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ABSTRACT 
 

This thesis involves comprehensive study and implementation of text compression 

techniques useful for direct searching the phrases in compressed form.  

In the initial part of this thesis, we summarize our comprehensive study of different types 

of compression methods including Arithmetic Coding method, Bzip2, Prediction by 

Partial Match and Lempel-Ziv Markov-chain Algorithm.  

In subsequent part, two categories of text compression techniques are implemented with 

an objective of improved compression ratio and optimized for searching and retrieval of 

strings randomly from compressed file.  

We implement text compression techniques using three different types of dictionaries viz. 

static, semi-dynamic and dynamic. We also study the string-matching algorithms such as 

Karp-Rabin, Knuth-Morris-Pratt, Brute-Force, Boyer-Moore and Quick-Search 

Algorithms. 

Major contribution of the thesis is to propose pre-text compression technique Word based 

Text Compression Technique using semi-dynamic dictionary (WBTC-C). This method 

gives a better compression ratio when used as a pre-stage compression to standards 

methods such as Bzip2, PPMd, PPMII and LZMA, and is also useful for searching the 

strings directly from the compressed files. The decompression time is also improved in 

WBTC-C method as compared to Bzip2 and PPMd. Other methods such as CBTC-A, 

CBTC-B, WBTC-A, WBTC-B, WBTC-D and WBTC-E are also implemented, which 

differ from WBTC-C. Those methods are implemented using single dimension 

dictionary, double dimension dictionary and using static dictionary and dynamic 

dictionary.  

The techniques are useful for direct searching the pattern in the compressed form. The 

text compression techniques implemented by us uses single and double dimension 

dictionary. The text compression techniques are used as pre-stage compression to existing 

standard methods such as Arithmetic Coding, Bzip2, PPMd, PPMII and LZMA. The 

compression ratio is improved when our techniques are used as pre-stage to those 

methods.  

All techniques are implemented in VC++ 6.0 version.  
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1 

INTRODUCTION 

 

1.0 OUTLINE OF THIS CHAPTER 

This chapter discusses the origin and the usefulness of the data compression. 

Compression techniques based on statistical methods, dictionary based, transform based 

are briefly discussed. It includes the discussion of the problem of pattern searching in 

compressed form. It also focuses on our contribution to the field of text compression. 

Finally, the organization of the thesis is given at the end.   

1.1 ORIGIN OF DATA COMPRESSION 

Giambattista della Porta, a Renaissance scientist, was the author in 1558 of Magia 

Naturalis (Natural Magic), a book in which he discusses many subjects, including 

demonology, magnetism, and the camera obscura. The book mentions an imaginary 

device that has since become known as the “sympathetic telegraph”. This device was to 

have consisted of two circular boxes, similar to compasses, each with a magnetic needle. 

Each box was to be labeled with the 26 letters, instead of the usual directions, and the 

main point was that the two needles were supposed be magnetized by the same lodestone. 

Porta assumed that this would somehow coordinate the needles such that when a letter 

was dialed in one box, the needle in the other box would swing to point to the same letter. 

Needles to say, such a device does not work (this, after all, was about 300 years before 

Samuel Morse), but in 1711 a worried wife wrote to the Spectator, a London periodical, 

asking for advice on how to bear the long absences of her beloved husband. The adviser, 

Joseph Addison, offered some practical ideas, then mentioned Porta’s device, adding that 

a pair of such boxes might enable her and her husband to communicate with each other 

even when they “were guarded by spies and watches, or separated by castles and 

adventures.” Mr. Addison then added that in addition to the 26 letters, the sympathetic 

telegraph dials should contain, when used by lovers, “several entire words which always 

have a place in passionate epistles.” The message “I Love You,” for example, would, in 

such a case, require sending just three symbols instead of ten. This advice is an early 
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example of text compression achieved by using short codes for common messages and 

longer codes for other messages. Even more importantly, this shows how the concept of 

data compression comes naturally to people who are interested in communications.  

1.2 INTRODUCTION OF DATA COMPRESSION 

In the modern digital age, information is mostly processed by the machine automatically. 

Hence the need for compact, precise, and efficient representation of the information is 

also applicable to the computers. With tremendous amount of information accumulated 

especially in the last few decades, data compression schemes are playing an increasingly 

significant role in developing compact representation of information. Moreover, finding 

the useful information from the mass storage has emerged as another major problem 

today. 

People are good at producing data. In recent times, the growth of textual information via 

the Internet, digital libraries and archival text data in many applications is unprecedented. 

The estimation of the growth rate is reflected by the Parkinson's Law on data that "data 

expands to fill the space available for storage". The TREC [1] database holds around 800 

million static pages having 6 trillion bytes of plain text equal to the size of a million 

books. The Google system routinely accumulates millions of pages of new text 

information every week. The web site Alexa.com is collecting over 1,000GB of 

information each day from the web and had collected over 35 billion web pages. There 

have been extensive needs to deal with the overwhelming data. 

It is estimated that the memory usage of the computer systems tends to double roughly 

once every 18 months [2].  

Text compression provides a transformed representation of the text data that is 

understandable only by the computer (in this sense, it relates to cryptography to some 

extent.) The higher the compression ratio, the less disk space is needed to store the data. 

The advantage of the idea is twofold. First, we use less space to store the information. For 

example, English text can be compressed to about 20 to 30% of the original size, and 

images may be compressed by a factor of several hundred times. Normally, lossless 

compression must be used for text because we expect the full text to be recovered from 

the compressed form, unlike audio/video and images which have a much higher degree of 
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redundancy and can be compressed with lossy compression algorithms. Second, we 

require less bandwidth in the internet transmission compared with transmitting raw data. 

Obviously, it takes less time to download the text in its compressed form. It will be a 

considerable saving for the network traffic if the data are transmitted with a much smaller 

size.  

Storage is not the only purpose of keeping the data because we also need to find useful 

information hidden in the data for different purposes. For example, data mining is a new 

area catering to the need for extracting the information from the sleeping data. The initial 

step of mining the knowledge is to retrieve the portion of the text by sending a query, 

typically using keywords. Then algorithms will be performed on the raw or preprocessed 

text. Pattern matching is the most popularly used method to search the text using 

keywords. Although there have been comprehensive studies on text information retrieval 

[3, 4, 5], not much work has been done on searching directly on compressed text. The 

compact representation of text is unreadable for human beings. In order to read the data 

we need to reproduce the original text from the compressed text. Therefore, it is an extra 

overhead of decompression process rather than mining directly from the original form. 

Current research on compression shows little consideration for the relationship between 

the compression algorithm and searching algorithm. We will be focusing on minimizing 

the overhead by considering the optimal combination of compression and searching 

schemes. Pattern matching is a typical starting point for knowledge discovering in large 

databases. There have been various exact and approximate pattern matching algorithms 

available in the literature. Boyer-Moore (BM) [6] and Knuth-Morris-Pratt (KMP) [7] 

pattern matching algorithms are among the best of them. However, pattern matching on 

compressed text has not been thoroughly explored with the known compression methods. 

Efficient storage, transmission, searching, and mining the knowledge have become 

critical and difficult problems to deal with the tremendous data flow. In this thesis, we 

will deal with the problems related to the lossless text compression and compressed 

pattern matching. 
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1.3 DATA COMPRESSION 

Data compression is perhaps the fundamental expression of Information Theory. 

Information Theory is a branch of mathematics that had its genesis in the late 1940s with 

the work of Claude Shannon at Bell Labs. It concerns itself with various questions about 

information, including different ways of storing and communicating messages.  

Data compression enters into the field of Information Theory because of its concern with 

redundancy. Redundant information in a message takes extra bits to encode, and if we 

can get rid of that extra information, we will have reduced the size of the message. 

Information Theory uses the term Entropy as a measure of how much information is 

encoded in a message. The word entropy was borrowed from thermodynamics, and it has 

a similar meaning. The higher the entropy of a message, the more information it contains. 

The entropy of a symbol is defined as the negative logarithm of its probability. To 

determine the information content of a message in bits, the entropy is expressed using the 

base2 logarithm: 

Number of bits = - Log base2 (probability) 

The entropy of an entire message is simply the sum of the entropy of all individual 

symbols. Entropy fits with data compression in its determination of how many bits of 

information are actually present in a message. If the probability of the character ‘e’ 

appearing in this manuscript is 1/16, for example, the information content of the character 

is four bits. So the character string “eeeee” has a total content of 20 bits. If we are using 

standard 8-bit ASCII characters to encode this message, we are actually using 40 bits. 

The difference between the 20 bits of entropy and the 40 bits used to encode the message 

is where the potential for data compression arises. One important fact to note about 

entropy is that, unlike the thermodynamic measure of entropy, we can not use an absolute 

number for the information content of a given message. The problem is that when we 

calculate Entropy, we use a number that gives us the probability of a given symbol. The 

probability figure we use is actually the probability for a given model, not an absolute 

number. If we change the model, the probability will change with it. 

How probabilities changes can be seen clearly when using different orders with a 

statistical model. A statistical model tracks the probability of a symbol based on what 
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symbols appeared previously in the input stream. The order of the model determines how 

many previous symbols are taken into account. An order-0 model, for example, will not 

look at previous characters. An order-1 model looks at the one previous character, and so 

on. 

The different order models can yield drastically different probabilities for a character. 

The letter ‘u’ under an order-0 model, for example, may have only a 1 percent probability 

of occurrence. But under an order-1 model, if the previous character was ‘q,’ the ‘u’ may 

have a 95 percent probability. This seemingly unstable notion of a character’s probability 

proves troublesome for many people. They prefer that a character have a fixed “true” 

probability which tells them what are the chances of its “really” occurring. Claude 

Shannon attempted to determine the true information content of the English language 

with a “party game” experiment. He would uncover a message concealed from his 

audience a single character at a time. The audience guessed what the next character 

would be, one guess at a time, until they got it right. Shannon could then determine the 

entropy of the message as a whole by taking the logarithm of the guess count. Other 

researchers have done more experiments using similar techniques. 

In order to compress data well, it needs to select models that predict symbols with high 

probabilities. A symbol that has a high probability has low information content and will 

need fewer bits to encode. Once the model is producing high probabilities, the next step 

is to encode the symbols using an appropriate number of bits. 

Data compression is the process of converting an input data stream (the source stream or 

the original raw data) into another data stream (the output, or the compressed stream) that 

has a smaller size. A stream is either a file or buffer in memory.  

There are many methods for data compression. They are based on different ideas, are 

suitable for different types of data, and produce different results, but they are all based on 

the same principle, namely, they compress the data by removing redundancy from the 

original data in the source file. Any nonrandom collection data has some structure, and 

this structure can be exploited to achieve a smaller representation of the data, a 

representation where no structure is discernible. Thus, redundancy is an important 

concept in any discussion of data compression. [8] 
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Lossless compression or text compression refers to a class of reversible compression 

algorithms that allow the compressed text to be decompressed into a message identical to 

the original. They are particularly tailored to use a linear data stream. These properties 

make text compression applicable to computer programs, which are linear sequences of 

instructions. Surveys of text compression techniques have been written by Lelewer and 

Hirschberg [9] and Witten et al. [10]. Compression algorithms that are not lossless are 

called lossy. These algorithms are used for compressing data (typically images) that can 

tolerate some data loss in the decompressed message in exchange for a smaller 

compressed representation. Since computer programs must be executed without 

ambiguity, lossy compression is not suitable for them. 

1.4 LOSSLESS COMPRESSION ALGORITHMS 

No compression algorithm has yet been discovered that consistently attain the predictions 

of lower bound of data compression [12] over wide classes of text files. The goal in the 

lossless text compression area is to find better algorithms to explore the redundancy of 

the context and achieve a better compression ratio with a good time complexity. Besides 

the basic techniques such as Run Length Coding (RLC) and Move-to-Front (MTF), etc. 

the lossless algorithms can be classified into three broad categories: statistical methods, 

dictionary methods and transform based methods. There are several criteria used to 

select between using dictionary and statistical compression techniques. Two very 

important factors are the decode efficiency and the overall compression ratio. The decode 

efficiency is a measure of the work required to re-expand a compressed text. The 

compression ratio is defined by the formula: 

compression ratio = compressed size / original size 

1.4.1 STATISTICAL METHODS 

In the late 1940s, the early years of Information Theory, the idea of developing efficient 

new coding techniques was just starting to be fleshed out. Researchers were exploring the 

ideas of entropy, information content, and redundancy. One popular notion held that if 

the probability of symbols in a message were known, there ought to be a way to code the 

symbols so that the message would take up less space. 
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This early work in data compression was being done before the advent of the modern 

digital computer. Today it seems natural that information theory goes hand in hand with 

computer programming, but just after World War II, for all practical purposes, there were 

no digital computers. So the idea of developing algorithms using base 2 arithmetic for 

coding symbols was really a great leap forward. 

The first well-known method for effectively coding symbols is now known as Shannon-

Fano coding. Claude Shannon at Bell Labs and R.M. Fano at MIT developed this 

method nearly simultaneously.  

In Shannon-Fano coding, the symbols are arranged in order from most probable to least 

probable, and then divided into two sets whose total probabilities are as close as possible 

to being equal. All symbols then have the first digits of their codes assigned; symbols in 

the first set receive "0" and symbols in the second set receive "1". As long as any sets 

with more than one member remain, the same process is repeated on those sets, to 

determine successive digits of their codes. When a set has been reduced to one symbol, of 

course, this means the symbol's code is complete and will not form the prefix of any other 

symbol's code. 

The algorithm works, and it produces fairly efficient variable-length encodings; when the 

two smaller sets produced by a partitioning are in fact of equal probability, the one bit of 

information used to distinguish them is used most efficiently. The Shannon-Fano tree is 

built from the top down, starting by assigning the most significant bits to each code and 

working down the tree until finished. Shannon-Fano does not always produce optimal 

prefix codes. For this reason, Shannon-Fano is almost never used. 

The other method of statistical coding is Huffman coding [13]. Huffman coding shares 

most characteristics of Shannon-Fano coding. It creates variable length codes that are an 

integral number of bits. Symbols with higher probabilities get shorter codes. Huffman 

codes have the unique prefix attribute, which means they can be correctly decoded 

despite being variable length. Decoding a stream of Huffman codes is generally done by 

following a binary decoder tree. 

Building the Huffman decoding tree is done using a completely different algorithm from 

that of the Shannon-Fano method. Huffman codes are built from the bottom up, starting 

with the leaves of the tree and working progressively closer to the root. The procedure for 
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building the tree is simple and elegant. The individual symbols are laid out as a string of 

leaf nodes that are going to be connected by a binary tree. Each node has a weight, which 

is simply the frequency or probability of the symbol’s appearance. The tree is then built 

with the following steps: 

• The two free nodes with the lowest weights are located. 

• A parent node for these two nodes is created. It is assigned a weight equal to the sum of 

the two child nodes. 

• The parent node is added to the list of free nodes, and the two child nodes are removed 

from the list. 

• One of the child nodes is designated as the path taken from the parent node when 

decoding a 0 bit. The other is arbitrarily set to the 1 bit. 

• The previous steps are repeated until only one free node is left. This free node is 

designated the root of the tree. 

The codes have the unique prefix property. Since no code is a prefix to another code, 

Huffman codes can be unambiguously decoded as they arrive in a stream.  

Note, however, that the Huffman codes differ in length from Shannon-Fano codes.  

In general, Shannon-Fano and Huffman coding are close in performance. But Huffman 

coding will always at least equal the efficiency of Shannon-Fano coding, so it has 

become the predominant coding method of its type. Since both algorithms take a similar 

amount of processing power, it seems sensible to take the one that gives slightly better 

performance. And Huffman was able to prove that this coding method cannot be 

improved on with any other integral bit-width coding stream. 

 In effect, the tree behaves like a dictionary that has to be transmitted once from the 

sender to receiver and this constitutes an initial overhead of the algorithm. This overhead 

is usually ignored in publishing the BPC results for Huffman code in literature.  There are 

also Huffman codes called canonical Huffman codes which uses a look up table or 

dictionary rather than a binary tree for fast encoding and decoding [8]. 

Another respectable candidate to replace Huffman coding been successfully 

demonstrated: arithmetic coding [15]. Arithmetic coding bypasses the idea of replacing 

an input symbol with a specific code. It replaces a stream of input symbols with a single 

floating-point output number. More bits are needed in the output number for longer, 
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complex messages. The output from an arithmetic coding process is a single number less 

than 1 and greater than or equal to 0. This single number can be uniquely decoded to 

create the exact stream of symbols that went into its construction. 

Arithmetic code is inherently adaptive, does not use any lookup table or dictionary and in 

theory can be optimal for a machine with unlimited precision of arithmetic computation. 

The basic idea can be explained as follows: at the beginning the semi-closed interval [0; 

1) is partitioned into |A| equal sized semi-closed intervals under the equiprobability 

assumption and each symbol is assigned one of these intervals. The first symbol, say a1 of 

the message can be represented by a point in the real number interval assigned to it. To 

encode the next symbol a2 in the message, the new probabilities of all symbols are 

calculated recognizing that the first symbol has occurred one extra time and then the 

interval assigned to a1 is partitioned ( as if it were the entire interval) into |A| sub-intervals 

in accordance with the new probability distribution. The sequence a1a2 can now be 

represented without ambiguity by any real number in the new sub-interval for a2. The 

process can be continued for succeeding symbols in the message as long as the intervals 

are within the specified arithmetic precision of the computer. The number generated at 

the final iteration is then a code for the message received so far. The machine returns to 

its initial state and the process is repeated for the next block of symbol. A simpler version 

of this algorithm could use the same static distribution of probability at each iteration 

avoiding re-computation of probabilities. The arithmetic coding method is explained in 

detail in chapter 2.  

The Huffman and arithmetic coders are sometimes referred to as the entropy coders. 

These methods normally use an order (0) model. If a good model with low entropy can be 

built external to the algorithms, these algorithms can generate the binary codes very 

efficiently.  

One of the most well known modeler is “Prediction by Partial Match" (PPM) [17, 18]. 

It is capable of very good compression on a wide variety of source data.  

The main idea of PPM (Prediction by Partial Matching) is to take advantage of the 

previous k characters to generate a conditional probability of the current character. The 

simplest way to do this would be to keep a dictionary for every possible string s of k 

characters, and for each string have counts for every character x that follows s. The 
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conditional probability of x in the context s is then C(x|s) / C(s), where C(x/s) is the 

number of times x follows s and C(s) is the number of times s appears. The probability 

distributions can then be used by a Huffman or Arithmetic coder to generate a bit 

sequence. For example, we might have a dictionary with qu appearing 100 times and e 

appearing 45 times after qu. The conditional probability of the e is then .45 and the coder 

should use about 1 bit to encode it. Note that the probability distribution will change from 

character to character since each context has its own distribution. In terms of decoding, as 

long as the context precedes the character being coded, the decoder will know the context 

and therefore know which probability distribution to use. Because the probabilities tend 

to be high, arithmetic codes work much better than Huffman codes for this approach. 

There are two problems with the basic dictionary method described in the previous 

paragraph. First, the dictionaries can become very large. There is no solution to this 

problem other than to keep k small, typically 3 or 4. A second problem is what happens if 

the count is zero. We cannot use zero probabilities in any of the coding methods (they 

would imply infinitely long strings). One way to get around this is to assume a 

probability of not having seen a sequence before and evenly distribute this probability 

among the possible following characters that have not been seen. Unfortunately this gives 

a completely even distribution, when in reality we might know that a is more likely than 

b, even without knowing its context. 

The PPM algorithm has a clever way to deal with the case when a context has not been 

seen before, and is based on the idea of partial matching. The algorithm builds the 

dictionary on the fly starting with an empty dictionary, and every time the algorithm 

comes across a string it has not seen before it tries to match a string of one shorter length. 

This is repeated for shorter and shorter lengths until a match is found. For each length 

0,1,. . .,k. the algorithm keeps statistics of patterns it has seen before and counts of the 

following characters. In practice this can all be implemented in a single trial. In the case 

of the length-1 contexts the counts are just counts of each character seen assuming no 

context. The method is explained in more detail with example in chapter 2.  

Dynamic Markov Compression (DMC) [19] is another modeling scheme that is 

equivalent to finite context model but uses finite state machine to estimate the 

probabilities of the input symbols which are bits rather than bytes as in PPM. The model 
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starts with a single state machine with only one count of `0' and `1' transitions into itself 

(the zero frequency state) and then the machine adopts to future inputs by accumulating 

the transitions with 0's and 1's with revised estimates of probabilities. If a state is used 

heavily for input transitions (caused either by 1 or 0 input), it is cloned into two states by 

introducing a new state in which some of the transitions are directed and duplicating the 

output transitions from the original states for the cloned state in the same ratio of 0 and 1 

transitions as the original state. The bit-wise encoding takes longer time and therefore 

DMC is very slow but the implementation is much simpler than PPM and it has been 

shown that the PPM and DMC models are equivalent [20]. 

1.4.2 DICTIONARY METHODS  

Dictionary decompression uses a codeword as an index into the dictionary table, and then 

inserts the dictionary entry into the decompressed text stream. If codewords are aligned 

with machine words, the dictionary lookup is a constant time operation. Statistical 

compression, on the other hand, uses codewords that have different bit sizes, so they do 

not align to machine word boundaries. Since codewords are not aligned, the statistical 

decompression stage must first establish the range of bits comprising a codeword before 

text expansion can proceed. It can be shown that for every dictionary method there is an 

equivalent statistical method which achieves equal compression and can be improved 

upon to give better compression [11]. Thus statistical methods can always achieve better 

compression than dictionary methods albeit at the expense of additional computation 

requirements for decompression. It should be noted, however, that dictionary 

compression yields good results in systems with memory and time constraints because 

one entry expands to several characters. In general, dictionary compression provides for 

faster (and simpler) decoding, while statistical compression yields a better compression 

ratio. 

A dictionary-based compression scheme uses a different concept. It reads in input data 

and looks for groups of symbols that appear in a dictionary. If a string match is found, a 

pointer or index into the dictionary can be output instead of the code for the symbol. The 

longer the match, the better the compression ratio. This method of encoding changes the 
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focus of dictionary compression. Simple coding methods are generally used, and the 

focus of the program is on the modeling.   

A static dictionary is used like the list of references in an academic paper. Through the 

text of a paper, the author may simply substitute a number that points to a list of 

references instead of writing out the full title of a referenced work. The dictionary is 

static because it is built up and transmitted with the text of work—the reader does not 

have to build it on the fly. The first time a number is seen in the text like this—[2] — it 

points to the static dictionary. The problem with a static dictionary is identical to the 

problem the user of a statistical model faces: The dictionary needs to be transmitted along 

with the text, resulting in a certain amount of overhead added to the compressed text. An 

adaptive dictionary scheme helps avoid this problem. 

Generally, a type of adaptive dictionary is used when performing acronym replacements 

in technical literature. The standard way to use this adaptive dictionary is to spell out the 

acronym, then put its abbreviated substitution in parentheses. So the first time if 

Maharaja Sayajirao University (MSU) is mentioned then, both the dictionary string and 

its substitution are defined. From then on, referring to MSU in the text should 

automatically invoke a mental substitution. 

The most widely used compression algorithms (Gzip and Gif) are based on Ziv-Lempel 

or LZ77 coding [21] in which the text prior to the current symbol constitute the 

dictionary and a greedy search is initiated to determine whether the characters following 

the current character have already been encountered in the text before, and if yes, they are 

replaced by a reference giving its relative starting position in the text. Because of the 

pattern matching operation the encoding takes longer time but the process has been fine 

tuned with the use of hashing techniques and special data structures. The decoding 

process is straightforward and fast because it involves a random access of an array to 

retrieve the character string. A variation of the LZ77 theme, called the LZ78 coding [22], 

includes one extra character to a previously coded string in the encoding scheme. A more 

popular variant of LZ78 family is the so-called LZW algorithm [23] which leads to 

widely used Compress utility. This method uses a suffix tree to store the strings 

previously encountered and the text is encoded as a sequence of node numbers in this 

tree. To encode a string the algorithm will traverse the existing tree as far as possible and 
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a new node is created when the last character in the string fails to traverse a path any 

more. At this point the last encountered node number is used to compress the string up to 

that node and a new node is created appending the character that did not lead to a valid 

path to traverse. In other words, at every step of the process the length of the recognizable 

strings in the dictionary gets incrementally stretched and is made available to future steps. 

Many other variants of LZ77 and LZ78 compression family have been reported in the 

literature. [8, 16]. 

Kruse and Mukherjee [24] devised a dictionary-based scheme called Star encoding. In 

this method the words are replaced with sequences of * symbols accompanied with 

references to an external dictionary. The dictionary is arranged according to word 

lengths, and the proper sub-dictionary is selected by the length of the sequence of “stars”. 

There have been several minor variations of such a scheme from the same authors, most 

popular of which is a length index preserving transformation (LIPT). In LIPT, the word-

length-related sub-dictionary is pointed by a single byte value (as opposed to a sequence 

of “stars”).  

Smirnov [25] proposed two modifications to LIPT. One is to use non-intersecting 

alphabet ranges for word lengths, word indices, and letters in words absent from the 

dictionary. The other idea is more complex: apart from non-intersecting alphabets, also 

more sub-dictionaries are considered, determined now not only by word lengths but also 

part-of-speech tags. For an LZ77 compressor, the original LIPT performed best.  

StarNT [26] is the most recent algorithm from the presented family. A word in StarNT 

dictionary is a sequence of symbols over the alphabet [a..z]. There is no need to use 

uppercase letters in the dictionary, as there are two one-byte flags (reserved symbols), fcl 

and fuw, in the output alphabet to indicate that either a given word starts with a capital 

letter while the following letters are all lowercase, or a given word consists of capitals 

only. Another introduced flag, for, prepends an unknown word. Finally, there is yet a 

collision-handling flag, fesc, used for encoding occurrences of flags fcl, fuw, for, and fesc in 

the text.  

The ordering of words in the dictionary D, as well as mapping the words to unique 

codewords, is important for the compression effectiveness. StarNT uses the following 

rules: 
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• The most popular words are stored at the beginning of the dictionary. This group has 

312 words. 

• The remaining words are stored in D according to their increasing lengths. Words of 

same length are sorted according to their frequency of occurrence in some training 

corpus. 

• Only letters [a..zA..Z] are used to represent the codeword (with the intention to achieve 

better compression performance with the backend compressor). 

Each word in D has assigned a corresponding codeword. Codewords’ length varies from 

one to three bytes. As only the range [a. . z, A . . Z] for codeword bytes is used, there can 

be up to [52 + (52 x 52) + (52 x 52 x 52) ]  = 143, 364 entries in the dictionary. The first 

52 words have codewords: a, b, . . . , z, A, B, . . . , Z. Words from the 53rd to the 2756th 

have codewords of length 2: aa, ab, . . . , ZY, ZZ; and so on. 

1.4.3 TRANSFORM BASED METHODS 

The Burrows-Wheeler transform [27] is a block-sorting, lossless data compression 

algorithm that works by applying a reversible transformation to a block of input data. The 

transform does not perform any compression but modifies the data in a way to make it 

easy to compress with a secondary algorithm such as “move-to-front” coding and then 

Huffman, or arithmetic coding. The BWT algorithm achieves compression performance 

within a few percent of statistical compressors but at speeds comparable to the LZ based 

algorithms. The BWT algorithm does not process data sequentially but takes blocks of 

data as a single unit, which may lend itself to parallel processing. The transformed block 

contains the same characters as the original block but in a form that is easy to compress 

by simple algorithms. Same characters in the original block are often grouped together in 

the transformed block.  

Several authors have presented improvements to the original algorithm. Andersson and 

Nilsson have published several papers about Radix Sort, which can be used as a first 

sorting step during the BWT [28, 29]. In his final BWT research report, Fenwick 

described some BWT sort improvements including sorting long words instead of single 

bytes [30]. Kurtz presented several papers about BWT sorting stages with suffix trees, 

which needed less space than other suffix tree implementations and are linear in time [31, 
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32]. Sadakane described a fast suffix array sorting scheme in [33] and [34]. In [35], 

Larsson presented an extended suffix array sorting scheme. Based on already sorted 

suffices, Seward developed two fast suffix sorting algorithms called "copy" and "cache" 

[36]. Itoh and Tanaka presented a fast sorting algorithm called the two stage suffix sort 

[37]. Kao improved the two stage suffix sort by some new techniques which are very fast 

for sequences of repeat symbols [38]. Manzini and Ferragina published some improved 

suffix array sorting techniques based on the results of Seward and of Itoh and Tanaka 

[39]. Several techniques for the post BWT stages have been also published. Besides the 

MTF improvements from Schindler [40], and from Balkenhol and Shtarkov [41], an MTF 

replacement, called Inversion Frequencies, was introduced by Arnavut and Magliveras 

[42] and Deorowicz [43] presented another MTF replacement, named Weighted 

Frequency Count.  Various modeling techniques for the entropy coding at the end of the 

compression process were presented by Fenwick [44,45], Balkenhol and Shtarkov [46]. 

The Burrows-Wheeler-Transform method is explained in detail in Chapter 2.  

1.5 SEARCHING IN COMPRESSED FILES 

With compressed files becoming more commonplace, the problem of how to search 

within them is becoming increasingly important [47]. There are two options to consider 

when deciding how to approach compressed pattern matching. The first is a `decompress-

then-search' approach, where the compressed file is first decompressed, and then a 

traditional pattern-matching algorithm applied. This approach has the advantage of 

simplicity, but brings with it tremendous overheads, in terms of both computation time 

and storage requirements. Firstly, the entire file must be decompressed – often a lengthy 

process, especially when considering files several megabytes in size. Additionally, the 

decompressed file must be stored somewhere once decompressed, so that pattern 

matching may occur. 

The second alternative is to search the compressed file without decompressing it, or at 

least only partially decompress it. This approach is known as compressed-domain pattern 

matching, and offers several enticing advantages. The file is smaller, so a pattern 

matching algorithm should take less time to search the full text. It also avoids the work 

that would be needed to completely decompress the file.   
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The main difficulty in compressed-domain pattern matching is that the compression 

process may have removed a great deal of the structure of the file. The more structure 

removed, the better the compression likely to be achieved. There is therefore a subtly 

balanced compromise between obtaining good compression and leaving enough `hints' to 

allow pattern-matching to proceed. It would appear that these two goals are in constant 

opposition, but in fact compression is very closely related to pattern matching, in that 

many compression systems use some sort of pattern matching technique to find 

repetitions in the input, which can be exploited to give better compression. The effect of 

this is that these patterns are coded in a special manner, which, if suitably represented, 

may actually aid in pattern matching. Searching techniques are discussed in detail in 

chapter 3. 

1.6 OUR CONTRIBUTION  

We have proposed text compression techniques which are used as a pre-compression 

stage to well known standard methods such as Arithmetic Coding, Bzip2, PPM variants 

(PPMd and PPMII), and LZMA. The compression ratio is improved when we use our 

technique as pre-compression stage. The proposed compression techniques use the 

concept of static, semi-dynamic and dynamic dictionary, which is arranged in the form of 

one-dimension and two-dimension. The idea behind using the two-dimension instead of 

one-dimension is that elements in the two-dimension matrix can be represented in shorter 

code as compared to elements in one-dimension. Also the number of possible codes 

reduces in case of two-dimension. The compression techniques proposed here are also 

suitable for searching the phrase directly in the compressed form, instead of decompress 

and then search.   

1.7 ORGANIZATION OF THESIS 

The remaining thesis is organized as given below: 

Chapter 2  

This chapter discusses compression technique such as arithmetic coding, BWT, PPM 

variants (PPMd and PPMII) and LZMA in detail. 
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Chapter 3  

This chapter describes various searching algorithms useful for searching the pattern from 

the file.  

Chapter 4 

This chapter includes the detailed description of the proposed compression techniques, 

Character Based Text Compression method using Static Dictionary (CBTC-A) 

Character Based Text Compression Technique using Semi Dynamic Dictionary(CBTC-B) 

Word Based Text Compression Technique using Semi Dynamic Dictionary (WBTC-A) 

Word Based Text Compression Technique using Semi Dynamic Dictionary (WBTC-B) 

Word Based Text Compression Technique using Two-Dimension Semi-Dynamic 

Dictionary (WBTC-C) 

Word Based Text Compression Technique using Dynamic Dictionary (WBTC-D) 

Word Based Text Compression Technique using Static Dictionary (WBTC-E) 

This chapter includes the process of dictionary creation, and discusses the compression 

and decompression algorithms along with searching algorithms. 

Chapter 5 

This chapter describes the implementation of the proposed compression techniques 

explained in chapter 4. The algorithms are implemented in VC++.   

Chapter 6 

This chapter includes the comparison of the results of proposed compression techniques. 

Different set of corpus namely Gutenberg, Enronsent, European Parliament, E-Text, are 

taken for comparing the results with the existing compression techniques. Also it includes 

the comparison of searching the string from the compressed file and normal file using 

different string-matching algorithms described in chapter 3. The experimental results of 

decompression time of proposed method WBTC-C and Bzip2 is given at the end of this 

chapter 

Chapter 7 

This chapter concludes the thesis and discusses about probable future work.  
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2 

COMPRESSION TECHNIQUES 

 

2.0 OUTLINE OF THIS CHAPTER 

This chapter describes various methods of compression techniques. Generating variable-

length codes: arithmetic coding, followed by transform based method BWT which is used 

by BZIP2. The context based method Prediction by Partial Match (PPM) and its variants 

are described in section 2.4 followed by in improved version of LZ77 method – Lempel 

Ziv Markov-chain Algorithm (LZMA) in section 2.5 

2.1 ORIGINS OF ARITHMETIC CODING 

The first step toward arithmetic coding was taken by Shannon [48], who observed in a 

1948 paper that messages N symbols long could be encoded by first sorting the messages 

in order of their probabilities and then sending the cumulative probability of the 

preceding messages in the ordering. The code string was a binary fraction and was 

decoded by magnitude comparison. The next step was taken by Peter Elias in an 

unpublished result; Abramson [49] described Elias’ improvement in 1963. Elias observed 

that Shannon’s scheme worked without sorting the messages, and that the cumulative 

probability of a message of N symbols could be recursively calculated from individual 

symbol probabilities and the cumulative probability of the message of N - 1 symbols. 

Elias’ code was studied by Jelinek [50]. The codes of Shannon and Elias suffered from a 

serious problem: As the message increased in length the arithmetic involved required 

increasing precision. By using fixed-width arithmetic units for these codes, the time to 

encode each symbol is increased linearly with the length of the code string. 

Meanwhile, another approach to coding was having a similar problem with precision. In 

1972, Schalkwijk [51] studied coding from the standpoint of providing an index to the 

encoded string within a set of, possible strings. As symbols were added to the string, the 

index increased in size. This is a last-in-first-out (LIFO) code, because the last symbol 

encoded was the first symbol decoded. Cover [52] made improvements to this scheme, 



 19

which is now called enumerative coding. These codes suffered from the same precision 

problem. 

Both Shannon’s code and the Schalkwijk-Cover code can be viewed as a mapping of 

strings to a number, forming two branches of pre-arithmetic codes, called FIFO (first-in-

first-out) and LIFO. Both branches use a double recursion, and both have a precision 

problem. Rissanen [53] alleviated the precision problem by suitable approximations in 

designing a LIFO arithmetic code. Code strings of any length could be generated with a 

fixed calculation time per data symbol using fixed-precision arithmetic. 

