IEEE
Computer, 17:8-20, June 1984.

[24] Kruse H, Mukherjee A. Preprocessing Text to Improve Compression Ratios. In
Storer JA, Cohn M, editors, Proceedings of the 1998 IEEE Data Compression
Conference, IEEE Computer Society Press, Los Alamitos, California, 1998; 556.

[25] Smirnov MA. Techniques to enhance compression of texts on natural languages for
lossless data compression methods. Proceedings of V session of post-graduate students
and young scientists of St. Petersburg, State University of Aerospace Instrumentation,
Saint-Petersburg, Russia, 2002.

[26] Sun W, Mukherjee A, Zhang N. A Dictionary-based Multi-Corpora Text
Compression System. In Storer JA, Cohn M, editors, Proceedings of the 2003 IEEE Data
Compression Conference, IEEE Computer Society Press, Los Alamitos, California, 2003;
448.

 203

[27] M. Burrows and D.J. Wheeler. “A Block-Sorting Lossless Data Compression
Algorithm." Technical Report, Digital Equipment Corporation, Palo Alto, California,
1994.

[28] Andersson, A. and Nilsson, S. A New Efficient Radix Sort. In 35th Symposium on
Foundations of Computer Science, 1994, pp. 714-721

[29] Andersson, A. and Nilsson, S.. Implementing Radixsort. The ACM Journal of
Experimental Algorithmics. Volume 3, Article 7, 1998.

[30] Fenwick, P. Improvements to the Block Sorting Text Compression Algorithm.
Technical Report 120, University of Auckland, New Zealand, Department of Computer
Science. 1995.

[31] Kurtz, S. Reducing the Space Requirement of Suffix Trees. Report 98-03,
Technische Fakultat, Universitat Bielefeld. 1998.

[32] Kurtz, S. and Balkenhol, B. Space Efficient Linear Time Computation of the
Burrows and Wheeler-Transformation. ALTHÖFER, I. ET AL. Eds. Numbers,
Information and complexity, Festschrift in honour of Rudolf Ahlswede's 60th Birthday,
1999, pp. 375-384.

[33] Sadakane, K.. Improvements of Speed and Performance of Data Compression Based
on Dictionary and Context Similarity. Master's thesis, Department of Information
Science, Faculty of Science, University of Tokyo, Japan. 1997

[34] Sadakane, K. Unifying Text Search And Compression -Suffix Sorting, Block Sorting
and Suffix Arrays. PhD thesis, University of Tokyo, Japan. 2000.

[35] Larsson, N.J. Structures of String Matching and Data Compression. PhD thesis,
Department of Computer Science, Lund University, Sweden. 1999.

[36] Seward, J. On the performance of BWT sorting algorithms. In Proceedings of the
IEEE Data Compression Conference 2000, Snowbird, Utah, STORER, J.A. AND COHN,
M. Eds. 2000, pp. 173-182.

[37] Itoh, H. and Tanaka, H. 1999. An Efficient Method for Construction of Suffix
Arrays. IPSJ Transactions on Databases, Abstract Vol.41, No. SIG01 – 004.

[38] Kao, T.-H. Improving Suffix-Array Construction Algorithms with Applications.
Master's thesis, Department of Computer Science, Gunma University, Japan. 2001.

[39] Manzini, G. and Ferragina, P. Engineering a Lightweight Suffix Array Construction
Algorithm. Lecture Notes in Computer Science, Springer Verlag, Volume 2461, 2002,
pp. 698-710.

 204

[40] Schindler, M. A Fast Block-sorting Algorithm for lossless Data Compression. In
Proceedings of the IEEE Data Compression Conference 1997, Snowbird, Utah,
STORER, J.A. AND COHN, M. Eds. 1997, pp. 469.

[41] Balkenhol, B., Kurtz, S. and Shtarkov, Y.M. Modifications of the Burrows and
Wheeler Data Compression Algorithm. In Proceedings of the IEEE Data Compression
Conference 1999, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 1999, pp. 188-
197.

[42] Arnavut, Z. and Magliveras, S.S. Block Sorting and Compression. In Proceedings of
the IEEE Data Compression Conference 1997, Snowbird, Utah, STORER, J.A. AND
COHN, M. Eds. 1997, pp. 181-190.

[43] Deorowicz, S. Improvements to Burrows-Wheeler Compression Algorithm.
Software - Practice and Experience 2000, 30(13), 2000, pp. 1465-1483.

[44] Fenwick, P. Improvements to the Block Sorting Text Compression Algorithm.
Technical Report 120, University of Auckland, New Zealand, Department of Computer
Science. 1995.

[45] Fenwick, P. Block Sorting Text Compression - Final Report. Technical Report 130,
University of Auckland, New Zealand, Department of Computer Science. 1996.

[46] Balkenhol, B., Kurtz, S. And Shtarkov, Y.M.. Modifications of the Burrows and
Wheeler Data Compression Algorithm. In Proceedings of the IEEE Data Compression
Conference 1999, Snowbird, Utah, STORER, J.A. AND COHN, M. Eds. 1999, pp. 188-
197.

[47] Amir A., Benson G., ‘Efficient two-dimensional compressed matching,’ Proc. 2nd
IEEE Data Compression Conference, 1992, pp. 279-288.

[48] C. Shannon, “A Mathematical Theory of Communication,” Bell System. Tech. J. 27,
379-423 (July 1948).

[49] N. Abramson, Information Theory and Coding, McGraw-Hill Book Co., Inc., New
York, 1963.

[50] F. Jelinek, Probabilistic Information Theory, McGraw-Hill Book Co., Inc., New
York, 1968.

[51] J. Schalkwijk, “An Algorithm for Source Coding,” IEEE Trans. Info. Theory IT-18,
395 (1972).

[52] T. M. Cover, “Enumerative Source Coding,” IEEE Trans. Info. Theory IT-19, 73
(1973).

 205

[53] J. J. Rissanen, “Generalized Kraft Inequality and Arithmetic Coding,” IBMJ. Res.
Develop. 20, 198-203 (1976).

[54] R. Pasco, “Source Coding Algorithms for Fast Data Compression,” Ph.D. Thesis,
Department of Electrical Engineering, Stanford University, CA, 1976.

[55] Glen G. Langdon, Jr. and Jorma Rissanen, “Compression of Black-White Images
with Arithmetic Coding,’’ IEEE Trans. Commun. COM-29,858-867 (June 1981).

[56] Frank Rubin, “Arithmetic Stream Coding Using Fixed Precision Registers,” IEEE
Trans. Info. Theory lT-25,672-675 (November 1979).

[57] C. B. Jones, “An Efficient Coding System for Long Source Sequences,” IEEE Trans.
Info. TheoryIT-27,280-291 (May 1981).

[58] G. N. N. Martin, “Range Encoding: an Algorithm for Removing Redundancy from a
Digitized Message,’’ presented at the Video and Data Recording Conference,
Southampton, England, July 1979.

[59] J. Rissanen, “Arithmetic Coding as Number Representations,” Acta Polyt.
Scandinavica Math. 34, 44-51 (December 1979).

[60] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K.Wei. A locally adaptive data
compression algorithm. Communications of the ACM, Vol. 29, No. 4, April 1986, pp.
320–330.

[61] A. Moffat. Implementing the PPM Data Compression Scheme. IEEE Transactions
on Communications, COM-38:1917 – 1921, November 1990

[62] Paul Glor Howard. “The Design and Analysis of Efficient Lossless Data
Compression Systems”, PhD Thesis, Department of Computer Science, Brown
University 1993.

[63] Shkarin, D. PPM: one step to practicality. In Proceedings of Data Compression
Conference 2002, pp 202 – 211

[64] Bloom, C. Solving the problems of context modeling.
http://www.cbloom.com/papers/ppmz.zip, 1998

[65] Igor Pavlov, “7z format”, http://www.7-zip.org/7z.html.

[66] Karp, R.M., Rabin, M.O.. Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev. 31(2):249–260, 1987.

[67] J.H. Morris Jr. and V.R. Pratt, ‘A linear pattern-matching algorithm’, Report 40,
University of California, Berkeley, 1970.

 206

[68] D.M. Sunday, ‘A very fast substring search algorithm’, Comm. ACM, 33, 132–142
(1990).

[69] P. D. Michailidis; K. G. Margaritis, “On-line string matching algorithms: survey and
experimental results”, International Journal of Computer Mathematics, 1029-0265,
Volume 76, Issue 4, 2001, Pages 411 – 434.

[70] A. Moffat, "Word–based Text Compression," Software – Practice and Experience,
pp. 185–198, 1989.

[71] N. Horspool and G. Cormack, "Constructing Word–Based Text Compression
Algorithms," Proceedings of the IEEE Data Compression Conference 1992, Snowbird,
pp. 62–71.

[72] W. Teahan and J. Cleary, "The Entropy of English using PPM–Based Models,"
Proceedings of the IEEE Data Compression Conference 1996, Snowbird, pp. 53–62.

[73] W. Teahan and J. Cleary, "Models of English Text," Proceedings of the IEEE Data
Compression Conference 1997, Snowbird, pp. 12–21.

[74] W. Teahan, "Modelling English text," Ph.D. dissertation, Department of Computer
Science, University of Waikato, New Zealand, 1998.

[75] B. Chapin and S. Tate, "Preprocessing Text to Improve Compression Ratios,"
Proceedings of the IEEE Data Compression Conference 1998, Snowbird, p. 532.

[76] B. Chapin, "Higher Compression from the Burrows–Wheeler Transform with new
Algorithms for the List Update Problem," Ph.D. dissertation, Department of Computer
Science, University of North Texas, 2001.

[77] B. Balkenhol and Y. Shtarkov, "One attempt of a compression algorithm using the
BWT," SFB343: Discrete Structures in Mathematics, Falculty of Mathematics,
University of Bielefeld, Germany, 1999.

[78] H. Kruse and A. Mukherjee, "Improving Text Compression Ratios with the
Burrows–Wheeler Transform," Proceedings of the IEEE Data Compression Conference
1999, Snowbird, p. 536.

[79] S. Grabowski, "Text Preprocessing for Burrows–Wheeler Block–Sorting
Compression," VII Konferencja Sieci i Systemy Informatyczne – Teoria, Projekty,
Wdrozenia, Lodz, Poland, 1999.

[80] R. Franceschini, H. Kruse, N. Zhang, R. Iqbal and A. Mukherjee, "Lossless,
Reversible Transformations that Improve Text Compression Ratios," Preprint of the M5
Lab, University of Central Florida, 2000.

 207

[81] F. Awan. N. Zhang, N. Motgi, R. Iqbal and A. Mukherjee, "LIPT: A Reversible
Lossless Text Transform to Improve Compression Performance," Proceedings of the
IEEE Data Compression Conference 2001, Snowbird, pp. 481–210.