Pasco [54] discovered a FIFO arithmetic code, discussed earlier, which controlled the 

precision problem by essentially the same idea proposed by Rissanen. In Pasco’s work, 

the code string was kept in computer memory until the last symbol was encoded. This 

strategy allowed a carry-over to be propagated over a long carry chain. Pasco [54] also 

conjectured on the family of arithmetic codes based on their mechanization. 

In Rissanen [53] and Pasco [54], the original (given, or presumed) symbol probabilities 

were used. (In practice, we use estimates of the relative frequencies. However, the notion 

of an imaginary “source” emitting symbols according to given probabilities is commonly 

found in the coding literature.) In [15] and [55], Rissanen and Langdon introduced the 

notion of coding parameters “based” on the symbol probabilities. The uncoupling of the 

coding parameters from the symbol probabilities simplifies the implementation of the 

code at very little compression loss, and gives the code designer some tradeoff 

possibilities. In [15] it was stated that there were ways to block the carry-over, and in [55] 

bit-stuffing was presented. In [56] F. Rubin also improved Pasco’s code by preventing 

carry-overs. The result was called a “stream” code. Jones [57] and Martin [58] have 

independently discovered P-based FIFO arithmetic codes.  

Rissanen and Langdon [15] successfully generalized and characterized the family of 

arithmetic codes through the notion of the decodability criterion which applies to all such 

codes, be they LIFO or FIFO, L-based or P-based. The arithmetic coding family is seen 

to be a practical generalization of many pre-arithmetic coding algorithms, including 

Elias’ code, Schalkwijk [51], and Cover [52]. In [59], Rissanen presents an interesting 

view of an arithmetic code as a number-representation system, and shows that Elias’ code 

and enumerative codes are duals. 
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2.2 ARITHMETIC CODING 

In comparison to the well-known Huffman Coding algorithm, Arithmetic Coding 

overcomes the constraint that the symbol to be encoded has to be coded by a whole 

number of bits. This leads to higher efficiency and a better compression ratio in general. 

Indeed Arithmetic Coding can be proven to almost reach the best compression ratio 

possible, which is bounded by the entropy of the data being encoded. Though during 

encoding the algorithm generates one code for the whole input stream, this is done in a 

fully sequential manner, symbol after symbol.  

Compared to other fields of Computer Science, Arithmetic Coding is still very young, 

however already mature and efficient principle for lossless data encoding, which satisfies 

all the requirements of what people understand of a modern compression algorithm: Data 

input streams can be compressed symbol wise, enabling on-the-fly data compression. 

Also Arithmetic Coding works in linear time with only constant use of memory. As 

mentioned above, finite precision integer arithmetic suffices for all calculations. These 

and other properties make it straightforward to derive hardware-based solutions. 

Arithmetic Coding is also known to reach a best-possible compression ratio, provided the 

single symbols of the input stream are statistically independent, which should be the case 

for most data streams. Also it can be enhanced very simple by allowing simple plug-in of 

optimized statistical models. The decoder uses almost the same source code as the 

encoder which also makes the implementation straightforward. 

2.2.1 EXAMPLE OF ARITHMETIC CODING 

Arithmetic coding bypasses the idea of replacing an input symbol with a specific code. It 

replaces a stream of input symbols with a single floating-point output number. More bits 

are needed in the output number for longer, complex messages. This concept has been 

known for some time, but only recently were practical methods found to implement 

arithmetic coding on computers with fixed sized registers. 

The output from an arithmetic coding process is a single number less than 1 and greater 

than or equal to 0. This single number can be uniquely decoded to create the exact stream 

of symbols that went into its construction. To construct the output number, the symbols 
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are assigned set probabilities. The message “BILL GATES,” for example, would have a 

probability distribution as shown in Table 2.1 

Table 2.1 Probability Distribution of message “BILL GATES” 

Character Probability
SPACE 1/10 

A 1/10 
B 1/10 
E 1/10 
G 1/10 
I 1/10 
L 2/10 
S 1/10 
T 1/10 

 
Once character probabilities are known, individual symbols need to be assigned a range 

along a “probability line,” nominally 0 to 1. It doesn’t matter which characters are 

assigned which segment of the range, as long as it is done in the same manner by both the 

encoder and the decoder. The nine-character symbol set used here would look like as 

shown in Table 2.2. 

Table 2.2 Probability range of message “BILL GATES” 

Character Probability Range 
SPACE 1/10 0.00 - 0.10
A 1/10 0.10 - 0.20
B 1/10 0.20 - 0.30
E 1/10 0.30 - 0.40
G 1/10 0.40 - 0.50
I 1/10 0.50 - 0.60
L 2/10 0.60 - 0.80
S 1/10 0.80 - 0.90
T 1/10 0.90 - 1.00

 

Each character is assigned the portion of the 0 to 1 range that corresponds to its 

probability of appearance. The character “owns” everything up to, but not including, the 

higher number. So the letter T in fact has the range .90 to .9999… The most significant 

portion of an arithmetic-coded message belongs to the first symbols—or B, in the 

message “BILL GATES.” To decode the first character properly, the final coded message 

has to be a number greater than or equal to .20 and less than .30.  To encode this number, 
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track the range it could fall in. After the first character is encoded, the low end for this 

range is .20 and the high end is .30. During the rest of the encoding process, each new 

symbol will further restrict the possible range of the output number. The next character to 

be encoded, the letter I, owns the range .50 to .60 in the new subrange of .2 to .3. So the 

new encoded number will fall somewhere in the 50th to 60th percentile of the currently 

established range. Applying this logic will further restrict the number to .25 to .26. The 

algorithm to accomplish this for a message of any length is shown in figure 2.1 

low = 0.0; 

high = 1.0; 

while ( ( c = getc( input ) ) != EOF ) { 

range = high - low; 

high = low + range * high_range( c ); 

low = low + range * low_range( c ); 

} 

output ( low ); 

Figure 2.1 Algorithm for encoding symbols (Arithmetic Coding) 

Following this process to its natural conclusion with message results in the following 

table 2.3. 

So the final low value, .2572167752, will uniquely encode the message “BILL GATES” 

using coding scheme explained above. 

Given this encoding scheme, it is relatively easy to see how the decoding process 

operates. Find the first symbol in the message by seeing which symbol owns the space 

our encoded message falls in. Since .2572167752 falls between .2 and .3, the first 

character must be B. Then remove B from the encoded number. Since the low and high 

range of B is known, remove their effects by reversing the process that put them in. First, 

subtract the low value of B, giving .0572167752. Then divide by the width of the range 

of B, or .1. This gives a value of .572167752. Then calculate where that lands, which is in 

the range of the next letter, I. The algorithm for decoding the incoming number is shown 

figure 2.2 
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Table 2.3 Encoded values of Characters 

New Character Low Value High Value 

 0.0 1.0 

B 0.2 0.3 

I 0.25 0.26 

L 0.256 0.258 

L 0.2572 0.2576 

SPACE 0.25720 0.25724 

G 0.257216 0.257220 

A 0.2572164 0.2572168 

T 0.25721676 0.2572168 

E 0.257216772 0.257216776 

S 0.2572167752 0.2572167756 

 
number = input_code(); 

for ( ; ; ) { 

symbol = find_symbol_straddling_this_range( number ); 

putc( symbol ); 

range = high_range( symbol ) - low_range( symbol ); 

number = number - low_range( symbol ); 

number = number / range; 

} 

Figure 2.2 Algorithm for decoding symbols (Arithmetic Coding) 

The problem of how to decide when there are no more symbols left to decode can be 

handled either by encoding a special end-of-file symbol or by carrying the stream length 

with the encoded message. The decoding algorithm for the “BILL GATES” message will 

proceed as shown in Table 2.4  

In summary, the encoding process is simply one of narrowing the range of possible 

numbers with every new symbol. The new range is proportional to the predefined 

probability attached to that symbol. Decoding is the inverse procedure, in which the 

range is expanded in proportion to the probability of each symbol as it is extracted. 
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Table 2.4 Decoded values of characters 

Encoded Number Output Symbol Low High Range 

0.2572167752 B 0.2 0.3 0.1 

0.572167752 I 0.5 0.6 0.1 

0.72167752 L 0.6 0.8 0.2 

0.6083876 L 0.6 0.8 0.2 

0.041938 SPACE 0.0 0.1 0.1 

0.41938 G 0.4 0.5 0.1 

0.1938 A 0.1 0.2 0.1 

0.938 T 0.9 1.0 0.1 

0.38 E 0.3 0.4 0.1 

0.8 S 0.8 0.9 0.1 

0.0     

 
2.2.2 PRACTICAL MATTERS 

Encoding and decoding a stream of symbols using arithmetic coding is not too 

complicated. But at first glance it seems completely impractical. Most computers support 

floating-point numbers of around 80 bits. So is it necessary to start over every time you 

encode ten or fifteen symbols? Whether floating-point processor is needed? Can 

machines with different floating-point formats communicate through arithmetic coding? 

As it turns out, arithmetic coding is best accomplished using standard 16-bit and 32-bit 

integer math. Floating-point math is neither required nor helpful. What is required is an 

incremental transmission scheme in which fixed-size integer state variables receive new 

bits at the low end and shift them out at the high end, forming a single number that can be 

as long as necessary, conceivably millions or billions of bits.  

Earlier, it has been shown that the algorithm works by keeping track of a high and low 

number that brackets the range of the possible output number. When the algorithm first 

starts, the low number is set to 0 and the high number is set to 1. The first simplification 

made to work with integer math is to change the 1 to .999 …, or .111… in binary. 
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Mathematicians agree that .111… binary is exactly the same as 1 binary, and this 

assurance is taken at face value. It simplifies encoding and decoding. To store these 

numbers in integer registers, first justify them so the implied decimal point is on the left 

side of the word. Then load as much of the initial high and low values as will fit into the 

word size we are working with. If the implementation is done using 16-bit unsigned 

math, then initial value of high will be 0xFFFF, and low will be 0. It is known that the 

high value continues with Fs forever, and the low continues with zeros forever; so those 

extra bits can be shifted in with impunity when needed.   

Consider the example of the message “BILL GATES” in a five-decimal digit register, the 

decimal equivalent would look like as shown below: 

HIGH: 99999 implied digits => 999999999... 

LOW: 00000 implied digits => 000000000... 

To find the new range of numbers, apply the encoding algorithm shown in figure 2.1. 

First, calculate the range between the low and high values. The difference between the 

two registers will be 100000, not 99999. This is because the high register has an infinite 

number of 9s added to it, so it is needed to increment the calculated difference. Then 

compute the new high value using the formula  

high = low + high_range(symbol) 

In this case, the high range was .30, which gives a new value for high of 30000. Before 

storing the new value of high, it is needed to decrement it, once again because of the 

implied digits appended to the integer value. So the new value of high is 29999. The 

calculation of low follows the same procedure, with a resulting new value of 20000. So 

now high and low look like this: 

high: 29999 (999...) 

low: 20000 (000...) 

At this point, the most significant digits of high and low match. Due to the nature of 

algorithm, high and low can continue to grow closer together without quite ever 

matching. 
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So once they match in the most significant digit, that digit will never change. That digit 

can be now output as the first digit of the encoded number. This is done by shifting both 

high and low left by one digit and shifting in a 9 in the least significant digit of high. As 

this process continues, high and low continually grow closer together, shifting digits out 

into the coded word. The process for message “BILL GATES” is shown in Table 2.5 

After all the letters are accounted for, two extra digits need to be shifted out of either the 

high or low value to finish the output word. This is so the decoder can properly track the 

input data. Part of the information about the data stream is still in the high and low 

registers, and we need to shift that information to the file for the decoder to use later.  

2.2.3 COMPLICATION IN ARITHMETIC CODING 

This scheme works well for incrementally encoding a message. Enough accuracy is 

retained during the double-precision integer calculations to ensure that the message is 

accurately encoded. But there is potential for a loss of precision under certain 

circumstances. If the encoded word has a string of 0s or 9s in it, the high and low values 

will slowly converge on a value, but they may not see their most significant digits match 

immediately. High may be 700004, and low may be 699995. At this point, the calculated 

range will be only a single digit long, which means the output word will not have enough 

precision to be accurately encoded. Worse, after a few more iterations, high could be 

70000, and low could be 69999. At this point, the values are permanently stuck. The 

range between high and low has become so small that any iteration through another 

symbol will leave high and low at their same values. But since the most significant digits 

of both words are not equal, the algorithm can’t output the digit and shift. It seems to 

have reached an impasse.  

This underflow problem can be solved by preventing things from ever getting bad. The 

original algorithm said something like, “If the most significant digit of high and low 

match, shift it out.” If the two digits don’t match, but are now on adjacent numbers, a 

second   test   needs to be  applied. If high  and  low are one  apart,  then  the second most  
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Table 2.5 Cumulative output of message 

 High Low Range Cumulative Output

Initial State 99999 00000 100000  

Encode B (0.2 – 0.3) 29999 20000   

Shift out 2  99999 00000 10000 .2 

Encode I (0.5 – 0.6) 59999 50000  .2 

Shift out 5 99999 00000 10000 .25 

Encode L (0.6 – 0.8) 79999 60000 20000 .25 

Encode L (0.6 – 0.8) 75999 72000  .25 

Shift out 7 59999 20000 40000 .257 

Encode SPACE (0.0 – 0.1) 23999 20000  0.257 

Shift out 2 39999 00000 40000 .2572 

Encode G (0.4 – 0.5) 19999 16000  .2572 

Shift out 1 99999 60000 40000 .25721 

Encode A (0.1 – 0.2) 67999 64000  .25721 

Shift out 6 79999 40000 40000 .257216 

Encode T (0.9 – 1.0) 79999 76000  .257216 

Shift out 7 99999 60000 40000 .2572167 

Encode E (0.3 – 0.4) 75999 72000  .2572167 

Shift out 7 59999 20000 40000 .25721677 

Encode S (0.8 – 0.9) 55999 52000  .25721677 

Shift out 5 59999 20000  .257216775 

Shift out 2    .2572167752 

Shift out 0    .25721677520 

 
significant digit in high is tested for 0 and the second digit in low is tested for 0. If so, it 

means that underflow problem has occurred and an action is needed. Head off underflow 

with a slightly different shift operation. Instead of shifting the most significant digit out 

of the word, delete the second digits from high and low and shift the rest of the digits left 

to fill the space. The most significant digit stays in place. Then set an underflow counter 
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to remember that a digit is threw away and it is not quite sure whether it was going to be 

a 0 or a 9. This process is shown in Table 2.6. 

Table 2.6 Underflow Situation 

 Before After 

High: 40344 43449

Low: 39810 38100

Underflow: 0 1 

After every recalculation, check for underflow digits again if the most significant digit 

doesn’t match. If underflow digits are present, shift them out and increment the counter. 

When the most significant digits do finally converge to a single value, output that value. 

Then output the underflow digits previously discarded. The underflow digits will all be 9s 

or 0s, depending on whether high and low converged on the higher or lower value.  

2.2.4 DECODING 

In the “ideal” decoding process, the entire input number is to be work with, the entire 

number is available to work with, and the algorithm had to do things like “divide the 

encoded number by the symbol probability.” In practice, it is not possible to perform an 

operation like that on a number that could be billions of bytes long. As in the encoding 

process, however, the decoder can operate using 16- and 32-bit integers for calculations. 

Instead of using just two numbers, high and low, the decoder has to use three numbers. 

The first two, high and low, correspond exactly to the high and low values maintained by 

the encoder. The third number, code, contains the current bits being read in from the 

input bit stream. The code value always falls between the high and low values. As they 

come closer and closer to it, new shift operations will take place, and high and low will 

move back away from code. 

The high and low values in the decoder will be updated after every symbol, just as they 

were in the encoder, and they should have exactly the same values. By performing the 

same comparison test on the upper digit of high and low, the decoder knows when it is 

time to shift a new digit into the incoming code. The same underflow tests are performed 

as well. 
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In the ideal algorithm, it was possible to determine what the current encoded symbol was 

just by finding the symbol whose probabilities enclosed the present value of the code. In 

the integer math algorithm, things are somewhat more complicated. In this case, the 

probability scale is determined by the difference between high and low. So instead of the 

range being between .0 and 1.0, the range will be between two positive 16-bit integer 

counts. Where the present code value falls along that range determines current 

probability. Divide (value - low) by (high - low + 1) to get the actual probability for the 

present symbol. 

2.2.5 COMPARISON WITH HUFFMAN CODING 

It is not immediately obvious why this encoding process is an improvement over 

Huffman coding. It becomes clear when we examine a case in which the probabilities are 

a little different. If we have to encode the stream “AAAAAAA,” and the probability of A 

is known to be .9, there is a 90 percent chance that any incoming character will be the 

letter A. The Probability table is setup so that A occupies the 0.0 to 0.9 range, and the end 

of-message symbol occupies the 0.9 to 1.0 range. The encoding process is shown in 

Table  2.7. 

Table 2.7 Encoding process of message “AAAAAAA” 

New Character Low Value High Value

 0.0 0.1 

A 0.0 0.9 

A 0.0 0.81 

A 0.0 0.729 

A 0.0 0.6561 

A 0.0 0.59049 

A 0.0 0.531441 

A 0.0 0.4782969 

END 0.43046721 0.4782969 

 

Now that the range of high and low values is known, all that remains is to pick a number 

to encode this message. The number .45 will make this message uniquely decode to 
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“AAAAAAA.” Those two decimal digits take slightly less than seven bits to specify, 

which means that eight symbols are encoded in less than eight bits. An optimal Huffman 

message would have taken a minimum of nine bits.  

To take this point to an even further extreme, consider a example that had only two 

symbols. In it, 0 had a 16382/16383 probability, and an end-of-file symbol had a 1/16383 

probability. Create a file filled with 100,000 0s. After compression using arithmetic 

coding, the output file was only three bytes long! The minimum size using Huffman 

coding would have been 12,501 bytes. This is obviously a contrived example, but it 

shows that arithmetic coding compresses data at rates much better than one bit per byte 

when the symbol probabilities are right. 
 

2.3. BURROWS WHEELER TRANSFORMATION 

The BWT algorithm does not process its input sequentially, but instead processes a block 

of text as a single unit. The idea is to apply a reversible transformation to a block of text 

to form a new block that contains the same characters, but is easier to compress by simple 

compression algorithms. The transformation tends to group characters together so that the 

probability of finding a character close to another instance of the same character is 

increased substantially. Text of this kind can easily be compressed with fast locally-

adaptive algorithms, such as move-to-front coding [60] in combination with Huffman or 

arithmetic coding.  

Briefly, the algorithm transforms a string S of N characters by forming the N rotations 

(cyclic shifts) of S, sorting them lexicographically, and extracting the last character of 

each of the rotations. A string L is formed from these characters, where the ith character 

of L is the last character of the ith sorted rotation. In addition to L, the algorithm 

computes the index I of the original string S in the sorted list of rotations. Surprisingly, 

there is an efficient algorithm to compute the original string S given only L and I .  

The sorting operation brings together rotations with the same initial characters. Since the 

initial characters of the rotations are adjacent to the final characters, consecutive 

characters in L are adjacent to similar strings in S. If the context of a character is a good 

predictor for the character, L will be easy to compress with a simple locally-adaptive 

compression algorithm. 
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2.3.1 THE REVERSIBLE TRANSFORMATION 

Two sub-algorithms are described here. Algorithm 2.3.1 performs the reversible 

transformation that is applied to a block of text before compressing it, and Algorithm 

2.3.2 performs the inverse operation. In the description below, strings is treated as vectors 

whose elements are characters. 

ALGORITHM 2.3.1: COMPRESSION TRANSFORMATION 

This algorithm takes as input a string S of N characters S[0],,,,,,, S[N-1] selected from an 

ordered alphabet X of characters. To illustrate the technique, consider a example, using 

the string S = ‘abraca’, N = 6, and the alphabet X =   {‘a’,’b’,’c’,’r’} 

Step 1: Sort rotations 

Form a conceptual N x N matrix M whose elements are characters, and whose rows are 

the rotations (cyclic shifts) of S, sorted in lexicographical order. At least one of the rows 

of M contains the original string S. Let I be the index of the first such row, numbering 

from zero. In this example, the index I = 1 and the matrix M is row 

0  aabrac 

1  abraca 

2  acaabr 

3  bracaa 

4  caabra 

5  racaab 

Step 2: Find last characters of rotations 

Let the string L be the last column of M, with characters L[0],,,,,,L[N-1] (equal to M[0, N 

- 1], , , , ,M[N – 1, N - 1]). The output of the transformation is the pair (L, I ). In this 

example, L = ‘caraab’ and I  = 1 (from step C1). 
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ALGORITHM 2.3.2: DECOMPRESSION TRANSFORMATION 

The same example and notation used in Algorithm 2.3.1 is considered here. Algorithm 

2.3.2 uses the output (L, I) of Algorithm 2.3.1 to reconstruct its input, the string S of 

length N.  

Step 1: Find first characters of rotations 

This step calculates the first column F of the matrix M of Algorithm 2.3.1. This is done 

by sorting the characters of L to form F. It is observed that any column of the matrix M is 

a permutation of the original string S. Thus, L and F are both permutations of S, and 

therefore of one another. Furthermore, because the rows of M are sorted, and F is the first 

column of M, the characters in F are also sorted. 

In this example, F = ‘aaabcr’. 

Step 2: Build list of predecessor characters 

To explain in detail, this step is described in terms of the contents of the matrix M. It 

should be remember that the complete matrix is not available to the decompressor; only 

the strings F, L, and the index I (from the input) are needed by this step.  

Consider the rows of the matrix M that start with some given character ch. Algorithm C 

ensured that the rows of matrix M are sorted lexicographically, so the rows that start with 

ch are ordered lexicographically.  

Let us define the matrix M’ formed by rotating each row of M one character to the right, 

so for each i = 0, , , , ,N - 1, and each j = 0, , , , ,N -1,  

M’ [i; j ] =  M[i, (j -1 ) mod N] 

In this example, M and M’ are:  

                                    row     M                  M’ 

0   aabrac   caabra 

1   abraca   aabrac 

2   acaabr   racaab 

3   bracaa   abraca 

4   caabra   acaabr 

5  racaab   bracaa 
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Like M, each row of M’ is a rotation of S and for each row of M there is a corresponding 

row in M’. M’ is constructed from M, so that the rows of M’ are sorted lexicographically 

starting with their second character. So, if only those rows in M’ are considered that start 

with a character ch, they must appear in lexicographical order relative to one another; 

they have been sorted lexicographically starting with their second characters, and their 

first characters are all the same and so do not affect the sort order. Therefore, for any 

given character ch, the rows in M that begin with ch appear in the same order as the rows 

in M’ that begin with ch. 

In this example, this is demonstrated by the rows that begin with ‘a’. The rows ‘aabrac’, 

‘abraca’, and ‘acaabr’ are rows 0, 1, 2 in M and correspond to rows 1, 3, 4 in M’. 

Using F and L, the first columns of M and M’ respectively, a vector T is calculated that 

indicates the correspondence between the rows of the two matrices, in the sense that for 

each j = 0, , , , , ,N-1, row j of M’ corresponds to row T [ j] of M. 

If L[ j] is the kth instance of ch in L, then T[j] = i where F[i] is the kth instance of ch in F. 

Note that T represents a one-to-one correspondence between elements of F and elements 

of L, and F[T[ j]] = L[ j ]. 

In this example, T is: (4 0 5 1 2 3). 

Step 3: Form output S 

Now, for each i = 0, , , , , N - 1, the characters L[i] and F[i] are the last and first characters 

of the row i of M. Since each row is a rotation of S, the character L[i] cyclicly precedes 

the character F[i] in S. From the construction of T, we have F[T[ j]] =  L[ j ]. Substituting 

i = T[ j ], we have L[T[ j ]] cyclicly precedes L[ j] in S. 

The index I is defined by Algorithm 2.3.1 such that row I of M is S. Thus, the last 

character of S is L[I ]. The vector T is used to give the predecessors of each character: 

for each i = 0, , , , , , N - 1: S[N - 1 -  i] =  L[T i [I ]]. 

where T0[x] = x, and Ti+1[x] = T[Ti[x]]. This yields S, the original input to the compressor. 

In this example, S = ‘abraca’. 

Let us define T such that the string S would be generated from front to back, rather than 

the other way around.   

The sequence Ti [I] for i = 0, , , , , N - 1 is not necessarily a permutation of the numbers 0, 

, , , , N - 1. If the original string S is of the form Z p for some substring Z and some p > 1, 
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then the sequence Ti [I] for i = 0, , , , , N - 1 will also be of the form Z’p for some 

subsequence Z’. That is, the repetitions in S will be generated by visiting the same 

elements of T repeatedly. For example, if S = ‘cancan’, Z = ‘can’ and p = 2, the sequence 

Ti [I] for i = 0, , , , , N - 1 will be [2, 4, 0, 2, 4, 0]. 

2.3.2 WHY THE TRANSFORMED STRING COMPRESSES WELL 

Algorithm 2.3.1 sorts the rotations of an input string S, and generates the string L 

consisting of the last character of each rotation. 

To see why this might lead to effective compression, consider the effect on a single letter 

in a common word in a block of English text. Consider the example of the letter ‘t’ in the 

word ‘the’, and assume an input string containing many instances of ‘the’. 

When the list of rotations of the input is sorted, all the rotations starting with ‘he ’ will 

sort together; a large proportion of them are likely to end in ‘t’. One region of the string L 

will therefore contain a disproportionately large number of ‘t’ characters, intermingled 

with other characters that can proceed ‘he ’ in English, such as space, ‘s’, ‘T’, and ‘S’. 

The same argument can be applied to all characters in all words, so any localized region 

of the string L is likely to contain a large number of a few distinct characters. The overall 

effect is that the probability that given character ch will occur at a given point in L is very 

high if ch occurs near that point in L, and is low otherwise. This property is exactly the 

one needed for effective compression by a move-to-front coder, which encodes an 

instance of character ch by the count of distinct characters seen since the next previous 

occurrence of ch. When applied to the string L, the output of a move-to-front coder will 

be dominated by low numbers, which can be efficiently encoded with a Huffman or 

arithmetic coder.  

For completeness, one of the possible ways is to use Move-to-Front coding technique to 

encode the output of Algorithm 2.3.1 and the corresponding inverse operation. A 

complete compression algorithm is created by combining these encoding and decoding 

operations with Algorithms 2.3.1 and 2.3.2. 
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2.3.3 MOVE-TO-FRONT CODING 

This is a technique that is ideal for sequences with the property that the occurrence of a 

character indicates it is more likely to occur immediately afterwards. The sequence of 

characters is converted to a list of numbers as follows: The list of characters maintained, 

represent characters by their position in the list. On encoding a character, it is moved to 

the front of the list. Thus smaller numbers are more likely to occur than larger numbers.  

ALGORITHM 2.3.3: MOVE-TO-FRONT CODING 

This algorithm encodes the output (L, I) of Algorithm C, where L is a string of length N 

and I is an index. It encodes L using a move-to-front algorithm and a Huffman or 

arithmetic coder. 

The example used in Algorithm 2.3.1 is continued here. 

Step 1: Move-to-front coding 

This step encodes each of the characters in L by applying the move-to-front technique to 

the individual characters. Let us define a vector of integers R[0], , , , , R[N-1], which are 

the codes for the characters L[0], , , , , L[N- 1].  

Initialize a list Y of characters to contain each character in the alphabet X exactly once. 

For each i = 0, , , , , ,N-1 in turn, set R[i] to the number of characters preceding character 

L[i] in the list Y, then move character L[i] to the front of Y. 

Taking Y = [‘a’,’b’,’c’,’r’] initially, and L = ‘caraab’, compute the vector R: (2 1 3 1 0 3).  

Step 2:  Encode 

Apply Huffman or arithmetic coding to the elements of R, treating each element as a 

separate token to be coded. Any coding technique can be applied as long as the 

decompressor can perform the inverse operation. Call the output of this coding process 

OUT. The output of Algorithm 2.3.1 is the pair (OUT ,I) where I is the value computed in 

step 1 of algorithm 2.3.1. 
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ALGORITHM 2.3.4: MOVE-TO-FRONT DECODING 

This algorithm is the inverse of Algorithm 2.3.3. It computes the pair (L,I) from the pair . 

(OUT ,I). 

Here it is assumed that the initial value of the list Y used in step 1 of algorithm 2.3.3 is 

available to the decompressor, and that the coding scheme used in step 2 of algorithm 

2.3.3 has an inverse operation. 

Step 1: Decode 

Decode the coded stream OUT using the inverse of the coding scheme used in step 2 of 

algorithm 2.3.3. The result is a vector R of N integers. 

In our example, R is: (2 1 3 1 0 3). 

Step 2: Inverse move-to-front coding 

The goal of this step is to calculate a string L of N characters, given the move-to-front 

codes R[0], , , , ,R[N -1].  

Initialize a list Y of characters to contain the characters of the alphabet X in the same 

order as in step 1 of Algorithm 2.3.3. 

For each i = 0, , , , , N - 1 in turn, set L[i] to be the character at position R[i] in list Y 

(numbering from 0), then move that character to the front of Y. The resulting string L is 

the last column of matrix M of Algorithm 2.3.1. The output of this algorithm is the pair 

(L,I), which is the input to Algorithm 2.3.2. 

Taking Y = [‘a’,’b’,’c’,’r’] initially (as in Algorithm M), we compute the string L = 

‘caraab’. 

2.4. PREDICTION BY PARTIAL MATCH 

The best known context-based algorithm is the ppm algorithm, first proposed by Cleary 

and Witten in 1984 [17]. It has not been popular as the various Ziv-Lempel based 

algorithms mainly because of the faster execution speeds of the latter algorithms. Lately 

with the development of more efficient variants, ppm-based algorithms are becoming 

increasingly more popular.  

The idea of the ppm algorithm is elegantly simple. We would like to use large contexts to 

determine the probability of the symbol being encoded.  
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The basic algorithm initially attempts to use the largest context. The size of the largest 

context is predetermined. If the symbol to be encoded has not previously been 

encountered in this context, an escape symbol is encoded and the algorithm attempts to 

use the next smaller context. If the symbol has not occurred in this context earlier, the 

size of the context is further reduced. This process, continues until either we obtain a 

context that has previously been encountered with this symbol, or we arrive at the 

conclusion that the symbol has not been encountered previously in any context. In this 

case, we use a probability of 1/X to encode the symbol, where X is the size of the source 

alphabet. For example, when coding the a of probability, we would first attempt to see if 

the string proba has previously occurred – that is, if a had previously occurred in the 

context of prob. If not, we would encode an escape and see if a had occurred in the 

context of rob. If the string roba had not occurred previously, we would again send an 

escape symbol and try the context ob. Continuing in this manner, we would try the 

context b, and failing that we would see if the letter a (with zero-order context) had 

occurred previously. If a was being encountered for the first time, we would use a model 

in which all letters occur with equal probability to encode a. This equiprobable model is 

sometimes referred to as the context of order -1.  

As the development of the probabilities with respect to each context is an adaptive 

process each time a symbol is encountered, the count corresponding to that symbol is 

updated. The number of counts to be assigned to the escape symbol is not obvious, and a 

number of different approaches have been used. One approach used by Cleary and Witten 

is to give the escape symbol a count of one, thus inflating the total count by one. Cleary 

and Witten call this method – A, and the resulting algorithm ppma.  

Example  

Lets encode the sequence  

thisbisbthebtithe 

Assuming we have already encoded the initial seven characters thisbis, the various counts 

and Cum_Counts arrays to be used in the arithmetic coding of the symbols are shown in 

Tables 2.8 – 2.11. In this example, we are assuming that the longest context length is two. 

This is a rather small value and is used here to keep the size of the example reasonable 

small. A more common value for the longest context length is five.  
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We will assume that the word length for arithmetic coding is four. Thus, l  = 0000 and u 

= 1111. As thisbis, has already been encoded, the next letter to be encoded is b. The 

second order context for this letter is is. Looking at Table 2.11, we can see that the letter 

b is the first letter in this context with a Cum_Count value of 1. As the Total_Count in 

this case is 2, the update equations for the lower and upper limits are 

l = 0 + [ (15-0+1) * 0/2] = 0 = 0000 

u - 0 +[(15 – 0 + 1) * 1/2] – 1  = 7 = 0111. 

As the MSBs of both l and u are the same, we shift that bit our, shift a 0 into the LSB of l, 

and a 1 into the  LSB of u. The transmitted sequence, lower limit, and upper limit after 

the update are: 

Transmitted sequence: 0 

                                      l:0000 

                                      u:1111 

Table 2.8 Count array for -1 order context 

Letter Count Cum_Count

t 1 1 

h 1 2 

i 1 3 

s 1 4 

e 1 5 

b 1 6 

Total Count 6 
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Table 2.9 Count array for zero-order context. 

Letter Count Cum_Count

t 1 1 

h 1 2 

i 2 4 

s 1 5 

b 1 6 

<esc> 1 7 

Total Count 7 

 

We also update the counts in Tables 2.9 – 2.11. 

The next letter to be encoded in the sequence is t. The second-order context is sb. 

Looking at Table 2.11, we can see that t has not appeared before in this context. We 

therefore encode an escape symbol. Using the counts listed in Table 2.11, we update the 

lower and upper limits: 

l = 0 + [ (15 – 0 + 1) * 1/2] = 8 = 1000 

u – 0 + [(15 – 0 + 1) * 2/2] -1 = 15 = 1111. 

Again, the MSBs of l and u are the same, so we shift the bit out and shift 0 into the LSB 

of l, and 1 into u, restoring l to a value of 0 and u to a value of 15. The transmitted 

sequence is now 01. After transmitting the escape, we look at the first order context of t, 

which is b. Looking at Table 2.10, we can see that t has not previously occurred in this 

context. To let the decoder know this, we transmit another escape. Updating the limits, 

we get 

l = 0 + [(15 – 0 + 1) * 1/2] = 8 = 1000 

u – 0 + [(15 – 0 + 1) * 2/2] – 1 = 15 = 1111 

As the MSBs of l and u are the same, we shift the MSB out and shift 0 into the LSB of l 

and 1 into the LSB of u. The transmitted sequence is now 011. Having escaped out of the 

first-order contexts, we examine Table 2.9 to see if we can encode t using zero-order 

context. Indeed we can, and using the Cum-Count array, we can update l and u:  

l = 0 + [ (15 – 0 + 1) * 0/2] = 0 = 0000 

u – 0 + [ (15 – 0 + 1) * 1/7] – 1 = 1 = 0001. 
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Table 2.10 Count array for first-order contexts. 

Context Letter Count Cum_Count

h 1 1 
t 

<Esc> 1 2 

Total Count 2 

i 1 1 
h 

<Esc> 1 2 

Total Count 2 

s 2 2 
i 

<Esc> 1 3 

Total Count 3 

i 1 1 
b 

<Esc> 1 2 

Total Count 2 

b 1 1 
s 

<Esc> 1 2 

Total Count 2 
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Table 2.11 Count array for second-order contexts. 

Context Letter Count Cum_Count

i 1 1 
th 

<Esc> 1 2 

Total Count 2 

s 1 1 
hi 

<Esc> 1 2 

Total Count 2 

b 1 1 
is 

<Esc> 1 2 

Total Count 2 

i 1 1 
sb 

<Esc> 1 2 

Total Count 2 

s 1 1 
bi 

<Esc> 1 2 

Total Count 2 

 

Table 2.12 Count array for zero-order context. 

Letter Count Cum_Count

t 2 2 

h 1 3 

i 2 5 

s 1 6 

b 1 7 

<esc> 1 8 

Total Count 8 
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Table 2.13 Count array for first-order contexts. 

Context Letter Count Cum_Count

h 2 2 
t 

<Esc> 1 3 

Total Count 3 

i 1 1 
h 

<Esc> 1 2 

Total Count 2 

s 2 2 
i 

<Esc> 1 3 

Total Count 3 

i 1 1 

i 1 2 b 

<Esc> 1 3 

Total Count 3 

b 1 1 
s 

<Esc> 1 2 

Total Count 2 
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Table 2.14 Count array for second-order contexts. 

Context Letter Count Cum_Count

i 1 1 
th 

<Esc> 1 2 

Total Count 2 

s 1 1 
hi 

<Esc> 1 2 

Total Count 2 

b 2 2 
is 

<Esc> 1 3 

Total Count 3 

i 1 1 

i 1 2 sb 

<Esc> 1 3 

Total Count 3 

s 1 1 
bi 

<Esc> 1 2 

Total Count 2 

h 1 1 
bi 

<Esc> 1 2 

Total Count 2 

 

The three most significant bits of both l and u are the same, so we shift them out. After 

the update we get 

Transmitted sequence: 011000 

l:0000 

u:1111 

 

The next letter to be encoded is h. The second-order context bt has not occurred 

previously, so we move directly to the first-order context t. the letter h has occurred 

previously in this context, so we update l and u and obtain 



 44

Transmitted sequence: 0110000 

l:0000 

u:1111 

The method of encoding should now be clear. At this point the various counts are shown 

in Tables 2.12 – 2.14. 

The Escape Symbol 

In our example we used a count of one for the escape symbol, thus inflating the total 

count in each context by one. Cleary and Witten call this Method A, and the 

corresponding algorithm is referred to as PPMA. There is really no obvious justification 

for assigning a count of one to the escape symbol. For that matter, there is no obvious 

method of assigning counts to the escape symbol. There have been various methods 

reported in the literature.  

Another method described by Cleary and Witten is to reduce the counts of each symbol 

by one and assign these counts to the escape symbol. For example, suppose in a given 

sequence a occurs 10 times in the context of prob, l occurs 9 times, and o occurs 3 times 

in the same context (e.g., problem, proboscis etc.).  In method A we assign a count of one 

to the escape symbol, resulting in a total count of 23, which is one more than the number 

of times prob has occurred. The situation is shown in Table 2.15 

In this second method, known as Method – B, we reduce the count of each of the symbols 

a, l, and o by one and give the escape symbol a count of three, resulting in the counts 

shown in Table 2.16 The reasoning behind this approach is that if in a particular context 

more symbols can occur, there is a greater likelihood that there is a symbol in this context 

that has not occurred before. This increase the likelihood that the escape symbol will be 

used. Therefore, we should assign a higher probability to the escape symbol.  

Table 2.15  Counts using Method – A. 

Context Symbol Count

a 10 

l 9 

o 3 
prob 

<Esc> 1 

Total Count 23 
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Table 2.16  Counts using Method – B. 

Context Symbol Count

a 9 

l 8 

o 2 
prob 

<Esc> 3 

Total Count 22 

 

A variant of method B, appropriately named Method C, was proposed by Moffat [61]. In 

method C, the count assigned to the escape symbol is the number of symbols that have 

occurred in that context. In this respect, Method C, is similar to the Method B. The 

difference comes in the fact that instead of “robbing” this from the counts of individual 

symbols, the total count is inflated by this amount. This situation is shown in Table 2.17.  

While there is some variation in the performance depending on the characteristics of the 

data being encoded of the three methods for assigning counts to the escape symbols, on 

the average, Method C seems to provide the best performance.  

Table 2.17 Counts using Method C 

Context Symbol Count

a 10 

l 9 

o 3 
prob 

<Esc> 3 

Total 25 

 

Another variant of PPM is PPMD method proposed by Paul Glor Howard [62] is slightly 

improved method for estimating the escape probability.  Moffat’s PPMC method is 

widely considered to be the best method of estimating escape probabilities. In the PPMC, 

each symbol’s count in a context is taken to be number of times it has occurred so far in 

the context. The escape “event,” that is, the occurrence of a symbol for the first time in 

the context, is also treated as a “symbol,” with its own count. When a letter occurs for the 
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first time, its count becomes 1; the escape count is incremented by 1, so the total count 

increases by 2, and at all other times the total count increases by 1.  

PPMD is similar to PPMC except that it makes the treatment of new symbols more 

consistent by adding ½ instead of 1 to both the escape count and the new symbol’s count 

when a new symbol occurs; hence the total count always increases by 1. 

In 2002, Shkarin proposed a variation of PPM algorithm – PPM with Information 

Inheritance [63]. This algorithm sets a new standard on the compression performance. 

The estimation of probability for the escape symbol is a very important and difficult task. 

As the higher order causes deterioration in the compression performance, the most often 

applied order for widely used PPMD is five. This is caused by frequent occurrence of the 

escape symbol and its bad estimation. However, estimation of the escape symbol’s 

frequency for PPMII is much better. PPMII uses orders even up to 64, but the main 

reason allowing to use such high orders is much better estimation of ordinary symbols’ 

probability. Escape estimation in PPMII is adaptive. It uses a secondary escape model 

(SEE [64]). SEE is a special, separate model used for better evaluation of probability for 

escape symbols only. Most PPM models use statistics from the longest matching context. 

PPMII inherits the statistics of shorter contexts when a longer context is encountered for 

the first time. The shorter (the last longest matching) context’s statistics are used to 

estimate the statistics of the longer context. The executable version of PPMII method is 

implemented as PPMII.exe 

2.5 LEMPEL ZIV MARKOV CHAIN ALGORITHM 

LZMA (Lempel-Ziv-Markov chain-Algorithm) is an optimized version of LZ77 [65]. 

LZMA uses a dictionary compression algorithm (a variant of LZ77), whose output is then 

encoded with a range encoder. It raises the compression ratio dramatically while 

maintaining high decompression speed and low memory requirements for decompression. 

The dictionary compressor produces a stream of literal symbols and phrase references, 

which is encoded one bit at a time by the range encoder, using a model to make a 

probability prediction of each bit. Prior to LZMA, most encoder models were byte-based 

(i.e. they coded each bit using a cascade of contexts to represent the dependencies on 

previous bits from the same byte). The main innovation of LZMA is that instead of a 
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generic byte-based model, LZMA's model uses contexts specific to the bitfields in each 

representation of a literal or phrase. This is nearly as simple as a generic byte-based 

model, but gives much better compression because it avoids mixing unrelated bits 

together in the same context.  

2.5.1 LZMA Algorithm 

In LZMA compression, the compressed stream is a stream of bits, encoded using 

adaptive binary range coder. The stream is divided into packets, each packet describing 

either a single byte, or an LZ77 sequence with its length and distance implicitly or 

explicitly encoded. Each part of each packet is modeled with independent contexts, so the 

probability predictions for each bit are correlated with the values of that bit (and related 

bits from the same field) in previous packets of the same type. 

There are 7 types of packets as shown in Table 2.18 

Table 2.18 List of Packets used in LZMA 

Packed code (bit 
sequence) Packet description 

0 + byteCode 

A single byte encoded using an adaptive binary range coder. The range 

coder uses context based on some number of the most significant bits of 

the previous byte. Depending on the state machine, this can also be a 

single byte encoded as a difference from the byte at the last used LZ77 

distance. 

1+0 + len + dist A typical LZ77 sequence describing sequence length and distance. 

1+1+0+0 
A one-byte LZ77 sequence. Distance is equal to the last used LZ77 

distance. 

1+1+0+1 + len An LZ77 sequence. Distance is equal to the last used LZ77 distance. 

1+1+1+0 + len 
An LZ77 sequence. Distance is equal to the second last used LZ77 

distance. 

1+1+1+1+0 + len 
An LZ77 sequence. Distance is equal to the third last used LZ77 

distance. 

1+1+1+1+1 + len 
An LZ77 sequence. Distance is equal to the fourth last used LZ77 

distance. 

 

The length is encoded as shown in Table 2.19 
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Table 2.19 Encoding of Length 

Length code (bit 
sequence) Description 

0+ 3 bits 
The length encoded using 3 bits, gives the lengths range from 

2 to 9. 

1+0+ 3 bits 
The length encoded using 3 bits, gives the lengths range from 

10 to 17. 

1+1+ 8 bits 
The length encoded using 8 bits, gives the lengths range from 

18 to 273. 

 

The distance is encoded as follows: 

First a distance class is encoded using 6 bits. The 5 other bits of the distance code encode 

the information about how many direct distance bits need to be extracted from the stream. 

2.5.2 RANGE ENCODING 

Range encoding conceptually encodes all the symbols of the message into one number, 

unlike Huffman coding which assigns each symbol a bit-pattern and concatenates all the 

bit-patterns together. Thus range encoding can achieve greater compression ratios than 

the one-bit-per-symbol upper bound on Huffman encoding and it does not suffer the 

inefficiencies that Huffman does when dealing with probabilities that are not exact 

powers of two. 

The central concept behind range encoding is this: given a large-enough range of 

integers, and probability estimation for the symbols, the initial range can easily be 

divided into sub-ranges whose sizes are proportional to the probability of the symbol they 

represent. Each symbol of the message can then be encoded in turn, by reducing the 

current range down to just that sub-range which corresponds to the next symbol to be 

encoded. The decoder must have the same probability estimation the encoder used, which 

can either be sent in advance, derived from already transferred data or be part of the 

compressor and decompressor. 

When all symbols have been encoded, merely identifying the sub-range is enough to 

communicate the entire message (presuming of course that the decoder is somehow 

notified when it has extracted the entire message). A single integer is actually sufficient 
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to identify the sub-range, and it may not even be necessary to transmit the entire integer; 

if there is a sequence of digits such that every integer beginning with that prefix falls 

within the sub-range, then the prefix alone is all that's needed to identify the sub-range 

and thus transmit the message. 

2.5.3 RELATIONSHIP WITH ARITHMETIC CODING 

Arithmetic coding is the same as range encoding, but with the integers taken as being the 

numerators of fractions. These fractions have an implicit, common denominator, such 

that all the fractions fall in the range (0,1). Accordingly, the resulting arithmetic code is 

interpreted as beginning with an implicit "0.". As these are just different interpretations of 

the same coding methods, and as the resulting arithmetic and range codes are identical, 

each arithmetic coder is its corresponding range encoder, and vice-versa. In other words, 

arithmetic coding and range encoding are just two, slightly different ways of 

understanding the same thing. 

An often noted feature of such range encoders is the tendency to perform renormalization 

a byte at a time, rather than one bit at a time (as is usually the case). In other words, range 

encoders tend to use bytes as encoding digits, rather than bits. While this does reduce the 

amount of compression that can be achieved by a very small amount, it is faster than 

when performing renormalization for each bit. 
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3 

STRING-MATCHING ALGORITHMS 

 
3.0 OUTLINE OF THIS CHAPTER 

This chapter is concerned with string matching methods for locating patterns occurring 

as a sub-string of a particular string. Such keywords searches are a common requirement 

in, for example, word processing and information retrieval applications. This chapter 

discusses the most popular string matching algorithms.  

• Brute-Force Algorithm 

• Karp-Rabin Algorithm 

• Knuth-Morris-Pratt Algorithm 

• Boyer-Moore Algorithm 

• Quick Search Algorithm 

3.1 INTRODUCTION 

The general approach for looking for a pattern in a file that is stored in its compressed 

form is first decompressing and then applying one of the known pattern matching 

algorithms in the decoded file. In many cases, however, in particular on the Internet, files 

are stored in their original form, for if they were compressed, the host computer would 

have to provide memory space for each user in order to store the decoded file. This 

requirement is not reasonable, as many user scan simultaneously quest the same 

information reservoir which will demand an astronomical quantity of free memory. 

Another possibility is transferring the compressed files to the personal computer of the 

user, and then decoding the files. However, we then assume that the user knows the exact 

location of the information he is looking for; if this is not the case, much unneeded 

information will be transferred.  

There is therefore a need to develop methods for directly searching within a compressed 

file. For a given text S and pattern P and complementary encoding and decoding 

functions E and D, our aim is to search E(P) in E(S), rather than the usual approach 

which searches for the pattern P in the decompressed text D(E(S)). But this is not always 
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straightforward, since an instance of E(P) in the compressed text is not necessarily the 

encoding of instance of P in the original text S. This so-called compressed matching 

problem has been introduced by Amir and Benson [47].  The algorithms proposed in 

chapter 4 are useful for searching E(P) in E(S), with any conventional string-matching 

algorithm discussed in this chapter.  

3.2 STRING-MATCHING ALGORITHMS 

String matching consists of finding one, or more generally, all the occurrences of a 

pattern in a text. The pattern and the text are both strings built over a finite alphabet (a 

finite set of symbols). Each algorithm describe here outputs all occurrences of the pattern 

in the text. The pattern is denoted by P = P[0…m-1]; its length is equal to m. The text is 

denoted by S = S[0…n-1]; its length is equal to n. The alphabet is denoted by ∑ and its 

size equal toσ . 

String-matching algorithms work as follows: they first align the left ends of the pattern 

and the text, then compare the aligned symbols of the text and the pattern — this specific 

work is called an attempt or a scan — and after a whole match of the pattern or after a 

mismatch they shift the  pattern to the right. They repeat the same procedure again until 

the right end of the pattern goes beyond the right end of the text. This is called the scan 

and shift mechanism. Each attempt is associated with the position i in the text when the 

pattern is aligned with S[i…i+m-1]. 

The brute force algorithm consists of checking, at all positions in the text between 0 and 

n-m, whether an occurrence of the pattern starts there or not. Then, after each attempt, it 

shifts the pattern exactly one position to the right. This is the simplest algorithm, which is 

described in Figure 3.1. 

The time complexity of the brute force algorithm is O(mn) in the worst case but its 

behavior in practice is often linear on specific data.  

Four categories arise: the most natural way to perform the comparisons is from left to 

right, which is the reading direction; performing the comparisons from right to left 

generally leads to the best algorithms in practice; the best theoretical bounds are reached 

when comparisons are done in a specific order; finally there exist some algorithms for 
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which the order in which the comparisons are done is not relevant (such is the brute force 

algorithm)  

void BF(char *s, char *p, int n, int m) 
{ 

int i, j; 
/* Searching */ 
for (i=0; i <= n-m; i++)  
{ 

j=0; 
while (j < m && s[i+j] == p[j])  

j++; 
if (j >= m)  

OUTPUT(i); 
} 

} 
Figure 3.1 The Brute Force string-matching algorithm. 

 

3.2.1 From left to right 

Hashing provides a simple method that avoids the quadratic number of character 

comparisons in most practical situations_ and that runs in linear time under reasonable 

probabilistic assumptions. It has been introduced by Harrison and later fully analyzed by 

Karp and Rabin[66]. 

Assuming that the pattern length is no longer than the memory-word size of the machine, 

the Shift-Or algorithm is an efficient algorithm to solve the exact string-matching 

problem and it adapts easily to a wide range of approximate string-matching problems. 

The first linear-time string matching algorithm is from Morris and Pratt [67]. It has been 

improved by Knuth, Morris, and Pratt [7]. The search behaves like a recognition process 

by automaton and a character of the text is compared to a character of the pattern no more 

than logφ (m+1) (φ  is the golden ratio (1+ 5 )/ 2). Hancart proved that this delay of a 

related algorithm discovered by Simon makes no more than 1+log2m comparisons per 

text character. Those three algorithms perform at most 2n-1 text character comparisons in 

the worst case. 

The search with a Deterministic Finite Automaton performs exactly n text character 

inspections but it requires an extra space in O(m x σ ). The Forward Dawg Matching 

algorithm performs exactly the same number of text character inspections using the suffix 

automaton of the pattern. 
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The Apostolico-Crochemore algorithm is a simple algorithm which performs 3/2n text 

character comparisons in the worst case. 

The Not So Naive algorithm is a very simple algorithm with a quadratic worst case time 

complexity but it requires a preprocessing phase in constant time and space and is slightly 

sub-linear in the average case. 

3.2.2 From right to left 

The Boyer-Moore algorithm[6] is considered as the most efficient string matching 

algorithm in usual applications. A simplified version of it (or the entire algorithm) is 

often implemented in text editors for the “search” and “substitute” commands. Cole 

proved that the maximum number of character comparisons is tightly bounded by 3n after 

the preprocessing for non-periodic patterns. It has a quadratic worst case time for periodic 

patterns. 

Several variants of the Boyer-Moore algorithm avoid its quadratic behavior.  The most 

efficient solutions in term of number of character comparisons have been designed by 

Apostolico and Giancarlo, Crochemore et alii (TurboBM) and Colussi (Reverse Colussi). 

Empirical results show that variations of the Boyer-Moore algorithm and algorithms 

based on the suffix automaton by Crochemore et alii (Reverse Factor and Turbo Reverse 

Factor) or the suffix oracle by Crochemore et alii (Backward Oracle Matching) are the 

most efficient in practice. 

The Zhu-Takaoka and Berry-Ravindran algorithms are variants of the Boyer-Moore 

algorithm which require an extra space in O(σ 2) 

3.2.3 In a specific order 

The two first linear optimal space string-matching algorithms are due to Galil-Seiferas 

and Crochemore-Perrin (Two Way). They partition the pattern in two part, they first 

search for the right part of the pattern from left to right and then if no mismatch occurs 

they search for the left part. 

The algorithms of Colussi and Galil-Giancarlo partition the set of pattern positions into 

two subsets. They first search for the pattern characters which positions are in the first 

subset from left to right and then if no mismatch occurs they search for the remaining 
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characters from left to right. The Colussi algorithm is an improvement over the Knuth-

Morris-Pratt algorithm and performs at most 3/2n text character comparisons in the worst 

case. The Galil-Giancarlo algorithm improves the Colussi algorithm in one special case 

which enables it to perform at most 4/3n text character comparisons in the worst case.  

Sunday’s Optimal Mismatch and Maximal Shift algorithms sort the pattern positions 

according their character frequency and their leading shift respectively. 

Skip Search, KmPSkip Search and Alpha Skip Search algorithms by Charras et alii use 

buckets to determine starting positions on the pattern in the text. 

3.2.4 In any order 

The Horspool algorithm is a variant of the Boyer-Moore algorithm. It uses only one of its 

shift functions and the order in which the text character comparisons are performed is 

irrelevant. This is also true for other variants such as the Quick Search algorithm of 

Sunday[68], Tuned Boyer Moore of Hume and Sunday,  the Smith algorithm and the 

Raita algorithm. 

3.3 KARP-RABIN ALGORITHM 

Hashing provides a simple method for avoiding a quadratic number of symbol 

comparisons in most practical situations. Instead of checking at each position of the text 

whether the pattern occurs, it seems to be more efficient to check only if the portion of 

the text aligned with the pattern “looks like” the pattern. In order to check the 

resemblance between these portions a hashing function is used. To be helpful for the 

string-matching problem the hashing function should have the following properties: 

• _efficiently computable,  

• _highly discriminating for strings, 

• hash (s[i+1. . . i+m]) must easily computable from hash(s[i+1. . .i+m-1]):  
     hash (s[i+1. . . i+m]) = rehash(s[i],s[i+m],hash(s[i. . .i+m-1])). 

 

For a word w of length k, its symbols can be considered as digits, and we define hash(w) 

by: 

hash(w[0. . .k-1]) =  (w[0] * 2k-1 + w[1] * 2k-2+. . .+w[k-1] mod q, 
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where q is a large number.  

Then, rehash has a simple expression 

rehash(a,b,h) =  ((h-a*d) *2+b) mod q, 

where d = 2k-1. 

During the search for the pattern P, it is enough to compare hash(p) with hash(s[i. . .i+m-

1]) for 0 ≤  i ≤  n-m. If an equality is found, it is still necessary to check the equality P = 

s[i. . .i+m-1] symbol by symbol. 

In the algorithm of Figure 3.2 all the multiplications by 2 are implemented by shifts. 

Furthermore, the computation of the modulus function is avoided by using the implicit 

modular arithmetic given by the hardware that forgets carries in integer operations. So, q 

is chosen as the maximum value of an integer. 

#define REHASH(a, b, h) (((h-a*d)<<1)+b) 
void KR(char *s, char *p, int n, int m)  
{ 

int hs, hp, d, i; 
/* Preprocessing */ 
/* computes d = 2ˆ(m-1) with the left-shift operator */ 
d=1; 
for (i=1; i < m; i++)  

d<<=1; 
hs=hp=0; 
for (i=0; i < m; i++)  
{ 

hp=((hp<<1)+p[i]); 
hs=((hs<<1)+s[i]); 

} 
/* Searching */ 
for (i=m; i <= n; i++)  
{ 

if (hs == hp && strncmp(s+i-m, p, m) == 0) OUTPUT(i-m); 
hs=REHASH(s[i-m], s[i], hs); 

} 
} 

Figure 3.2 The Karp-Rabin string-matching algorithm. 
 
The worst-case time complexity of the Karp-Rabin algorithm is quadratic in the worst 

case (as it is for the brute force algorithm) but its expected running time is O(m+n) 

Example 3.1: 

Let P = ing. 

Then hash(p) = 105 * 22 + 110*2 + 103 = 743 (symbols are assimilated with their 

ASCII codes). 
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Figure 3.3 Shift in the Knuth-Morris-Pratt algorithm (v suffix of u). 

 
S =       s    t    r      i       n       g            m      a      t         c        h      i     n      g  
hash =          806  797  776   743 678  585  443   746    719 766  709  736   743 

3.4 KNUTH-MORRIS-PRATT ALGORITHM 

This section presents the first discovered linear-time string-matching algorithm. Its 

design follows a tight analysis of the brute force algorithm, and especially on the way this 

latter algorithm wastes the information gathered during the scan of the text. 

Let us look more closely at the brute force algorithm. It is possible to improve the length 

of shifts and simultaneously remember some portions of the text that match the pattern. 

This saves comparisons between characters of the text and of the pattern, and 

consequently increases the speed of the search. 

Consider an attempt at position i, that is,  when  the  pattern P[0. . .m-1]  ]is  aligned  with  

the  window S[i. . .i+m-1] on the  text. Assume that the first mismatch occurs between 

symbols S[i+j]  and  P[j] for 1 < j < m. Then, S[i. . .i+j-1] = P[0. . .j-1] = u and a = 

S[i+j]≠  P[j] = b. When shifting, it is reasonable to expect that a prefix v of the pattern 

matches some suffix of the portion u of the text. Moreover, to avoid another immediate 

mismatch, the letter following the prefix v in the pattern must be different from b. The 

longest such prefix v is called the border u (it occurs at both ends of u). This introduces 

the notation: let next[j] be the length of the longest (proper) border of P[0. . .j-1] 

followed by a character c different from P[j]. Then, after a shift, the comparisons can 

resume between characters S[i+j] and P[next[j]] without missing any occurrence P in S, 

and avoiding a backtrack on the text (see Figure 3.3). 

Example 3.2: 
S = . . .  a b a b a a  . . .  
P =        a b a b a b a  
P =                       a b a b a b a  

S 
 

P 
 

P 
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Compared symbols are underlined. Note that the empty string is the suitable border of 

ababa. Other borders of ababa are  aba and a. 

The Knuth-Morris-Pratt algorithm is displayed in Figure 3.4. The table next it uses is 

computed in O(m) time before the search phase, applying the same searching algorithm to 

the pattern itself, as if (S=P)  (see Figure 3.5). The worst-case running time of the 

algorithm is O(m+n) and it requires O(m) extra space. These quantities are independent 

of the size of the underlying alphabet. 
void KMP(char *s, char *p, int n, int m)  
{ 

/* XSIZE is the maximum size of a pattern */ 
int i, j, next[XSIZE]; 
/* Preprocessing */ 
PRE_KMP(p, m, next); 
/* Searching */ 
i=j=0; 
while (i < n)  
{ 

while (j > -1 && p[j] != s[i]) j=next[j]; 
i++; j++; 
if (j >= m)  
{  

OUTPUT(i-j);  
j=next[m];  

} 
} 

} 
Figure 3.4 The Knuth-Morris-Pratt string-matching algorithm. 

3.5 BOYER-MOORE ALGORITHM 

The Boyer-Moore algorithm is considered the most efficient string-matching algorithm in 

usual applications. A simplified version of it, or the entire algorithm, is often 

implemented in text editors for the “search” and “substitute” commands. 

The algorithm scans the characters of the pattern from right to left beginning with the 

rightmost symbol. In case of a mismatch (or a complete match of the whole pattern) it 

uses two precomputed functions to shift the pattern to the right. These two shift functions 

are called the bad-character shift and the good-suffix shift. They are based on the 

following observations.  
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void PRE_KMP(char *p, int m, int next[])  
{ 

int i, j; 
i=0; j=next[0]=-1; 
while (i < m)  
{ 

while (j > -1 && p[i] != p[j])  
j=next[j]; 

i++; j++; 
if (i < m && p[i] == p[j])  

next[i]=next[j]; 
else  

next[i]=j; 
} 

} 
Figure 3.5 Preprocessing phase of the Knuth-Morris-Pratt algorithm: computing 

next. 
 

 
 
Figure 3.6 Good-suffix shift, u reappears preceded by a character different from b. 

 
 

Figure 3.7 Good-suffix shift, only a suffix of u reappears as a prefix of P. 
 

Assume that a mismatch occurs between the character P[j] = b of the patter and the 

character S[i+j] = a of the text during an attempt at position i. Then, S[i+j+1. . .i+m-1]   

P[j+1. . .m-1] = u and S[i+j]≠  P[j]. 

The good-suffix shift consists of aligning the segment S[i+j+1. . .i+m- 1] = P[j+1. . .m-

1] with its rightmost occurrence in P that is preceded by a character different from P[j] 

(see figure 3.6) if there exists no such segment, the shift consists of aligning the longest 

suffix v of S[i+j+1. . .i+m-1] with a matching prefix of P (see figure 3.7). 

S 
 

P 
 

P 

S 
 

P 
 

P 
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Figure 3.8 Bad-character shift, a appears in P. 
 

 
 

Figure 3.9 Bad-character shift, a does not appears in P. 
 
Example 3.3: 
S = . . .    a b b a a b b a b b a . . .  
P = a b b a a b b a b b a 
P =          a b b a a b b a b b a 
 
The shift is driven by the suffix abba of P found in the text. After the shift, the segment 

abba in the middle of S matches a segment of P as in figure 3.6. The same mismatch does 

not reoccur.  

Example 3.4: 
S = . . .  a b b a a b b a b b a b b a . . . 
P =     b b a b b a b b a 
P =                       b b a b b a b b a 
 
The segment abba found in S partially matches a prefix of P after the shift, like in Figure 

3.7. 

The  bad-character  shift  consists  of  aligning  the text character S[i+j] with its rightmost 

occurrence in P[0. . .m-2] (see figure 3.8) If S[i+j] does not appear in the pattern P, no 

occurrence of P in S can overlap the symbol S[i+j], then, the left end of the pattern is 

aligned with the character at position i+j+1 (see figure 3.9)  

S 
 
P 
 
P 
 

S 
 

P 
 

P 
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Example 3.5:  
S  =    . . . . . . a b c d . . . .  
P = c d a h g f e b c d 
P =                c d a h g f e b c d 
The shift aligns the symbol a in P with the mismatch symbol a in the text S (Figure 3.8). 
 
Example 3.6: 
S =    . . . . . a b c d . . . . . . 
P = c d h g f e b c d 
P =             c d h g f e b c d 
The shift positions the left end of P right after the symbol a of S (Figure 3.9). 
 
The Boyer-Moore algorithm is shown in Figure 3.10. For shifting the pattern, it applies 

the maximum between the bad-character shift and the good-suffix shift. More formally, 

the two shift functions are defined as follows. The bad-character shift is stored in a table 

bc of size σ  and the good-suffix shift is stored in a table gs of size m+1. For a ∈  ∑ : 

⎩
⎨
⎧ =≤

=
otherwise                                                   m

in x appears a }if a  j]-1- x[mand  1/min{
][

mj
abc  

 
 
void BM(char *s, char *p, int n, int m)  
{ 

/* XSIZE is the maximum size of a pattern */ 
/* ASIZE is the size of the alphabet */ 
int i, j, gs[XSIZE], bc[ASIZE]; 
/* Preprocessing */ 
PRE_GS(p, m, gs); 
PRE_BC(p, m, bc); 
/* Searching */ 
i=0; 
while (i <= n-m)  
{ 

j=m-1; 
while (j >= 0 && p[j] == s[i+j])  

j--; 
if (j < 0)  

OUTPUT(i); 
i+=MAX(gs[j+1]; 
bc[s[i+j]]-m+j+1); /* shift */ 

} 
} 

Figure 3.10 The Boyer-Moore string-matching algorithm. 
 
Let us define two conditions:  
 

cond1(j;s): for each k such that j<k<m, s≥ k or p[k - s]=p[k]  
cond2(j,s): if s<j then p[j - s] ≠  p[j] 

Then, for 0 ≤  j< m: 
 

 gs[j+1]=min{s>0 / cond1(j, s)and cond2(j, s) hold} 
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and define gs[0]as the length of the smallest period of p. 

void PRE_BC(char *p, int m, int bc[])  
{ 

/* ASIZE is the size of the alphabet */ 
int j; 
for (j=0; j < ASIZE; j++) bc[j]=m; 
for (j=0; j < m-1; j++) bc[p[j]]=m-j-1; 

} 
Figure 3.11 Computation of the bad-character shift. 

 
Tables bc and gs can be precomputed in time O(m+σ )before the search phase and 

require an extra-space in O(m+σ )(see Figures 3.12 and 3.11). The worst-case running 

time of the algorithm is quadratic. However, on large alphabets (relative to the length of 

the pattern) the algorithm is extremely fast. Slight modifications of the strategy yield 

linear-time algorithms  

When searching for  am-1b in an the algorithm makes only O(n/m) comparisons, which is 

the absolute minimum for any string-matching algorithm in the model where the pattern 

only is preprocessed. 

 
void PRE_GS(char *p, int m, int gs[])  
{ 

/* XSIZE is the maximum size of a pattern */ 
int i, j, p, f[XSIZE]; 
for (i=0; i <= m; i++) gs[i]=0; 

f[m]=j=m+1; 
for (i=m; i > 0; i--)  
{ 

while (j <= m && p[i-1] != p[j-1])  
{ 

if (!gs[j]) gs[j]=j-i; 
j=f[j]; 

} 
f[i-1]=--j; 

} 
p=f[0]; 
for (j=0; j <= m; j++)  
{ 

if (!gs[j]) gs[j]=p; 
if (j == p) p=f[p]; 

} 
} 

Figure 3.12 Computation of the good-suffix shift. 
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3.6 QUICK SEARCH ALGORITHM 

The bad-character shift used in the Boyer-Moore algorithm is not very efficient for small 

alphabets, but when the alphabet is large compared with the length of the pattern, as it is 

often the case with the ASCII table and ordinary searches made under a text editor, it 

becomes very useful. Using it only produces a very efficient algorithm in practice that is 

described now. 

After an attempt where P is aligned with S[i. . .i+m-1], the length of the shift is at least 

equal to  one. So, the character S[i+m] is necessarily involved in the next attempt, and 

thus can be used for the  bad-character shift of the current attempt. In the present 

algorithm, the bad-character shift is slightly modified to take into account the observation 

as follows  (a ∈  ∑ ): 

⎩
⎨
⎧ =≤

=
otherwise                                                   m

in x appears a }if a  j]-1- x[mand  0/min{
][

mj
abc  

Indeed, the comparisons between text and pattern characters during each attempt can be 

done in any order. The algorithm of Figure 3.13 performs the comparisons from left to 

right. It is called Quick Search after its inventor and has a quadratic worst-case time 

complexity but a good practical behavior. 

Example 3.7: 
S = s t r i n g – m a t c h i n g  
P = i n g  
P =        i n g 
P =                   i n g 
P =                              i n g 
P =                                i n g 
 
Quick Search algorithm makes 9 comparisons to find the two occurrences of ing inside 

the text of length 15. 

For direct searching with simple text, the linear BF algorithm is a proper choice because 

it produces relatively good running time results despite its striking simplicity. In addition, 

the BF algorithm has no special memory requirements and needs no preprocessing or 

complex coding and thus can be surprisingly fast. But this algorithm shouldn’t use for the 

binary alphabet in applications such as image processing or software systems.  
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void QS(char *s, char *p, int n, int m)  
{ 

/* ASIZE is the size of the alphabet */ 
int i, j, bc[ASIZE]; 
/* Preprocessing */ 
for (j=0; j < ASIZE; j++)  

bc[j]=m; 
for (j=0; j < m; j++)  

bc[p[j]]=m-j-1; 
/* Searching */ 
i=0; 
while (i <= n-m)  
{ 

j=0; 
while (j < m && p[j] == s[i+j])  

j++; 
if (j >= m)  

OUTPUT(i); 
i+=bc[s[i+m]]+1; /* shift */ 

} 
} 

Figure 3.13 The Quick Search string-matching algorithm. 

From the empirical evidence it can be concluded that the KR algorithm is linear in the 

number character comparisons but it has higher running time and it shouldn’t be used for 

pattern matching in strings. However, the main advantage of this algorithm lies in its 

extension to higher dimensional string matching. It may be used for pattern recognition 

and image processing and thus in the expanding field of computer graphics. 

Despite its theoretical elegance, the KMP algorithm provides no significant speedup 

advantage over the BF algorithm in practice unless the pattern has highly repetitive 

subpatterns. However the KMP algorithm guarantees a linear bound and it is well suited 

to extensions for more difficult problems. It may be a good choice when the alphabet size 

is near the text size or when dealing with the binary alphabet. 

Based on empirical results, it is clear that the QS algorithm is proved to be much faster 

algorithm in practice than the rest BM-like, suffix automata and bit-parallelism 

algorithms for large alphabets and short patterns. Therefore it is typically suited for 

search in the English alphabet. In addition, the BM algorithm is faster than its variations 

(such as BMH, QS, BMS and TBM) for small alphabets and long patterns. However, in 

theory BMS and QS are better algorithms than BM-like and suffix automata algorithms 

for short patterns and large alphabets [69]. 
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4 

PROPOSED COMPRESSION METHODS 

 
4.0 OUTLINE OF THIS CHAPTER 

This chapter describes the character and word based compression methods proposed and 

investigated by us. Two character based methods and five word based methods are 

described. These methods are based on dictionaries created statically, semi-dynamically 

and dynamically. The concept of two-dimensional dictionary is the novel idea used by us 

in different methods proposed here. The first character method is based on static 

dictionary, and uses the two-dimensional static dictionary. The method does not give an 

effective compression ratio by itself, but forms the basis for other methods developed by 

us. The second character based method is using semi-dynamic dictionary wherein instead 

of full words and partial words, groups of characters such as 4, 3 and 2 character groups 

are stored in the dictionary. This method gives improved compression when it is used as 

pre-compression stage to Arithmetic Coding. The first word based method uses a semi-

dynamic dictionary wherein words and partial words are stored. This method gives better 

compression when used as pre-compression stage to methods such as Bzip2, PPM 

variants (PPMd and PPMII), and LZMA. The second word based method is using single 

dimensional semi-dynamic dictionary and the third word based method is using the two-

dimensional semi-dynamic dictionary. This method outperforms over other methods when 

used with Bzip2 and PPMd. The fourth word based method illustrates the dynmamic 

dictionary approach while the fifth one illustrates the use of static dictionary approach.  