[82] R. Isal and A. Moffat, "Parsing Strategies for BWT Compression," Proceedings of
the IEEE Data Compression Conference 2001, Snowbird, pp. 429 - 438.

[83] R. Isal, A. Moffat and A. Ngai, "Enhanced Word–Based Block–Sorting Text
Compression," Proceedings of the twenty–fifth Australasian conference on Computer
science, pp. 129 - 138, 2002.

[84] W. Teahan and D. Harper, "Combining PPM Models Using a Text Mining
Approach," Proceedings of the IEEE Data Compression Conference 2001, Snowbird, pp.
153–162.

[85] W. F. Frakes, R. B. Yates Ed. Information Retrieval, Data Structures & Algorithms.
Prentics Hall 1992.

[86] G. H. Gonnet, R. Beaza-Yates. Handbook of Algorithms and Data Structures.
Addison-Wesley Publishing, 1991.

 208

APPENDIX A – Coding of CBTC-B

// Source code for Method CBTC-B
// Program for Compression

// Including header files

#include<iostream.h>
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>
#include<dos.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaration of functions

void update_str(char,char,char,char);
void readstatistics();
void sort_char_arrays();
void remove_zero_count();
void assign_filename();
int ascii4char(char c1,char c2,char c3,char c4);
int ascii3char(char c1,char c2,char c3);
int search4char(char c1,char c2,char c3,char c4);
int search3char(char c1,char c2,char c3);
int search2char(char c1,char c2);
void search1char(char c1);

// Declaratin of variables

long single_str[256] = {0};
long double_str[26][26] = {0};
long tripple_str[26][26][26] = {0};
long quad_str[26][26][26][26] = {0};
long single_count = 0;
long double_count = 0;
long tripple_count = 0;
long quad_count = 0;
long char_count = 0;
char single_char[256][2];
char double_char[500][3];
char tripple_char[5000][4];
char quad_char[50000][5];

long int single_char_count[256];
long int double_char_count[500];
long int tripple_char_count[5000];
long int quad_char_count[50000];

char sfilename[25];
char singlefilename1[50];

 209

char doublefilename1[50];
char tripplefilename1[50];
char quadfilename1[50];
char singlefilename2[50];
char doublefilename2[50];
char tripplefilename2[50];
char quadfilename2[50];
char tfilename[25];

long int double_match = 0;
long int tripple_match = 0;
long int quad_match = 0;

FILE *fptr,*ptr;
BIT_FILE *fout;
char str[50];
long i,j,k,l;
int len;
int iflower = 1;

void main()
{
 char ch1,ch2,ch3,ch4;
 printf("Enter source file name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();

// Finding the size of the source file

 fptr = fopen(sfilename,"rb");
 long lenoffile;
 fseek(fptr,0L,2);
 lenoffile = ftell(fptr);
 fclose(fptr);

// Creating the dictionaries for 4,3 and 2 characters group
 fptr = fopen(sfilename,"rb");
 ch1 = fgetc(fptr);
 ch2 = fgetc(fptr);
 ch3 = fgetc(fptr);
 ch4 = fgetc(fptr);

 if(ch1>=97 && ch1<=97+25)
 single_str[ch1-97]++;
 if(ch2>=97 && ch2<=97+25)
 single_str[ch2-97]++;
 if(ch3>=97 && ch3<=97+25)
 single_str[ch3-97]++;
 if(ch4>=97 && ch4<=97+25)
 single_str[ch4-97]++;

 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25))
 double_str[ch1-97][ch2-97]++;
 if((ch2>=97 && ch2<=97+25) && (ch3>=97 && ch3<=97+25))

 210

 double_str[ch2-97][ch3-97]++;
 if((ch3>=97 && ch3<=97+25) && (ch4>=97 && ch4<=97+25))
 double_str[ch3-97][ch4-97]++;

 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25) && (ch3>=97
&& ch3<=97+25))
 tripple_str[ch1-97][ch2-97][ch3-97]++;
 if((ch2>=97 && ch2<=97+25) && (ch3>=97 && ch3<=97+25) && (ch4>=97
&& ch4<=97+25))
 tripple_str[ch2-97][ch3-97][ch4-97]++;

 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25) && (ch3>=97
&& ch3<=97+25) && (ch4>=97 && ch4<=97+25))
 quad_str[ch1-97][ch2-97][ch3-97][ch4-97]++;

 for(i=0;i<lenoffile-4;i++)
 {
 ch1 = ch2;
 ch2 = ch3;
 ch3 = ch4;
 ch4 = fgetc(fptr);
 update_str(ch1,ch2,ch3,ch4);
 }
 fclose(fptr);
// Removing 4,3 and 2-character groups having zero count
// and writing the non-zero count groups in the file
 remove_zero_count();

// Reading the dictionaries from the file
 readstatistics();

// Sorting the chracter groups as per their counts

 sort_char_arrays();

// Compression begins here

 fptr = fopen(sfilename,"rb");
 fout = OpenOutputBitFile(tfilename);
 int tlen=0;

// Reading 4-character group and searching in the dictionaries
 ch1 = fgetc(fptr);
 ch2 = fgetc(fptr);
 ch3 = fgetc(fptr);
 ch4 = fgetc(fptr);
 for(i=0;i<lenoffile-4;i++)
 {
// Search 4-characters group
 if(search4char(ch1,ch2,ch3,ch4))
 {
 ch1 = fgetc(fptr);
 ch2 = fgetc(fptr);
 ch3 = fgetc(fptr);
 ch4 = fgetc(fptr);
 i+=3;
 quad_match++;

 211

 continue;
 }
// Search 3-characters group
 if(search3char(ch1,ch2,ch3))
 {
 ch1 = ch4;
 ch2 = fgetc(fptr);
 ch3 = fgetc(fptr);
 ch4 = fgetc(fptr);
 i+=2;
 tripple_match++;
 continue;
 }
// Search 2-characters group
 if(search2char(ch1,ch2))
 {
 ch1 = ch3;
 ch2 = ch4;
 ch3 = fgetc(fptr);
 ch4 = fgetc(fptr);
 i+=1;
 double_match++;
 continue;
 }
// Search single character
 search1char(ch1);
 ch1 = ch2;
 ch2 = ch3;
 ch3 = ch4;
 ch4 = fgetc(fptr);
 }

 fclose(fptr);
 CloseOutputBitFile(fout);
}

int search4char(char c1,char c2,char c3,char c4)
{
 char tstr[5];
 long ti;
 tstr[0] = c1; tstr[1] = c2; tstr[2] = c3; tstr[3] = c4; tstr[4] =
'\0';
 if(ascii4char(c1,c2,c3,c4))
 {
 if(quad_str[c1-97][c2-97][c3-97][c4-97]==0)
 return 0;
 }
 unsigned long int indexvalue;
 for(ti=0; ti<quad_count; ti++)
 {
 if(strcmp(quad_char[ti],tstr) == 0)
 {
 indexvalue = ti + 49152;
 OutputBits(fout,indexvalue,16);
 return 1;
 }

 212

 }
 return 0;

}

int search3char(char c1,char c2,char c3)
{
 char tstr[4];
 long ti;
 tstr[0] = c1; tstr[1] = c2; tstr[2] = c3; tstr[3] = '\0';
 if(ascii3char(c1,c2,c3))
 {
 if(tripple_str[c1-97][c2-97][c3-97]==0)
 return 0;
 }

 unsigned long int indexvalue;
 for(ti=0; ti<tripple_count; ti++)
 {
 if(strcmp(tripple_char[ti],tstr) == 0)
 {
 indexvalue = ti + 40960;
 OutputBits(fout,indexvalue,16);
 return 1;
 }
 }
 return 0;

}
int search2char(char c1,char c2)
{
 char tstr[3];
 long ti;
 tstr[0] = c1; tstr[1] = c2; tstr[2] = '\0';
 unsigned long int indexvalue;
 for(ti=0; ti<32; ti++)
 {
 if(strcmp(double_char[ti],tstr) == 0)
 {
 indexvalue = ti + 128;
 OutputBits(fout,indexvalue,8);
 return 1;
 }
 }
 return 0;
}

void search1char(char c1)
{
 unsigned long int indexvalue = c1;
 OutputBits(fout,indexvalue,8);
}

// Updating the counts of character groups
void update_str(char ch1,char ch2,char ch3,char ch4)
{
 if(ch4>=97 && ch4<=97+25)

 213

 single_str[ch4-97]++;
 if((ch3>=97 && ch3<=97+25) && (ch4>=97 && ch4<=97+25))
 double_str[ch3-97][ch4-97]++;
 if((ch2>=97 && ch2<=97+25) && (ch3>=97 && ch3<=97+25) && (ch4>=97
&& ch4<=97+25))
 tripple_str[ch2-97][ch3-97][ch4-97]++;
 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25) && (ch3>=97
&& ch3<=97+25) && (ch4>=97 && ch4<=97+25))
 quad_str[ch1-97][ch2-97][ch3-97][ch4-97]++;
}

// Reading the dictionaries of character groups

void readstatistics()
{
 long int i=0;
 ptr = fopen(doublefilename1,"r");
 i=0;
 fscanf(ptr,"%s%ld", double_char[i],&double_char_count[i]);
 while(!feof(ptr))
 fscanf(ptr,"%s%ld",
double_char[i],&double_char_count[++i]);
 fclose(ptr);
 ptr = fopen(tripplefilename1,"r");
 i=0;
 fscanf(ptr,"%s%ld", tripple_char[i],&tripple_char_count[i]);
 while(!feof(ptr))
 fscanf(ptr,"%s%ld",
tripple_char[i],&tripple_char_count[++i]);
 fclose(ptr);
 ptr = fopen(quadfilename1,"r");
 i=0;
 fscanf(ptr,"%s%ld", quad_char[i],&quad_char_count[i]);
 while(!feof(ptr))
 fscanf(ptr,"%s%ld", quad_char[i],&quad_char_count[++i]);
 fclose(ptr);
}

// Sorting the character groups as per their counts

void sort_char_arrays()
{
 long int i,j;
 char temp_double_str[3];
 char temp_tripple_str[4];
 char temp_quad_str[5];
 long temp_double;
 long temp_tripple;
 long temp_quad;

 for(i=0;i<double_count-1;i++)
 {
 for(j=i+1;j<double_count;j++)
 {
 if(double_char_count[i] < double_char_count[j])
 {