All the methods are giving an improved compression ratio, when they are used as pre-

compression stage to methods such as Bzip2, PPMd, PPMII and LZMA.  All the proposed 

methods except the fourth word based method are useful for direct searching the phrases  

in the compressed file. The comparison of methods is given at the end.  

4.1 INTRODUCTION 

There are two distinct approaches to text compression. One is to design a “text aware” 

compressor; the other is to write a text preprocessor / precompressor (filter) which 

transforms the original input into a representation having greater redundancy for general-
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purpose compressors. The first approach of specialized text compressors are potentially 

more powerful, both from the viewpoint of compression performance and the 

compression speed at a given compression rate, as there are virtually no restrictions 

imposed on the implemented ideas, as in the case of precompressor (second approach), 

one has to take into consideration how the compression takes place in the subsequent 

methods.  Nevertheless, text preprocessing / pre-compressing is more flexible, as the 

filtered text can be better compressed with most existing (and hopefully future) general-

purpose compressors, so with relatively little programming effort various compression 

speed / decompression speed / compression ratio compromises can be achieved. One of 

the attractive ways to increase text compression is to replace words with references to a 

predefined text dictionary. In our thesis, we are focusing on text pre-compression 

approach using dictionary based methods.  

In some of the dictionary based methods phrases consisting of sub-strings are used, 

whereas in our methods we are using words i.e. group of alphabetic characters,  instead of 

phrases.  

Word-based compression methods parse a document into “words” (typically, contiguous 

alphanumeric characters) and “non-words” (typically, punctuation and white-space 

characters) between the words. The words and non-words become the symbols to be 

compressed. There are various ways to compress them. Generally, the most effective 

approach is to form a zero-order model for words and another for non-words. It is 

assumed that the text consists of strictly alternating words and non-words (the parsing 

method needs to ensure this, and so the two models are used alternately. If the models are 

adaptive, a means of transmitting previously unseen words and non-words is required. 

Usually, some escape symbol is transmitted, and then the novel word is spelled out 

character by character. The explicit characters can be compressed using a simple model, 

typically a zero-order model of the characters.  

There are many different ways to break English text into words and the intervening non-

words. One scheme is to treat any string of contiguous alphabetic characters as a word 

and anything else as a non-word. More sophisticated schemes could take into account 

punctuation that is part of a word, such as apostrophes and hyphens, and even 
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accommodate some likely sequences, such as a capital letter following a period. This 

kind of improvement does not have much effect on compression but may make the 

resulting list of words more useful for indexing purposes in a full-text retrieval system.  

One aspect of parsing that deserves attention is the processing of numbers. If digits are 

treated in the same way as letters, a sequence of digits will be parsed as a word. This can 

cause problems if a document contains many numbers – such as tables of financial 

figures. The same situation occurs, and can easily be overlooked, when a large document 

contains page numbers – with 100,000 pages, the page number will generate 100,000 

“words”, each of which occurs only once. Such a host of unique words can have a serious 

impact on operation: in an adaptive system, each one must be spelled out explicitly, and 

in static system, each will be stored in the compression model. In both cases, this is 

grossly inefficient because the frequency distribution of these numbers is quite different 

from the frequency distribution of normal words for which the system is designed. One 

solution is to limit the length of numbers to just a few digits. Longer numbers are broken 

up into shorter ones, with a null punctuation marker in between. The other is to treat these 

digits as non-words. The later one is adopted in our methods.  

4.1.1. Dictionary Models 

Dictionary-based compression methods use the principles of replacing sub-strings in a 

text with a codeword that identifies that sub-string in a dictionary, or codebook. The 

dictionary contains a list of sub-string and a codeword for each sub-string. This type of 

substitution is used naturally in everyday life, for example, in the substitution of the 

number 12 for the word December, or representing “the chord of B minor with seventh 

added” as Bm7. Unlike symbol based methods, dictionary methods often used fixed 

codewords rather than explicit probability distributions because reasonable compression 

can be obtained even if little attention is paid to the coding component.  

The simplest dictionary compression methods use small codebooks. For example, in 

digram coding, selected groups of letters are replaced with codewords. A codebook for 

the ASCII character set might contain the 128 ASCII characters, as well as 128 common 

letter pairs. The output codewords are eight bits each, and the presence of the full ASCII 
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character set in the codebook ensures that any input can be represented. At best, every 

group of characters is replaced with a codeword, reducing the input from seven bits per 

character to four bits per character. At worst, each seven-bit character will be expanded to 

eight bits. Furthermore, a straightforward extension caters to files that might contain 

some non-ASCII bytes – one codeword is reserved as an escape, to indicate that the next 

byte should be interpreted as a single eight-bit character rather than as a codeword for a 

group of ASCII characters. Of course, a file consisting of mainly binary data will be 

expanded significantly by this approach; this is the inevitable price that must be paid for 

use of a static model.  

Another natural extension of this system is to put even larger entries in the codebook – 

perhaps common words like and and the, or common components of words, such as pre 

and tion. Strings like these that appear in the dictionary are sometimes called phrases. A 

phrase may sometimes be as short as one or two characters, or it may include several 

words. Unfortunately, having a dictionary with a predetermined set of phrases does not 

give very good compression because the entries must usually be quite short if input 

independence is to be achieved. In fact, the more suitable the dictionary is for one sort of 

test, the less suitable it is for others. For example, if this thesis were to be compressed, 

then we would do well if the codebook contained phrases like compress, dictionary, and 

even arithmetic coding, but such a codebook would be unsuitable for a text on, say, 

business management.  

One way to avoid the problem of the dictionary being unsuitable for the text at hands is to 

use semi-static dictionary scheme, constructing a new codebook for each text that is to be 

compressed. However, the overhead of transmitting or storing the dictionary is 

significant, and deciding which phrases should be put in the codebook to maximize 

compression is a surprisingly difficult problem. In our methods, we decide to keep the 

words, instead of phrases, having frequency count greater than 2.  

The concept of replacing words with shorter codewords from a given static dictionary has 

at least two shortcomings. First, the dictionary must be quite large—at least tens of 

thousands words—and is appropriate for a single language only (our experiments 
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described in this thesis concern English text only). Second, no “higher level”, e.g., related 

to grammar, correlations are implicitly taken into account. In spite of those drawbacks, 

such an approach to text compression turns out to be an attractive one, and has not been 

given as much attention as it deserves. The benefits of dictionary-based text compression 

schemes are the ease of producing the dictionary (assuming enough training text in a 

given language), clarity of ideas, high processing speed, cooperation with a wide range of 

existing compressors, and—last but not least—competitive compression ratios.  

Why Transformation is beneficial 

There are three considerations that lead us to our transform algorithm. First, we gathered 

data of word frequency and length of words information from our collected corpora. It is 

clear that almost more than 60% of the words in English text have the lengths greater 

than three and more than 80% of the words in English text have the lengths greater than 

two [14]. There exists a list of the 1000 most frequently used words in the English 

language. The second consideration is that the transformed output should be compressible 

to the backend compression algorithm. In other words, the transformed intermediate 

output should maintain some of the original context information as well as provide some 

kind of “artificial” but strong context. The reason behind this is that we choose BWT and 

PPM algorithms as our backend compression tools. Both of them predict symbols based 

on context information.  

Finally, the transformed code words can be treated as the offset of words in the transform 

dictionary. Thus, in the transform decoding phase we can directly search the word with 

0(1) time complexity in the dictionary. Based on this consideration, we use a 

continuously addressed dictionary in our algorithm. 

4.1.2. Related Work for Preprocessing Texts 

The preprocessing of textual data is a subject of many publications. In some articles, the 

treatment of textual data is embedded within the compression scheme itself but could 

easily be separated into two independent parts: a preprocessing algorithm and a standard 

compression algorithm, which are processed sequentially one after the other. 
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Bentley et al. [60] describe a word based compression scheme, where words are replaced 

by an index into an MTF list. The dictionary of the words is transmitted implicitly by 

transmitting the word during its first occurrence. This scheme can be divided into a 

parsing preprocessing part and a standard MTF ranking scheme. A word based variation 

of the PPM scheme is presented by Moffat [70]. He uses order-0, order-1 and order-2 

word models to achieve better compression than the MTF scheme from Bentley et al. 

Similar schemes, which differentiate between alphanumeric strings and punctuation 

strings, and which also use an implicit dictionary, are presented by Horspool and 

Cormack [71]. Again, these schemes can be divided into a parsing part and a coding part 

using Huffman codes. 

Teahan and Cleary describe several methods for enlarging the alphabet of the textual data 

[72]. Besides the replacement of common bigrams by a one symbol token, they propose 

methods for encoding special forms of bigrams called digrams (two letters representing a 

single sound as ea in "bread" or ng in "sing"). The replacements are processed using a 

fixed set of the frequently used bigrams in the English language, which makes this 

attempt language dependent. Teahan and Cleary [73] describe a word based compression 

scheme where the word dictionary is adaptively built from the already processed input 

data. This can also be achieved by a preprocessing stage if the words are replaced by 

corresponding tokens. Teahan presents a further comparison between two different word 

based compression schemes in his PhD thesis [74]. The first scheme uses function words, 

which include articles, prepositions, pronouns, numbers, conjunctions, auxiliary verbs 

and certain irregular forms. The second scheme uses the most frequently used words in 

the English language. Both schemes require external dictionaries and are language 

dependent. 

A special case of word encoding is the star encoding method from Kruse and Mukherjee 

[24]. This method replaces words by a symbols sequence that mostly consist of 

repetitions of the single symbol '*'. This requires the use of an external dictionary that 

must be known by the receiver as well as the sender. Inside the dictionary, the words are 

first sorted by their length and second by their frequency in the English language using 

information obtained from Horspool and Cormack [71]. All sorted words of the same 
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length are then encoded by sequences "*…*", "A*…*", … , "Z*…*", "a*…*", …, 

"z*…*", "*A*…*", … where the length of the encoded sequence is equal to the length of 

the word being encoded. The requirement of an external dictionary makes this method 

again language dependent. 

Preprocessing methods, specialized for a specific compression scheme, are presented by 

Chapin and Tate [75] and later by Chapin [76]. They describe several methods for 

alphabet reordering prior to using the BWCA in order to place letters with similar 

contexts close to one another. Since the Burrows-Wheeler transformation (BWT) is a 

permutation of the input symbols based on a lexicographic sorting of the suffices, this 

reordering places areas of similar contexts at the BWT output stage closer together, and 

these can be exploited by the latter stages of the BWCA. The paper compares several 

heuristic and computed reorderings where the heuristic approaches always achieve a 

better result on text files than the computed approaches. Balkenhol and Shtarkov use a 

very similar heuristic alphabet reordering for preprocessing with BWCA [77]. A different 

alphabet reordering for BWCA is used in the paper from Kruse and Mukherjee [78]. It 

also describes a bigram encoding method and a word encoding method which is based on 

their star encoding. 

Grabowski proposes several text preprocessing methods in his publication [79], which 

focuses on improvements for BWCA but some techniques can also be used for other 

compression schemes. Besides the already mentioned techniques like alphabet 

reordering, bigram-, trigram- and quadgram replacement, Grabowski suggests three new 

algorithms.  

The first one is capital conversion. An escape symbol and the corresponding lower letter 

replace capital letters at the beginning of a word. If the second letter of the word is 

capitalized too, the replacement is omitted. This technique increases context 

dependencies and similarities between words, which can be exploited by standard 

compression schemes.  The second algorithm is space stuffing, where a space symbol is 

placed at the beginning of each line in order to change the context that follows the end of 

line symbol (EOL) to one space instead of various symbols.  The last algorithm is EOL 



 71

coding, which replaces EOL symbols by space symbols and separately encodes the 

former EOL positions, which is represented by the number of blanks since the previous 

EOL symbol. These numbers are encoded either within the symbol stream itself or in a 

separate data stream. Grabowski suggests using either space stuffing or EOL coding for 

preprocessing text files, but because of unstable side effects, he decides to omit EOL 

coding in his comparisons.  

Franceschini et al. extend the star encoding method by using different schemes for the 

indices into the dictionary [80], called Length-Preserving Transform (LPT), Reverse 

Length-Preserving Transform (RLPT) and Shortened-Context Length-Preserving 

Transform (SCLPT). All of these require an external dictionary and are language 

dependent. A further improvement of the star encoding method, presented by Awan et al. 

[81], is called Length Index Preserving Transform (LIPT). LIPT encodes a word as a 

string that can be interpreted as an index into a dictionary. The string consists of three 

parts: a single symbol '*', a symbol between 'a' and 'z', and a sequence of symbol from the 

set 'a'…'z', 'A'…'Z'. The second part of the string, the single symbol, represents the length 

l of the word, where 'a' stands for length 1 and 'z' for length 26. The third part is the 

encoded index inside the set of words with length l. They are encoded as a number 

representation of base 52 decremented by 1, where 'a' represents 0, …, 'z' represents 25, 

'A' represents 26, …, and 'Z' represents 51. An empty substring represents the number 0. 

Therefore, a word of length 3 with index 0 is encoded as "*c", a word of length 3 with 

index 1 as "*ca", a word of length 3 with index 27 as "*cA" and so on.   

Isal and Moffat present different text preprocessing schemes for bigrams and words [82] 

using internal and external dictionaries. In their paper, tokens are used with values above 

255, so they can be used together with normal symbols, as the compression scheme needs 

to handle alphabets with more than 8 bits. For text files, the word based schemes with 

internal dictionaries give the highest compression gain. Later Isal et al. combine the word 

preprocessing scheme with different global structure transformations and entropy coding 

schemes [83]. Because of the use of an internal dictionary, where each word is spelt out 

the first time it occurred, the schemes of Isal and Moffat are all language independent. 
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Teahan and Harper propose a switching algorithm for combining both dynamic and static 

PPM models that also involves an initial text preprocessing step [84]. In this step that 

occurs prior to the encoding step, the text is essentially marked up by additional switch 

symbols to indicate when the compression algorithm should switch to another model. A 

greedy search algorithm which minimizes the overall code length of the encoded stream 

(of both the original symbols and additional switch symbols) is used to determine the 

positions of the markup symbols. This scheme is only relevant to context based schemes 

such as PPM, and it requires a modification of the subsequent PPM compression scheme. 

In all the above methods, the dictionary is considered as a single dimension. We propose 

an alternative approach here to develop a reversible transformation that can be applied to 

a source text that improves existing algorithm’s ability to compress with two dimension 

dictionary. The basic idea behind our approach is to encode every word in the input text 

file, whose length is greater than 2, as a word in our transformed static/semi-

dynamic/dynamic dictionary. These transformed words give shorter length for the input 

words and also retain some context and redundancy. Thus we achieve some compression 

at the preprocessing stage as well as retain enough context and redundancy for the 

compression algorithms to give better results. 

Our main focus is to develop a method based on words replacement, which can be used 

as pre-compression stage to several standard compression methods such Bzip2, PPMd, 

PPMII and LZMA. All these methods are explained in chapter 2 in detail. This pre-

compressed file is then given as an input to existing methods which yields in better 

compression ratio. The experimental results are given in chapter 6. It has been found that 

the compression ratio is being improved comparatively by 2.89% in case of Bzip2, 2.56% 

in case of PPMd, 3.68% in case of PPMII and 1.26 % in case of LZMA.  

4.2. IDEA OF OUR METHOD 

The main objective is to reduce the total number of possible byte values used in a text 

file. The idea used in our methods is to use two-dimension dictionary instead of using 

one-dimension dictionary.  Consider for example, if there are 16K words in the dictionary 

then every individual word will require 14-bits (214 = 16K) for encoding it if one 
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dimension dictionary is used. But if a two-dimension matrix is used then it is possible to 

encode the individual word in 8-bits only. Thus there is a saving of 6-bits per word. How 

this can be achieved is explained here. 

If all the 16K words are stored in one dimension (i.e. single dimension array), then the 

dictionary will look like 

word0, word1, word2, . . ., word16381, word16382, word16383 

But if the 16K words are stored in the two-dimension (row X column) with few most 

probable words in each row, then the dictionary will look like 

 

                        Col 0    Col1             Col 62   Col63    Col64                            Col126  

                                                                                                     

Row   0  word0, word1, . . . , word62, word63, word64, . . . . . . . . . . ., word126 

Row   1 word0, word1, . . . , word62, word127, word128, . . . . . . .  .., word190 

. 

. 

. 

Row 254 word0, word1, . . . , word62, word16319, word16320, . . ., word16382 

Row 255 word0, word1, . . . , word62, word16383, word16384, . . ., word16446 

Figure 4.1 Structure of two-dimension dictionary 

Thus the above dictionary is of 256 * 127 where number of rows are 256 and number of 

columns are 127. Here even though the column number can be encoded in 7-bits still we 

are using 8-bits, 1-extra bit to indicate that the code is from the dictionary. This extra bit 

will always be kept to 1. Normally in text files, the ASCII character are having code 

value in between 0 to 127, and they are coded in 8-bits instead of 7-bits, there most 

significant bit is always 0.  To take advantage of this, our coding methods use this extra 

bit to differentiate between the normal ASCII character and the code of column number. 

Hence instead of 256 columns we are taking only 127 columns, one less than 128, 

because the 128th column code will be used as an escape symbol for indicating change in 

row number.  
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The idea behind using two-dimensional dictionary is to code the dictionary with the row 

number and column number. The most frequent words are stored in each row along with 

some other unique words, therefore the probability of finding the consecutive words in 

same row increases and we will be able to code the word with 8-bit only without storing 

the row number, because row number is same and hence will not be stored. This 

assumption will be taken into consideration by decoder while decompressing the file.  We 

will need to specify the row number only when two consecutive words are not found in 

the same row. In this case, the escape symbol is to be stored to indicate the change in row 

number and then followed by the row number in which the word is found, along with the 

column number. Thus compression is achieved when the consecutive word are found in 

the same row, because only 8-bit code is needed instead of 14-bit code.  

The total number of possible byte values is reduced to 128 only, wherein if the single 

dimension dictionary is used then the possible combination will be 16384. Our objective 

of reducing the possible number of bytes is thus achieved by using two dimension 

dictionary. Experimental results show that two-dimension method works better than 

single dimension method. 

The different methods proposed here, are using static dictionary, semi-dynamic 

dictionary, and dynamic dictionary. 

4.3. PROPOSED TEXT COMPRESSION METHODS  

4.3.1. Character Based Text Compression Method using Static Dictionary 

(CBTC-A) 

We had tried here to reduce the number of bits assigned to a normal ASCII character. 

Ordinary text files, at least English ones, consist solely of ASCII symbols not exceeding 

127 in total. Therefore, an ASCII character requires 7-bits to encode it, but instead of 7-

bit, in our method we had assigned only 5-bits to ASCII character thereby restricting the 

number of characters to 32. Now question is how to assign codes to 128 different ASCII 

characters with just 32 codes. The solution which we have found is to assign same code 

to multiple ASCII characters in such a way that whenever they will be decoded, we will 
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exactly come to know the original ASCII character. The idea is to use a two-dimension 

array as explained in section 4.2., wherein we will store 32 characters in each row. To 

accommodate all 128 characters we will require 4 rows, but instead of storing all 32 

characters in a single row, we decided to repeat some characters in each row for getting 

effective compression. Along with single characters, we had kept one row each for 4-

characters group, 3-characters group and 2-characters group in the dictionary to improve 

compression. These character groups will be kept in separate rows. 3 different escape 

symbols will be required to differentiate between the character and character groups. The 

structure of dictionary is shown in Figure 4.2.  

                                         C0   C1               C12   C13   C14          C27 

      ↓     ↓    .   .   .     ↓        ↓       ↓    .   .  . ↓  

R0 →ch0, ch1, . . . . ., ch12, ch13, ch14 . . ., ch27 

R1 → ch0, ch1, . . . . ., ch12, ch28, ch29, . . ., ch42 

R2 → ch0, ch1, . . . . ., ch12, ch43, ch44, . . ., ch57 

R3 →ch0, ch1, . . . . ., ch12, ch58, ch59, . . ., ch72 

R4 → ch0, ch1, . . . . ., ch12, ch73, ch74, . . ., ch87 

R5 →ch0, ch1, . .  . ., ch12, ch88, ch89, . . ., ch102 

R6 →ch0, ch1, . . ., ch12, ch103, ch104, . . ., ch117 

R7 → ch0, ch1, . . ., ch12, ch118, ch119, . . ., ch132 

Figure 4.2 Structure of two dimension character dictionary. 

The idea used here is that a character will be encoded by 5-bits only i.e. only column 

number is stored in the compressed file. From the figure 4.2 it can be easily seen that 

characters such as ch13, ch28, . . ., ch103 and ch118 are having same column number i.e. 

they will be encode by same code. Thus the same code is allotted to different characters, 

but with different row numbers.  Let us consider an example to elaborate this idea.  If we 

are having a sequence of characters in this way  

ch1 ch3 ch28 ch0 ch27 ch0 ch104 

Then to encode this sequence we will follow the procedure as given below: 
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Initially we will assume row number to be 0. To first encode ch1, we see that ch1 is 

found in row 0 at position 2 (i.e. at offset of 1). Therefore we will encode it in 5-bits as 

‘00001’. The next character is ch3, it is found in row 0 at position 4 (i.e. at offset of 3), 

and so we will encode it in 5-bits as‘00011’. Here we had seen that two consecutive 

characters ch1 and ch3 are found in the same row, so we had encoded them with column 

numbers only. Next character to encode is ch28, it is found in row 1 which is different 

from previous row number, and hence we have to now encode row number also. First an 

escape symbol will be stored to indicate a change in row and then new row number will 

be stored followed by column number of ch28 i.e. 14. The coding sequence for encoding 

ch28 will be ‘11111’, ‘00001’, ‘01110’. In this case instead of compression, expansion 

has occurred i.e. 15-bits are required to encode a single character. But this won’t happen 

always. Next character to encode is ch0, which is present at position 0 in every row, so 

this time only column number is stored i.e. ‘00000’.  The searching of the character in the 

dictionary will start from the same row in which previous character was found and we 

had store most probable 13 characters in every row. Therefore the probability of getting 

the characters in the same row increases, thereby achieving compression. Thus we are 

succeeded in encoding the characters in 5-bits instead of 7-bits i.e. we had reduce the 

number of symbols from 128 to 32.  

In order to further improve compression, the dictionary will also contains 256 most 

probable 2-character, 3-character and 4-character groups from the set of corpus. Before 

searching the single characters in the dictionary first the characters will be searched in 4-

character, 3-character and 2-character groups respectively. If it is not found, then single 

character dictionary will be searched. If a 4-character group is found then to encode it 

will require 5-bits escape symbol and 8-bit code to indicate the position of 4-character 

group, i.e. 13-bits will be required, a saving of 15-bits (4 characters will require 28-bits to 

save it normally). Thus a saving of 9-bits is achieved in case of 3-character group and 

that of 1-bit in case of 2-character groups which is negligible but yet helps in 

compression.  

The character groups such as ‘tion’, ‘ing’, ‘th’, and many more normally appears in every 

text files. This property of text file is taken into consideration for creating the dictionary 
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of 4-characters, 3-characters and 2-characters dictionary. Also the frequency of some 

characters is very high as compared to frequency of others, for e.g., the frequency of ‘e’ 

is much more than frequency of ‘z’.  The same static dictionary will be used both by 

encoder and decoder, therefore the overhead which occurs in case of semi-dynamic 

dictionary is reduced and the process of decompression will be fast enough. 

Dictionary creation 

At first, the files are selected from the corpus. Every file is scanned and the frequency of 

each character is counted. The characters are then arranged in descending order with 

respect to frequency counts. Thus in general for plain ASCII text files we will get 

maximum 128 characters with different frequency counts. The characters are then divided 

into rows and columns as explained in figure 4.2. The dictionary of single character is 

shown in Figure 4.3 (Source file – bible.txt)  

b e t h a o n s i r d l u m , w y c g b p v . k A I: ; 
b e t h a o n s i r d l u f L O D T R G J S B ? H M E j 
b e t h a o n s i r d l u f W F ' z N P C x q Z Y K ! U 
b e t h a o n s i r d l u f ( ) V- Q @ " X # $ [ \ ] ^ 
b e t h a o n s i r d l u _ ` % & * + / 0 1 2 3 4 5 6 
b e t h a o n s i r d l u 7 8 9 < = > { |   } ~ 

        Figure 4.3 First six rows of single character 

In the Figure 4.3, it is seen that bethaonsirdlu are repeated in each row. This repetition of 

single characters helps in achieving compression because their probability is more as 

compared to other characters and hence the probability of getting characters in the same 

row increased.  

Then the most probable four character groups are found from the same corpus. The first 

256 four character groups are stored in the separate row as shown below in Figure 4.4.  

Whenever the 4-character groups match occurs, the index position of the 4-character 

groups is stored in the compressed file. For e.g. if text ‘agai’ is in the source file, the 4-

character groups ‘agai’ is at 2nd position in the column, therefore 2 will be stored in the 

compressed file along with special symbol ‘11110’. The above process is repeated for 3- 

characters groups and 2- characters groups. The dictionary for 3-character group and 2-

character group is shown in figure 4.5 and figure 4.6.  
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athe atio agai ains ause also aith ayin afte arth avid aven ange alle amon away acco augh ance ater abou 
alem ants befo beca brou brea brin beho burn come came chil caus comm call cord city ccor cove dren ding 
down days dest dwel deli dred efor ever eopl even eart ered eref ehol erin ecau eave ereo esus erva esse eith 
ence elve east erus ethe evil ears ents eard from fore ffer fath fter fort feri gain give ghte grea good gypt 
geth hall here hich heir have hous hear hath hing hand hild hold halt hese hast hine hose houl heav hers 
hund ight ings into ildr inst ithe ions iver iest ites irst ince judg king know ldre land live lled lace like less 
lves ment made make msel mong mand mman migh mine more mber ness name nder ning neit nger nati 
nded noth ndre nswe ough ouse ople over othe ould offe ound orth ount omma oses ordi oice outh ophe 
peop pass plac prie part peak rael ring roug refo reat righ reth ries rvan reof read rdin rusa shal said srae 
serv sayi sait sons self shou side sent stro sale stan ssed spea selv seve swer that ther they them thou thei 
thee thin tion this thre then take thes tain turn thro than tter time ters took tand unto upon ught unde urne 
usal udah very vant with whic will were when word went ward wher what work well whom wate your ying 
year 

Figure 4.4   4-character groups 
 
the and all hat ing her tha for sha hal ere his nto unt hou ith not hey him hem wit tho eth ear thi ave ver ath 
ent ght our hen sai ter ill man you eve ore thy out was ich whi ain est ord aid ive wil are hic igh one ame 
ion com hea ven hee ess hav hei use ake ers eir ous wer red ast rom ove son ine hin kin men whe fro rea rin 
efo han eat ugh art oth wor ple tio ome oun old ren und nes int hil pon dre nce upo ons ild ose chi day ins 
she ael ati rth hol but oug rae sra rou ies say les ate alt str cam gai ngs led aga ong who ace had thr der own 
sel eri now ard ead eop mon nde peo opl ant oul urn off ted con ass eas ood ret rie ise hes lan res way ned 
see ite als sse nst ort gre hos ait ldr pri ell bef ser min lso pro sed ref ffe bro cau ses yin ese ble aus eho tes 
wen fer rit lle lea erv ity ice ery giv tte ade let any nge des uld fat ide tre nts ris din fte sen ves ten ayi gat 
ree sta ist bre pas ans ure kno pla war tan mad eca ook hte ene avi sin rne har cor usa pea liv ken pre ste has 
tur ale abo dow ish hre 

Figure 4.5   3-character groups 
 
th he nd an in er ha re of hi at ou en or to al ll on es is it se nt ve ed ar ea ng sh st ho 

Figure 4.6   2-character groups 

Compression 

In order to encode the dictionary symbols, the following strategy is used. To encode four 

character groups, the column position will be preceded by a unique symbol ‘11110’. For 

example to encode the four character groups ‘athe’, the code will be ‘11110’ and 

‘00000000’ (8-bit code), where unique code ‘11110’ indicates that following code relates 

to column position of four character group.  Similarly, to encode two character groups, 

the column position will be preceded by a special symbol ‘11100’. For example to 

encode the two character groups ‘to’, the code will be ‘11100’ and ‘000’, where ‘11100’ 

indicates that the next code means for column position of two character groups. 

Before encoding starts, initially the row number is assumed to be zero both for encoding 

and for decoding also. To encode, the single character, the character is first searched 
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among the rows. After a match is found, it is first checked whether the new row number 

matches with the row number in which previous character was found, if previous and 

new row numbers are equal then only the column position is stored and if the row number 

differs an escape symbol ‘11111’ is generated to indicate the change in row and then new 

row number is stored followed by column position.  Compression is achieved when the 

groups of four, characters, three characters, two characters is found, and also when the 

single characters are found in the same row. 

Decompression  

The decompression process is very simple and fast. The same dictionary is used for 

decompression. The row number is assumed to be first by default as in the case of 

compression. First the code is read and then compared with special symbol for 4-

character, 3-character groups or 2-character groups; if it is then the next code read is the 

column position for that groups. The appropriate character groups from the dictionary is 

then read and stored in the uncompressed file. If the special symbol indicates change in 

row then the next code is treated as row number followed by column code. The character 

is thus retrieved from the appropriate row and column from the dictionary and stored in 

the uncompressed file. Thus decompression process is very fast and the only overhead, 

which it requires, is the dictionary, the size of which is negligible as compared to large 

files.  

Searching 

To search a phrase of words (P) in the compressed file directly, first we have to compress 

the P using the same method explained above, and then search the compressed pattern 

directly in the compressed file without decompressing it. The standard searching 

algorithms explained in chapter 3 can be used directly to search the compressed pattern in 

the compressed file. Thus the searching pattern in the compressed file will be faster as 

there is no need to decompress the original file and then perform a search operation.  

Thus we can say that number of comparison to be made for searching in compressed file 

as compared to normal file will be less enough, thereby saving the time for searching.  
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This method if used as pre-compression stage to other standards methods such Bzip2, 

PPM, PPMII and LZMA does not give improved results because there is no redundancy 

left in the pre-compressed file. In this method 5-bit coding is used and normally the text 

compressor such as Bzip2, PPM, PPMII and LZMA works on byte boundary. Therefore, 

normally when this method is used as pre-compression stage then it expands instead of 

compressing. Hence we drop the idea of using the 5-bit code mechanism for a single 

character instead we proposed another method in which instead of 5-bit coding, an 8-bit 

multiple coding is used to encode the words and partial words. This method is explained 

in section 4.3.2.  

 4.3.2. Character Based Text Compression Method Using Semi Dynamic 

Dictionary (CBTC-B) 

This method is similar to the above mentioned character based method, the only 

difference is that instead of writing 5-bit code, the codes written are in multiples of 8-bits, 

and instead of limited number of 4-Char group, 3-Char group, here all possible 4-Char 

groups and 3-Char groups are considered.  The frequency of all possible 4-Char groups, 

3-Char groups and 2-Char groups is computed. After counting the frequency of all 

possible groups, all the groups are sorted in descending order so that most probable 

groups will have index values in the lower range.  

Dictionary Creation  

Create the dictionary of character groups in the following way: 

2-Character Dictionary: Store only first 32 double character groups in the dictionary. 

As in normal case to store the 2Characters we require 2 bytes, so if we use index value of 

16-bit, then we won’t get compression. Hence in our method we decided to use only 32 

most frequent 2Char groups and it will be coded as 8-bit, as explained later in this 

section.  

3-Character Dictionary: For achieving compression, it is wise to store all triple 

character groups having frequency count > 3.  In this dictionary the maximum triple 

character group, which we can store, is 8192 and it will be coded as 16-bit.  
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4-Character Dictionary: For achieving compression, it is wise to store all quad 

character groups having frequency count > 2.  In this dictionary the maximum quad char 

group, which we can store is 16384 and it will be coded as 16-bit. 

Compression 

Scan the entire file (read at least 4Char at a time). Search 4Char group in the dictionary, 

If found construct code value and store it in compressed file, else search 3Char group in 

the dictionary, if found construct code value and store it in compressed file, else search 

2Char group in the dictionary, if found construct code value and store it in compressed 

file, else store the character as it is in the compressed file. Thus certain context of 

redundancy is provided by storing the single character as it is in the compressed file, for 

achieving the improved compression ratio when the compressed output of this method is 

applied to standard method such as Arithmetic Coding. The Arithmetic Coding has been 

explained in detail in chapter 2. The experimental results are given in chapter 6.   

Construction of code value 

2-Character group 

The code is of 8-bit only, because if we use 16-bit code, then we won’t get compression 

as normally it requires 16-bit to store 2 characters. MSB bit of 8-bit code is set to ‘1’, to 

distinguish it from normal ASCII character. Next two bits are kept to ’00’, to indicate 

2Char group code.  Remaining 5-bits are used to store index value of 2Char group. Since 

only 5-bits are used to indicate the index value, 32 – 2Char group can be stored in the 

dictionary. 

 

1 0 0 5-bit index value of 2Char group 
 



 82

3-Character group  

Code is constructed in this way: MSB set to ‘1’, to distinguish it from normal ASCII 

character. Next two bits to ’01’ to indicate 3Char group code. The range of the code value 

varies from 40960 to 49151 i.e. we can store 8192 – 3Char groups in the dictionary. 

1 0 1 13-bit index value of 3Char group 
 

4-Character group   

Code is constructed in this way: MSB set to ‘1’, to distinguish it from normal ASCII 

character. Next bit is set to ‘1’ to indicate 4Char group code. The range of the code value 

varies from 49152 to 65535 i.e. we can store 16384 – 4Char groups in the dictionary. 

1 1 14-bit index value of 4Char group 
 

Decompression 

Read dictionaries of double character group, triple character group and quad character 

group. Read 1 byte from compressed file. Check MSB bit, if 0 then store that byte as it is 

in the decompressed file. If 1 then check next two bits are 00 or not, if yes the next five 

bits will be the index value of the double group dictionary. Store two characters from the 

double character group dictionary in the decompressed file stored at that index value in 

the dictionary. 

If next two bits are 01 then read another byte to form an index value for triple character 

group. Store three character from the triple character group dictionary in the 

decompressed file stored at that index value in the dictionary.  

Else if next bit is 1, then read another byte to form an index value for quad character 

group.  Store four character from the quadruple group dictionary in the decompressed file 

stored at that index value in the dictionary.  

Repeat the process till all the bytes are read from the compressed file. 
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Example 

If the byte read is say ‘01000101’ i.e. 65, then in this case the MSB is ‘0’ so store value 

65 directly in the decompressed file. 

If the byte read is say ‘10000010’ i.e.130, then in this case the MSB is ‘1’, check another 

two bits, i.e. ’00’, hence the next five bits (‘00010’) will indicate the index value in the 

double char dictionary. 

If the byte read is say ‘10100000’ i.e. 160, then in this case the MSB is ‘1’, another two 

bits are ’01’, so read another byte say ‘00000100’ combine both bytes to form 16-bit data 

‘10100000 00000100’ the lower 13-bit value is 4, indicating the index value of the triple 

char dictionary. 

If the byte read is say ‘11000000’ i.e. 1192, then in this case the MSB is ‘1’, another bit 

is ‘1’, so read another byte say ‘00001111’ combine both bytes to form 16-bit data 

‘11000000 00001111’ the lower 14-bit value is 15, indicating the index value of the quad 

char dictionary. 

This method is used as a precompression stage to arithmetic coding, which yields a better 

compression ratio as compared to arithmetic coding when used as alone.  As the codes 

stored in this file are byte boundary, this method is useful for direct searching in the 

compressed form.  

4.3.3. Word Based Text Compression Method Using Semi Dynamic 

Dictionary  (WBTC-A) 

The algorithm is based on the idea that most of the words repeat in text. The repetition 

arises from the structure of the natural language. This is similar to LZW compression 

where compression is based on the assumption that repetitions of sequences of characters 

occurs in text. [85,86].  

The dictionary of the WBTC-A consists of words and non-words. Horspool and Cormack 

[71] implemented the word based LZW algorithms using only the single pass through the 

text, whereas we are implementing in two pass.   



 84

Definition of words and non-words 

A word is defined as maximal string of alphabetic characters (letters) and non-word is 

defined as maximal string of other characters (punctuations, spaces and digits). For 

example sentence 

InbthebbeginningbGodbcreatedbthebheavenbandbthebearth. 

can be divided into word, non-word sequence: “In”, “b”, “the”, “b”, “beginning”, “b”, 

“God”, “b”, “God”, “b”, “created”, “b”, “the”, “b”, “heaven”, “b”, “and”, “b”, “the”, “b”, 

“earth”, ”.”  (where b represents space). It is clear that words and non-words from input 

strictly alternate. The alternating of words and non-words is important piece of 

information. With this knowledge kind of next word or non-word can be predicted. 

When using two passes variant it is necessary to store the dictionary of words and non-

words together with the compressed text.   

The file to be compressed is scan first to accumulate the statistics of words to form four 

dictionaries. The first dictionary is for storing words with frequency greater than 1. The 

second dictionary is for storing the prefix part of the words, which occurs only once, but 

then in those words some part of word is appearing twice or more. Third for storing the 

suffix part of the words, which occurs only once, but then in those words some part of 

word is appearing twice or more. The fourth dictionary is for storing the non-words.  

Let us say that word ‘coming’ and ‘going’ is appearing only once in the source file. In 

both of the words the suffix string ‘ing’ is appearing, therefore the sub-word ‘ing’ will be 

added to the suffix sub-word dictionary.  In the similar way the prefix words are added to 

the prefix sub-word dictionary.  

Also the dictionary of non-words is also created, which includes words of non-alphabets. 

For e.g. say after the word ‘going’ there is full stop and carriage return, then both the 

symbols full stop and carriage return will be considered as one non-word and will be 

added to dictionary of non-words.  

After creating all four dictionaries, the words in the dictionaries are arranged in 

descending order, so that the most probable words will appear in the start of the 

dictionary. The same idea of creating two dimensional arrays as explained in 4.3.1 is used 

here.  



 85

Compression  

In first pass Word Based Dictionary is created for words, sub-words and non-words. In 

Second pass, the words are scanned from the source file and is searched first in the word 

dictionary and if found the index value of the corresponding word is stored in the 

compressed file, else the sub-word dictionary is searched for finding the presence of the 

prefix or suffix part of the word read from the source file, if found then the index value of 

the word will be stored in the compressed file, else the word is stored as it is in the 

compressed file. Similar process is adopted for non-words. The searching of the words 

and non-words is done alternatively, as in any file after word there will be a non-word 

and after every non-word, there will be word.  

Making of the index value 

Whenever the word is found in the dictionary, the index value is converted into two-

dimensional value viz. row and column. Here we are considering the two-dimensional 

matrix of N rows by 256 Columns. For example, if the index value of word is say 356, 

then the row = 2 and column = 100. If the current index value points to the same row as 

that of previous, then only the column value i.e. 100 is written in the compressed file, 

otherwise row value 2 preceding with change in row will be written in the compressed 

file. 

Example of Prefix Searching 

Let us assume the current word to be compressed is ‘singing’. Prefix sub-word dictionary 

will be used to find the occurrence of first few characters of ‘singing’. In the prefix sub-

word dictionary, the word ‘sing’ is added because of another word ‘singer’. ‘sing’ of 

‘singing’ will be replace by the index value of ‘sing’ 

Example of Suffix Searching 

Let us assume the current word to be compressed is ‘welcome’ Suffix sub-word 

dictionary will be used to find the occurrence of last few characters of ‘welcome’. In the 
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suffix sub-word dictionary, the word ‘come’ is added because of another word ‘become’.  

‘come’ of ‘welcome’ will be replace by the index value of ‘come’. 

In the remaining methods developed and discussed, there is variation in the creation of 

dictionary and encoding the words in the dictionary.  

Decompression 

In decompression, the bytes are read from the compressed one by one. If the byte is seem 

to be a normal ASCII character then it is stored as it is in the decompressed file. Else the 

code is checked for the word, prefix word or suffix word and accordingly the dictionary 

is read and the corresponding word is written in the decompressed file. As in the case of 

compression it is assumed that words and non-words are alternate, the same assumption 

is done while decompression is in progress. 

4.3.4. Word Based Text Compression Method Using Semi Dynamic 

Dictionary  (WBTC-B). 

This method is developed only for comparison purpose, to show the effect of two-

dimension dictionary over one-dimension dictionary and the experimental results given in 

chapter 6, shows that the compression ratio is improved when two-dimension dictionary 

is used instead of one-dimension.  

In this method, the dictionary is created of words in single dimension array. The words 

are separated by symbol ‘#’ in the dictionary. In this method, simultaneously the 

dictionary is created and the file is compressed. This method is simply introduced here to 

compare it with other methods proposed by us, which is using the two-dimensional 

dictionary. This method is also used as pre-compression stage to standard methods such 

Bzip2, PPM giving better result as compared to Bzip2, PPM, when used alone. 

Dictionary Creation 

In this method, instead of character groups, the whole word is stored in the dictionary of 

one dimension.  The length of the word is not stored; instead separator character ‘#’ is 

stored in between the words to distinguish it. The word scanned is first searched in the 



 87

single array, if not found the word is added to the dictionary. The length of the word is 

checked, if greater than two, then, only it is added to the dictionary. For comparison 

purpose, the numbers of words kept in the dictionary are restricted to 64K only. The 

dictionary created will be integrated in the compressed file.  

Compression 

The compression is done in single pass. The entire file is scanned word by word. The 

scanned word is searched in the dictionary. The separator character ‘#’ helps in 

identifying the boundaries of the words. The searching process goes on counting the 

number of ‘#’ it encounters till it founds the word to be searched. If found then the index 

value of that word is stored, else that word is added to the dictionary and then the 

corresponding index value is stored in the compressed file. Thus the dictionary consists 

of all the words appearing in the file irrespective of its frequency counts. In the previous 

methods the words having frequency count greater than 2 were included in the dictionary, 

but here even if the word occurs once, still it is added to the dictionary, thereby 

sacrificing the compression. The time required will be less as the compression is done in 

single pass as compared to two pass in previous method.   

Decompression  

The dictionary of the words is first read from the compressed file. The decompression 

process is very simple and fast. The compressed file is read byte by byte, if the read byte 

is normal character then store as it is in the decompressed file. If it is index value of word 

from the dictionary, then the word is fetched from the dictionary and written to the 

decompressed file.   

4.3.5 Word Based Text Compression Method using Two-Dimension Semi-

Dynamic Dictionary (WBTC-C) 

In WBTC-B method the word stored in dictionary was encoded with 16-bit value. In this 

method we are reducing the length from 16-bit to 8-bit by converting the dictionary from 

one dimension to two dimensions. The number of words kept in each row is restricted to 
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128 only. If we are using only 8-bit code, then the MSB is used to differentiate between 

the normal ASCII character and encoded value of the words. Therefore, only 7-bit 

remains to point to the word in the dictionary, hence 27 – 1 i.e. 127 words are kept in one 

row. Out of these 127 words, half of the words (i.e. 63) are repeated in each row and 

remaining 64 words are unique to the dictionary. Thus if we keep row size to 256 for 

ensuring again an 8-bit code to row number, than the total number of words which can be 

kept in dictionary are 64 * 256 + 63 = 16447, which is plenty enough, as we had seen that 

the number of words (having frequency of 2 or more) which we found normally in the 

files, of different corpus, of size varying from 2 MB to 10 MB is ranging in between 

10,000 to 22,000. So the average value comes to be around 16000. The structure of the 

dictionary will look like as shown in Figure 4.7 below. 

                       Col 0    Col1             Col 62   Col63    Col64                            Col126  

                ↓          ↓                    ↓           ↓          ↓                                      ↓  

Row   0 →  word0, word1, . . . , word62, word63, word64, . . . . . . . . . . ., word126 

Row   1→  word0, word1, . . . , word62, word127, word128, . . . . . . .  .., word190 

. 

. 

. 

Row 254→  word0, word1, . . . , word62, word16319, word16320, . . ., word16382 

Row 255→  word0, word1, . . . , word62, word16383, word16384, . . ., word16446 

Figure 4.7 Structure of two-dimension word dictionary (WBTC-C) 

 

Even though it seems that word0, word1,. . . ., word62 are repeated in each row, but 

actually they are stored only once and are assume logically to be present in every row.  

The idea behind using two-dimension dictionary is to code the dictionary with the row 

number and column number. The most frequent words are stored in each row along with 

some other unique words, therefore the probability of finding the consecutive words in 

same row increases and we will be able to code the word with 8-bit only. We will need to 

specify the row number only when two consecutive words are not found in the same row. 

In this case, the escape symbol is to be stored to indicate the change in row and then 
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followed by the row number in which the word is found, along with the column number. 

Thus more compression is achieved when the consecutive word are found in the same 

row, because only 8-bit code is needed instead of 16-bit code.  

The dictionary is created in the same way as explained in previous method 4.3.4, the only 

difference is in the way it is now interpreted as two-dimension instead of single 

dimension in this method.  

Compression 

The source file is scanned word by word. The scanned word is searched in the dictionary, 

and if found the index value will be computed by the equation given below: 

row number  =  (position – 63) / 64 

column number = (position – 63) mod 64 

where position, is the location of word in the dictionary from starting.  

If the newly computed row number is equal to previous row number (initially the row 

number is zero), then only the column number is converted to codeword by making its 

MSB to 1 (i.e. by adding 128 to it) and is stored in the compressed file or else if there is a 

mismatch in previous and current row number, then an escape symbol ‘11111111B’ is 

stored followed by new row and column number.  This new row number now becomes 

the old row number or previous row number. 

If the word is not found in the dictionary, then it is stored as it is in the compressed file. 

Similarly, all non-words are also stored as it is in the compressed file. The only part 

which is compressed is the word found in the dictionary. Thus, we achieve compression 

upto certain extent and also keeping the redundancy by storing some words as it is in the 

compressed file.   

Decompression 

The decompression process is very simple. The word dictionary is read from the 

dictionary file. The bytes are read from the compressed file. If it is plain ASCII character 

then it is stored in the decompressed file as it is. If it is an escape symbol for change in 

row, then new row number is read from the compressed file followed by column number. 
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If it is not escape symbol, then the byte value is treated as column number, and the new 

row number is equal to the previous row number. The index value (i.e. position) of the 

word in the dictionary is calculated by the equation given below: 

index value = (row * 64) + 63 + column number 

The entire word of the dictionary located at the index is stored in the decompressed file. 

Thus, the file is decompressed after reading every byte.  

4.3.6. Word Based Text Compression Method using Dynamic Dictionary 

(WBTC-D) 

In the above two methods, the dictionary is built explicitly and is stored along with the 

compressed file. But in this method the dictionary is built on-the-fly and in the similar 

way the dictionary is to be built during decompression process. The overhead of external 

dictionary is reduced, but then we won’t be able to search the phrase in the compressed 

file, which was possible in above methods.  

The file is scanned only once. Initially the dictionary is null. The first word read from the 

source file is stored as it is in the compressed file and at the same time it is stored in the 

dictionary. From the next word, the word is first search in the dictionary, and if found the 

index value of that word is stored in the compressed file, else that word is written as it is 

in the compressed file, and then added to the dictionary. The similar process is adopted in 

the decompression program, where the dictionary is created in the similar way it is 

created in the compression program. Hence in this method, we can say that there is no 

overhead of the dictionary.  

4.3.7. Word Based Text Compression Method using Static Dictionary 

(WBTC-E) 

A static dictionary method uses the same dictionary for all files to be compressed, thus 

such dictionaries are used only in specific applications where the files to be compressed 

contain many common words. A static dictionary is simply a set of words from the input 

alphabet with corresponding codewords. Ideally the dictionary should consist of words 

common to input strings which are typically encountered in the application domain. 
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Clearly the dictionary used need to be available to both the compression algorithm and its 

corresponding decompression algorithm.  The static dictionary is created from the set of 

different corpus. This method is equivalent to method WBTC-C, but the only difference 

here is that in this method the dictionary is static and will not be considered as overhead 

to the compressed file, but will be an integral part of compression program, whereas in 

method WBTC-C the dictionary is created for a particular file and is considered as a 

integral part of compressed file, thereby increasing the overhead of the dictionary created.  

In WBTC-C method, the word stored in dictionary was encoded with 8-bit value. The 

numbers of words used in WBTC-C method are 16447 and that is justifiable because the 

dictionary belongs to a single file. But in the case where static dictionary is to be build up 

from multiple files the number of words will be far more than 16447. Hence we decide to 

encode the word by 16-bit instead of 8-bits.  The number of words kept in each row is 

restricted to 32768 only. If we are using only 16-bit code, then the MSB is used to 

differentiate between the normal ASCII character and encoded value of the words. 

Therefore, only 15-bit remains to point to the word in the dictionary, hence 215 – 1 i.e. 

32767 words are kept in one row. But to indicate a change in row an escape symbol 0xFF 

(i.e. 11111111B) is used and the corresponding 256 combinations are omitted Therefore 

number of words which can be kept in dictionary are 32767 – 256 = 32511. Out of these 

32511 words, 32000 words are repeated in each row and remaining 511 words are unique 

to the dictionary. Thus if we keep row size to 256 for ensuring again an 8-bit code to row 

number, than the total number of words which can be kept in dictionary are 511 * 256 + 

32000 = 162816, which is plenty enough. We had collected words of frequency greater 

than 2 from 45 files of different corpus and the number of words found is maximum 

130000. The structure of the dictionary will look like as shown in Figure 4.8 below. 
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                           Col 0    Col1             Col 62   Col63    Col64                            Col126  

                ↓          ↓                    ↓           ↓          ↓                                      ↓  

Row   0 →  word0, word1, . . , word31999, word32000, . . . . . . ., word32510 

Row   1→  word0, word1, . . , word31999, word32511, . . . . . . ., word33021 

. 

. 

. 

Row 254→  word0, word1, . . , word31999, word161794, . . . . . . ., word162304 

Row 255→  word0, word1, . . , word31999, word162305, . . . . . . ., word162815 

 

Figure 4.8 Structure of two-dimension word dictionary (WBTC-E) 

Even though it seems that word0, word1,. . . ., word31999 are repeated in each row, but 

actually they are stored only once and are assume logically to be present in every row.  

The idea behind using two-dimension dictionary is to code the dictionary with the row 

number and column number. The most frequent words are stored in each row along with 

some other unique words, therefore the probability of finding the consecutive words in 

same row increases and we will be able to code the word with 16-bit only. We will need 

to specify the row number only when two consecutive words are not found in the same 

row. In this case, the escape symbol is to be stored to indicate the change in row and then 

followed by the row number in which the word is found, along with the column number. 

Thus more compression is achieved when the consecutive word are found in the same 

row, because only 16-bit code is needed instead of 18-bit code.  

Dictionary Creation 

The files are selected from the different set of the corpus. Every file is scanned and the 

number of words having frequency count > 2 is stored in corresponding dictionary of that 

file. Thus all possible words are stored in the dictionaries of respective file. Now again all 

those dictionaries are scanned and the frequency of common words from different 

dictionaries is added. The new formed dictionary is sorted with respect to frequency in 

descending order so most probable words will appear in the front of the dictionary. The 
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dictionary created will be part of the compression program and will be available to the 

decompression program.  

The compression and decompression process is similar to that of method WBTC-C.  

4.4. COMPARISON AMONG PROPOSED METHODS 

In all the methods except CBTC-A, we are getting improved compression ratio when they 

are used as pre-compression stage to several standard existing compression methods such 

Arithmetic Coding, Bzip2, PPMD, PPMII and LZMA.  

In CBTC-A, 5-bit coding is used to encode a character. Every character is encoded by 5-

bits. Although some character groups were encoded by 8-bits, but then it was again 

preceded by 5-bit escape symbol. If another program read this stream of 5-bits, it will 

read byte by byte, therefore the numbers of symbols are thus not minimized but are 

maximized to full extent i.e. 256. All combinations of bytes from 0 through 255 are 

generated because of continous stream of 5-bits. In Arithmetic coding, the probability of 

occurrence of symbol (byte) is considered and therefore we can say that this method is 

not suitable to use as a pre-compression stage to arithmetic coding method. The 

experimental  results shows that compression ratio achieved is very poor than Bzip2, 

Arithmetic Coding, PPMd, PPMII and LZMA. The dictionary used here is static and 

hence there is no overhead of dictionary in this method. Because of static dictionary, it 

becomes useful for searching the pattern directly in the compressed file.   

In CBTC-B, 8-bit coding was used to encode 2-character groups, where as 16-bit coding 

was used to encode 3 & 4 character groups. The single characters were not encoded but 

were stored as it is in the compressed file. Thus creating some sort of context redundancy 

in the compressed file. This redundancy is exploited in Arithmetic Coding method giving 

improved compression ratio. In this method all possible 4-character and 3-character 

groups are stored in the dictionary and only 32 most probable 2-character groups are 

stored. The dictionary is overhead to the compress file and is integral part of the 

compressed file. This method is also suitable for direct searching the pattern in the 
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compressed file without decompressing it. The method is used as pre-compression stage 

to Arithmetic Coding technique and gives 5.38% of improvement in compression ratio. 

In WBTC-A, 16-bit coding is used to encode the words, partial words and non-words. 

The dictionary is created for words, prefix words, suffix words and non-words. The 

words with frequency greater than 2 are stored in the dictionary. Similarly, the prefix and 

suffix words with frequency greater than 2 are stored in the dictionary. This method is 

used as pre-compression stage to standard methods such as Bzip2, PPMd, PPMII and 

LZMA etc. This method gives 1% of improvement in compression ratio when used as 

pre-compression stage to Bzip2, 0.67% of improvement in compression ratio when used 

as pre-compression stage to PPMd, 1.92% of improvement in compression ratio when 

used as pre-compression stage to PPMII, and 0.16% of improvement in compression ratio 

when used as pre-compression stage to LZMA. This method is also suitable for direct 

searching the pattern in the compressed file without decompressing it and the 

experimental results shows that time required to search the phrase in compressed form is 

49% less than that of normal searching . 

In WBTC-B, again 16-bit coding is used similar to that of method WBTC-A. The only 

difference with WBTC-A is that here all the words occurring in the source file are stored 

in the dictionary with maximum limit of 32768 words (i.e. 215 only). The dictionary is 

assumed to be single dimension with index value ranging from 0 to 32767. This method 

gives 1.22% of improvement in compression ratio when used as pre-compression stage to 

Bzip2 and PPMd, 2.39% of improvement in compression ratio when used as pre-

compression stage to PPMII, and 0.55% of improvement in compression ratio when used 

as pre-compression stage to LZMA.This method is also suitable for direct searching the 

pattern in the compressed file without decompressing it and the experimental results 

shows that time required to search the phrase in compressed form is 40% less than that of 

normal searching . 

In WBTC-C, an 8-bit coding is used to encode the words in the dictionary. The dictionary 

is assumed to be of two dimensions instead of one dimension as in the case of method 

WBTC-A and method WBTC-B. The numbers of words are restricted to 16447 whereas 
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in method WBTC-A and WBTC-B they were up to 32768. This method gives 1.32% of 

improvement in compression ratio when used as pre-compression stage to Bzip2, 1.23% 

of improvement in compression ratio when used as pre-compression stage to PPMd, 

2.12% of improvement in compression ratio when used as pre-compression stage to 

PPMII, and 0.46% of improvement in compression ratio when used as pre-compression 

stage to LZMA. This method is also suitable for direct searching the pattern in the 

compressed file and the experimental results shows that time required to search the 

phrase in compressed form is 39% less than that of normal searching. 

In WBTC-D, the dictionary is built dynamically i.e. when the file is parse for 

compression at that time itself the dictionary is created. Again the number of words is 

restricted to 32768 words. The dictionary is assumed to be of single dimension. This 

method gives 1.72% of improvement in compression ratio when used as pre-compression 

stage to Bzip2, 1.75% of improvement in compression ratio when used as pre-

compression stage to PPMd, 2.75% of improvement in compression ratio when used as 

pre-compression stage to PPMII, and 3.49% of deterioration in compression ratio when 

used as pre-compression stage to LZMA.  But as the dictionary is built on the fly, this 

method is not suitable for searching the pattern directly in the compressed form  

In WBTC-E, the dictionary is static. The static dictionary is build separately from the 

particular application domain. All the files are scanned and the statistics of words are 

collected and a common dictionary is build from all the files. This dictionary is then used 

for compressing all the files from that application domain. There is no overhead of the 

dictionary in this method as compared to CBTC-B, WBTC-A, WBTC-B, and WBTC-C. 

This method gives 9.18% of improvement in compression ratio when used as pre-

compression stage to Bzip2, 7.93% of improvement in compression ratio when used as 

pre-compression stage to PPMd, 9.24% of improvement in compression ratio when used 

as pre-compression stage to PPMII, and 8.62% of improvement in compression ratio 

when used as pre-compression stage to LZMA.This method is also suitable for direct 

searching the pattern in the compressed file without decompressing it and the 

experimental results shows that time required to search the phrase in compressed form is 

41% less than that of normal searching. The limitation of this method is that it can 
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perform well only when the source file to be compressed is from the same application 

domain. As compared to other methods, this method outperforms over all other methods, 

if at all the file to be compressed is from the particular application domain.  

 In next chapter the implementations issues of the proposed methods are discussed, 

whereas in chapter 6, the experimental results and comparison of the results with other 

standard methods are given. 
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5 

IMPLEMENTATION OF PROPOSED METHODS 

 
5.0 OUTLINE OF THIS CHAPTER 

This chapter describes the implementation of different compression methods proposed by 

us. The methods are already discussed in chapter 4. In this chapter certain issues related 

to implementation part is discussed and flow charts of each methods are drawn. All these 

methods are implemented in VC++ 6.0.  

5.1 Implementation of CBTC-A 

This method is based on static dictionary created from the set of corpus (Large Corpus, 

E-Text, Enronsent, European Parliament and Gutenberg). The probability of all single 

characters is computed and the characters are arranged in the descending order. In the 

similar way, the probability of all possible 4-character group, 3-character group and 2 

character group is computed and are arranged in descending order. The first 256 groups 

are taken into consideration. The static dictionary of characters will be as shown in figure 

4.3 and that of 4-character group, 3-character group and 2 character group will be as 

shown in fig. 4.4., 4.5, and 4.6 respectively. (All these figures are shown in chapter 4).   

Compression 

During the compression process, we have to specify the change in row number, or the 

encoded sequence is pointing to group of 4-character, group of 3-character or group of 2-

character. This we will do by sending special escape symbols. The number of characters 

kept in one row is 28 and we are using 5-bit coding sequence i.e. we can point to 25 = 32 

total combinations. Now, 28 combinations (0 – through – 27) are used for pointing to 

characters in row, and remaining 4 combinations are used for pointing the presence of 2-

character group (28 i.e. binary ‘11100’), 3-character group (29 i.e. binary ‘11101’), 4-

character group (30 i.e. binary ‘11110’) and change in row number (31 i.e. ‘11111’). 

Thus we can say that the 28, 29, 30 and 31 are special unique escape symbols. The escape 

symbols will be followed by the position of 2-character group, or by the position of 3-

character group or by the position of 4-character group in the dictionary.  
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Step 1: Read the static dictionary (The dictionary is stored in the form of two-dimension 

dictionary). 

Code for reading single characters from the file in the form of two-dimension dictionary 

is given below:  

 fptr = fopen("dict121.dat","r"); 

 while((ch = fgetc(fptr))!= EOF) { 

  dict[i][j] = ch; 

  j++; 

  if(j>27) { 

   j=0; i++; 

  } 

 } 

The static dictionary file dict121.dat is opened in read mode. Since the number of 

characters in the dictionary is not known in advance, while loop is used to read the 

characters from the file. The array dict[][] is used to store the dictionary in two-

dimension. One-by-one, the characters are read from the file (using fgetc() function) and 

are stored in dict[i][j], where i is pointing to the row index and j is pointing to the 

column index. After every 28 characters the row index i is incremented by 1 and column 

index j is reset to zero. The process continues till all the characters are read from the 

dictionary file. Now the static dictionary is available in the array dict[][].  

Code for reading the dictionary of multiple characters (2, 3 and 4 characters group) from 

the file is given below: 

 fptr = fopen("dictionary432.dat","r"); 

for(i=0;i<1024;i++) { 

  ch = fgetc(fptr); 

  dictl4[i]=ch; 

 } 

for(i=0;i<768;i++) { 

  ch = fgetc(fptr); 

  dictl3[i] = ch; 

 } 
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 for(i=0;i<512;i++) { 

  ch = fgetc(fptr); 

  dictl2[i] = ch; 

 } 

 fclose(fptr); 

As the number of character groups are fixed in the dictionary, we are using here for loop 

to read the character groups from the dictionary. First for loop will iterate for 1024 times 

as we want to read 256, 4-character groups. Second for loop will iterate for 768 times to 

read 256, 3-character groups and third for loop will iterate for 512 times to read 256, 2-

character group.   

Step 2: First read 4 characters from the source file in ch1, ch2, ch3 and ch4.  

Step 3: Search the presence of these 4 characters in the dictionary of 4-character group. If 

found, store the escape symbol ‘11110’ and then store the index value of that position in 

the compressed file. The OutputBit() function is used to store the bits in the compressed 

file. The Step 2 is repeated.  

Step 4: If those 4 characters are not found in the 4-character group dictionary, then first 

three characters ch1, ch2 and ch3 are searched in 3-character group dictionary. If found 

store the escape symbol ‘11101’ and then store the index value of that position in the 

compressed file. The ch4 is now stored in ch1 and next 3 characters are read in ch2, ch3 

and ch4 and Step 3 is repeated. 

Step 5: If those 3 characters are not found in the 3-character group dictionary, then first 

two characters ch1 and ch2 are searched in the 2-character group dictionary. If found 

store the escape symbol ‘11100’ and then store the index value of that position in the 

compressed file. The ch3 and ch4 are now stored in ch1 and ch2 respectively and next 

two characters are read from the source file in ch3 and ch4 and Step 2 is repeated. 

Step 6: If those 2 characters are not found in the 2-character group dictionary, then the 

first character ch1 is searched in the single dictionary and its column position is stored in 

the compressed file. If the character is not found in the same row, then the escape symbol 

‘11111’ is stored first which is followed by the new row number and column number.  

The ch2, ch3 and ch4 are now stored in ch1, ch2 and ch3 respectively and next one 

character is read from the source file in ch4 and Step 3 is repeated. 
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The presence of the 4-character group is done in the following way. 

int occur[]; 

void find4char() { 

 int i,j; 

 for(i=0;i<=len-4;i++) { 

  for(j=0;j<256;j++) { 

   if (strcmp (str, dict4[j]) == 0) { 

    occur[i]=4; 

    i+=3; 

    break; 

   } 

  } 

 } 

} 

In the above code, the word is scanned and 4-consecutive character groups of a word is 

compared with 4-char group in dictionary, if found the presence of 4-character group in 

the word is marked in occur[] array. In the similar way, the presence of 3-character group 

and 2-character group is marked in occur[]. Thus while compressing the entire word the 

occur[] array is checked first for the presence of the character groups and then their 

respective index value is stored in the compressed file.  

Decompression 

Step 1: Read the dictionary of single character and multiple characters (2, 3 and 4 

characters group) 

Step 2: Read 5-bits from the compressed file. 

Step 3: Compare these five bits with the escape symbols of 4-character, 3-character and 

2-character group, if matched, then read next 8-bit code as an index value which points to 

the position in the dictionary, to retrieve the characters from the respective dictionary and 

store it in the decompressed file and repeat step 2.   

Step 4: Compare these five bits with the escape symbol of change in row, if matched then 

read next 3-bits to read the new row number and 5-bits to read the column number. If 

those five bits are not matched with escape symbol of change in row, then those 5-bits 
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code is assumed to be the column number of the previous row in the two-dimension 

single character dictionary. Retrieve the character from the two-dimension single 

character dictionary from respective row and column number and store it in the 

decompressed file. Thus the entire file is scanned and decompressed.  

5.2 IMPLEMENTATION OF CBTC-B 

In this method main task is to accumulate the statistics of groups of 2, 3 and 4 ASCII 

characters from the source file.  The difference between CBTC – A and CBTC – B is that 

in later, 16384 – 4-character and 8192 – 3-character groups are taken into consideration 

whose frequency count is greater than certain threshold, whereas in CBTC – A only first 

256 groups are taken into consideration.  

Dictionary Creation 

The arrays are declared for all possible combinations of groups of 2, 3 and 4, ASCII 

characters. For e.g. the possible group of 2 ASCII characters are aa, ab, ac,. . ., za, zb,. . . 

zz. The possible group of 3 ASCII characters are aaa, aab,. . ., aza, azb, . . ., azz, . . ., zaa, 

zab, . . ., zzz. The possible group of 4 ASCII characters are aaaa, aaab, . . ., azaa, azab, . . 

., azzz, zaaa, zaab, . . ., zzzz. The frequency of such groups of ASCII characters is initially 

set to zero. The source file is then scanned in the following manner. 

Step 1: First four characters are read from the source file in ch1, ch2, ch3 and ch4. 

If all the four characters are ASCII characters, then the frequency count of that group of 

4-character in array is incremented by 1.  

If all four characters are not ASCII, then check whether first 3 characters are ASCII or 

not, if yes then the frequency count of that group of 3-character in array is incremented 

by 1, or else first two characters are checked for ASCII and if yes, then the frequency 

count of that group is incremented by 1. 

In this way, all the characters from the file are scanned and the frequency count of the 4-

character array, 3-character array and 2-character array is updated. 

Step 2: Next, the groups of ASCII characters with frequency count zero is removed.  

Example: Suppose 4 character group say ‘zzzz’ does not exist in the source file, then that 

group will be removed from the array. 
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Step 3: Thus after removing the zero frequency character groups, the remaining character 

groups will be sorted according to their frequency counts in descending order.  

Step 4: In order to achieve compression, we have to take decision which character groups 

shall be kept in the dictionary. For example, if 4-character group say ‘zing’ appears only 

twice or less, then it should be removed from the dictionary. Because, even if we keep in 

the dictionary, we won’t get compression, as 4 bytes are required to store the 4-character 

group in the dictionary, and to encode it twice each time 2 bytes will be required so 

overall 8 bytes are required for compression. In original file, it will consume 8 bytes, 

since the 4-character group occurs twice. Therefore it won’t be wise to keep the 4-

character group whose frequency count is less than or equal to 2 to keep it in the 

dictionary. Similarly, the 3-character group whose frequency count is less than or equal 

to 3 shall not be kept in the dictionary. Thus, now we will have the 4-character and 3-

character groups in the dictionary in the descending order with respect to frequency of 

their occurrence in the source file.  

Step 5: Similarly, we have to think about 2-character group. If we consider all possible 2-

character group, it will take 2 bytes to represent it. Thus we won’t achieve compression 

in case of 2-character groups. In order to get compression for 2-character group, if we can 

encode any how in 1 byte then we will get compression. To encode it in one byte, we 

have to explicitly specify that this byte contains the index value pointing to the 2-

character dictionary. In order to do this some bits will have to be kept reserved for that. 

Already 1-bit is kept reserved for indicating a normal ASCII character and an encoded 

value. There are three possibilities in encoded value, one is either it can be a value 

pointing to 4-character group dictionary, or 3-character group dictionary or else 2-

character group dictionary. So, further 2-bits will required for specifying three possible 

values. Hence, only 5-bits remain to encode the 2-character group.  Thus, we will be able 

to keep only first 32 2-character group in the dictionary.  

Compression 

Step 1: First read 4 characters from the source file in ch1, ch2, ch3 and ch4.  

Step 2: Search the presence of these 4 characters in the dictionary of 4-character group. If 

found store the index value of that position in the compressed file. The OutputBit() 

function is used to store the bits in the compressed file. The Step 1 is repeated.  
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Step 3: If those 4 characters are not found in the 4-character group dictionary, then first 

three characters ch1, ch2 and ch3 are searched in 3-character group dictionary. If found 

store the index value of that position in the compressed file. The ch4 is now stored in ch1 

and next 3 characters are read in ch2, ch3 and ch4 and Step 2 is repeated. 

Step 4: If those 3 characters are not found in the 3-character group dictionary, then first 

two characters ch1 and ch2 are searched in the 2-character group dictionary. If found 

store the index value of that position in the compressed file. The ch3 and ch4 are now 

stored in ch1 and ch2 respectively and next two characters are read from the source file in 

ch3 and ch4 and Step 2 is repeated. 

Step 5: If those 2 characters are not found in the 2-character group dictionary, then the 

first character ch1 is stored as it is in the compressed file. The ch2, ch3 and ch4 are now 

stored in ch1, ch2 and ch3 respectively and next one character is read from the source file 

in ch4 and Step 2 is repeated. 

In this way the entire file is scanned and compressed. The flowchart for compressing the 

character groups is shown in figure 5.1. 

Decompression 

Step 1: Read the dictionary of 4-character group, 3-character group and 2-character 

group. 

Step 2: Read code of one byte from the compressed file. 

Step 3: If the code value is less than 128, it means that a normal ASCII character was 

stored during compression process. Store that code value in the decompressed file as it is 

and repeat Step 2. 

Step 4: If the code value is greater than or equal to 128 and less than or equal to 159, then 

it indicates the index value of 2-character group dictionary. Subtract the biased value 128 

from it and get the two characters from the 2-character group dictionary and repeat Step 

2. 

Step 5: Read another byte of code and combine it previous read code byte to form 16-bit 

index value. If this index value is in between 40960 and 41951, then it indicates the index 

value of 3-character group dictionary. Subtract the biased value of 40960 from it and get 

the 3 characters from the 3-character group dictionary and repeat Step 2. 
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Step 5: If the value of 16-bit code is greater than or equal to 49152, then it indicates the 

index value of 4-character group dictionary. Subtract the biased value of 49152 from it 

and get the 4 characters from the 4-character group dictionary and repeat Step 2. 

Thus the entire file is scanned byte by byte and is decompressed. The flow chart for 

decompression is shown in figure 5.2. 
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Figure 5.1 Flowchart for compression (CBTC-B) 
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Figure 5.2 Flow chart for decompression (CBTC-B) 
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5.3 IMPLEMENTATION OF WBTC-A 

In this method, the dictionaries of full words and partial words are created from the 

source file to be compressed. The words having frequency greater than 1 are considered. 

The remaining words with frequency of 1 then are used to create dictionaries of partial 

words.  

Creation of Word Dictionary  

At the outset, we have to decide how many words shall be stored in the dictionary. As 

pointed in the algorithm 4.3.3, the words stored in the dictionary will be encoded by their 

position in the dictionary. The ASCII character comprises the code value from 0 through 

127. Therefore it requires only 7-bits to store it in memory. After studying various 

corpuses (for e.g. Gutenberg, Enronsent, European Parliament, Large and Etext files), it 

is found that at the most there are 20000 to 25000 words, 3000 to 5000 prefix and suffix 

partial words, in file of size varying from 2 MB to 10 MB. Hence to encode the 25000 

words it requires bits in between 8 to 16. Therefore we decided to encode the words in 

the dictionary with 16-bit, including 1-bit to differentiate between the normal ASCII 

character and the encoded index value of the words position in the dictionary. 