 214

 strcpy(temp_double_str,double_char[i]);
 strcpy(double_char[i],double_char[j]);
 strcpy(double_char[j],temp_double_str);
 temp_double = double_char_count[i];
 double_char_count[i] = double_char_count[j];
 double_char_count[j] = temp_double;
 }
 }
 }

 ptr = fopen(doublefilename2,"w");
 for(i=0;i<32;i++)
 fprintf(ptr,"%s",double_char[i]);
 fclose(ptr);

 for(i=0;i<tripple_count-1;i++)
 {
 for(j=i+1;j<tripple_count;j++)
 {
 if(tripple_char_count[i] < tripple_char_count[j])
 {
 strcpy(temp_tripple_str,tripple_char[i]);
 strcpy(tripple_char[i],tripple_char[j]);
 strcpy(tripple_char[j],temp_tripple_str);
 temp_tripple = tripple_char_count[i];
 tripple_char_count[i] = tripple_char_count[j];
 tripple_char_count[j] = temp_tripple;
 }
 }
 }

 ptr = fopen(tripplefilename2,"w");
 for(i=0;i<tripple_count;i++)
 fprintf(ptr,"%s",tripple_char[i]);
 fclose(ptr);

 for(i=0;i<quad_count-1;i++)
 {
 for(j=i+1;j<quad_count;j++)
 {
 if(quad_char_count[i] < quad_char_count[j])
 {
 strcpy(temp_quad_str,quad_char[i]);
 strcpy(quad_char[i],quad_char[j]);
 strcpy(quad_char[j],temp_quad_str);
 temp_quad = quad_char_count[i];
 quad_char_count[i] = quad_char_count[j];
 quad_char_count[j] = temp_quad;
 }
 }
 }

 ptr = fopen(quadfilename2,"w");
 for(i=0;i<quad_count;i++)
 fprintf(ptr,"%s",quad_char[i]);
 fclose(ptr);
}

 215

// Removing the groups having zero count

void remove_zero_count()
{
 ptr = fopen(doublefilename1,"w");
 for(i=0;i<26;i++)
 for(j=0;j<26;j++)
 if(double_str[i][j] !=0)
 fprintf(ptr,"%c%c
%ld\n",i+97,j+97,double_str[i][j]);
 fclose(ptr);

 ptr = fopen(tripplefilename1,"w");
 for(i=0;i<26;i++)
 for(j=0;j<26;j++)
 for(k=0;k<26;k++)
 if(tripple_str[i][j][k] > 3)
 fprintf(ptr,"%c%c%c
%ld\n",i+97,j+97,k+97,tripple_str[i][j][k]);
 fclose(ptr);

 ptr = fopen(quadfilename1,"w");
 for(i=0;i<26;i++)
 for(j=0;j<26;j++)
 for(k=0;k<26;k++)
 for(l=0;l<26;l++)
 if(quad_str[i][j][k][l] > 2)
 fprintf(ptr,"%c%c%c%c
%ld\n",i+97,j+97,k+97,l+97,quad_str[i][j][k][l]);
 fclose(ptr);
}

void assign_filename()
{
 len = strlen(sfilename);

 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 singlefilename1[i] = sfilename[i];
 }
 if(i>3)
 singlefilename1[4] ='\0';
 else
 singlefilename1[i] ='\0';
 strcpy(tfilename,singlefilename1);
 strcat(tfilename,"cbtcb.usb");

 strcpy(doublefilename1,singlefilename1);
 strcpy(tripplefilename1,singlefilename1);
 strcpy(quadfilename1,singlefilename1);

 strcpy(doublefilename2,singlefilename1);
 strcpy(tripplefilename2,singlefilename1);

 216

 strcpy(quadfilename2,singlefilename1);

 strcat(singlefilename1,"_single.dat");
 strcat(doublefilename1,"_double.dat");
 strcat(tripplefilename1,"_tripple.dat");
 strcat(quadfilename1,"_quad.dat");

 strcat(singlefilename2,"_single.txt");
 strcat(doublefilename2,"cbtcbd.txt");
 strcat(tripplefilename2," cbtcbt.txt");
 strcat(quadfilename2," cbtcbq.txt");
}

int ascii4char(char c1,char c2,char c3,char c4)
{
 if((c1>='a' && c1<='z') && (c2>='a' && c2<='z') && (c3>='a' &&
c3<='z') && (c4>='a' && c4<='z'))
 return 1;
 else
 return 0;
}

int ascii3char(char c1,char c2,char c3)
{
 if((c1>='a' && c1<='z') && (c2>='a' && c2<='z') && (c3>='a' &&
c3<='z'))
 return 1;
 else
 return 0;
}

 217

// Program for Decompression

// Including header files

#include<iostream.h>
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>
#include<dos.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

long double_count = 0;
long tripple_count = 0;
long quad_count = 0;

void readstatistics();
void sort_char_arrays();
void assign_filename();

char double_char[500][3];
char tripple_char[5000][4];
char quad_char[50000][5];

long int double_char_count;
long int tripple_char_count;
long int quad_char_count;

char sfilename[25];
char doublefilename2[50];
char tripplefilename2[50];
char quadfilename2[50];
char tfilename[25];
char singlefilename1[25];

FILE *ptr,*fptr;
BIT_FILE *fin;
long i,j,k,l;
int len;
int iflower = 0;
int readbits;
unsigned long read;
unsigned long anotherread;
void main()
{
 printf("Enter file name to decompress : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();

 218

// Reading the character groups dictionaries
 readstatistics();

// Decompression begins here
 ptr = fopen(tfilename,"wb");
 fptr = fopen(sfilename,"rb");

 readbits = 8;
 int r;
 int ch;
 while(1)
 {
 read = getc(fptr);
 if(read == EOF)
 break;
// If normal ascii character then store as it is in the decompressed
file
 if(read < 128)
 {
 ch = (int)read;
 if(ch == 10)
 fprintf(ptr,"\n");
 else
 fprintf(ptr,"%c",ch);
 continue;
 }
// if code is from 2-character group store those 2-characters
// from 2-character group dictionary

 if(read >=128 && read <=159)
 {
 read -= 128;
 ch = double_char[read][0];
 fprintf(ptr,"%c",ch);
 ch = double_char[read][1];
 fprintf(ptr,"%c",ch);
 continue;
 }
// if code is from 3-character group store those 2-characters
// from 3-character group dictionary

 anotherread = getc(fptr);
 read = read << readbits;
 read = read | anotherread;
 if(read >= 40960 && read <= 49151)
 {
 read -= 40960;
 ch = tripple_char[read][0];
 fprintf(ptr,"%c",ch);
 ch = tripple_char[read][1];
 fprintf(ptr,"%c",ch);
 ch = tripple_char[read][2];
 fprintf(ptr,"%c",ch);
 continue;
 }
// if code is from 4-character group store those 2-characters
// from 4-character group dictionary

 219

 read -= 49152;
 ch = quad_char[read][0];
 fprintf(ptr,"%c",ch);
 ch = quad_char[read][1];
 fprintf(ptr,"%c",ch);
 ch = quad_char[read][2];
 fprintf(ptr,"%c",ch);
 ch = quad_char[read][3];
 fprintf(ptr,"%c",ch);

 }
 fclose(fptr);
 fclose(ptr);

}

void readstatistics()
{
 long int i=0;
 printf("\nDOuble dictionary :\n");
 ptr = fopen(doublefilename2,"r");
 i=0;
 fscanf(ptr,"%c%c", &double_char[i][0],&double_char[i][1]);
 double_char[i][2]='\0';
 while(!feof(ptr))
 {
 i++;
 fscanf(ptr,"%c%c",&double_char[i][0],&double_char[i][1]);
 double_char[i][2]='\0';
 }
 fclose(ptr);
 double_count = i;
 printf("\nTripple DIctionary : \n");
 ptr = fopen(tripplefilename2,"r");
 i=0;
 fscanf(ptr,"%c%c%c",
&tripple_char[i][0],&tripple_char[i][1],&tripple_char[i][2]);
 tripple_char[i][3]='\0';
 while(!feof(ptr))
 {
 i++;
 fscanf(ptr,"%c%c%c",
&tripple_char[i][0],&tripple_char[i][1],&tripple_char[i][2]);
 tripple_char[i][3]='\0';
 }
 fclose(ptr);
 tripple_count = i;
 printf("\nQuad DIctionary : \n");
 ptr = fopen(quadfilename2,"r");
 i=0;
 fscanf(ptr,"%c%c%c%c",
&quad_char[i][0],&quad_char[i][1],&quad_char[i][2],&quad_char[i][3]);
 quad_char[i][4]='\0';
 while(!feof(ptr))
 {
 i++;

 220

 fscanf(ptr,"%c%c%c%c",
&quad_char[i][0],&quad_char[i][1],&quad_char[i][2],&quad_char[i][3]);
 quad_char[i][4]='\0';
 }
 fclose(ptr);
 quad_count = i;
}

void assign_filename()
{
 len = strlen(sfilename);
 char tempfile[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 singlefilename1[i] = sfilename[i];
 }
 singlefilename1[i] ='\0';
 strcpy(tfilename,singlefilename1);
 strcat(tfilename,".out");

 strcpy(doublefilename2,singlefilename1);
 strcpy(tripplefilename2,singlefilename1);
 strcpy(quadfilename2,singlefilename1);

 strcat(doublefilename2,"d.txt");
 strcat(tripplefilename2,"t.txt");
 strcat(quadfilename2,"q.txt");
}

 221

APPENDIX B – Coding of WBTC-A

// Source code for Method WBTC-A
// Program for Compression

// Including header files

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaring constants

#define MAXPREFIX 5000
#define MAXSUFFIX 5000
#define MAX 65536
#define DICTCONST 32768
#define PRECONST 56768
#define SUFCONST 60768

// Declaration of functions

void assign_filename();
void sort();
void createprefix();
void createsuffix();
void addword();
void writeseparator();
void writeword();
int ascii(unsigned long);
long int searchstr(char*);
long int searchstrfromdict(char*);
int searchprefixstr(char*);
int searchsuffixstr(char*);

// Declaration of variables

long int found;
char dictionary[MAX][50];
char prefixdictionary[MAXPREFIX][20];
char suffixdictionary[MAXSUFFIX][20];
long int dictionarycount[MAX];
long int prefixcount[MAXPREFIX];
long int suffixcount[MAXSUFFIX];
unsigned int trackdictionary;
unsigned int trackprefix;
unsigned int tracksuffix;
unsigned int tracknonword;
int suffixposition;
int startofonelengthword;
int position;
int pstr;

 222

char str[100];
char sfilename[50],tfilename[50],wordfilename[50];
char prefixfilename[50],suffixfilename[50];
FILE *fptr;
BIT_FILE *bfin;
BIT_FILE *bfout;

void main()
{
 int i,j,c;
 unsigned long value;
 printf("\nEnter File Name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();

// Finding the size of the source file

 fptr = fopen(sfilename,"rb");
 fseek(fptr,0L,2);
 long lenoffile = ftell(fptr);
 fclose(fptr);
 printf("\nLen of file = %ld",lenoffile);

// Creation of semi-dynamic dictionary begins

 bfin = OpenInputBitFile(sfilename);
 pstr = 0; trackdictionary = 0; trackprefix = 0; tracksuffix = 0;
tracknonword = 0;
 for(c=0;c<lenoffile;c++)
 {
 value = InputBits(bfin,8);
// Forming the words by checking the read characters are ascii or not

 if(ascii(value))
 {
 str[pstr++]=value;
 continue;
 }
// Adding the word to the dictionary

 addword();
 if(trackdictionary>=MAX)
 {
 printf("Dictionary Full ");
 break;
 }
 }
// Add the last word to the dictionary

 addword();
// Sort the words in the dictionary according to their counts

 sort();
// Check for the first occurrence of the word whose frequency is
// one and store that value in startofonelengthword

 223

// and storing the dictionary in the file.

 fptr = fopen(wordfilename,"w");
 for(i=0;i<trackdictionary;i++)
 {
 if((dictionarycount[i]==1) || (i == DICTCONST))
 break;
 fprintf(fptr,"%s\n",dictionary[i]);
 }
 fclose(fptr);
 startofonelengthword = i;
// Creation of Prefix sub-word dictionary and storing it in the file

 createprefix();
 fptr = fopen(prefixfilename,"w");
 for(i=0;i<trackprefix;i++)
 fprintf(fptr,"%s\n",prefixdictionary[i]);
 fclose(fptr);
// Creation of Suffix sub-word dictionary and storing it in the file

 createsuffix();
 fptr = fopen(suffixfilename,"w");
 for(i=0;i<tracksuffix;i++)
 fprintf(fptr,"%s\n",suffixdictionary[i]);
 fclose(fptr);

// Compression begins here

 pstr = 0;
 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 while(1)
 {
 value = InputBits(bfin,8);
 if(value == 0xffff)
 break;
// Forming the words by checking the read characters are ascii or not

 if(ascii(value))
 {
 str[pstr++]=value;
 continue;
 }
// Terminating the word

 str[pstr]='\0';
// If length of word > 2 then processing for compression
 if(pstr > 1)
 {
 writeword();
 pstr = 0;
 }
// Else writing the word as it is in the compressed file.

 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);

 224

 pstr = 0;
 }
// Writing the non-ascii character in the compressed file.

 OutputBits(bfout,value,8);

 pstr = 0;
 }
// Compressing the remaining words or characters left

 str[pstr]='\0';
 if(pstr > 1)
 {
 writeword();
 pstr = 0;
 }
 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);
 pstr = 0;
 }

}
void writeword()
{
 int maxmatch;
 int slen;
 int i,j,remainingchar;
 char remstr[100];
 slen = strlen(str);
// Searching the word in the semi-dynamic dictionary

 found = searchstrfromdict(str);
// If found then writing the index value in the compressed file

 if(found)
 {
 found--;
 OutputBits(bfout,found+DICTCONST,16);
 }
 else
// Else search for the prefix and suffix sub-word in the dictionary
 {
 maxmatch = searchprefixstr(str); //Call search prefix if
match write index value in function itself
 if(maxmatch)
 {
 j=0;
 for(i=maxmatch;i<slen;i++)
 remstr[j++] = str[i];
 remstr[j]='\0';
 strcpy(str,remstr);
 slen = strlen(str);
 }
 maxmatch = searchsuffixstr(str);
 if(maxmatch)
 {

 225

 if(slen>=maxmatch)
 {
 remainingchar = slen - maxmatch;
 for(j=0;j<remainingchar;j++)
 OutputBits(bfout,str[j],8);
 }
 OutputBits(bfout,suffixposition+SUFCONST,16);
 }
// If word not found in the dictionary, then write it as it is in the
// compressed file.

 else
 {
 for(j=0;j<slen;j++)
 OutputBits(bfout,str[j],8);
 }
 }
}

// Adding the word to the
void addword()
{
 str[pstr]='\0';
 if(pstr > 1)
 {
 found = searchstr(str);
 if(found)
 {
 found--;
 dictionarycount[found]++;
 }
 else
 {
 strcpy(dictionary[trackdictionary],str);
 dictionarycount[trackdictionary]++;
 trackdictionary++;
 }
 }
 pstr = 0;
}

void createprefix()
{
 int i,j,k,maxmatch,position;
 trackprefix = 0;
 char tempprefix[20];
 for(i=trackdictionary-1; i >= startofonelengthword;i--)
 {
 maxmatch = 0;
 for(j=startofonelengthword;j<i;j++)
 {
 for(k=0;k<strlen(dictionary[i]);k++)
 {
 if(dictionary[j][k] != dictionary[i][k])
 break;
 }
 if(k>2 && k>maxmatch)

 226

 {
 maxmatch = k;
 position = j;
 }
 }
 if(maxmatch)
 {
 for(k=0;k<maxmatch;k++)
 tempprefix[k] = dictionary[j][k];
 tempprefix[k] ='\0';
 for(k=0;k<trackprefix;k++)
 if(strcmp(prefixdictionary[k],tempprefix) == 0)
 break;
 if(k==trackprefix)

 strcpy(prefixdictionary[trackprefix++],tempprefix);
 if(trackprefix>=MAXPREFIX)
 {
 printf("\nPrefix dictionary full ");
 return;
 }
 }
 }
}
void createsuffix()
{
 int i,j,k,l,m,maxmatch,position,lensrc,lendest,minlen;
 tracksuffix = 0;
 char tempsuffix[20];
 for(i=trackdictionary-1; i >= startofonelengthword;i--)
 {
 maxmatch = 0;
 for(j=startofonelengthword;j<i;j++)
 {
 lensrc = strlen(dictionary[i]);
 lendest = strlen(dictionary[j]);
 if(lensrc<lendest)minlen = lensrc; else minlen =
lendest;
 for(k=0;k<minlen;k++)
 {
 if(dictionary[j][lendest-1] !=
dictionary[i][lensrc-1])
 break;
 lendest--;lensrc--;
 }
 if(k>2 && k>maxmatch)
 {
 maxmatch = k;
 position = j;
 }
 }
 if(maxmatch)
 {
 l = strlen(dictionary[position]);
 m=0;
 for(k=l-maxmatch;k<l;k++)
 tempsuffix[m++] = dictionary[position][k];

 227

 tempsuffix[m]='\0';
 for(k=0;k<tracksuffix;k++)
 if(strcmp(suffixdictionary[k],tempsuffix) == 0)
 break;
 if(k==tracksuffix)

 strcpy(suffixdictionary[tracksuffix++],tempsuffix);
 if(tracksuffix>=MAXSUFFIX)
 {
 printf("\nSuffix dictionary full ");
 return;
 }
 }
 }
}

// Sorting the words in the dictionary according to their counts
void sort()
{
 unsigned long l,m;
 unsigned long t;
 char str[50];
 for(l=0;l<trackdictionary-1;l++)
 {
 for(m=l+1;m<trackdictionary;m++)
 {
 if(dictionarycount[l]<dictionarycount[m])
 {
 t = dictionarycount[l];
 dictionarycount[l] = dictionarycount[m];
 dictionarycount[m] = t;
 strcpy(str,dictionary[l]);
 strcpy(dictionary[l],dictionary[m]);
 strcpy(dictionary[m],str);
 }
 }
 }
}
// Function for searching the string in the semi-dynamic dictionary
// Return 0 if not found, else return position of the word in
// the dictionary.
long int searchstr(char *str)
{
 long int i,track = 0;
 for(i=0;i<trackdictionary;i++)
 if(strcmp(str,dictionary[i]) == 0)
 break;
 if(i != trackdictionary)
 return i+1;
 else
 return 0;

}

long int searchstrfromdict(char *str)
{
 long int i,track = 0;

 228

 for(i=0;i<startofonelengthword;i++)
 if(strcmp(str,dictionary[i]) == 0)
 break;
 if(i != startofonelengthword)
 return i+1;
 else
 return 0;

}
// Checking the character is ascii or not.
int ascii(unsigned long value)
{
 if((value >='a' && value <='z') || (value >='A' && value <='Z'))
 return 1;
 else
 return 0;
}

// Searching the sub-word from the prefix dictionary
int searchprefixstr(char *prestr)
{
 int plen,slen,maxmatch=0,position;
 slen = strlen(prestr);
 int i,j;
 for(i=0;i<trackprefix;i++)
 {
 plen = strlen(prefixdictionary[i]);
 if(slen >= plen)
 {
 for(j=0;j<plen;j++)
 if(prestr[j] != prefixdictionary[i][j])
 break;
 if(j==plen)
 {
 if(j>maxmatch)
 {
 maxmatch = j;
 position = i;
 }
 }
 }
 }
 if(maxmatch)
 {
 OutputBits(bfout,position+PRECONST,16);
 return maxmatch;
 }
 return 0;
}

// Searching the sub-word from the suffix dictionary
int searchsuffixstr(char *sufstr)
{
 int plen,slen,maxmatch=0,sufptr;
 slen = strlen(sufstr);
 int i,j;
 for(i=0;i<tracksuffix;i++)

 229

 {
 plen = strlen(suffixdictionary[i]);
 if(slen >= plen)
 {
 sufptr = slen-1;
 for(j=plen-1;j>=0;j--)
 if(sufstr[j] != suffixdictionary[i][sufptr--])
 break;
 if(j<0)
 {
 if(plen>maxmatch)
 {
 maxmatch = plen;
 suffixposition = i;
 }
 }
 }
 }
 return maxmatch;
}

void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i] ='\0';
 strcpy(tfilename,tempfilename);
 strcpy(prefixfilename,tempfilename);
 strcpy(suffixfilename,tempfilename);
 strcpy(wordfilename,tempfilename);
 strcat(tfilename,"wbtca.usb");
 strcat(prefixfilename,".pre");
 strcat(suffixfilename,".suf");
 strcat(wordfilename,".wrd");
}

 230

// Program for Decompression

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

#define MAXPREFIX 5000
#define MAXSUFFIX 5000
#define MAX 65536
#define DICTCONST 32768
#define PRECONST 56768
#define SUFCONST 60768

void assign_filename();

char dictionary[MAX][50];
char prefixdictionary[MAXPREFIX][20];
char suffixdictionary[MAXSUFFIX][20];
unsigned int trackdictionary;
unsigned int trackprefix;
unsigned int tracksuffix;

char sfilename[50],tfilename[50],wordfilename[50];
char prefixfilename[50],suffixfilename[50];

FILE *fptr;
BIT_FILE *bfin;
BIT_FILE *bfout;

void main()
{

 int i;
 unsigned long value,anothervalue;
 printf("\nEnter File Name for Decompressing : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();
// Finding the size of the compressed file

 fptr = fopen(sfilename,"rb");
 fseek(fptr,0L,2);
 long lenoffile = ftell(fptr);
 fclose(fptr);
 printf("\nLen of file = %ld",lenoffile);

// Reading dictionaries for words and sub-words (Prefix and Suffix)

 trackdictionary = 0;