Considering the above situation we have only 15-bits left to store the index value, hence 

we can store only 32K words i.e. 215 words in the dictionary. Therefore we decide to keep 

4000 Prefix partial words, 4000 Suffix partial words, and 24000 full words to store in the 

dictionary. Remaining 768 codewords are kept reserved for non-words.  
The words of length greater than 2 are only taken into consideration for storing in the 

dictionary, because if we consider words of length 2 in the dictionary, then we won’t 

achieve any compression, as to store words of 2 characters, it will require 2 bytes and 

also to encode the word in the dictionary, it will require 2 bytes.  The same thing applies 

to partial prefix and suffix words. The length of partial prefix and suffix words is kept to 

minimum of 3 characters.  

Step 1: Declare a constant DICTCONSTANT with value 24000. Allocate the memory for 

the dictionary using statement  

char dictionary[DICTCONSTANT][50]; 
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The size of the dictionary considered here is having maximum 32768 words, comprising 

of 24000 full words and each of 4000 prefix and suffix partial words.  

Step 2: Read the words from the source file and add it to the dictionary.  

After reading the word from the source file, the length of the word is checked and if 

greater than 2, then the addword() function is invoked to check whether the word exists 

in the dictionary. If exist, then the count value of the word is increased by 1 else the word 

is added to the dictionary and the count value is set to 1. This process is shown in 

Flowchart in fig. 5.3. 

Step 3: After scanning all the words from the source file to be compressed, sort the 

dictionary with respect to the count values of the word in the descending order by calling 

the sort() function. The sort() functions is implemented by linear sorting technique. 

Step 4: Keep the words with frequency more than or equal to 2 in the dictionary.  

The entire dictionary created in Step 3 is scanned till the first word with frequency of 1 is 

encountered. If the total number of words with frequency 2 or more exceeds 

DICTCONSTANT, then only DICTCONSTANT words are kept in the dictionary and 

remaining words are used for creating partial words.  Any how the words stored in the 

dictionary are less than or equal to DICTCONSTANT.  The index value of the first word 

with frequency 1 is stored in variable startofonelengthword, or else if the total number of 

words with frequency 2 or more exceeds DICTCONSTANT, then the value DICTCONSTANT 

is stored in startofonelengthword.  The size of the dictionary is stored in variable 

trackdictionary.  
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Figure 5.3 Flow chart of creating word dictionary (WBTC-A) 
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 Creation of Partial words (Prefix and Suffix) Dictionary 

Here the dictionaries of partial words either from starting (Prefix) or from end (Suffix) of 

the words are taken into consideration.   

Step 1: Declare a constant PREFIXCONSTANT with value 4000. Allocate the memory for 

the dictionary using statement. Maximum 4000 words are stored in the prefix dictionary. 

Step 2: The words are scanned in the reverse order i.e. from last word of the dictionary 

towards the first words of the dictionary of frequency 1. The characters from the words 

are compared with characters from every other word. The maximum number of 

characters matched is considered and that sub-word is stored in the prefix dictionary.  

The flowchart of creating the prefix dictionary is shown in figure 5.4. 

Example: Consider that words ‘complicate’, ‘complications’, ‘complicated’ are having 

frequency count 1. Then at first, the last word complicated will be compared with word 

complications, it is seen that first 9 characters complicat are matching, then again the 

word ‘complicated’ is compared with word ‘complicate’, now it is seen that first 10 

characters of complicated are matched with complicate, so instead of complicat, the word 

complicate will be store in the partial word prefix dictionary.  

Step 3: The maximum prefix words stored in the prefix dictionary are checked with 

PREFIXCONSTANT, if less then that count value is kept, otherwise PREFIXCONSTANT 

value is stored at the maximum count of partial words stored in the dictionary.   

Similarly, the suffix dictionary is created. The only difference is that the characters are 

compared from first character to last character in the prefix dictionary, but in suffix 

dictionary, the characters will be compared from last character to first character.  

Example: Consider the words ‘welcome’, ‘awesome’, ‘outcome’, are having frequency 

count 1. Then at first, the last word outcome will be compared with word awesome, it is 

seen that last 3 characters ome are matching, then again the word ‘outcome’ is compared 

with word ‘welcome’, now it is seen that last 4 characters of welcome are matched with 

outcome, so instead of ome, the word come will be store in the partial word suffix 

dictionary.  
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Figure 5.4 Flowchart of creating the prefix word dictionary (WBTC-A) 
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Compression 

The compression process starts with reading the source file again. Only the words which 

are found in the word dictionary and in the prefix and suffix dictionary are coded with 

index value of the dictionary and the remaining characters are stored as it is in the 

compressed file. 

Step 1: The words read one by one are stored in the string variable str. If the length of str 

is greater than two than only it is search in the dictionary otherwise it is written as it is in 

the compressed file.  

Step 2: If the word is found in the word dictionary, then the index value of the word in 

the dictionary is store in the compressed file after adding the constant 32768 to it. The 

function OutputBits() is used to write the bits in the compressed file, and the process 

repeats for next word. The value 32768 is added to the index value, so that the MSB of 16 

bit index value will be ‘1’, which will differentiate between the normal ASCII character 

and the index value of the word placed in the dictionary.  

Step 3: If the word is not found in the dictionary, then first the word is scanned in the 

prefix dictionary.  The word is compared with every word of the prefix dictionary and the 

longest match of prefix word found is considered. Then the index value of the prefix part 

is store in the compressed file after adding the constant 32768+24000 i.e., 56768. Again 

the same function OutputBits() is used to store the bits in the compressed file. Now the 

prefix part is removed from the str. Now the str contains only remaining portion of the 

word.  

Step 4: Now the str is scanned for the suffix part of the word in the suffix dictionary. If 

not found then the entire str is written as it is in the compressed file. Else characters other 

than suffix part are first stored as it is and then the index value of the suffix word is 

stored in the compressed file after adding 32768+24000+4000 i.e. 60768. The function 

OutputBits() is used to store the bits in the compressed file. The flowchart of writing the 

word is shown in figure 5.5. 
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Example: Suppose the prefix word dictionary contains words such as ‘seme’, ‘sing’, 

‘singer’.  And the suffix dictionary contains words such as ‘ing’, ‘ter’ ‘one’.  

Now the word, say ‘semester’ is to be compressed, then first the word semester will be 

compared with word ‘seme’, in this case there is match of first 4 characters. Again the 

word ‘semester’ is compared with next word ‘sing’, here there is a match of only first 

character of the word ‘semester’. Hence the index value of ‘seme’ will be written to the 

compressed file. The remaining str of the word ‘semester’, after removing the partial 

word ‘seme’ now becomes the string ‘ster’.  This word ‘ster’ is now searched in the 

suffix dictionary. It is clear that only 3 characters are matched when compared with all 

the words of the suffix dictionary and it is ‘ter’. Now before storing the index value of the 

suffix word ‘ter’ in the compressed file, we have to check whether all characters from the 

str is taken or some characters are left. In our example, after writing seme and before 

writing ‘ter’, the character which is left is ‘s’, so first this ‘s’ will be written in the 

compressed file as it is. And then the index value of the ‘ter’ will be written to the 

compressed file.  Thus the word semester is compressed by first writing the index value 

of the prefix partial word ‘seme’ and then writing ‘s’ as it is, and finally the index value 

of the ‘ter’ is written to the compressed file.  

Thus, compression is achieved when the word is found in the dictionary, and when the 

sub-words are found in prefix and/or suffix dictionary.  
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Figure 5.5 Flowchart for compressing a word (WBTC-A) 
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Decompression 

The process of decompression is simple and fast. The flowchart of the decompressing a 

single normal character and decompressing a single word is shown in figure 5.6.  The file 

to be decompressed is open in binary read mode. At first, one byte is read and is 

compared with value 128. If it is less than 128, then the read byte is normal character and 

it is written as it is in the decompressed file. If the value of that byte is greater than or 

equal to 128 then the read byte is a part of the encoded word of 16-bit. To form the 

complete value of encoded word another byte is read from the file and a 16-bit value is 

formed which indicates the offset of the word in the dictionary. This 16-bit value is first 

compared with the range of offset of suffix dictionary i.e. in between 60768 and 64768. if 

it is in that range, then the suffix word is retrieved from the suffix dictionary and written 

to the decompressed file. If the range is in between 56768 and 60768 then the prefix word 

is retrieved from the prefix dictionary and written to the decompressed file, otherwise the 

value indicates the offset of the full word of the word dictionary. Then that word is 

retrieved and written to the decompressed file. In this way the entire file is scanned and 

the file is decompressed.  
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Figure 5.6 Flowchart of decompressing a normal character or word (WBTC-A) 
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5.4 IMPLEMENTATION OF WBTC-B   

In this method, the dictionary is created of words in single dimension array. The words 

are separated by symbol ‘#’ in the dictionary. We have used here symbol ‘#’ as a 

separator because we had defined word as sequence of ASCII characters only, therefore 

symbol ‘#’ won’t occur in word, and if ‘#’ symbol is occurring in the source file then it 

will be stored as it is. The ‘#’ symbol is used in the dictionary only and not in the 

compressed file. It is used simply to distinguish between the words in the dictionary only. 

In this method, simultaneously the dictionary is created and the file is compressed. This 

method is very simple, but introduced here to compare it with another method WBTC-C, 

which is using the two-dimensional dictionary.   

Dictionary Creation and Compression 

Step 1: The word is read from the source file.  

Step 2: The word read from the source file is searched in the dictionary, if found the 

index value of that word is written in the compressed file. Searching of the word is 

explained next. 

Step 3: If the word read is not found then, first the word is added to the dictionary and 

then the index value of that word is written in the compressed file.   

Searching Word in Dictionary 

Step 1: Calculate the length of the word to be searched. 

Step 2: Scan for the word separator character ‘#’. 

Step 3: Compare all characters of the entire word with the characters succeeding the 

symbol ‘#”. If all the characters are matched then check the next character in the 

dictionary, if it is ‘#’ (i.e. the full word is matched), then the word is said to be found. If 

the next character is not ‘#’ than it means that the partial word of the dictionary is 

matched with the word read from the source file and hence the index value of the word in 

the dictionary cannot be stored in the compressed file. In this case the word read from the 

source file is added to the dictionary and the separator symbol ‘#’ is also added to the end 

of the dictionary to indicate the end of the word.  

Example  

If the words in the dictionary are say ‘welcome#become#’ etc., and the word read from 

the file is ‘be’. In word ‘become’ the first two characters are matching with the word ‘be’, 
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so one can say that the word is found in the dictionary, but that is not the case, because 

after ‘be’ instead of terminating symbol ‘#’, there are some characters in the word 

‘become’ from the dictionary, hence we cannot say that complete word ‘be’ is found as it 

is in the dictionary. If word ‘become’ is read form the source file, then only we can say 

that the word is found in the dictionary.  

So if word is not found in the dictionary then that word is added to the end of the 

dictionary with the ‘#’ separator in between. The flowchart of compressing the word is 

shown in figure 5.7.  
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Figure 5.7 Flowchart for compressing a word (WBTC-B) 
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Decompression 

Step 1: Read the dictionary of words from the dictionary file. 

Step 2: Read code of one byte from the compressed file. 

Step 3: If the code value is less than 128, it means that a normal ASCII character was 

stored during compression process. Store it in the decompressed file as it is and repeat 

Step 2. 

Step 4: If the code value is greater than or equal to 128 then read another byte of code 

and combine it with previous read code byte to form 16-bit index value. Subtract the bias 

value 32768 form it. This 16-bit index value is now pointing to the corresponding word in 

the dictionary. 

Step 5: Scan the dictionary, increment the counter of the ‘#’ symbol every time it 

encounters till it matches the 16-bit index value. Read the characters from the dictionary 

from that point till another ‘#’ symbol encounter to indicate the end of the word.  

Thus the entire file is scanned byte by byte and is decompressed. The flowchart for 

decompressing the word is shown in figure 5.8.  
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Figure 5.8 Flowchart of decompressing a normal character or word (WBTC-B) 
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5.5 IMPLEMENTATION OF WBTC-C 

In this method two-dimension semi-dynamic dictionary is created. Thus, as explained in 

chapter 4, the length of the code assigned to word reduces from 16-bit to 8-bit. The 

dictionary structure is shown in figure 4.7 (Chapter 4). The total numbers of words to be 

stored in the dictionary are 16447.  

Compression 

Step 1: The word is read from the source file. The single characters or non-alphabetic 

characters, or words with length less than 3 are stored in the compressed file as it is.  

Step 2: The word read from the source file is searched in the dictionary, if found the 

index value of that word is computed and written in the compressed file.  

Computing the index value 

If the word is found in first 63 words, then the index value is simply stored in the 

compressed file. If the word is found at a position greater than or equal to 63, then the 

row number and column number are computed as below: 

rownumber       = (found – 63 )    /   64 

columnnumber = (found – 63) mod 64 

If the previous row number and the current row number are same, then only the column 

number is written in the compressed file, else the escape symbol (0xFF) is written in the 

compressed file followed by the new row number and the column number. 

Step 3: If the word is not found in the dictionary, then it is stored as it is in the 

compressed file.  

Thus the entire file is scanned and compressed. The flowchart of compressing a single 

word is shown in figure 5.9. 
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Figure 5.9 Flowchart for compressing a word (WBTC-C) 
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Decompression 

Step 1: Read the dictionary of words from the dictionary file. 

Step 2: Read code of one byte from the compressed file. 

Step 3: If the code value is less than 128, it means that a normal ASCII character was 

stored during compression process. Store it in the decompressed file as it is and repeat 

Step 2. 

Step 4: If the code value is greater than or equal to 128, check if the escape symbol is 

there for change in row. If yes, then read another two consecutive bytes for getting new 

row number and column number respectively. Subtract bias value 128 from the code to 

get actual row number and column number.   

Step 5: Now calculate the position of the word in the dictionary from these row number 

and column number by the equation 

Position = (row number * 64 ) + 63 + column number 

 Thus word at that position is read from the dictionary and stored in the decompressed 

file. Thus the entire file is scanned byte by byte and is decompressed. The flowchart of 

decompressing a normal character or compressed word is shown in figure 5.10. 
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Figure 5.10 Flowchart of decompressing a normal character or word (WBTC-C) 
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5.6. IMPLEMENTATION OF WBTC-D   

In the above methods described, the dictionary is built explicitly and is stored external to 

the compressed file. But in this method the dictionary is built on-the-fly and in the similar 

way the dictionary is to be built during decompression process. The overhead of external 

dictionary is reduced, but then we won’t be able to search the phrase in the compressed 

file, which was possible in above methods. 

Compression 

Step 1: Create a null dictionary 

Step 2: Read the words from the source file. The single characters or non-alphabetic 

characters, or words with length of 2 are stored in the compressed file as it is.  

Step 3: Search the word in the dictionary, if not found write the word as it is in the 

compressed file and add that word to the dictionary. 

Step 4: If word is found in the dictionary, then write the index value of the word in the 

compressed file after adding 32768 to it i.e., making the MSB bit of 16-bit index value to 

1. This MSB will differentiate it from the normal ASCII code.  

Thus the entire file is scanned and compressed. The flowchart for compressing a word is 

shown in figure 5.11 

Decompression 

Step 1: Create the null dictionary. 

Step 2: Read code of one byte from the compressed file. 

Step 3: If the code value is less than 128, it means that a normal ASCII character was 

stored during compression process. Store it in the decompressed file as it is and repeat 

Step 2. 

Step 4: If the code value is greater than or equal to 128. If yes, then read another byte for 

getting the complete two byte index value. Subtract bias value 32768 from the code to get 

actual position of the word in the dictionary. Store that word from the dictionary to the 

decompressed file.    

Thus the entire file is scanned byte by byte and is decompressed. The flowchart for 

decompressing a normal character or compressed word is shown in figure 5.12. 
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Figure 5.11 Flowchart for compressing a word (WBTC-D) 
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Figure 5.12 Flowchart of decompressing a normal character or word (WBTC-D) 
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5.7. IMPLEMENTATION OF WBTC-E 

In this method the static dictionary is created from the set of different corpus. This 

method is equivalent to method 5.5, but the only difference here is that in this method the 

dictionary is static and will not be considered as overhead but as a part of compression 

program, whereas in method 5.5 the dictionary is created for that particular file and is 

considered as a part of compressed file, thereby increasing the overhead.  

Creating Dictionary 

Step 1: Prepare a list of files from the different corpus. Here we are considering files 

from the Gutenberg corpus, Enronsent Corpus, Etextfile corpus and large corpus.  

Step 2: First of all the dictionary of all the words of frequency greater than 2 from each 

individual file is created. 

Step 3: Then all the dictionary are merged into single dictionary, which consists of all 

words from the entire dictionaries of all files and their frequency count is also added.  

Step 4: The dictionary is then sorted according to the frequency count in the descending 

order.  

Here again we consider to code the index value of the position of the word in the 

dictionary by 16-bit, i.e., MSB is reserved for indicating the difference between the 

normal ASCII character and the index value of the word. We are getting only 15-bits to 

encode the index value of the word from the dictionary. The same idea used in method 

5.4.2 is adopted here with a difference in the number of bits required to encode the index 

value of the word. In method 5.4.2 only 8-bits were used to encode the index value, 

whereas in this method 16-bit index value is used and therefore the capacity of dictionary 

storing the words increases from 16,477 to 1,62,816. How this figures come is explained 

below: 

The dictionary is considered as two dimensional dictionary. There are 256 rows and in 

each row we can have 32768 words. If we decide to keep 0xFF as an escape symbol for 

change in row of the dictionary, then we cannot use combination of 0xFF XX as a 16-bit 

combination for storing the index value, where XX varies in between 0x00 to 0xFF. 

Therefore, the total combination which can be store in 16-bit index value is 0x80 00 

through 0xFEFF i.e. total word which we can store in a row is 32511. We decide here to 
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keep most frequent 32000 words common in each row and remaining 511 words to be 

unique in 256 rows. So the total number of words will be 32000 + (256 * 511) = 162816. 

 

Step 1: The word is read from the source file. The single characters or non-alphabetic 

characters, or words with length of 2 are stored in the compressed file as it is.  

Step 2: The word read from the source file is searched in the dictionary, if found the 

index value of that word is computed and written in the compressed file.  

Computing the index value 

If the word is found in first 32000 words, then the index value is simply stored in the 

compressed file. If the word is found at a position greater then or equal to 32000, then the 

row number and column number are computed as below: 

rownumber       = (found – 32000 )    /   511 

columnnumber = (found – 32000) mod 511 

If the previous row number and the current row number are same, then only the column 

number is written in the compressed file, else the escape symbol (0xFF) is written in the 

compressed file followed by the new row number and the column number. 

Step 3: If the word is not found in the dictionary, then it is stored as it is in the 

compressed file.  

Thus the entire file is scanned and compressed. The flowchart for compressing the single 

word is shown in figure 5.13. 
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Figure 5.13 Flowchart for compressing a word (WBTC-E) 



 132

Decompression 

Step 1: Read the dictionary of words from the dictionary file. 

Step 2: Read code of one byte from the compressed file. 

Step 3: If the code value is less than 128, it means that a normal ASCII character was 

stored during compression process. Store it in the decompressed file as it is and repeat 

Step 2. 

Step 4: If the code value is greater than or equal to 128, check if the escape symbol is 

there for change in row. If yes, then read another three consecutive bytes for getting new 

row number and column number respectively.     

Step 5: Now calculate the position of the word in the dictionary from these row number 

and column number by the equation 

Position = (row number * 511) + 32000 + column number 

 Thus word at that position is read from the dictionary and stored in the decompressed 

file. Thus the entire file is scanned byte by byte and is decompressed. The flowchart for 

decompressing a normal character or compressed word is shown in figure 5.14. 
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Figure 5.14 Flowchart of decompressing a normal character or word (WBTC-E) 
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5.8. IMPLEMENTING SEARCHING IN COMPRESSED FORM 

Besides improving the compression ratio, our intention was to develop a technique in 

such a way so that it can be useful for searching the phrases from the compressed file 

directly without decompressing it. Thus, if the phrases are to be searched in the 

compressed files (relatively smaller than normal files), then number of comparison to be 

done will be comparatively less and thus time taken will be less.  In the proposed 

methods only WBTC – D is not suitable for searching the phrases directly in the 

compressed form, because it is using the dynamic dictionary and hence it is not possible 

to search the phrases without decompressing it. All other methods are useful for 

searching the phrases without decompressing the compressed file. 

In Chapter 3, we have seen different string matching algorithms. We have used Karp – 

Rabin, Knuth – Morris – Pratt, Brute – Force , Boyer – Moore and Quick Search  

algorithm for searching the phrases directly in the compressed form. The results are 

shown in Chapter 6.  

Following are the steps required to search the phrases directly in the compressed form 

irrespective of any of the above methods. 

Step 1: Read the phrase to be searched. 

Step 2: Compress the phrase use the compression technique which is used to compress 

the file in which we have to search the phrase. This compression process is little different 

from the compression process of the source file. Here, there is no need to create the 

dictionaries as in the normal case to compress the file, instead the source dictionaries of 

that compressed files are read and accordingly the compression is done. In all the 

methods above the dictionaries required are different in different cases.  

Step 3: Perform any standard phrase – matching algorithm (Karp – Rabin, Knuth – 

Morris – Pratt, Brute – Force, Boyer – Moore and Quick Search Algorithm).  

The searching of phrase directly in the compressed form is possible because of the 

encoding technique we have adopted in our methods. We have used always either 8-bit 

encoding or 16-bit encoding, like in some other techniques such as Huffman wherein the 

number of bits are different for different characters. The byte boundary is always 

maintained.  



 
 
 
 
 
 
 
 
 

CHAPTER 6 
 

EXPERIMENTAL RESULTS 
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  6 

EXPERIMENTAL RESULTS   

 

6.0 OUTLINE OF THIS CHAPTER 

The character based algorithm and word based algorithm described in this thesis have 

been implemented and tested on several text files. For comparison purposes, we were 

primarily concerned with Bzip2 version 1.0.2, a version of PPM called PPMD and 

PPMII, LZMA as a benchmark. PPMd and PPMII were run in order-4 with 10 MB 

memory limit. LZMA was run with dictionary size of 8MB. The compression ratios are 

expressed in percentage (%). All tests were carried out on Microsoft Windows XP, Intel 

Pentium processor 1.60 GHz and 256 MB RAM. The overall result is that performance is 

consistently better than the benchmark excluding where the size of the file is small (few 

hundred Kilobytes) in some cases. At the end of this chapter the testing of searching the 

phrases directly in the compressed form is done using Karp-Rabin algorithm, Knuth-

Morris-Pratt algorithm and Brute-Force algorithm. The overall number of comparisons 

required to search the phrase in the compressed form is much less than that if searched 

in the normal (decompressed) file. The time taken for searching is also comparatively 

less than in the case of normal file. The results shows that average decompression time of 

word based method (WBTC-C) is less than time taken by Bzip2 to decompress. 

6.1 LIST OF FILES USED FOR TESTING 

6.1.1. E-Text Corpus  

In this corpus the E-Text files are taken from the corpus from the internet. There are total 

9 files taken in this corpus. The list of the files and their size is given in Table 6.1. 
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Table 6.1 File Information of E-Text Corpus 

Sr.No Name of File Size (Bytes)

1 Burroughst.txt 9,923,450

2 Dickens.txt 4,186,334

3 Doyle.txt 4,273,166

4 Emerson.txt 2,654,470

5 Hawthorne.txt 2,534,557

6 Irving.txt 3,159,365

7 Kant.txt 4,966,366

8 Milton.txt 2,392,226

9 Plato.txt 3,044,145

Total Size in Bytes 37,134,079

 

6.1.2. European Parliament Corpus 

 In this corpus 10 files are taken of equal size. The basic corpus was of 3 GB size. The 

corpus was broken into files each of 5MB size. Out of those files 10 files are selected. 

The list of the files and their size is given in Table 6.2. 

Table 6.2 File Information of European Parliament Corpus 

Sr.No Name of File Size (Bytes)

1 europarl1 5,242,880

2 europarl2 5,242,880

3 europarl3 5,242,880

4 europarl4 5,242,880

5 europarl5 5,242,880

6 europarl6 5,242,880

7 europarl7 5,242,880

8 europarl8 5,242,880

9 europarl9 5,242,880

10 europarl10 5,242,880

Total Size in Bytes 52,428,800
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6.1.3. Enronsent Corpus 

19 different files are taken from this corpus. The list of the files and their size is given in 

Table 6.3. 

Table 6.3 File Information of Enronsent Corpus 

Sr.No Name of File Size (Bytes) 

1 enronsent00 1,977,255 

2 enronsent01 1,747,204 

3 enronsent02 2,556,530 

4 enronsent03 2,128,069 

5 enronsent04 2,450,083 

6 enronsent05 2,049,856 

7 enronsent06 1,978,373 

8 enronsent07 2,566,926 

9 enronsent08 2,064,851 

10 enronsent09 2,124,877 

11 enronsent10 2,246,081 

12 enronsent11 1,826,427 

13 enronsent12 2,035,599 

14 enronsent13 1,991,442 

15 enronsent14 1,962,961 

16 enronsent15 1,673,901 

17 enronsent16 1,716,634 

18 enronsent17 1,610,800 

19 enronsent18 1,646,888 

Total Size in Bytes 38,354,757 
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6.1.4. Project Gutenberg Corpus 

 8 different files are taken from this corpus. The list of the files and their size is given in 

Table 6.4. 

Table 6.4 File Information of Project Gutenberg Corpus 

Sr.No Name of File Size (Bytes) 

1 leonard 1,423,740 

2 pg1342 704,139 

3 pg1399 2,039,729 

4 pg2981 6,840,209 

5 pg3207 1,254,848 

6 pg33 517,294 

7 pg514 1,053,432 

8 pg76 597,586 

Total Size in Bytes 14,430,977 

 

6.1.5 Mixed Corpus 

5 files are taken from different corpus viz., Large Corpus, Gutenberg Corpus, Enronsent 

Corpus. The list of the files and their size is given in Table 6.5. 

Table 6.5 File Information of Mixed Corpus 

Sr.No 

Name of 

File 

Size 

(Bytes) 

1 bible.txt 4,047,392

2 world192.txt 2,473,400

3 anne11.txt 258,420

4 enronsent02 2,556,530

5 pg10.txt 4,445,256

Total Size in Bytes 13,780,998
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6.1.6 Summary of Corpus 

The summary of all corpus is given in Table 6.6. 

Table 6.6 Summary of all Corpus. 

Sr.No Corpus Org Size 

1 E-Text 37,134,079 

2 Europarl 52,428,800 

3 Enronsent 38,354,757 

4 Gutenberg 14,430,977 

5 Mixed 13,780,998 

Total Size in Bytes 156,129,611 

 

6.2 COMPARISON OF WORD BASED METHODS WITH BZIP2 

6.2.1. Compression Statistics of E-Text Corpus 

Table 6.7 Compression ratios for E-Text Corpus (Bzip2) 

  Compression ratio in % 

Sr. 

No Name of file Bzip2 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 burroughst 26.15 23.73 23.74 24.64 23.54 23.46

2 dickens 28.05 27.56 27.33 27.13 26.62 25.98

3 doyle 27.17 25.55 25.41 25.37 25.05 24.26

4 emerson 28.85 28.57 28.16 27.43 26.93 25.88

5 hawthorne 26.72 25.92 25.71 25.51 25.16 24.12

6 irving 27.02 18.86 18.77 20.36 19.82 17.66

7 Kant 20.31 18.33 18.40 18.62 18.38 17.92

8 milton 15.06 15.21 14.91 14.45 15.01 13.56

9 Plato 24.57 19.66 19.66 19.75 20.29 18.96

  Total 25.16 22.85 22.75 23.04 22.59 21.81

 

The test was executed on E-Text corpus and the results are shown in Table 6.7. For all 

the files our all methods outperforms Bzip2. WBTC-A achieves average gain of 2.31%. 
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WBTC-B achieves average gain of 2.41%. WBTC-C achieves average gain of 2.12%. 

WBTC-D achieves average gain of 2.57%. WBTC-E achieves average gain of 3.35%.  

6.2.2. Compression Statistics of European Parliament Corpus 

Table 6.8 Compression ratios for European Parliament Corpus (Bzip2) 

  Compression ratio in % 

Sr. 

No Name of file Bzip2 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

1 europarl1 22.17 21.18 20.92 20.83 20.21

2 europarl2 21.75 20.87 20.63 20.49 19.93

3 europarl3 22.23 21.28 21.05 20.90 20.39

4 europarl4 22.05 21.12 20.86 20.76 20.18

5 europarl5 21.99 21.02 20.75 20.72 20.13

6 europarl6 22.18 21.13 20.88 20.80 20.20

7 europarl7 22.33 21.32 21.02 20.99 20.38

8 europarl8 21.65 20.65 20.37 20.30 19.70

9 europarl9 22.18 21.19 20.93 20.83 20.22

10 europarl10 21.91 20.94 20.68 20.59 19.99

  Total 22.04 21.07 20.81 20.72 20.13

 

The test was executed on European Parliament corpus and the results are shown in Table 

6.8. For all the files our all methods outperforms Bzip2. WBTC-A achieves average gain 

of 0.97%. WBTC-B achieves average gain of 1.23%. WBTC-C achieves average gain of 

1.32%. WBTC-D achieves average gain of 1.91%.    
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6.2.3. Compression Statistics of Enronsent Corpus 

Table 6.9 Compression ratios for Enronsent Corpus (Bzip2) 

  Compression ratio in % 

Sr. 

No Name of file Bzip2 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 enronsent00 26.45 26.12 25.79 25.34 25.28 23.65

2 enronsent01 26.50 27.04 26.80 26.13 26.01 24.32

3 enronsent02 24.39 23.70 23.44 23.07 23.16 21.74

4 enronsent03 25.56 25.27 24.99 24.40 24.30 22.84

5 enronsent04 23.32 23.00 22.79 22.17 22.18 20.74

6 enronsent05 24.31 23.51 23.19 23.10 22.78 21.30

7 enronsent06 25.78 25.22 24.95 24.52 24.38 22.80

8 enronsent07 23.34 22.41 22.17 21.95 22.05 20.34

9 enronsent08 24.35 24.06 23.75 23.28 23.19 21.55

10 enronsent09 11.86 12.28 12.19 11.99 12.15 10.98

11 enronsent10 21.89 21.64 21.39 21.03 21.03 19.66

12 enronsent11 23.53 23.25 23.06 22.93 22.83 21.37

13 enronsent12 25.40 25.63 25.32 24.64 24.70 22.99

14 enronsent13 25.04 24.81 24.58 23.93 23.72 22.38

15 enronsent14 25.88 26.22 25.85 25.19 25.14 23.59

16 enronsent15 21.31 20.53 20.39 20.38 20.33 18.74

17 enronsent16 24.59 25.02 24.68 24.16 24.26 22.17

18 enronsent17 26.19 26.00 25.50 25.18 25.00 22.99

19 enronsent18 25.54 25.22 24.91 24.61 24.73 22.18

  Total 23.87 23.62 23.35 22.94 22.90 21.30

 

The test was executed on Enronsent corpus and the results are shown in Table 6.9. For all 

the files our all methods outperforms Bzip2. WBTC-A achieves average gain of 0.25%. 

WBTC-B achieves average gain of 0.52%. WBTC-C achieves average gain of 0.93%. 

WBTC-D achieves average gain of 0.97%. WBTC-E achieves average gain of 2.57%. 
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6.2.4. Compression Statistics of Project Gutenberg Corpus 

Table 6.10 Compression ratios for Project Gutenberg Corpus (Bzip2) 

  Compression ratio in % 

Sr.No Name of file Bzip2 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 leonard 28.59 29.93 29.49 28.48 27.61 26.33

2 pg1342 25.89 27.06 26.65 26.35 25.53 24.17

3 pg1399 26.33 26.02 25.78 25.54 25.02 24.19

4 pg2981 26.24 24.77 24.62 24.65 24.22 23.86

5 pg3207 25.79 26.76 26.27 25.72 24.89 24.01

6 pg33 28.95 32.09 31.28 30.08 28.78 26.24

7 pg514 28.41 29.35 28.97 28.38 27.40 26.15

8 pg76 27.88 29.64 29.25 28.73 27.77 26.74

  Total 26.75 26.54 26.26 25.97 25.33 24.55

 

The test was executed on Project Gutenberg corpus and the results are shown in Table 

6.10. For all the files our all methods outperforms Bzip2. WBTC-A achieves average 

gain of 0.21%. WBTC-B achieves average gain of 0.49%. WBTC-C achieves average 

gain of 0.78%. WBTC-D achieves average gain of 1.42%. WBTC-E achieves average 

gain of 2.20%. From Table 6.10, it is seen the compression ratio deteriorates for files of 

smaller size as compared to files of larger size. This is because of the overhead of the 

dictionary associated with the compressed file.  
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6.2.5. Compression Statistics of Mixed Corpus 

Table 6.11 Compression ratios for Mixed Corpus (Bzip2) 

  Compression ratio in % 

Sr. 

No Name of file Bzip2

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 bible.txt 20.89 20.02 19.82 20.05 19.66 19.36

2 world192.txt 19.79 19.56 19.23 18.55 18.19 17.42

3 anne11.txt 29.71 32.93 32.36 30.87 29.58 27.20

4 enronsent02 24.39 23.70 23.44 23.07 23.16 21.74

5 pg10.txt 22.52 21.91 21.77 21.88 21.48 21.24

  Total 22.04 21.47 21.25 21.13 20.82 20.20

 

The test was executed on Mixed Corpus and the results are shown in Table 6.11. For all 

the files our all methods outperforms Bzip2. WBTC-A achieves average gain of 0.57%. 

WBTC-B achieves average gain of 0.79%. WBTC-C achieves average gain of 0.91%. 

WBTC-D achieves average gain of 1.22%. WBTC-E achieves average gain of 1.84%. 

From Table 6.11, it is seen the compression ratio deteriorates for files of smaller size as 

compared to files of larger size. This is because of the overhead of the dictionary 

associated with the compressed file. 

6.2.6. Compression Statistics of all Corpus 

Table 6.12 Compression ratios for all Corpus (Bzip2) 

  Compression ratio in % 

Sr. 

No 

Name of 

Corpus Bzip2 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 E-Text 25.16 22.87 22.76 23.05 22.60 21.82

2 Europarl 22.04 21.07 20.81 20.72 20.13 -----*

3 Enronsent 23.87 23.62 23.35 22.94 22.90 21.30

4 Gutenberg 26.75 26.54 26.26 25.97 25.33 24.55

5 Mixed 22.04 21.47 21.25 21.13 20.82 20.20

  Total 23.67 22.66 22.44 22.34 21.94 21.79
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The overall compression ratio for the corpus is summarized in Table 6.12 and the results 

are shown in Table 6.12. For all the files our all methods outperforms Bzip2. WBTC-A 

achieves average gain of 1.01%. WBTC-B achieves average gain of 1.23%. WBTC-C 

achieves average gain of 1.33%. WBTC-D achieves average gain of 1.73%. The average 

compression ratio of Bzip2 method without European Parliament corpus is 24.49% 

therefore, WBTC-E achieves average gain of 2.70%. 