 231

 trackprefix = 0;
 tracksuffix = 0;
 fptr = fopen(wordfilename,"r");
 fscanf(fptr,"%s",dictionary[trackdictionary++]);
 while (!feof(fptr))
 fscanf(fptr,"%s",dictionary[trackdictionary++]);
 trackdictionary--;
 fclose(fptr);

 fptr = fopen(prefixfilename,"r");
 fscanf(fptr,"%s",prefixdictionary[trackprefix++]);
 while (!feof(fptr))
 fscanf(fptr,"%s",prefixdictionary[trackprefix++]);
 trackprefix--;
 fclose(fptr);

 fptr = fopen(suffixfilename,"r");
 fscanf(fptr,"%s",suffixdictionary[tracksuffix++]);
 while (!feof(fptr))
 fscanf(fptr,"%s",suffixdictionary[tracksuffix++]);
 tracksuffix--;
 fclose(fptr);

// Decompression begins here

 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 while(1)
 {
 value = InputBits(bfin,8);
 if(value == 0xffff)
 break;
// If normal ascii character then write as it is in the
// decompressed file.
 if(value<128)
 {
 OutputBits(bfout,value,8);
 }
// Else if the read is an index value of suffix, prefix or word
dictionary
// then write the corresponding word from the respective dictionary

 else
 {
 anothervalue = InputBits(bfin,8);
 value = value << 8;
 value = value | anothervalue;
 if(value>=SUFCONST)
 {
 value = value-SUFCONST;
 for(i=0;i<strlen(suffixdictionary[value]);i++)

 OutputBits(bfout,suffixdictionary[value][i],8);
 }
 else if(value>=PRECONST)

 232

 {
 value-=PRECONST;
 for(i=0;i<strlen(prefixdictionary[value]);i++)

 OutputBits(bfout,prefixdictionary[value][i],8);
 }
 else if(value>=DICTCONST)
 {
 value-=DICTCONST;
 for(i=0;i<strlen(dictionary[value]);i++)
 OutputBits(bfout,dictionary[value][i],8);
 }

 }
 }
 CloseOutputBitFile(bfout);
}

void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i-3] ='\0';

 strcpy(tfilename,tempfilename);
 strcpy(prefixfilename,tempfilename);
 strcpy(suffixfilename,tempfilename);
 strcpy(wordfilename,tempfilename);
 strcat(tfilename,".out");
 strcat(prefixfilename,".pre");
 strcat(suffixfilename,".suf");
 strcat(wordfilename,".wrd");
}

 233

APPENDIX C – Coding of WBTC-B

// Source code for Method WBTC-B
// Program for Compression

// Including header files

#include<iostream.h>
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>
#include<dos.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaring constant

#define MAX 600000

// Declaration of functions

void assign_filename();
long int search_str(char*,int);

// Declaration of variables

char dictionary[MAX];
long int noofwords;
long int track=0;
char sfilename[50],tfilename[50],dictfilename[50];
FILE *fptr,*dptr;
BIT_FILE *fout;
BIT_FILE *fin;
void main()
{
 char ch1;
 char str[80];
 long int found;
 printf("Enter source file name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();
// Finding the size of the source file

 fptr = fopen(sfilename,"rb");
 long lenoffile;
 fseek(fptr,0L,2);
 lenoffile = ftell(fptr);
 fclose(fptr);

// Compression begins here and simultaneously the
// semi-dynamic dictionary is created.

 234

 fin = OpenInputBitFile(sfilename);
 fout = OpenOutputBitFile(tfilename);
 track = 0;
 dptr = fopen(dictfilename,"w");
 int pstr = 0;
 dictionary[track++] = '#';
 dictionary[track] = '\0';
 noofwords = 0;
 unsigned long value;
 while(1)
 {
 value = InputBits(fin,8);
 if(value == 0xffff)
 break;
 ch1 = value;
// Forming the words by checking the read characters are ascii or not

 if((ch1 >= 'a' && ch1 <= 'z') || (ch1 >= 'A' && ch1 <= 'Z'))
 {
 str[pstr] = ch1;
 pstr++;
 continue;
 }
// Terminating the word

 str[pstr]='\0';
// If the length of the word > 1 then compress the word

 if(pstr>1)
 {
// If word is found in the dictionary then store the index
// value of the word in the compressed file
// Else write the word in the dictionary and then store
// the index value in the compressed file.

 found = search_str(str,pstr);
 if(!found)
 {
 fprintf(dptr,"#");
 fprintf(dptr,"%s",str);
 strcat(dictionary,str);
 track = strlen(dictionary);
 dictionary[track++]='#';
 dictionary[track]='\0';
 noofwords++;
 OutputBits(fout,noofwords+32768,16);
 }
 else
 OutputBits(fout,found+32768,16);
 }
 else if(pstr == 1)
 OutputBits(fout,str[0],8);
 OutputBits(fout,ch1,8);
 pstr = 0;
 }
 fclose(fptr);

 235

 CloseOutputBitFile(fout);
 fclose(dptr);
}

// Function for searching the string in the
// semi-dynamic dictionary. return 0 if not found
// else return the index value.

long int search_str(char *string, int len)
{
 long int hash = 0;
 int i;
 long int dtrack = 0;
 while(dtrack < track)
 {
 if(dictionary[dtrack++] == '#')
 {
 hash++;
 for(i=0;i<len;i++)
 {
 if(dictionary[dtrack] != string[i])
 break;
 dtrack++;
 }
 if(i==len)
 {
 if(dictionary[dtrack] == '#')
 return hash;
 }
 }
 }
 return 0;
}

void assign_filename()
{
 int len = strlen(sfilename);

 for(int i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tfilename[i] = sfilename[i];
 }
 tfilename[i] ='\0';
 strcpy(dictfilename,tfilename);
 strcat(tfilename,"wbtcb.usb");

 strcat(dictfilename,"wbtcbdict.txt");

}

 236

// Program for Decompression

// Including header files

#include<iostream.h>
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<ctype.h>
#include<time.h>
#include<dos.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaring constant

#define MAX 600000

// Declaration of functions

void assign_filename();

// Declaration of variables

char dictionary[MAX];
char str[50];
long i,j,k,l;
long sizeofdict;
unsigned long hash;
unsigned long read;
unsigned long anotherread;
char sfilename[50],tfilename[50],dictfilename[50];
FILE *ptr,*fptr;
BIT_FILE *fin;
void main()
{
 printf("Enter file name to decompress : ");
 scanf("%s",sfilename);
// Assigning name for target file.

 assign_filename();
// Finding the size of the compressed file

 fptr = fopen(sfilename,"rb");
 long lenoffile;
 fseek(fptr,0L,2);
 lenoffile = ftell(fptr);
 printf("Length of file = %ld",lenoffile);
 fclose(fptr);

// Reading the dictionary

 ptr = fopen(dictfilename,"r");
 fscanf(ptr,"%s", dictionary);
 sizeofdict = strlen(dictionary);
 fclose(ptr);

 237

// Decompression begins here

 ptr = fopen(tfilename,"w");
 fptr = fopen(sfilename,"rb");

 int ch;
 for(j=0;j<lenoffile;j++)
 {
 read = getc(fptr);
// If normal ascii character then store as it is in the decompressed
file

 if(read < 128)
 {
 ch = (int)read;
 if(ch == 10)
 putc(ch,ptr);
 else
 fprintf(ptr,"%c",ch);
 continue;
 }
// Else read the value of index position of encoded word
// and retrieve it from the dictionary

 anotherread = getc(fptr);j++;
 read = read << 8;
 read = read | anotherread;
 read -= 32768;
 hash = 0;
 for(i=0;i<sizeofdict;i++)
 {
 if(dictionary[i]=='#')
 hash++;
 if(hash == read)
 {
 while(1)
 {
 i++;
 if(i==sizeofdict)
 break;
 ch = dictionary[i];
 if(ch == '#')
 break;
 fprintf(ptr,"%c",ch);
 }
 break;
 }
 }
 }
 fclose(fptr);
 fclose(ptr);
}

void assign_filename()
{

 238

 int len = strlen(sfilename);

 for(int i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tfilename[i] = sfilename[i];
 }
 tfilename[i] ='\0';
 strcpy(dictfilename,tfilename);
 strcat(tfilename,".out");

 strcat(dictfilename,"dict.txt");

}

 239

APPENDIX D – Coding of WBTC-C

// Source code for Method WBTC-C
// Program for Compression

// Including header files
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaraing constants

#define MAX 65536
#define MAXSIZE 16447

// Declaration of functions

void assign_filename();
void sort();
void addword();
void writeword();
int ascii(unsigned long);

// Declaration of variables

long int found;
long int searchstr(char*);
char dictionary[MAX][50];
long int dictionarycount[MAX];
unsigned int trackdictionary;
int startofonelengthword;
char substr[20];
int position;
int pstr;
char str[100];
FILE *fptr,*tptr;;
int currentrow,newrow,column;
char sfilename[50],tfilename[50],wordfilename[50];
BIT_FILE *bfin;
BIT_FILE *bfout;

void main()
{

 int i,j,c; //pointer to string
 long int value;
 printf("\nEnter File Name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();
// Finding the size of the source file

 240

 fptr = fopen(sfilename,"rb");
 fseek(fptr,0L,2);
 long lenoffile = ftell(fptr);
 fclose(fptr);
 printf("\nLen of file = %ld",lenoffile);

// Creating the semi-dynamic dictionary in first pass

 bfin = OpenInputBitFile(sfilename);
 pstr = 0; trackdictionary = 0;
 while(1)
 {
 value = InputBits(bfin,8);
 if(value == 0xffff)
 break;
// Forming the words by checking the read characters are ascii or not
 if(ascii(value))
 {
 str[pstr++]=value;
 continue;
 }
// Adding the word to the dictionary
 addword();
 if(trackdictionary>=MAX)
 {
 printf("Dictionary Full ");
 break;
 }

 }
// Add the last word to the dictionary

 addword();
// Sort the words in the dictionary according to their counts

 sort();

// Check for the first occurrence of the word whose frequency is
// one and store that value in startofonelengthword

 for(i=0;i<trackdictionary;i++)
 if(dictionarycount[i]==1)
 break;
 startofonelengthword = i;
 if(startofonelengthword < MAXSIZE)
 trackdictionary = startofonelengthword;
 else
 trackdictionary = MAXSIZE;
// Write the dictionary in the file

 fptr = fopen(wordfilename,"w");
 for(i=0;i<trackdictionary;i++)
 fprintf(fptr,"%s\n",dictionary[i]);
 fclose(fptr);

 241

// Compression begins here

 currentrow = 0;
 pstr = 0;
 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 while(1)
 {
 value = InputBits(bfin,8);
 if(value == 0xffff)
 break;
// Forming the words by checking the read characters are ascii or not

 if(ascii(value))
 {
 str[pstr++]=value;
 continue;
 }
// Terminating the word

 str[pstr]='\0';
// If length of word > 2 then processing for compression
 if(pstr > 2)
 {
 writeword();
 pstr = 0;
 }
// Else writing the word as it is in the compressed file.

 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);
 pstr = 0;
 }
 else if(pstr == 2)
 {
 OutputBits(bfout,str[0],8);
 OutputBits(bfout,str[1],8);
 pstr = 0;
 }
// Writing the non-ascii character in the compressed file.

 OutputBits(bfout,value,8);
 pstr = 0;
 }
// Compressing the remaining words or characters left
 str[pstr]='\0';
 if(pstr > 1)
 {
 writeword();
 pstr = 0;
 }
 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);
 pstr = 0;
 }

 242

 fclose(tptr);
}

void writeword()
{
 int maxmatch;
 int slen;
 int changeincolumn = 15;
 int i,j,remainingchar;
 char remstr[100];
 slen = strlen(str);
// Searching the word in the static dictionary

 found = searchstr(str);
// If found then writing the index value in the compressed file

 if(found)
 {
 found--;
// If word is found in first 63 positions i.e. words repeated in
// each row write the position of the column in the compressed file.

 if(found<63)
 {
 column = found;
 OutputBits(bfout,column+128,8);
 }
// Check whether the word found is in the same row as that of previous
// row

 else
 {
 newrow = (found - 63) / 64;
 column = (found - 63) % 64 ;
// If yes then write the position of the column in the compressed file.

 if(newrow == currentrow)
 OutputBits(bfout,column+128+63,8);
// Else write the escape symbol for change in row i.e. 255 (0xFF)
// and write the new row number followed by the position of the column
in
// the compressed file.

 else
 {
 OutputBits(bfout,255,8);
 OutputBits(bfout,newrow+128,8);
 OutputBits(bfout,column+128,8);
 currentrow = newrow;
 }
 }
 }
// If word not found in the dictionary, then write it as it is in the
// compressed file.

 else

 243

 for(j=0;j<slen;j++)
 OutputBits(bfout,str[j],8);

}

// Adding the word to the semi-dynamic dictionary
void addword()
{
 str[pstr]='\0';
 if(pstr > 2)
 {
 found = searchstr(str);
 if(found)
 {
 found--;
 dictionarycount[found]++;
 }
 else
 {
 strcpy(dictionary[trackdictionary],str);
 dictionarycount[trackdictionary]++;
 trackdictionary++;

 }
 }
 pstr = 0;
}

// Sorting the words in the dictionary according to their counts
void sort()
{
 unsigned long l,m;
 unsigned long t;
 char str[50];
 for(l=0;l<trackdictionary-1;l++)
 {
 for(m=l+1;m<trackdictionary;m++)
 {
 if(dictionarycount[l]<dictionarycount[m])
 {
 t = dictionarycount[l];
 dictionarycount[l] = dictionarycount[m];
 dictionarycount[m] = t;
 strcpy(str,dictionary[l]);
 strcpy(dictionary[l],dictionary[m]);
 strcpy(dictionary[m],str);
 }
 }
 }
}

// Function for searching the string in the static dictionary
// Return 0 if not found, else return position of the word in
// the dictionary.
long int searchstr(char *str)
{
 long int i,track = 0;

 244

 for(i=0;i<trackdictionary;i++)
 if(strcmp(str,dictionary[i]) == 0)
 break;
 if(i != trackdictionary)
 return i+1;
 else
 return 0;

}

// Checking the character is ascii or not.

int ascii(unsigned long value)
{
 if((value >='a' && value <='z') || (value >='A' && value <='Z'))
 return 1;
 else
 return 0;
}

// Assigning default file names for target file name
void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i] ='\0';
 strcpy(tfilename,tempfilename);
 strcpy(wordfilename,tempfilename);
 strcat(tfilename,"_wbtcc.usb");
 strcat(wordfilename,"wbtccwrd.wrd");
}

 245

// Program for Decompression

// Including header files

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include<time.h>
#include<ctype.h>
#include<dos.h>
#include"bitio.h"
#include"bitio.c"

// Declaring constants

#define MAX 65536
#define MAXSIZE 16447

// Declaration of functions

void assign_filename();

// Declaration of variables

long int found;
char dictionary[MAX][50];
long int dictionarycount[MAX];
unsigned int trackdictionary;
int position;
int row,column,index;
long int track;
char sfilename[50],tfilename[50],wordfilename[50];
BIT_FILE *bfin;
BIT_FILE *bfout;
void main()
{
 FILE *fptr;
 int i; //pointer to string
 long int value;
 printf("\nEnter File Name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();

// Finding the size of the compressed file

 fptr = fopen(sfilename,"rb");
 fseek(fptr,0L,2);
 long lenoffile = ftell(fptr);
 fclose(fptr);

 trackdictionary=0;
 fptr = fopen(wordfilename,"r");
 fscanf(fptr,"%s",dictionary[trackdictionary++]);

 246

 while (!feof(fptr))
 fscanf(fptr,"%s",dictionary[trackdictionary++]);
 trackdictionary--;
 fclose(fptr);

// Compression begins here

 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 row = 0;
 track = 0;
 while(track<lenoffile)
 {
 value = InputBits(bfin,8);
 track++;
// If normal ascii character then write as it is in the
// decompressed file.

 if(value<128)
 {
 OutputBits(bfout,value,8);
 }
// If change in row then read the new row number and
// column number and compute the position of the word in the
// dictionary and retrieve the word from the dictionary.

 else
 {
 if(value == 255)
 {
 row = InputBits(bfin,8);
 row-=128;
 value = InputBits(bfin,8);
 value -= 128;
 position = (row * 64) +63+ value ;
 for(i=0;i<strlen(dictionary[position]);i++)
 OutputBits(bfout,dictionary[position][i],8);
 track+=2;
 }
 else
 {
 value -= 128;
 if(value < 63)
 {
 for(i=0;i<strlen(dictionary[value]);i++)
 OutputBits(bfout,dictionary[value][i],8);
 }
 else
 {
 value -= 63;
 position = (row * 64) +63+ value ;
 for(i=0;i<strlen(dictionary[position]);i++)
 OutputBits(bfout,dictionary[position][i],8);
 }
 }

 }

 247

 }
 CloseInputBitFile(bfin);
 CloseOutputBitFile(bfout);
}

void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i-3] ='\0';
 strcpy(tfilename,tempfilename);
 strcpy(wordfilename,tempfilename);
 strcat(tfilename,".out");
 strcat(wordfilename,".wrd");
}

 248

APPENDIX E – Coding of WBTC-D

// Source code for Method WBTC-D
// Program for Compression

// Including header files

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaring constant

#define MAX 65536

// Declaration of functions
void assign_filename();
int ascii(unsigned long);
long int searchstr(char*);

// Declarations of variables

long int found;
char dictionary[MAX][50];
unsigned int trackdictionary;
char sfilename[50],tfilename[50];
BIT_FILE *bfin;
BIT_FILE *bfout;

void main()
{
 char str[100];
 int pstr,i;
 unsigned long value;
 printf("\nEnter File Name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();

// Compression begins here

 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 pstr = 0; trackdictionary = 0;
 while(1)
 {
 value = InputBits(bfin,8);
 if(value == 0xffff)
 break;
// Forming the words by checking the read characters are ascii or not

 249

 if(ascii(value))
 {
 str[pstr++]=value;
 continue;
 }
// Terminating the word

 str[pstr]='\0';
// If length of word > 1 then processing for compression

 if(pstr > 1)
 {
// Search the word in the dynamic dictionary

 found = searchstr(str);
// If found then writing the index value in the compressed file

 if(found)
 {
 found--;
 OutputBits(bfout,found+32768,16);
 }
// Else write the word as it is in the compressed file
// and add the word to the dynamic dictionary

 else
 {
 for(i=0;i<pstr;i++)
 OutputBits(bfout,str[i],8);
 strcpy(dictionary[trackdictionary++],str);
 }
 pstr = 0;
// Writing the non-ascii character in the compressed file.

 OutputBits(bfout,value,8);
 }
// Else writing the character as it is in the compressed file.
 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);
 pstr = 0;
 OutputBits(bfout,value,8);
 }
// Writing the non-ascii character in the compressed file.
 else
 OutputBits(bfout,value,8);

 }
// Compressing the remaining words or characters left

 str[pstr]='\0';
 if(pstr > 1)
 {
 found = searchstr(str);
 if(found)
 {
 found--;

 250

 OutputBits(bfout,found+32768,16);
 }
 else
 {
 for(i=0;i<pstr;i++)
 OutputBits(bfout,str[i],8);
 strcpy(dictionary[trackdictionary++],str);
 }

 }
 else if(pstr == 1)
 OutputBits(bfout,str[0],8);
 printf("\nLength of dictionary = %ld",trackdictionary);
}

// Function for searching the string in the dynamic dictionary
// Return 0 if not found, else return position of the word in
// the dictionary.

long int searchstr(char *str)
{
 long int i,track = 0;
 for(i=0;i<trackdictionary;i++)
 if(strcmp(str,dictionary[i]) == 0)
 break;
 if(i!=trackdictionary)
 return i+1;
 else
 return 0;

}

int ascii(unsigned long value)
{
 if((value >='a' && value <='z') || (value >='A' && value <='Z'))
 return 1;
 else
 return 0;
}

void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i] ='\0';
 strcpy(tfilename,tempfilename);
 strcat(tfilename,"wbtcd.usb");
}

 251

// Program for Decompression

// Including header files

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaring constant

#define MAX 65536

// Declaration of functions

void assign_filename();
int ascii(unsigned long);

// Declaration of variables

long int found;
char dictionary[MAX][50];
unsigned int trackdictionary;
char sfilename[50],tfilename[50];
BIT_FILE *bfin;
BIT_FILE *bfout;

void main()
{
 char str[100];
 int pstr,i,len;
 unsigned long value,anothervalue;
 printf("\nEnter File Name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();

// Decompression begins here

 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 pstr = 0; trackdictionary = 0;
 while(1)
 {
 value = InputBits(bfin,8);
 if(value == 0xffff)
 break;
// Forming the words by checking the read characters are ascii or not

 if(ascii(value))
 {
 str[pstr++]=value;
 continue;

 252

 }
 str[pstr]='\0';
// If length of the word is greater than 1, then adding
// the word to the dynamic dictionary

 if(pstr > 1)
 {
 for(i=0;i<pstr;i++)
 OutputBits(bfout,str[i],8);
 strcpy(dictionary[trackdictionary++],str);
 pstr = 0;
 }
 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);
 pstr = 0;
 }
// If normal ascii character then write it as it is in the
// compressed file.

 if(value < 128)
 OutputBits(bfout,value,8);
 else
 {
// Read another byte to form 16-bit index value and retrieve
// the word from that index position from the dictionary and
// write it in the decompressed file.