* - For WBTC-E method, the European parliament corpus was not considered, as it was 

not in the same domain as compared to other corpus  
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Figure 6.1 Compression ratios of E-Text Corpus (Bzip2) 
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Comparison of Proposed Methods with Bzip2
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Figure 6.2 Compression ratios of European Parliament Corpus (Bzip2) 
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Comparison of Proposed Methods with Bzip2
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Figure 6.3 Compression ratios for Enronsent Corpus (Bzip2) 
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Comparison of Proposed Methods with Bzip2
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Figure 6.4 Compression ratios for Project Gutenberg Corpus (Bzip2) 
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Figure 6.5 Compression ratios for Mixed Corpus (Bzip2) 
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Comparison of Proposed Methods with Bzip2
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Figure 6.6 Compression ratios for all Corpus (Bzip2) 

 

6.3 COMPARISON OF WORD BASED METHODS WITH PPMd 

6.3.1. Compression Statistics of E-Text Corpus 

Table 6.13 Compression ratios for E-Text Corpus (PPMd) 

  Compression ration in % 

Sr.No 
Name of 
File PPMd 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 burroughst 24.05 23.33 22.96 23.60 22.80 22.80
2 dickens 25.67 26.53 26.03 25.59 25.40 25.04
3 doyle 24.67 24.71 24.14 24.28 23.77 23.42
4 emerson 26.52 28.34 27.38 26.92 26.28 25.65
5 hawthorne 25.51 25.60 25.10 23.79 24.54 24.00
6 irving 24.47 18.95 18.57 19.86 18.79 17.81
7 kant 18.67 16.50 16.42 17.05 16.49 16.05
8 milton 23.28 18.64 18.05 18.45 17.80 17.05
9 plato 22.65 19.36 19.08 19.70 19.18 18.54

  Total 23.73 22.45 22.02 22.31 21.77 21.36
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The test was executed on E-Text Corpus and the results are shown in Table 6.13. For the 

entire corpus our all methods outperforms PPMd. WBTC-A achieves average gain of 

1.28%. WBTC-B achieves average gain of 1.71%. WBTC-C achieves average gain of 

1.42%. WBTC-D achieves average gain of 1.96%. WBTC-E achieves average gain of 

2.37%.   

6.3.2. Compression Statistics of European Parliament Corpus 

Table 6.14 Compression ratios for European Parliament Corpus (PPMd) 

 Compression ration in % 

Sr.No Name of File PPMd

WBTC-

A 

WBTC-

B 

WBTC- 

C 

WBTC-

D 

1 europarl1 21.39 20.70 20.29 19.76 19.55

2 europarl2 21.00 20.35 19.89 19.33 19.02

3 europarl3 21.44 20.80 20.34 19.80 19.56

4 europarl4 21.32 20.68 20.16 19.68 19.41

5 europarl5 21.27 20.53 20.02 19.62 19.30

6 europarl6 21.34 20.66 20.20 19.70 19.44

7 europarl7 21.46 20.86 20.37 19.89 19.64

8 europarl8 20.98 20.20 19.64 19.19 18.89

9 europarl9 21.39 20.70 20.24 19.70 19.46

10 europarl10 21.12 20.49 20.00 19.52 19.24

  Total 21.27 20.60 20.12 19.62 19.35

 

The test was executed on European Parliament Corpus and the results are shown in Table 

6.14. For the entire corpus, our all methods outperforms PPMd. WBTC-A achieves 

average gain of 0.67%. WBTC-B achieves average gain of 1.15%. WBTC-C achieves 

average gain of 1.65%. WBTC-D achieves average gain of 1.77%.   
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6.3.3. Compression Statistics of Enronsent Corpus 

Table 6.15 Compression ratios for Enronsent Corpus (PPMd) 

  Compression ration in % 

Sr.No Name of File PPMd 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 enronsent00 26.45 26.32 25.51 25.36 24.98 23.80

2 enronsent01 26.77 26.99 26.11 26.24 25.59 24.38

3 enronsent02 24.80 23.91 23.38 23.57 23.09 22.10

4 enronsent03 25.30 25.17 24.36 24.38 23.87 22.81

5 enronsent04 23.91 23.46 22.94 23.02 22.48 21.50

6 enronsent05 24.51 23.68 22.81 23.26 22.55 21.45

7 enronsent06 25.47 25.24 24.39 24.57 24.04 22.90

8 enronsent07 24.53 23.23 22.73 22.99 22.27 21.20

9 enronsent08 25.01 24.35 23.64 23.91 23.14 21.98

10 enronsent09 14.13 13.67 13.37 13.54 13.26 12.41

11 enronsent10 22.24 21.81 21.20 21.51 20.91 19.91

12 enronsent11 24.46 23.13 22.67 23.23 22.39 21.21

13 enronsent12 26.01 25.93 25.12 25.09 24.70 23.46

14 enronsent13 25.01 24.70 23.82 24.08 23.33 22.41

15 enronsent14 25.80 26.15 25.36 25.29 24.81 23.64

16 enronsent15 22.65 20.91 20.52 21.26 20.30 19.16

17 enronsent16 25.48 25.09 24.21 24.56 23.72 22.25

18 enronsent17 26.15 26.21 25.13 25.34 24.50 22.99

19 enronsent18 25.90 25.61 24.53 24.86 24.09 22.39

  Total 24.37 23.88 23.17 23.38 22.76 21.62

 

The test was executed on Enronsent Corpus and the results are shown in Table 6.15. For 

the entire corpus our all methods outperforms PPMd. WBTC-A achieves average gain of 

0.49%. WBTC-B achieves average gain of 0.49%. WBTC-C achieves average gain of 

0.99%. WBTC-D achieves average gain of 1.61%. WBTC-E achieves average gain of 

2.75%. 
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6.3.4. Compression Statistics of Project Gutenberg Corpus 

Table 6.16 Compression ratios for Project Gutenberg Corpus (PPMd) 

  Compression ration in % 

Sr.No Name of File PPMd 
WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 leonard 26.64 28.76 27.64 27.41 26.02 25.27
2 pg1342 25.05 26.20 25.44 25.80 24.42 23.51
3 pg1399 24.41 24.71 23.92 24.22 23.20 22.66
4 pg2981 23.97 23.59 23.05 23.09 22.70 22.56
5 pg3207 24.15 25.74 24.83 24.95 23.65 23.19
6 pg33 27.73 31.40 30.05 29.74 27.66 25.89
7 pg514 26.60 28.31 27.52 27.64 26.16 25.33
8 pg76 26.69 28.61 27.79 28.03 26.49 25.80

  Total 24.80 25.41 24.67 24.75 23.85 23.40
 

The test was executed on Project Gutenberg corpus and the results are shown in Table 

6.16. For the entire corpus our all methods outperforms PPMd except WBTC-A. WBTC-

A ratio deteriorates by average gain of -0.61%. WBTC-B achieves average gain of 

0.13%. WBTC-C achieves average gain of 0.05%. WBTC-D achieves average gain of 

0.95%. WBTC-E achieves average gain of 1.4% 

 

6.3.5. Compression Statistics of Mixed Corpus 

Table 6.17 Compression ratios for Mixed Corpus (PPMd) 

  Compression ration in % 

Sr.No Name of File PPMd 
WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 bible.txt 20.67 19.46 18.98 19.55 18.73 18.50
2 world192.txt 20.69 19.55 18.83 19.05 17.87 17.15
3 anne11.txt 28.45 32.34 31.06 30.67 28.62 26.72
4 enronsent02 24.80 23.91 23.38 23.57 23.09 22.10
5 pg10.txt 21.45 20.59 20.20 20.52 19.95 19.80

  Total 21.84 20.91 20.39 20.73 19.96 19.50
  

The test was executed on Mixed Corpus and the results are shown in Table 6.17. For all 

the files our all methods outperforms PPMd. WBTC-A achieves average gain of 0.93%. 

WBTC-B achieves average gain of 1.45%. WBTC-C achieves average gain of 1.11%. 
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WBTC-D achieves average gain of 1.88%. WBTC-E achieves average gain of 2.34%. 

From Table 6.17, it is seen the compression ratio deteriorates for files of smaller size as 

compared to files of larger size. This is because of the overhead of the dictionary 

associated with the compressed file. 

6.3.6. Compression Statistics of all Corpus 

Table 6.18 Compression ratios for all Corpus (PPMd) 

  Compression ration in % 

Sr.No 

Name of 

File PPMd 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 E-Text 23.73 22.45 22.02 22.31 21.77 21.36

2 Europarl 21.27 20.60 20.12 19.62 19.35 -------

3 Enronsent 24.37 23.88 23.17 23.38 22.76 21.62

4 Gutenberg 24.80 25.41 24.67 24.75 23.85 23.40

5 Mixed 21.84 20.91 20.39 20.73 19.96 19.50

  Total 22.99 22.31 21.76 21.76 21.23 21.49

 

The overall compression ratio for the corpus is summarized in Table 6.18 For the entire 

corpus our all methods outperforms PPMd. WBTC-A achieves average gain of 0.68%. 

WBTC-B achieves average gain of 1.23%. WBTC-C achieves average gain of 1.23%. 

WBTC-D achieves average gain of 1.76%. The average compression ratio of PPMd 

method without European Parliament corpus is 23.86% therefore, WBTC-E achieves 

average gain of 2.37%. 
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Comparison of Proposed Methods with PPMd
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Figure 6.7 Compression ratios for E-Text Corpus (PPMd) 
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Figure 6.8 Compression ratios for European Parliament Corpus (PPMd) 
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Comparison of Proposed Methods with PPMd
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Figure 6.9 Compression ratios for Enronsent Corpus (PPMd) 
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Comparison of Proposed Methods with PPMd
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Figure 6.10 Compression ratios for Project Gutenberg Corpus (PPMd) 
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Figure 6.11 Compression ratios for Mixed Corpus (PPMd) 
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Comparison of Proposed Methods with PPMd
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Figure 6.12 Compression ratios for all Corpus (PPMd) 

 

 

6.4 COMPARISON OF WORD BASED METHODS WITH PPMII 

6.4.1. Compression Statistics of E-Text Corpus 

Table 6.19 Compression ratio for E-Text Corpus (PPMII) 

  Compression ration in % 

Sr.No 
Name of 
File PPMII 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 burroughst 23.80 20.36 20.48 20.99 21.01 20.75
2 dickens 25.27 24.84 24.42 24.16 23.91 23.40
3 doyle 24.32 22.70 22.31 22.57 22.13 21.45
4 emerson 26.07 26.16 25.49 25.00 24.44 23.67
5 hawthorne 24.95 22.37 21.87 22.40 21.98 20.70
6 irving 24.01 17.79 17.31 18.61 17.71 16.69
7 kant 18.36 15.84 15.73 16.32 15.89 15.39
8 milton 22.24 17.14 16.44 16.83 16.36 15.60
9 plato 22.28 18.48 18.15 18.64 18.38 17.68

  Total 23.33 20.50 20.23 20.63 20.30 19.69
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The test was executed on E-Text Corpus and the results are shown in Table 6.19. For all 

the files, our all methods outperforms PPMII. WBTC-A achieves average gain of 2.83%. 

WBTC-B achieves average gain of 3.1%. WBTC-C achieves average gain of 2.7%. 

WBTC-D achieves average gain of 3.03%. WBTC-E achieves average gain of 3.64%. 

6.4.2. Compression Statistics of European Parliament Corpus 

Table 6.20 Compression ratio for European Parliament Corpus (PPMII) 

  Compression ration in % 

Sr.No 

Name of 

File PPMII 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

1 europarl1 21.14 18.97 18.57 18.59 17.98

2 europarl2 20.76 18.57 18.12 18.28 17.45

3 europarl3 21.21 19.04 18.58 18.67 17.95

4 europarl4 21.09 18.90 18.43 18.55 17.82

5 europarl5 21.03 18.81 18.34 18.50 17.75

6 europarl6 21.11 18.87 18.41 18.58 17.79

7 europarl7 21.22 19.15 18.67 18.73 18.07

8 europarl8 20.74 18.39 17.87 18.17 17.30

9 europarl9 21.17 18.92 18.48 18.59 17.85

10 europarl10 20.88 18.74 18.26 18.40 17.62

  Total 21.04 18.84 18.37 18.51 17.76

 

The test was executed on European Parliament Corpus and the results are shown in Table 

6.20. For all the files, our all methods outperform PPMII. WBTC-A achieves average 

gain of 2.20%. WBTC-B achieves average gain of 2.67%. WBTC-C achieves average 

gain of 2.53%. WBTC-D achieves average gain of 3.28%.   
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6.4.3. Compression Statistics of Enronsent Corpus 

Table 6.21 Compression ratio for Enronsent Corpus (PPMII) 

  Compression ration in % 

Sr.No Name of File PPMII 

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 enronsent00 25.60 24.21 23.51 23.82 23.14 21.84

2 enronsent01 25.83 24.98 24.31 24.58 23.90 22.47

3 enronsent02 24.07 22.24 21.69 22.17 21.56 20.45

4 enronsent03 24.56 23.41 22.71 22.99 22.28 21.16

5 enronsent04 23.12 21.79 21.19 21.60 20.88 19.74

6 enronsent05 23.73 21.87 21.30 21.80 21.07 19.84

7 enronsent06 24.66 23.25 22.62 23.02 22.32 21.02

8 enronsent07 23.70 21.52 20.94 21.42 20.77 19.55

9 enronsent08 24.19 22.72 21.99 22.40 21.70 20.42

10 enronsent09 13.57 12.84 12.51 12.74 12.56 11.68

11 enronsent10 21.58 20.33 19.79 20.23 19.56 18.51

12 enronsent11 23.49 21.61 21.09 21.63 21.09 19.77

13 enronsent12 25.08 24.02 23.32 23.53 22.99 21.63

14 enronsent13 24.30 23.01 22.38 22.73 21.90 20.80

15 enronsent14 24.95 24.21 23.50 23.77 23.10 21.78

16 enronsent15 21.87 19.64 19.18 19.89 19.17 17.93

17 enronsent16 24.48 23.23 22.51 22.87 22.30 20.65

18 enronsent17 25.18 24.20 23.41 23.66 22.98 21.43

19 enronsent18 24.88 23.53 22.77 23.12 22.63 20.80

  Total 23.55 22.15 21.53 21.92 21.28 20.01

 

The test was executed on Enronsent Corpus and the results are shown in Table 6.21. For 

all the files, our all methods outperform PPMII. WBTC-A achieves average gain of 

1.40%. WBTC-B achieves average gain of 2.02%. WBTC-C achieves average gain of 

1.63%. WBTC-D achieves average gain of 2.27%. WBTC-E achieves average gain of 

3.54%. 
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6.4.4. Compression Statistics of Project Gutenberg Corpus 

Table 6.22 Compression ratio for Project Gutenberg Corpus (PPMII) 

  Compression ration in % 

Sr.No Name of File PPMII 
WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 leonard 26.00 27.19 26.16 25.98 24.84 24.03
2 pg1342 24.36 24.74 23.99 24.28 23.17 22.25
3 pg1399 23.98 23.38 22.88 23.11 22.25 21.68
4 pg2981 23.73 22.05 21.77 21.69 21.47 21.18
5 pg3207 23.62 24.44 23.53 23.61 22.55 22.04
6 pg33 26.81 29.38 28.03 27.70 26.06 24.12
7 pg514 25.96 26.80 26.04 26.10 24.88 24.02
8 pg76 25.92 27.07 26.26 26.40 25.19 24.53

  Total 24.38 23.90 23.34 23.34 22.66 22.11
 

The test was executed on Project Gutenberg Corpus and the results are shown in Table 

6.22. For all the files, our all methods outperform PPMII. WBTC-A achieves average 

gain of 0.48%. WBTC-B achieves average gain of 1.04%. WBTC-C achieves average 

gain of 1.04%. WBTC-D achieves average gain of 1.72%. WBTC-E achieves average 

gain of 2.27%. 

6.4.5. Compression Statistics of Mixed Corpus 

Table 6.23 Compression ratio for Mixed Corpus (PPMII) 

  Compression ration in % 

Sr.No FileName PPMII 
WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 bible.txt 20.39 18.66 18.33 18.84 18.12 17.87
2 world192.txt 20.21 18.54 17.96 18.22 17.12 16.39
3 anne11.txt 27.29 30.15 28.85 28.57 26.88 24.96
4 enronsent02 24.07 22.24 21.69 22.17 21.56 20.45
5 pg10.txt 21.11 19.63 19.34 19.75 19.10 18.90

  Total 21.40 19.83 19.41 19.82 19.06 18.55
 

The test was executed on Mixed Corpus and the results are shown in Table 6.23. For all 

the files, our all methods outperform PPMII. WBTC-A achieves average gain of 1.57%. 

WBTC-B achieves average gain of 1.99%. WBTC-C achieves average gain of 1.58%. 

WBTC-D achieves average gain of 2.34%. WBTC-E achieves average gain of 2.85%. 
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6.4.6. Compression Statistics of all Corpus 

Table 6.24 Compression ratio for all Corpus (PPMII) 

Sr.No 
Name of 
File PPMII 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 E-Text 23.33 20.50 20.23 20.63 20.30 19.69
2 Europarl 21.04 18.84 18.37 18.51 17.76 0.00
3 Enronsent 23.55 22.15 21.53 21.92 21.28 20.01
4 Gutenberg 24.38 23.90 23.34 23.34 22.66 22.11
5 Mixed 21.40 19.83 19.41 19.82 19.06 18.55

  Total 22.54 20.60 20.14 20.41 19.79 19.99
 

The overall compression ratio for the corpus is summarized in Table 6.24 For the entire 

corpus our all methods outperforms PPMII. WBTC-A achieves average gain of 1.94%. 

WBTC-B achieves average gain of 2.4%. WBTC-C achieves average gain of 2.13%. 

WBTC-D achieves average gain of 2.75%. The average compression ratio of PPMd 

method without European Parliament corpus is 23.30% therefore, WBTC-E achieves 

average gain of 3.31%. 
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Figure 6.13 Compression ratios for E-Text Corpus (PPMII) 
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Comparison of Proposed Methods with PPM II
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Figure 6.14 Compression ratios for European Parliament Corpus (PPMII) 
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Comparison of Proposed Methods with PPM II
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Figure 6.15 Compression ratios for Enronsent Corpus (PPMII) 
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Comparison of Proposed Methods with PPM II
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Figure 6.16 Compression ratios for Project Gutenberg Corpus (PPMII) 
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Figure 6.17 Compression ratios for Mixed Corpus (PPMII) 
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Comparison of Proposed Methods with PPM II
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Figure 6.18 Compression ratios for all Corpus (PPMII) 

 

6.5 COMPARISON OF WORD BASED METHODS WITH LZMA 

6.5.1. Compression Statistics of E-Text Corpus 

Table 6.25 Compression ratio for E-Text Corpus (LZMA) 

  Compression ration in % 

Sr.No 
Name of 
File LZMA

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 burroughst 16.50 15.78 15.74 15.91 16.37 15.27
2 dickens 29.31 28.54 28.33 28.26 27.95 27.06
3 doyle 24.89 24.36 24.11 24.17 24.51 23.09
4 emerson 29.56 29.51 28.92 28.70 28.12 27.01
5 hawthorne 21.92 21.59 21.29 21.33 22.32 19.76
6 irving 10.53 10.71 10.52 10.55 11.70 9.38
7 kant 14.10 13.54 13.58 13.82 14.27 13.15
8 milton 11.36 12.18 11.79 11.67 12.09 10.40
9 plato 13.24 12.86 12.74 12.96 13.54 12.00

  Total 18.79 18.38 18.21 18.29 18.67 17.28
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The test was executed on E-Text Corpus and the results are shown in Table 6.25. For the 

entire corpus our all methods outperforms LZMA. WBTC-A achieves average gain of 

0.41%. WBTC-B achieves average gain of 0.58%. WBTC-C achieves average gain of 

0.50%. WBTC-D achieves average gain of 0.12%. WBTC-E achieves average gain of 

1.51%.   

6.5.2. Compression Statistics of European Parliament Corpus 

Table 6.26 Compression ratio for European Parliament Corpus (LZMA) 

  Compression ration in % 

Sr.No 

Name of 

File LZMA

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

1 europarl1 22.20 21.97 21.58 21.56 21.22

2 europarl2 21.95 21.76 21.38 21.35 20.97

3 europarl3 22.45 22.19 21.78 21.79 21.39

4 europarl4 22.25 21.98 21.56 21.60 21.21

5 europarl5 22.23 21.95 21.55 21.57 21.19

6 europarl6 22.33 22.05 21.63 21.66 21.26

7 europarl7 22.46 22.22 21.80 21.81 21.41

8 europarl8 21.84 21.57 21.14 21.19 20.79

9 europarl9 22.37 22.07 21.69 21.69 21.32

10 europarl10 22.12 21.86 21.45 21.47 21.08

  Total 22.22 21.96 21.56 21.57 21.18

 

The test was executed on European Parliament Corpus and the results are shown in Table 

6.26. For the entire corpus our all methods outperforms LZMA. WBTC-A achieves 

average gain of 0.26%. WBTC-B achieves average gain of 0.66%. WBTC-C achieves 

average gain of 0.65%. WBTC-D achieves average gain of 1.04%.   
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6.5.3. Compression Statistics of Enronsent Corpus 

Table 6.27 Compression ratios for Enronsent Corpus (LZMA) 

  Compression ration in % 

Sr.No Name of File LZMA

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 enronsent00 23.72 24.29 23.64 23.73 23.73 21.79

2 enronsent01 25.39 25.94 25.32 25.43 25.33 23.29

3 enronsent02 22.29 22.32 21.81 21.96 22.10 20.46

4 enronsent03 23.82 24.22 23.59 23.67 23.57 21.86

5 enronsent04 21.05 21.44 20.87 20.93 20.99 19.23

6 enronsent05 22.17 22.21 21.69 21.90 21.80 20.08

7 enronsent06 23.96 24.16 23.56 23.71 23.65 21.78

8 enronsent07 20.71 20.99 20.48 20.50 20.72 18.89

9 enronsent08 22.56 22.98 22.33 22.45 22.41 20.51

10 enronsent09 11.52 11.77 11.48 11.69 11.70 10.49

11 enronsent10 20.43 20.53 20.09 20.25 20.26 18.62

12 enronsent11 20.07 20.40 19.96 20.25 20.42 18.47

13 enronsent12 23.58 24.23 23.53 23.63 23.64 21.66

14 enronsent13 23.82 24.01 23.42 23.57 23.32 21.67

15 enronsent14 24.26 24.80 24.16 24.22 24.22 22.18

16 enronsent15 19.61 19.59 19.19 19.61 19.50 17.83

17 enronsent16 22.82 23.48 22.75 22.90 23.03 20.67

18 enronsent17 23.97 24.79 23.97 24.04 23.99 21.82

19 enronsent18 23.15 23.88 23.14 23.24 23.45 20.90

  Total 21.95 22.31 21.74 21.87 21.88 20.03

 

The test was executed on Enronsent Corpus and the results are shown in Table 6.27. For 

the entire corpus our all methods outperforms LZMA except WBTC-A. WBTC-A ratio 

deteriorates by average gain of -0.36%.  WBTC-B achieves average gain of 0.21%.  

WBTC-C achieves average gain of 0.08%. WBTC-D achieves average gain of 0.07%. 

WBTC-E achieves average gain of 1.92%. 
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6.5.4. Compression Statistics of Project Gutenberg Corpus 

Table 6.28 Compression ratios for Project Gutenberg Corpus (LZMA) 

  Compression ration in % 

Sr.No Name of File LZMA
WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 leonard 30.19 31.26 30.26 30.28 29.28 28.02
2 pg1342 29.76 29.39 28.75 29.10 28.03 26.52
3 pg1399 28.34 27.87 27.44 27.75 26.98 26.07
4 pg2981 26.75 25.70 25.66 25.70 25.46 24.90
5 pg3207 28.12 28.58 27.80 27.98 27.00 26.21
6 pg33 32.67 34.69 33.33 33.25 31.54 28.56
7 pg514 31.39 31.90 31.22 31.45 30.26 28.88
8 pg76 31.13 32.13 31.38 31.60 30.51 29.30

  Total 28.31 28.03 27.62 27.74 27.09 26.17
 

The test was executed on Project Gutenberg Corpus and the results are shown in Table 

6.28. For the entire corpus our all methods outperforms LZMA. WBTC-A achieves 

average gain of 0.28%. WBTC-B achieves average gain of 0.69%. WBTC-C achieves 

average gain of 0.57%. WBTC-D achieves average gain of 1.22%. WBTC-E achieves 

average gain of 2.14%.   

6.5.5. Compression Statistics of Mixed Corpus 

Table 6.29 Compression ratios for Mixed Corpus (LZMA) 

  Compression ration in % 

Sr.No Name of File LZMA
WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
D 

WBTC-
E 

1 bible.txt 21.87 20.86 20.68 21.07 20.66 20.30
2 world192.txt 19.60 20.00 19.31 19.43 18.95 18.06
3 anne11.txt 33.17 35.76 34.45 34.11 32.65 29.50
4 enronsent02 22.29 22.32 21.81 21.97 22.10 20.46
5 pg10.txt 23.79 22.72 22.64 22.92 22.61 22.22

  Total 22.37 21.85 21.54 21.78 21.48 20.72
 

The test was executed on Mixed Corpus and the results are shown in Table 6.29. For all 

the files our all methods outperforms LZMA. WBTC-A achieves average gain of 0.52%. 

WBTC-B achieves average gain of 0.83%. WBTC-C achieves average gain of 0.59%. 

WBTC-D achieves average gain of 0.89%. WBTC-E achieves average gain of 1.65%. 
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From Table 6.17, it is seen the compression ratio deteriorates for files of smaller size as 

compared to files of larger size. This is because of the overhead of the dictionary 

associated with the compressed file. 

6.5.6. Compression Statistics of all Corpus 

Table 6.30 Compression ratios all Corpus (LZMA) 

  Compression ration in % 

Sr.No Name of File LZMA

WBTC-

A 

WBTC-

B 

WBTC-

C 

WBTC-

D 

WBTC-

E 

1 E-Text 18.79 18.38 18.21 18.29 18.67 17.28

2 Europarl 22.22 21.96 21.56 21.57 21.18 -------

3 Enronsent 21.95 22.31 21.74 21.87 21.88 20.03

4 Gutenberg 28.31 28.03 27.62 27.74 27.09 26.17

5 Mixed 22.37 21.85 21.54 21.78 21.48 20.72

  Total 21.91 21.75 21.36 21.45 21.33 19.99

 

The overall compression ratio for the corpus is summarized in Table 6.30. For the entire 

corpus our all methods outperforms LZMA. WBTC-A achieves average gain of 0.16%. 

WBTC-B achieves average gain of 0.55%. WBTC-C achieves average gain of 0.46%. 

WBTC-D achieves average gain of 0.58%. The average compression ratio of LZMA 

method without European Parliament corpus is 21.76% therefore, WBTC-E achieves 

average gain of 1.77%. 
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Comparison of Proposed Methods with LZMA
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Figure 6.19 Compression ratios for E-Text Corpus (LZMA) 
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Figure 6.20 Compression ratios for European Parliament Corpus (LZMA) 
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Comparison of Proposed Methods with LZMA
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Figure 6.21 Compression ratios for Enronsent Corpus (LZMA) 
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Comparison of Proposed Methods with LZMA
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Figure 6.22 Compression ratios for Project Gutenberg Corpus (LZMA) 
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Figure 6.23 Compression ratios for Mixed Corpus (LZMA) 
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Comparison of Proposed Methods with LZMA
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Figure 6.24 Compression ratios for all Corpus (LZMA) 

 
6.6 COMPARISON OF CBTC-B WITH ARITHMETIC CODING 

6.6.1. Compression Statistics of E-Text Corpus 

Table 6.31 Compression ratios of E-Text Corpus (Arithmetic Coding) 

 Compression ratio in % 

Sr.No 
Name of 
File 

Arithmetic 
Coding  CBTC-B 

1 burroughst 55.77 49.78 
2 dickens 56.02 50.53 
3 doyle 54.93 49.95 
4 emerson 54.85 50.67 
5 hawthorne 55.43 50.74 
6 irving 55.13 50.28 
7 kant 51.76 44.71 
8 milton 54.24 49.89 
9 plato 54.56 48.40 

  Total 54.83 49.38 
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The test was executed on E-Text Corpus and the results are shown in Table 6.31. For all 

the files our all methods outperforms Arithmetic Coding. CBTC-B achieves average gain 

of 5.45%.   

 

6.6.2. Compression Statistics of European Parliament Corpus 

Table 6.32 Compression ratios of European Parliament Corpus (Arithmetic Coding) 

  Compression ratio in % 

Sr.No FileName Arithmetic Coding  CBTC-B 

1 europarl1 54.67 49.26 

2 europarl2 54.65 49.52 

3 europarl3 54.27 49.17 

4 europarl4 54.37 49.30 

5 europarl5 54.51 49.29 

6 europarl6 54.35 49.30 

7 europarl7 54.52 49.55 

8 europarl8 54.33 48.99 

9 europarl9 54.21 49.11 

10 europarl10 54.25 48.89 

  Total 54.41 49.24 

 

The test was executed on European Parliament Corpus and the results are shown in Table 

6.32. For all the files our all methods outperforms Arithmetic Coding. CBTC-B achieves 

average gain of 5.17%.   
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6.6.3. Compression Statistics of Enronsent Corpus 

Table 6.33 Compression ratios of Enronsent Corpus (Arithmetic Coding) 

  Compression ratio in % 

Sr.No FileName Arithmetic Coding  CBTC-B 

1 enronsent00 59.81 55.15 

2 enronsent01 60.03 55.30 

3 enronsent02 59.07 53.54 

4 enronsent04 59.90 55.30 

5 enronsent05 59.63 54.42 

6 enronsent06 60.30 55.38 

7 enronsent07 59.50 54.16 

8 enronsent08 59.27 54.43 

9 enronsent09 62.75 55.60 

10 enronsent10 59.93 54.35 

11 enronsent11 61.50 55.99 

12 enronsent12 60.98 56.04 

13 enronsent13 59.91 54.87 

14 enronsent14 59.65 54.72 

15 enronsent15 61.32 55.64 

16 enronsent16 61.15 56.35 

17 enronsent17 61.16 56.51 

18 enronsent18 60.90 56.44 

19 enronsent19 61.02 56.55 

  Total 60.34 55.21 

 

The test was executed on Enronsent Corpus and the results are shown in Table 6.33. For 

all the files our all methods outperforms Arithmetic Coding. CBTC-B achieves average 

gain of 5.13%.   
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6.6.4. Compression Statistics of Project Gutenberg Corpus 

Table 6.34 Compression ratios of Project Gutenberg Corpus (Arithmetic Coding) 

  Compression ratio in % 
Sr.No FileName Arithmetic Coding  CBTC-B 

1 leonard 58.40 53.57 
2 pg514 56.78 52.79 
3 pg3207 57.31 51.89 
4 pg33 56.32 53.87 
5 pg1342 56.17 51.22 
6 pg1399 56.82 51.15 
7 pg76 57.21 52.87 
8 pg2981 56.25 50.84 

  Total 56.71 52.90 
 

The test was executed on Project Gutenberg Corpus and the results are shown in Table 

6.34. For all the files our all methods outperforms Arithmetic Coding. CBTC-B achieves 

average gain of 3.81%.   

6.6.5. Compression Statistics of Mixed Corpus 

Table 6.35 Compression ratios of Mixed Corpus (Arithmetic Coding) 

  Compression ratio in % 
Sr.No FileName Arithmetic Coding  CBTC-B 

1 bible.txt 54.40 47.73 
2 world192.txt 62.48 57.22 
3 anne11.txt 57.68 56.16 
4 enronsent02 59.07 53.54 
5 pg10.txt 57.50 50.66 

  Total 57.78 51.62 
 

The test was executed on Mixed Corpus and the results are shown in Table 6.35. For all 

the files our all methods outperforms Arithmetic Coding. CBTC-B achieves average gain 

of 6.16%.   
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6.6.6. Compression Statistics of all Corpus 

Table 6.36 Compression ratios of all Corpus (Arithmetic Coding) 

  Compression ratio in % 
Sr.No Corpus Arithmetic Coding  CBTC-B 

1 E-Text 54.83 49.38 
2 Europarl 56.30 50.94 
3 Enronsent 60.34 55.21 
4 Gutenberg 56.71 52.90 
5 Mixed 57.78 51.62 

  Total 57.10 51.85 
 

The overall compression ratio for the corpus is summarized in Table 6.36. For the entire 

corpus our all methods outperforms Arithmetic Coding. WBTC-A achieves average gain 

of 5.25%. 

 

Comparison of CBTC-B with Arithmetic Coding

0 2000000 4000000 6000000

burroughst

dickens

doyle

emerson

hawthorne

irving

kant

milton

plato

E-
Te

xt
 C

or
pu

s

Compressed Size

CBTC-B
Arithmetic Coding

 
 

Figure 6.25 Compression ratios for E-Text Corpus (Arithmetic Coding) 
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Comparison of CBTC-B with Arithmetic Coding
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Figure 6.26 Compression ratios for European Parliament Corpus (Arithmetic 

Coding) 
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Comparison of Method 3 with Arithmetic Coding
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Figure 6.27 Compression ratios for Enronsent  Corpus (Arithmetic Coding) 
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Comparison of CBTC-B with Arithmetic Coding
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Figure 6.28 Compression ratios for Project Gutenberg Corpus (Arithmetic Coding) 
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Figure 6.29 Compression ratios for Mixed Corpus (Arithmetic Coding) 
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Comparison of CBTC-B with Arithmetic Coding
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Figure 6.30 Compression ratios for all Corpus (Arithmetic Coding) 
 
 
6.7 SEARCHING PHRASE IN COMPRESSED FILE 

The phrase can be searched in the compressed file directly without decompressing it. The 

only method which can’t search the phrase in the compressed is WBTC-D, because the 

method is compressing the file on-the-fly i.e. it uses the dynamic dictionary. All other 

methods such CBTC – B, WBTC – A, WBTC – C and WBTC – E are useful for directly 

searching the pattern in the compressed file. The test was carried out on Bible.txt file for 

five different phrases listed in Table 6.37, using Karp-Rabin algorithm, Knuth-Morris-

Pratt algorithm, Brute-Force algorithm, Boyer-Moore algorithm and Quick Search 

algorithm. The number of comparison and time required to search the phrase is given in 

the following tables.  
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Table 6.37 Phrases for searching directly in the compressed file. 

Sr.No Phrase (From Bible.txt) 
1 “that I will not overthrow this city” 
2 “and he begat sons” 

3 
“And Cush begat Nimrod: he began to 
be a mighty one in the earth.” 

4 
“Then saith he unto me, See thou do it 
not:” 

5 “LORD which exercise lovingkindness” 

6.7.1 Searching phrase using Karp-Rabin Algorithm 

Table 6.38 Comparison of Number of Comparison of searching phrases (K-R) 

  Number of Comparison 

Phrase  Normal 
CBTC-
B 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
E 

1 4047359 2784540 2447965 2434818 2407200 2462877
2 4047379 2784553 2447975 2434828 2407207 2462887
3 4047330 2784515 2447942 2434795 2407172 2462850
4 4047352 2784531 2447953 2434806 2407190 2462865
5 4047360 2784540 2447973 2434826 2407206 2462885

 

The test was executed on five different phrases from Bible.txt using Karp – Rabin 

searching algorithm and the results are shown in Table 6.38. For all the phrases, the 

number of comparisons required to search the phrase from the source file is 

comparatively very less. The graph of the same is shown in figure 6.31. 