 anothervalue = InputBits(bfin,8);
 value = value << 8;
 value = value | anothervalue;
 value -= 32768;
 len = strlen(dictionary[value]);
 for(i=0;i<len;i++)
 OutputBits(bfout,dictionary[value][i],8);
 }
 }
// Checking for last word any non-ascii symbol is not store at the end
of file.
 str[pstr]='\0';
 if(pstr > 1)
 {
 for(i=0;i<pstr;i++)
 OutputBits(bfout,str[i],8);
 }
 else if(pstr == 1)
 OutputBits(bfout,str[0],8);

}

// Checking the character is ascii or not.

int ascii(unsigned long value)
{
 if((value >='a' && value <='z') || (value >='A' && value <='Z'))
 return 1;
 else

 253

 return 0;
}

// Assigning default file names for target file name
void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i] ='\0';
 strcpy(tfilename,tempfilename);
 strcat(tfilename,".out");
}

 254

APPENDIX F – Coding of WBTC-E

// Source code for Method WBTC-E
// Program for Compression

// Including header files
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

//Declaring constant

#define MAX 200000

//Declaration of functions

void assign_filename();
void writeword();
int ascii(unsigned long);
long int searchstr(char*);

//Declaration of variables

char dictionary[MAX][50];
long count;
long int trackdictionary;
long int found;
int maxlen;
int pstr;
char str[100];
int currentrow,newrow,column;
char sfilename[50],tfilename[50];
BIT_FILE *bfin;
BIT_FILE *bfout;

void main(int argc, char *argv[])
{
 FILE *fptr;
 long int value,i;
 strcpy(sfilename,argv[1]);

// Assigning name for target file

 assign_filename();

// Finding the size of the source file

 fptr = fopen(sfilename,"rb");
 fseek(fptr,0L,2);
 long lenoffile = ftell(fptr);
 fclose(fptr);

 255

//PROCESS FOR READING THE STATIC DICTIONARY

 fptr = fopen("dictionary.dct","r");
 trackdictionary = 0;
 fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count);
 while(!feof(fptr))
 {
 trackdictionary++;
 fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count);
 }
 fclose(fptr);

//Compression begins here

 currentrow = 0;
 pstr = 0;
 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 for(i=0;i<lenoffile;i++)
 {
 value = InputBits(bfin,8);
// Forming the words by checking the read characters are ascii or not

 if(ascii(value))
 {
 str[pstr++]=value;
 continue;
 }
// Terminating the word

 str[pstr]='\0';
// If length of word > 2 then processing for compression

 if(pstr > 2)
 {
 writeword();
 pstr = 0;
 }
// Else writing the word as it is in the compressed file.

 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);
 pstr = 0;
 }
 else if(pstr == 2)
 {
 OutputBits(bfout,str[0],8);
 OutputBits(bfout,str[1],8);
 pstr = 0;
 }
// Writing the non-ascii character in the compressed file.

 OutputBits(bfout,value,8);
 pstr = 0;
 }
// Compressing the remaining words or characters left

 256

 if(pstr > 2)
 {
 writeword();
 pstr = 0;
 }
 else if(pstr == 2)
 {
 OutputBits(bfout,str[0],8);
 OutputBits(bfout,str[1],8);
 pstr = 0;
 }
 else if(pstr == 1)
 {
 OutputBits(bfout,str[0],8);
 pstr = 0;
 }
 CloseOutputBitFile(bfout);
}

void writeword()
{

 int slen;
 int j;
 slen = strlen(str);
// Searching the word in the static dictionary

 found = searchstr(str);
// If found then writing the index value in the compressed file

 if(found)
 {
 found--;
// If word is found in first 32000 positions i.e. words repeated in
// each row write the position of the column in the compressed file.

 if(found<32000)
 {
 column = found;
 OutputBits(bfout,column+32768,16);
 }
// Check whether the word found is in the same row as that of previous
// row

 else
 {
 newrow = (found - 32000) / 511;
 column = (found - 32000) % 511 ;
// If yes then write the position of the column in the compressed file.

 if(newrow == currentrow)
 OutputBits(bfout,column+32768+32000,16);
// Else write the escape symbol for change in row i.e. 255 (0xFF)
// and write the new row number followed by the position of the column
// in the compressed file.

 257

 else
 {
 OutputBits(bfout,255,8);
 OutputBits(bfout,newrow,8);
 OutputBits(bfout,column+32768,16);
 currentrow = newrow;
 }
 }
 }
// If word not found in the dictionary, then write it as it is in the
// compressed file.

 else
 {
 for(j=0;j<slen;j++)
 OutputBits(bfout,str[j],8);
 }
}

// Function for searching the string in the static dictionary
// Return 0 if not found, else return position of the word in
// the dictionary.

long int searchstr(char *str)
{
 long int i,track = 0;
 for(i=0;i<trackdictionary;i++)
 if(strcmp(str,dictionary[i]) == 0)
 break;
 if(i != trackdictionary)
 return i+1;
 else
 return 0;

}

// Checking the character is ascii or not.

int ascii(unsigned long value)
{
 if((value >='a' && value <='z') || (value >='A' && value <='Z'))
 return 1;
 else
 return 0;
}

// Assigning default file names for target file name

void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')

 258

 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i] ='\0';
 strcpy(tfilename,tempfilename);
 strcat(tfilename,"wbtce.usb");
}

 259

// Source Code for Method WBTC-E
// Program for Decompression

// Including header files

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
#include"bitio.h"
#include"bitio.c"

// Declaring constant

#define MAX 200000

// Declaration of funciton

void assign_filename();

// Declaration of variables

long int found;
char dictionary[MAX][50];
unsigned int trackdictionary;
int position;
int pstr;
char str[100];
int row,column,index;
long int count;
char sfilename[50],tfilename[50];
BIT_FILE *bfin;
BIT_FILE *bfout;

void main()
{
 FILE *fptr;
 int i;
 long int value,anothervalue,j;
 printf("\nEnter File Name : ");
 scanf("%s",sfilename);
// Assigning name for target file

 assign_filename();

// Finding the size of the compressed file.

 fptr = fopen(sfilename,"rb");
 fseek(fptr,0L,2);
 long lenoffile = ftell(fptr);
 fclose(fptr);

// Reading the static dictionary

 fptr = fopen("dictionary.dct","r");
 trackdictionary = 0;

 260

 fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count);
 while(!feof(fptr))
 {
 trackdictionary++;
 fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count);
 }
 fclose(fptr);

// Decompression begins here

 bfin = OpenInputBitFile(sfilename);
 bfout = OpenOutputBitFile(tfilename);
 row = 0;
 for(j=0;j<lenoffile;j++)
 {
 value = InputBits(bfin,8);
// If normal ascii character then write as it is in the
// decompressed file.
 if(value<128)
 OutputBits(bfout,value,8);
 else
 {
// If change in row then read the new row number and
// column number and compute the position of the word in the
// dictionary and retrieve the word from the dictionary.
 if(value == 255)
 {
 row = InputBits(bfin,8);
 j++;
 value = InputBits(bfin,16);
 j+=2;
 value -= 32768;
 position = (row * 511) +32000+ value ;
 for(i=0;i<strlen(dictionary[position]);i++)
 OutputBits(bfout,dictionary[position][i],8);
 }
 else
 {
 anothervalue = InputBits(bfin,8);
 j++;
 value = value << 8;
 value = value | anothervalue;
 value -= 32768;
 if(value < 32000)
 for(i=0;i<strlen(dictionary[value]);i++)
 OutputBits(bfout,dictionary[value][i],8);
 else
 {
 value -= 32000;
 position = (row * 511) + 32000 + value ;
 for(i=0;i<strlen(dictionary[position]);i++)
 OutputBits(bfout,dictionary[position][i],8);
 }
 }

 }

 261

 }
 CloseOutputBitFile(bfout);
 CloseInputBitFile(bfin);
}

void assign_filename()
{
 int len,i;
 len = strlen(sfilename);
 char tempfilename[50];
 for(i=0;i<len;i++)
 {
 if(sfilename[i]=='.')
 break;
 tempfilename[i] = sfilename[i];
 }
 tempfilename[i] ='\0';
 strcpy(tfilename,tempfilename);
 strcat(tfilename,".out");
}

 262

APPENDIX G – Coding of Searching Phrase

// Source code for Searching
// Program for Searchin using KMP, K-R and B-F Algorithms

// Including header files
#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<time.h>
#include<dos.h>

#include "bitio.h"
#include "bitio.c"

// Declaring constants

#define XSIZE 20000 // Knuth Morris Pratt
#define REHASH(a,b,h) (((h-a*d)<<1)+b) // Karp Rabin

// Declaration of functions

void prekmp(char *x, long int m, int next[]); // Knuth Morris Pratt
int kmp(char*,char*,long int,long int); // Knuth Morris Pratt
int bruteforce(char*,char*,long int,long int); // Brute Force
int kr(char*,char*,long int,long int); // Karp Rabin
long int readNsourcefile(char*);
long int readNpatternfile(char*);
long int krmatch,kmpmatch,bfmatch;

// Declaration of variables

int count;
char y[5000000];
char x[2000];
long int krnoofcomp,kmpnoofcomp,bfnoofcomp;

void main()
{
 long int xlen,found;
 char sfile[50];
 char pfile[50];
 long int ylen;
 FILE *fptr;
 char che;
 printf("\nEnter source file name :");
 scanf("%s",sfile);
 printf("Enter pattern to be searched (file name) : ");
 scanf("%s",pfile);

// Read the source and the pattern file.

 ylen = readNsourcefile(sfile);
 xlen = readNpatternfile(pfile);

 fptr = fopen("Statistics41.txt","a");

 263

// Searching using KR Algorithm

 found = kr(x,y,xlen,ylen);
 if(krmatch)
 printf("\n KR Number of occurences %d ",krmatch);
 else
 printf("\nKR String Not found ");
 printf("\nNo of comparison : %ld",krnoofcomp);

// Searching using KMP Algorithm

 found = kmp(x,y,xlen,ylen);
 if(kmpmatch)
 printf("\n KMP Number of occurences %d ",kmpmatch);
 else
 printf("\nKMP String Not found ");
 printf("\nNo of comparison : %ld",kmpnoofcomp);

// Searching using BF Algorithm

 found = bruteforce(x,y,xlen,ylen);
 if(bfmatch)
 printf("\n BF Number of occurences %d ",bfmatch);
 else
 printf("\nBF String Not found ");
 printf("\nNo of comparison : %ld",bfnoofcomp);

// Storing Statistics of searching in file

 printf("\nStore statistics in file Y/N ? : ");
 che = getche();
 if(che =='y' || che == 'Y')
 {
 printf("\nSearching from Normal file ? (y/n) : ");
 che = getche();

 if(che == 'y' || che == 'Y')
 {
 fprintf(fptr,"\n\nFILE NAME: %s and pattern to search
: %s",sfile,x);
 fprintf(fptr,"\nNormal Searching\n");
 }
 else
 fprintf(fptr,"\nCompressed Searching.........\n");
 if(krmatch)
 fprintf(fptr,"\nKR Number of occurences %d
",krmatch);
 else
 fprintf(fptr,"\nKR Not Found ");
 if(kmpmatch)
 fprintf(fptr,"\nKMP Number of occurences %d
",kmpmatch);
 else
 fprintf(fptr,"\nKMP Not Found ");
 if(bfmatch)

 264

 fprintf(fptr,"\nBF Number of occurences %d
",bfmatch);
 else
 fprintf(fptr,"\nBF Not Found ");
 fclose(fptr);
 }
}

// Reading source file.
long int readNsourcefile(char *sfile)
{
 unsigned long int size=0;
 BIT_FILE *fin;
 fin = OpenInputBitFile(sfile);
 unsigned long read;
 int readbits = 8;
 while(1)
 {
 read = InputBits(fin,readbits);
 if(read==0xffff)
 break;
 y[size++] = read;
 }
 return size;
}

// Reading pattern file
long int readNpatternfile(char *sfile)
{
 unsigned long int size=0;
 BIT_FILE *fin;
 fin = OpenInputBitFile(sfile);
 unsigned long read;
 int readbits = 8;
 while(1)
 {
 read = InputBits(fin,readbits);
 if(read==0xffff)
 break;
 x[size++] = read;
 }
 return size;
}

// KR Algorithm
int kr(char *x,char *y,long int m,long int n)
{
 long int hy,hx,d,i;
 count = 0;
 krnoofcomp = 0;
 krmatch = 0;
 d = 1;
 for(i=1;i<m;i++)
 d = (d<<1);
 hx=hy=0;
 for(i=0;i<m;i++)
 {

 265

 hx = ((hx<<1)+x[i]);
 hy=((hy<<1)+y[i]);
 }
 i=m;
 while (i < n)
 {
 krnoofcomp++;
 if(hy == hx && strncmp(y+i-m,x,m) ==0)
 {
 krmatch++;
 krnoofcomp+=2;
 }
 hy = REHASH(y[i-m],y[i],hy);
 i++;
 count++;
 }
 return 0;
}

//KMP Algorithm
int kmp(char *x,char *y,long int m,long int n)
{
 long int i,j;
 kmpmatch=0;
 int next[XSIZE];
 prekmp(x,m,next);
 i=j=0;
 count = 0;
 kmpnoofcomp = 0;
 while(i < n)
 {
 kmpnoofcomp++;
 while(j > -1 && x[j] != y[i])
 {
 j = next[j];
 kmpnoofcomp++;
 }
 i++;
 j++;
 if(j >= m)
 {
 j = next[m];
 kmpmatch++;
 }
 count++;
 }
 return 0;
}

void prekmp(char *x, long int m, int next[])
{
 long int i,j;
 i=0;j=next[0] = -1;
 while(i < m)
 {

 266

 while(j> -1 && x[i] != x[j]) j = next[j];
 i++;j++;
 if(x[i] == x[j])
 next[i] = next[j];
 else
 next[i] = j;
 }
}

// BF Algorithm
int bruteforce(char *x,char *y,long int m,long int n)
{
 long int i,j;
 i=0;
 count = 0;
 bfnoofcomp = 0;
 bfmatch = 0;
 while (i <= n-m)
 {
 bfnoofcomp++;
 j=0;
 while(j < m && y[i+j] == x[j])
 {
 j++;
 bfnoofcomp++;
 }
 if(j >= m)
 bfmatch++;
 //return i;
 i++;
 count++;
 }
 return 0;
}

 267

// Source code for Searching
// Program for Searchin using BM and QS Algorithm

// Including header files

#include<stdio.h>
#include<conio.h>
#include<string.h>
#include<time.h>
#include<dos.h>
#include "bitio.h"
#include "bitio.c"

// Declaring constants

#define XSIZE 50000 // Boyer Moore
#define ASIZE 50000 // Boyer Moore
#define MAX(x,y) x>y?x:y // Boyer Moore

// Declaration of functions

void prebc(unsigned long *x, int m, int bc[]); // Boyer Moore
void pregs(unsigned long *x, int m, int gs[]); // Boyer Moore
int bm(unsigned long*,unsigned long*,int,long int); // Boyer
Moore
int qs(unsigned long *,unsigned long *,int,long int); // Quick Search
long int readNsourcefile(char*);
long int readNpatternfile(char*);

// Declaration of variables

int count;
long int bmmatch,qsmatch;
unsigned long y[5000000];
unsigned long x[2000];
long int bmnoofcomp,qsnoofcomp;

void main()
{
 long int xlen,found;
 char sfile[50];
 char pfile[50];
 long int ylen;
 double bmttime,qsttime;
 FILE *fptr;
 char che;

 printf("\nEnter source file name :");
 scanf("%s",sfile);
 printf("Enter pattern to be searched (file name) : ");
 scanf("%s",pfile);

// Read the source and the pattern file.

 ylen = readNsourcefile(sfile);
 xlen = readNpatternfile(pfile);
 printf("\nLength of Y =%d",ylen);

 268

 printf("\nLength of X = %d \n",xlen);

 fptr = fopen("Statbmqs41.txt","a");

// Searching using Boyer-Moore Algorithm
 found = bm(x,y,xlen,ylen);
 if(bmmatch)
 printf("\n BM Number of occurences %d ",bmmatch);
 else
 printf("\nBM String Not found ");
 printf("\nNo of comparison : %ld",bmnoofcomp);

// Searching using Quick Search Algorithm
 start = clock();
 found = qs(x,y,xlen,ylen);
 end = clock();
 if(qsmatch)
 printf("\n QS Number of occurences %d ",qsmatch);
 else
 printf("\nQS String Not found ");
 printf("\nNo of comparison : %ld",qsnoofcomp);

// Storing Statistics of searching in file

 printf("\nStore statistics in file Y/N ? : ");
 che = getche();
 if(che =='y' || che == 'Y')
 {
 printf("\nSearching from Normal file ? (y/n) : ");
 che = getche();

 if(che == 'y' || che == 'Y')
 {
 fprintf(fptr,"\n\nFILE NAME: %s and pattern to search
: %s",sfile,x);
 fprintf(fptr,"\nNormal Searching\n");
 }
 else
 fprintf(fptr,"\n\nCompressed Searching.........\n");
 if(bmmatch)
 {
 fprintf(fptr,"\nBM Number of occurences %d
",bmmatch);
 fprintf(fptr,"\nNo of comparison : %ld",bmnoofcomp);
 }
 else
 fprintf(fptr,"\nBM Not Found ");
 if(qsmatch)
 {
 fprintf(fptr,"\nQS Number of occurences %d
",qsmatch);
 fprintf(fptr,"\nNo of comparison : %ld",qsnoofcomp);
 }
 else
 fprintf(fptr,"\nQS Not Found ");
 fclose(fptr);

 269

 }
}

// Reading source file.
long int readNsourcefile(char *sfile)
{
 unsigned long int size=0;
 BIT_FILE *fin;
 fin = OpenInputBitFile(sfile);
 unsigned long read;
 int readbits = 8;
 while(1)
 {
 read = InputBits(fin,readbits);
 if(read==0xffff)
 break;
 y[size++] = read;
 }
 return size;
}

// Reading pattern file
long int readNpatternfile(char *sfile)
{
 unsigned long int size=0;
 BIT_FILE *fin;
 fin = OpenInputBitFile(sfile);
 unsigned long read;
 int readbits = 8;
 while(1)
 {
 read = InputBits(fin,readbits);
 if(read==0xffff)
 break;
 x[size++] = read;
 }
 return size;
}

// B-M Algorithm

int bm(unsigned long *x,unsigned long *y,int m,long int n)
{
 long int i,j;
 int gs[XSIZE],bc[ASIZE];

 pregs(x,m,gs);
 prebc(x,m,bc);
 bmnoofcomp = 0;
 bmmatch = 0;
 i=0;
 while(i <= n-m)
 {
 j = m-1;
 bmnoofcomp++;
 while (j>=0 && x[j] == y[i+j])

 270

 {
 j--;
 bmnoofcomp++;
 }
 if(j < 0)
 bmmatch++;
 i+=MAX(gs[j+1],bc[y[i+j]]-m+j+1);
 }
 return 0;
}

void prebc(unsigned long *x, int m, int bc[])
{
 int j;
 for(j=0;j < ASIZE; j++)
 bc[j] = m;
 for(j=0;j< m-1; j++)
 bc[x[j]] = m-j-1;

}

void pregs(unsigned long *x, int m, int gs[])
{
 int i,j,p,f[XSIZE];
 for(i=0;i<=m;i++)
 gs[i] = 0;
 f[m] = j = m+1;
 for(i=m; i> 0; i--)
 {
 while(j <= m && x[i-1] != x[j-1])
 {
 if(!gs[j]) gs[j] = j-i;
 j = f[j];
 }
 f[i-1] = --j;
 }
 p = f[0];
 for(j=0;j<=m;j++)
 {
 if(!gs[j]) gs[j] = p;
 if(j == p) p = f[p];
 }
}

// Q-S Algorithm

int qs(unsigned long *x,unsigned long *y,int m,long int n)
{
 long int i,j;
 int bc[ASIZE];
 // Preprocessing
 for(j=0;j<ASIZE;j++) bc[j] = m;
 for(j=0;j< m ;j++) bc[x[j]] = m-j-1;
 qsnoofcomp=0;
 qsmatch = 0;
 i=0;

 271

 while (i <= n-m)
 {
 j=0;
 qsnoofcomp++;
 while(j < m && x[j] == y[i+j])
 {
 j++;
 qsnoofcomp++;
 }
 if(j>=m)
 qsmatch++;
 i+=bc[y[i+m]]+1;
 }
 return 0;
}

	First-Page.pdf
	Starting-pgno.pdf
	CHAPTER 1.pdf
	chapter-1-pgno.pdf
	CHAPTER 2.pdf
	chapter-2-pgno.pdf
	CHAPTER 3.pdf
	chapter-3-pgno.pdf
	CHAPTER 4.pdf
	chapter-4-pgno.pdf
	CHAPTER 5.pdf
	chapter-5-pgno.pdf
	CHAPTER 6.pdf
	chapter-6-pgno.pdf
	CHAPTER 7.pdf
	chapter-7-pgno.pdf
	CHAPTER - BIBLIOGRAPHY.pdf
	BIBLIOGRAPHY.pdf
	APPENDIX A-pgno.pdf
	APPENDIX B-pgno.pdf
	APPENDIX C-pgno.pdf
	APPENDIX D-pgno.pdf
	APPENDIX E-pgno.pdf
	APPENDIX F-pgno.pdf
	APPENDIX G-pgno.pdf