 

6.7.2 Searching phrase using Knuth-Morris-Pratt Algorithm 

Table 6.39 Comparison of Number of Comparison of searching phrases (KMP) 

  Number of Comparison 

Phrase Normal 
CBTC-
B 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
E 

1 7905121 5542617 4869766 4843244 4796515 4899401
2 7943371 5491520 4803674 4772659 4769219 4847474
3 8057761 5544582 4871440 4844926 4794244 4901148
4 8080285 5562606 4892857 4866882 4810293 4922962
5 8071498 5544543 4885220 4857977 4807202 4913838
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The test was executed on five different phrases from Bible.txt using Knuth – Morris – 

Pratt searching algorithm and the results are shown in Table 6.39. For all the phrases, the 

number of comparisons required to search the phrase from the source file is 

comparatively very less.  The graph of the same is shown in figure 6.32. 

 

6.7.3 Searching phrase using Brute-Force Algorithm 

Table 6.40 Comparison of Number of Comparison of searching phrases (B-F) 

  Number of Comparison 

Phrase Normal 
CBTC-
B 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
E 

1 4535611 3045398 3020528 2876617 2459295 2875561
2 4447503 3071600 3094501 2946085 2524441 2927344
3 4101388 2828826 3018339 2874877 2466465 2873629
4 4069273 2800899 2997572 2474158 2416981 2851831
5 4079503 2819080 3007334 2862699 2430703 2861322

 

The test was executed on five different phrases from Bible.txt using Brute – Force 

searching algorithm and the results are shown in Table 6.40. For all the phrases, the 

number of comparisons required to search the phrase from the source file is 

comparatively very less. The graph of the same is shown in figure 6.33.  

6.7.4 Searching phrase using Boyer-Moore Algorithm 

Table 6.41 Comparison of Number of Comparison of searching phrases (B-M) 

  Number of Comparison 

Phrase Normal 
CBTC-
B 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
E 

1 273094 181791 186317 175407 226627 182444
2 454241 346205 351386 316786 309123 292934
3 202058 117681 192259 181939 124314 169281
4 231102 178385 252056 245504 155997 242782
5 231727 163871 303440 297061 316005 300961

 

The test was executed on five different phrases from Bible.txt using Boyer - Moore 

searching algorithm and the results are shown in Table 6.41. For all the phrases except 
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phrase 5, the number of comparisons required to search the phrase from the source file is 

comparatively very less. The graph of the same is shown in figure 6.34.  

 

6.7.5 Searching phrase using Quick Search Algorithm 

Table 6.42 Comparison of Number of Comparison of searching phrases (QS) 

  Number of Comparison 

Phrase Normal 
CBTC-
B 

WBTC-
A 

WBTC-
B 

WBTC-
C 

WBTC-
E 

1 286370 213096 330333 291865 244510 307122
2 463223 420863 641785 535412 329022 487222
3 196110 113781 221497 156797 115798 151438
4 217390 149461 229106 181978 144097 185361
5 221810 163649 527188 482589 307317 474608

 

The test was executed on five different phrases from Bible.txt using Quick Search 

searching algorithm and the results are shown in Table 6.42. For CBTC-B and WBTC-C 

the numbers of comparisons are less. The results are not outperforming for other 

methods. The graph of the same is shown in figure 6.35.  

 6.7.6 Overall Comparison of Searching Algorithms 

Table 6.43 Overall comparison of searching algorithms for proposed methods 

    Number of Comparison 
Sr. 
No 

Searching  
Methods Normal CBTC-B WBTC-A WBTC-B WBTC-C WBTC-E 

1 KR 20236780 13922679 12239808 12174073 12035975 12314364
2 KMP 40058036 27685868 24322957 24185688 23977473 24484823
3 BF 21233278 14565803 15138274 14034436 12297885 14389687
4 BM 1392222 987933 1285458 1216697 1132066 1188402
5 QS 1384903 1060850 1949909 1648641 1140744 1605751

 
The summary of the number of comparisons of searching algorithms for different 

proposed methods is given in Table 6.43. It is seen that the most effective method for 

searching and retrieval of phrases from the compressed form is WBTC-C by using 

Boyer-Moore algorithm.  



 184

 

Number of Comparison (Karp-Rabin)

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

1 2 3 4 5

Phrases

C
om

pa
ris

on

Normal
CBTC-B
WBTC-A
WBTC-B
WBTC-C
WBTC-E

 
Figure 6.31 Number of Comparisons for Normal and Proposed Methods (K-R) 
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Figure 6.32 Number of Comparisons for Normal and Proposed Methods (KMP) 
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Number of Comparison (Brute-Force)
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Figure 6.33 Number of Comparisons for Normal and Proposed Methods (BF) 
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Figure 6.34 Number of Comparisons for Normal and Proposed Methods (BM) 
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Figure 6.35 Number of Comparisons for Normal and Proposed Methods (QS) 

6.8 DECOMPRESSION TIME 

The time required for decompressing the file using Bzip method and using WBTC-C 

method is computed for all corpuses. Five times the files were decompressed and the 

average decompression time is computed. The results are shown in following tables. 

6.8.1 Decompression Time for E-Text Corpus 

Table 6.44 Decompression Time for E-Text Corpus (Bzip method) 

Bzip Decompression Time (DT) in milliseconds  
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 burroughst 1594 1610 1594 1594 1593 1597.00 
2 dickens 734 703 719 719 704 715.80 
3 doyle 828 750 703 703 703 737.40 
4 emerson 547 500 500 500 500 509.40 
5 hawthorne 469 469 469 469 468 468.80 
6 irving 578 609 547 546 547 565.40 
7 kant 735 734 734 750 766 743.80 
8 milton 390 391 391 407 391 394.00 
9 plato 516 516 515 531 515 518.60 

  Total 6391 6282 6172 6219 6187 6250.20
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Table 6.45 Decompression Time for E-Text Corpus (WBTC-C method) 

WBTC-C Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 burroughst 1219 1203 1203 1218 1203 1209.20 
2 dickens 656 640 657 641 625 643.80 
3 doyle 672 641 625 609 641 637.60 
4 emerson 469 453 453 484 453 462.40 
5 hawthorne 422 437 421 437 407 424.80 
6 irving 469 485 469 469 484 475.20 
7 kant 579 594 594 593 594 590.80 
8 milton 375 360 344 344 345 353.60 
9 plato 468 453 469 453 453 459.20 

  Total 5329 5266 5235 5248 5205 5256.60 

The test for calculating decompression time was executed on E-Text Corpus for both 

methods Bzip2 and WBTC-C, and the results are shown in Table 6.44 and Table 6.45. 

For the entire corpus, the total decompression time required for WBTC-C is less than 

Bzip2 method. The time required to decompress WBTC-C compressed file is less than 

15.90% by the time required to decompress Bzip2 compressed file.   

6.8.2 Decompression Time for European Parliament Corpus 

Table 6.46 Decompression Time for European Parliament Corpus (Bzip method) 

Bzip Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 europarl1 812 797 812 797 813 806.20 
2 europarl2 813 859 828 875 797 834.40 
3 europarl3 812 828 860 812 937 849.80 
4 europarl4 813 813 906 813 828 834.60 
5 europarl5 844 812 812 860 813 828.20 
6 europarl6 812 828 828 828 812 821.60 
7 europarl7 859 875 829 875 828 853.20 
8 europarl8 813 813 796 797 938 831.40 
9 europarl9 812 828 954 828 828 850.00 
10 europarl10 829 812 796 797 906 828.00 

  Total 8219 8265 8421 8282 8500 8337.40 
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Table 6.47 Decompression Time for European Parliament Corpus  

(WBTC-C method) 

WBTC-C Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 europarl1 641 640 625 625 625 631.20 
2 europarl2 625 625 750 626 641 653.40 
3 europarl3 657 641 625 655 625 640.60 
4 europarl4 797 625 641 641 782 697.20 
5 europarl5 625 641 640 641 624 634.20 
6 europarl6 656 639 625 625 641 637.20 
7 europarl7 656 625 672 641 641 647.00 
8 europarl8 626 657 625 625 625 631.60 
9 europarl9 639 625 640 703 641 649.60 
10 europarl10 641 641 626 641 640 637.80 

  Total 6563 6359 6469 6423 6485 6459.80 

The test for calculating decompression time was executed on European Parliament 

Corpus for both methods Bzip2 and WBTC-C, and the results are shown in Table 6.46 

and Table 6.47. For the entire corpus, the total decompression time required for WBTC-C 

is less than Bzip2 method. The time required to decompress WBTC-C compressed file is 

less than 22.52% by the time required to decompress Bzip2 compressed file.   
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6.8.3 Decompression Time for Enronsent Corpus 

Table 6.48 Decompression Time for Enronsent Corpus (Bzip2 method) 

Bzip Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 enronsent00 359 359 360 360 359 359.40 
2 enronsent01 328 329 328 328 329 328.40 
3 enronsent02 438 468 609 437 546 499.60 
4 enronsent03 375 375 375 375 375 375.00 
5 enronsent04 391 422 391 406 391 400.20 
6 enronsent05 375 360 359 532 359 397.00 
7 enronsent06 437 359 359 359 375 377.80 
8 enronsent07 422 421 563 469 610 497.00 
9 enronsent08 359 360 359 359 360 359.40 
10 enronsent09 297 297 297 281 281 290.60 
11 enronsent10 360 343 344 344 359 350.00 
12 enronsent11 360 329 312 328 329 331.60 
13 enronsent12 421 359 484 359 421 408.80 
14 enronsent13 360 359 344 407 360 366.00 
15 enronsent14 484 344 344 359 344 375.00 
16 enronsent15 313 313 296 297 296 303.00 
17 enronsent16 312 328 329 312 313 318.80 
18 enronsent17 313 297 296 297 312 303.00 
19 enronsent18 328 312 1454 312 406 562.40 
 Total 7032 6734 8203 6921 7125 7203.00 
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Table 6.49 Decompression Time for Enronsent Corpus (WBTC-C method) 

WBTC-C Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 enronsent00 375 344 343 345 391 359.60 
2 enronsent01 343 344 344 343 328 340.40 
3 enronsent02 406 391 422 421 422 412.40 
4 enronsent03 438 344 359 376 360 375.40 
5 enronsent04 406 1390 390 374 390 590.00 
6 enronsent05 344 344 345 391 344 353.60 
7 enronsent06 359 358 530 437 358 408.40 
8 enronsent07 406 392 391 407 407 400.60 
9 enronsent08 360 374 360 359 344 359.40 
10 enronsent09 297 281 297 297 312 296.80 
11 enronsent10 375 392 343 360 438 381.60 
12 enronsent11 344 343 344 344 343 343.60 
13 enronsent12 359 343 360 359 391 362.40 
14 enronsent13 360 376 359 453 344 378.40 
15 enronsent14 390 1343 360 344 360 559.40 
16 enronsent15 311 329 312 328 1296 515.20 
17 enronsent16 345 328 328 328 327 331.20 
18 enronsent17 327 1329 359 344 329 537.60 
19 enronsent18 312 328 329 328 328 325.00 

  Total 6857 9673 6875 6938 7812 7631.00 

The test for calculating decompression time was executed on Enronsent Corpus for both 

methods Bzip2 and WBTC-C, and the results are shown in Table 6.48 and Table 6.49. In 

the case of Enronsent corpus only, the total decompression time required for WBTC-C is 

slightly more than Bzip2 method. The time required to decompress WBTC-C compressed 

file is more than5.94% by the time required to decompress Bzip2 compressed file.   
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6.8.4 Decompression Time for Project Gutenberg Corpus 

Table 6.50 Decompression Time for Project Gutenberg Corpus (Bzip method) 

Bzip Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 leonard 282 282 281 281 1281 481.40 
2 pg1342 218 172 172 172 172 181.20 
3 pg1399 500 390 375 391 1375 606.20 
4 pg2981 1125 1125 1110 1110 1125 1119.00 
5 pg3207 250 250 250 250 250 250.00 
6 pg33 250 141 140 140 140 162.20 
7 pg514 266 281 250 250 235 256.40 
8 pg76 156 156 250 172 156 178.00 
 Total 3047 2797 2828 2766 4734 3234.40 

 

Table 6.51 Decompression Time for Project Gutenberg Corpus (WBTC-C method) 

WBTC-C Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 leonard 297 312 312 313 312 309.20 
2 pg1342 220 281 219 203 203 225.20 
3 pg1399 374 359 359 360 375 365.40 
4 pg2981 891 890 922 906 890 899.80 
5 pg3207 265 297 312 282 297 290.60 
6 pg33 204 203 219 251 203 216.00 
7 pg514 265 265 265 266 313 274.80 
8 pg76 218 204 219 312 218 234.20 
 Total 2734 2811 2827 2893 2811 2815.20 

The test for calculating decompression time was executed on Project Gutenberg Corpus 

for both methods Bzip2 and WBTC-C, and the results are shown in Table 6.50 and Table 

6.51. For the entire corpus, the total decompression time required for WBTC-C is less 

than Bzip2 method. The time required to decompress WBTC-C compressed file is less 

than 12.96% by the time required to decompress Bzip2 compressed file.   
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6.8.5 Decompression Time for Mixed Corpus 

Table 6.52 Decompression Time for Mixed Corpus (Bzip method) 

Bzip Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 bible.txt 671 625 625 687 609 643.40 
2 world192.txt 422 421 421 422 422 421.60 
3 anne11.txt 110 110 110 109 109 109.60 
4 enronsent02 438 468 609 437 546 499.60 
5 pg10.txt 687 687 687 672 688 684.20 

  Total 2328 2311 2452 2327 2374 2358.40 
 

Table 6.53 Decompression Time for Mixed Corpus (WBTC-C method) 

WBTC-C Decompression Time (DT)  
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 bible.txt 516 517 531 516 501 516.20 
2 world192.txt 453 422 438 406 422 428.20 
3 anne11.txt 187 186 187 173 187 184.00 
4 enronsent02 406 391 422 421 422 412.40 
5 pg10.txt 594 578 578 609 594 590.60 
 Total 2156 2094 3173 2125 2126 2334.80 

The test for calculating decompression time was executed on Mixed Corpus for both 

methods Bzip2 and WBTC-C, and the results are shown in Table 6.52 and Table 6.53. 

For the entire corpus, the total decompression time required for WBTC-C is slightly less 

than Bzip2 method. The time required to decompress WBTC-C compressed file is less 

than 1% by the time required to decompress Bzip2 compressed file.   

6.8.6 Decompression Time for All Corpus 

Table 6.54 Decompression Time for All corpuses (Bzip method) 

Bzip Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 Common 2328 2311 2452 2327 2374 2358.40 
2 Authors 6391 6282 6172 6219 6187 6250.20 
3 Europarl 8219 8265 8421 8282 8500 8337.40 
4 Enronsent 7032 6734 8203 6921 7125 7203.00 
5 Gutenberg 3047 2797 2828 2766 4734 3234.40 

  Total 27017 26389 28076 26515 28920 27383.40 
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Table 6.55 Decompression Time for All corpuses (WBTC-C method) 

WBTC-C Decompression Time (DT) in milliseconds 
Sr.No File Name DT1 DT2 DT3 DT4 DT5 Average 

1 Common 2156 2094 3173 2125 2126 2334.80 
2 Authors 5329 5266 5235 5248 5205 5256.60 
3 Europarl 6563 6359 6469 6423 6485 6459.80 
4 Enronsent 6857 9673 6875 6938 7812 7631.00 
5 Gutenberg 2734 2811 2827 2893 2811 2815.20 

  Total 23639 26203 24579 23627 24439 24497.40 

The overall decompression time required for all corpuses for both methods Bzip2 and 

WBTC-C are shown in Table 6.54 and Table 6.55. For all corpuses, the total 

decompression time required for WBTC-C is less than Bzip2 method. The time required 

to decompress WBTC-C compressed file is less than 10.55% by the time required to 

decompress Bzip2 compressed file.  The graphs of decompression time for Bzip2 and 

WBTC-C methods are shown in Figure 6.36 to Figure 6.41 for all corpuses.  
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Figure 6.36 Decompression time for E-Text Corpus 
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Comparison of Decompression Time (European Parliament 
Corpus)
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Figure 6.37 Decompression time for European Parliament Corpus 
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Figure 6.38 Decompression time for Enronsent Corpus 
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Comparison of Decompression Time (Project Gutenberg 
Corpus)
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Figure 6.39 Decompression time for Project Gutenberg Corpus 

Comparison of Decompression Time (Mixed Corpus)
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Figure 6.40 Decompression time for Mixed Corpus 
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Comparison of Decompression Time (Overall)
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Figure 6.41 Decompression time for All Corpus 
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7 

CONCLUSION AND FUTURE WORK  

 

We had compared the performance of our algorithms to other text compression 

algorithms, including standard compression algorithms such as Arithmetic Coding, 

Bzip2, PPMd, PPMII and LZMA. We have tested our algorithms on 51 different text files 

of different corpus. Our results show that in most cases our preprocessing algorithms lead 

to significant improvement in compression ratio. The compression ratio of our methods 

combined with a standard compression algorithm is typically 0.21% to 6.16% higher than 

that of the same standard compression algorithm when used alone. All methods proposed 

by us are language dependent and are useful for text files.   

For large files the compression ratio improves where as for small files the compression 

ratio bit deteriorates. Three types of dictionaries viz., static, semi-dynamic and dynamic 

dictionary are used by us in proposed techniques. Except method WBTC-E all other 

methods proposed by us are useful for direct searching the phrases in the compressed file. 

The phrase to be searched is to be compressed first by respective method and then using 

standard matching algorithm, we can search and retrieve the phrase directly from the 

compressed file. From experimental results it is seen that the number of comparisons 

normally required to search the phrases from a compressed file is less than that of 

comparison required to search the phrase from a normal decompressed file. We have used 

five methods to check this viz. Karp-Rabin algorithm, Knuth-Morris-Pratt algorithm, 

Brute-Force algorithm, Boyer – Moore algorithm and Quick Search algorithm. In all five 

algorithms it is seen that the number of comparisons to search the phrase in compressed 

file are less than that searching the phrase from normal file. 

We had compared among themselves all methods proposed by us and after considering 

the different parameters such as compression ratio, generalness and suitability for 

searching, we come to conclusion that method WBTC-C is optimum choice for 

compressing the text file.  
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The features of WBTC-C are that it uses two-dimensional dictionary. The total numbers 

of codes representing the words are less than the method using the single dimension 

dictionary. The dictionary is semi-dynamic i.e. created for a particular file and is a part of 

compressed file and hence useful for searching the phrase directly from the compressed 

file. The compression ratio is improved by 0.46% to 2.12% (on an average of 1.28%) 

when combined with standard compression techniques such as Bzip2, PPMd, PPMII and 

LZMA. We can retrieve the data randomly from any point in the compressed file. The 

only limitation is that the retrieval can be done from the point where there is a change in 

row, so that we will know the row number and then from that point onward the data can 

be retrieved.  

During compression process we store a unique symbol 0xFF (i.e. 255) to indicate change 

in row followed by row number. If we try to retrieve from any random location, then at 

that point we are not knowing the current row number, and without current row number 

we cannot retrieve the words from the dictionary, therefore first we have to scan the 

compressed file for code of change in row, because after that the new row number is 

stored in compressed file. Once we get the new row number, then from that point 

onwards we will keep track of row number so that we will be able to decompress the 

words from the dictionary with the column number reads from the compressed file. The 

method will fail in the case if there is no change in row number found in the compressed 

file from the point from where we want to decompressed and retrieve the data. The 

probability of such case will occur only if we will try to retrieve the data near to the end 

of file. The decompression time required is also improved in WBTC-C method. 

If we compare WBTC-C with other methods WBTC-A and WBTC-B, where the semi-

dynamic dictionary used is of single dimension, we find that the compression ratio of 

former is better than the later ones when used with Bzip2 and PPMd. The compression 

ratio of WBTC-D is more than that of WBTC-C, but it is not useful for direct searching 

the phrases in the compressed form, as it is using the dynamic dictionary which is 

implicitly build during the compression process and is not stored along with compressed 

file, instead while decompressing the same kind of dynamic dictionary is build up during 

the decompression process.  
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The last method WBTC-E proposed by us is giving an average improvement of 8.74% 

when used as pre-stage compression technique to standard compression techniques such 

as Bzip2, PPMd, PPMII and LZMA. This technique is also using two-dimensional static 

dictionary similar to that of WBTC-C. The searching of phrase directly in the compressed 

file is also feasible in this technique. The only drawback of this technique is that it is 

suitable for text files from a particular application domain, because in this technique, an 

already created static dictionary is used instead of semi-dynamic dictionary. 

For example, if we are having a history of medical records of patients in text files, then in 

all the records the words related to medical fields will exists. Most of the words will be 

repeated in all the text files. Static dictionary will be created from all the records and then 

if we compress a single file by using this static dictionary, the compression ratio will be 

outperforming. But at the same time, if we try to compress an another file not belonging 

to the medical category, then even if we compress that file using static dictionary, we 

won’t be able to find the words in the static dictionary and hence compression ratio won’t 

be effective. That’s why we have said that method WBTC-E is suitable only to a 

particular application domain, whereas in method WBTC-C an dictionary is created for 

that particular file only which is to be compressed.  

If we compare the compression ratio of WBTC-C and WBTC-E, then no doubt the 

compression ratio of WBTC-E is comparatively more, but WBTC-C is applicable to any 

kind of text file of any particular application domain, and also the compression ratio of 

WBTC-C is better than CBTC-B, WBTC-A, WBTC-B. Therefore, we can say that the 

method WBTC-C is the most versatile and robust among other methods proposed by us.  

Another method CBTC-B proposed by us is giving better compression ratio when used as 

pre-stage compression to Arithmetic Coding. The compression ratio achieved by this 

method is improved by 5.38% as compared to Arithmetic Coding method when used 

alone.  

In WBTC-C method we have used 8-bit length to encode the words whereas in WBTC-E 

method we have used 16-bit length to encode the words. Therefore the number of words 

we had kept in the dictionary are 16,446 and 1,62,815 respectively. The maximum file 

size from our corpus is up to 10MB. After analyzing the word statistics of the corpus, we 
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come to conclusion that the numbers of words we have considered are sufficient for the 

corpus taken and hence the length of encoding bits.  

A number of areas for further development remain. It will be interesting to see the effect 

of compression ratio if the dimension of the dictionary is increased from two-dimension 

to three-dimension. The encoding length of word from the dictionary can be increased 

from 16-bit to 32-bit thereby increasing the number of words to be kept in the dictionary.  

The present implementation, keeps the dictionaries separately from the compressed file. 

What will be the effect on compression ratio if dictionaries are merged in the compressed 

file? Our implementation is executed as a separate process from the standard compression 

techniques. It will be interesting to see the effect on the compression ratio if our method 

implementations can be embedded with the implementation of Bzip2, PPMd, PPMII and 

LZMA, so that an integrated compression can be performed on text files.   
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APPENDIX A – Coding of CBTC-B 
 
// Source code for Method CBTC-B 
// Program for Compression 
 
// Including header files 
 
#include<iostream.h> 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<ctype.h> 
#include<time.h> 
#include<dos.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaration of functions 
 
void update_str(char,char,char,char); 
void readstatistics(); 
void sort_char_arrays(); 
void remove_zero_count(); 
void assign_filename(); 
int ascii4char(char c1,char c2,char c3,char c4); 
int ascii3char(char c1,char c2,char c3); 
int search4char(char c1,char c2,char c3,char c4); 
int search3char(char c1,char c2,char c3); 
int search2char(char c1,char c2); 
void search1char(char c1); 
 
// Declaratin of variables 
 
long single_str[256] = {0}; 
long double_str[26][26] = {0}; 
long tripple_str[26][26][26] = {0}; 
long quad_str[26][26][26][26] = {0}; 
long single_count = 0; 
long double_count = 0; 
long tripple_count = 0; 
long quad_count = 0; 
long char_count = 0; 
char single_char[256][2]; 
char double_char[500][3]; 
char tripple_char[5000][4]; 
char quad_char[50000][5]; 
 
long int single_char_count[256]; 
long int double_char_count[500]; 
long int tripple_char_count[5000]; 
long int quad_char_count[50000]; 
 
 
char sfilename[25]; 
char singlefilename1[50]; 
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char doublefilename1[50]; 
char tripplefilename1[50]; 
char quadfilename1[50]; 
char singlefilename2[50]; 
char doublefilename2[50]; 
char tripplefilename2[50]; 
char quadfilename2[50]; 
char tfilename[25]; 
 
long int double_match = 0; 
long int tripple_match = 0; 
long int quad_match = 0; 
 
FILE *fptr,*ptr; 
BIT_FILE *fout; 
char str[50]; 
long i,j,k,l; 
int len; 
int iflower = 1; 
 
void main() 
{ 
 char ch1,ch2,ch3,ch4; 
 printf("Enter source file name : "); 
 scanf("%s",sfilename); 
// Assigning name for target file 
 
 assign_filename(); 
   
// Finding the size of the source file 
 
 fptr = fopen(sfilename,"rb"); 
 long lenoffile; 
 fseek(fptr,0L,2); 
 lenoffile = ftell(fptr); 
 fclose(fptr); 
 
// Creating the dictionaries for 4,3 and 2 characters group 
 fptr = fopen(sfilename,"rb"); 
 ch1 = fgetc(fptr); 
 ch2 = fgetc(fptr); 
 ch3 = fgetc(fptr); 
 ch4 = fgetc(fptr); 
 
 
 if(ch1>=97 && ch1<=97+25) 
  single_str[ch1-97]++; 
 if(ch2>=97 && ch2<=97+25) 
  single_str[ch2-97]++; 
 if(ch3>=97 && ch3<=97+25) 
  single_str[ch3-97]++; 
 if(ch4>=97 && ch4<=97+25) 
  single_str[ch4-97]++; 
 
 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25)) 
  double_str[ch1-97][ch2-97]++; 
 if((ch2>=97 && ch2<=97+25) && (ch3>=97 && ch3<=97+25)) 
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  double_str[ch2-97][ch3-97]++; 
 if((ch3>=97 && ch3<=97+25) && (ch4>=97 && ch4<=97+25)) 
  double_str[ch3-97][ch4-97]++; 
 
 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25) && (ch3>=97 
&& ch3<=97+25)) 
  tripple_str[ch1-97][ch2-97][ch3-97]++; 
 if((ch2>=97 && ch2<=97+25) && (ch3>=97 && ch3<=97+25) && (ch4>=97 
&& ch4<=97+25)) 
  tripple_str[ch2-97][ch3-97][ch4-97]++; 
  
 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25) && (ch3>=97 
&& ch3<=97+25) && (ch4>=97 && ch4<=97+25)) 
  quad_str[ch1-97][ch2-97][ch3-97][ch4-97]++; 
 
 for(i=0;i<lenoffile-4;i++) 
 { 
  ch1 = ch2; 
  ch2 = ch3; 
  ch3 = ch4; 
  ch4 = fgetc(fptr); 
  update_str(ch1,ch2,ch3,ch4); 
 } 
 fclose(fptr); 
// Removing 4,3 and 2-character groups having zero count  
// and writing the non-zero count groups in the file   
 remove_zero_count();  
  
// Reading the dictionaries from the file 
 readstatistics();    
 
// Sorting the chracter groups as per their counts 
 
 sort_char_arrays();   
  
// Compression begins here 
 
 fptr = fopen(sfilename,"rb"); 
 fout = OpenOutputBitFile(tfilename); 
 int tlen=0; 
 
// Reading 4-character group and searching in the dictionaries 
 ch1 = fgetc(fptr); 
 ch2 = fgetc(fptr); 
 ch3 = fgetc(fptr); 
 ch4 = fgetc(fptr); 
 for(i=0;i<lenoffile-4;i++) 
 { 
// Search 4-characters group 
  if(search4char(ch1,ch2,ch3,ch4)) 
  { 
   ch1 = fgetc(fptr); 
   ch2 = fgetc(fptr); 
   ch3 = fgetc(fptr); 
   ch4 = fgetc(fptr); 
   i+=3; 
   quad_match++; 
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   continue; 
  } 
// Search 3-characters group 
  if(search3char(ch1,ch2,ch3)) 
  { 
   ch1 = ch4; 
   ch2 = fgetc(fptr); 
   ch3 = fgetc(fptr); 
   ch4 = fgetc(fptr); 
   i+=2; 
   tripple_match++; 
   continue; 
  } 
// Search 2-characters group 
  if(search2char(ch1,ch2)) 
  { 
   ch1 = ch3; 
   ch2 = ch4; 
   ch3 = fgetc(fptr); 
   ch4 = fgetc(fptr); 
   i+=1; 
   double_match++; 
   continue; 
  } 
// Search single character 
  search1char(ch1); 
  ch1 = ch2; 
  ch2 = ch3; 
  ch3 = ch4; 
  ch4 = fgetc(fptr); 
 } 
  
 fclose(fptr); 
 CloseOutputBitFile(fout); 
} 
 
 
int search4char(char c1,char c2,char c3,char c4) 
{ 
 char tstr[5]; 
 long ti; 
 tstr[0] = c1; tstr[1] = c2; tstr[2] = c3; tstr[3] = c4; tstr[4] = 
'\0';  
 if(ascii4char(c1,c2,c3,c4)) 
 { 
  if(quad_str[c1-97][c2-97][c3-97][c4-97]==0) 
   return 0; 
 } 
 unsigned long int indexvalue; 
 for(ti=0; ti<quad_count; ti++) 
 { 
  if(strcmp(quad_char[ti],tstr) == 0) 
  { 
   indexvalue = ti + 49152; 
   OutputBits(fout,indexvalue,16); 
   return 1; 
  } 
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 } 
 return 0; 
 
} 
 
int search3char(char c1,char c2,char c3) 
{ 
 char tstr[4]; 
 long ti; 
 tstr[0] = c1; tstr[1] = c2; tstr[2] = c3; tstr[3] = '\0';  
 if(ascii3char(c1,c2,c3)) 
 { 
  if(tripple_str[c1-97][c2-97][c3-97]==0) 
   return 0; 
 } 
 
 unsigned long int indexvalue; 
 for(ti=0; ti<tripple_count; ti++) 
 { 
  if(strcmp(tripple_char[ti],tstr) == 0) 
  { 
   indexvalue = ti + 40960; 
   OutputBits(fout,indexvalue,16); 
   return 1; 
  } 
 } 
 return 0; 
 
} 
int search2char(char c1,char c2) 
{ 
 char tstr[3]; 
 long ti; 
 tstr[0] = c1; tstr[1] = c2; tstr[2] = '\0';  
 unsigned long int indexvalue; 
 for(ti=0; ti<32; ti++) 
 { 
  if(strcmp(double_char[ti],tstr) == 0) 
  { 
   indexvalue = ti + 128; 
   OutputBits(fout,indexvalue,8); 
   return 1; 
  } 
 } 
 return 0; 
} 
 
void search1char(char c1) 
{ 
 unsigned long int indexvalue = c1; 
 OutputBits(fout,indexvalue,8); 
} 
 
// Updating the counts of character groups 
void update_str(char ch1,char ch2,char ch3,char ch4) 
{ 
 if(ch4>=97 && ch4<=97+25) 
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  single_str[ch4-97]++; 
 if((ch3>=97 && ch3<=97+25) && (ch4>=97 && ch4<=97+25)) 
  double_str[ch3-97][ch4-97]++; 
 if((ch2>=97 && ch2<=97+25) && (ch3>=97 && ch3<=97+25) && (ch4>=97 
&& ch4<=97+25)) 
  tripple_str[ch2-97][ch3-97][ch4-97]++; 
 if((ch1>=97 && ch1<=97+25) && (ch2>=97 && ch2<=97+25) && (ch3>=97 
&& ch3<=97+25) && (ch4>=97 && ch4<=97+25)) 
  quad_str[ch1-97][ch2-97][ch3-97][ch4-97]++; 
} 
 
// Reading the dictionaries of character groups 
 
void readstatistics() 
{ 
 long int i=0; 
 ptr = fopen(doublefilename1,"r"); 
 i=0; 
 fscanf(ptr,"%s%ld", double_char[i],&double_char_count[i]); 
 while(!feof(ptr)) 
  fscanf(ptr,"%s%ld", 
double_char[i],&double_char_count[++i]); 
 fclose(ptr); 
 ptr = fopen(tripplefilename1,"r"); 
 i=0; 
 fscanf(ptr,"%s%ld", tripple_char[i],&tripple_char_count[i]); 
 while(!feof(ptr)) 
  fscanf(ptr,"%s%ld", 
tripple_char[i],&tripple_char_count[++i]); 
 fclose(ptr); 
 ptr = fopen(quadfilename1,"r"); 
 i=0; 
 fscanf(ptr,"%s%ld", quad_char[i],&quad_char_count[i]); 
 while(!feof(ptr)) 
  fscanf(ptr,"%s%ld", quad_char[i],&quad_char_count[++i]); 
 fclose(ptr); 
} 
 
// Sorting the character groups as per their counts 
 
void sort_char_arrays() 
{ 
 long int i,j; 
 char temp_double_str[3]; 
 char temp_tripple_str[4]; 
 char temp_quad_str[5]; 
 long temp_double; 
 long temp_tripple; 
 long temp_quad; 
 
 
 for(i=0;i<double_count-1;i++) 
 { 
  for(j=i+1;j<double_count;j++) 
  { 
   if(double_char_count[i] < double_char_count[j]) 
   { 
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    strcpy(temp_double_str,double_char[i]); 
    strcpy(double_char[i],double_char[j]); 
    strcpy(double_char[j],temp_double_str); 
    temp_double = double_char_count[i]; 
    double_char_count[i] = double_char_count[j]; 
    double_char_count[j] = temp_double; 
   } 
  } 
 } 
 
 ptr = fopen(doublefilename2,"w"); 
 for(i=0;i<32;i++) 
  fprintf(ptr,"%s",double_char[i]); 
 fclose(ptr); 
 
 for(i=0;i<tripple_count-1;i++) 
 { 
  for(j=i+1;j<tripple_count;j++) 
  { 
   if(tripple_char_count[i] < tripple_char_count[j]) 
   { 
    strcpy(temp_tripple_str,tripple_char[i]); 
    strcpy(tripple_char[i],tripple_char[j]); 
    strcpy(tripple_char[j],temp_tripple_str); 
    temp_tripple = tripple_char_count[i]; 
    tripple_char_count[i] = tripple_char_count[j]; 
    tripple_char_count[j] = temp_tripple; 
   } 
  } 
 } 
 
 ptr = fopen(tripplefilename2,"w"); 
 for(i=0;i<tripple_count;i++) 
  fprintf(ptr,"%s",tripple_char[i]); 
 fclose(ptr); 
 
 for(i=0;i<quad_count-1;i++) 
 { 
  for(j=i+1;j<quad_count;j++) 
  { 
   if(quad_char_count[i] < quad_char_count[j]) 
   { 
    strcpy(temp_quad_str,quad_char[i]); 
    strcpy(quad_char[i],quad_char[j]); 
    strcpy(quad_char[j],temp_quad_str); 
    temp_quad = quad_char_count[i]; 
    quad_char_count[i] = quad_char_count[j]; 
    quad_char_count[j] = temp_quad; 
   } 
  } 
 } 
 
 ptr = fopen(quadfilename2,"w"); 
 for(i=0;i<quad_count;i++) 
  fprintf(ptr,"%s",quad_char[i]); 
 fclose(ptr); 
} 
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// Removing the groups having zero count 
 
void remove_zero_count() 
{ 
 ptr = fopen(doublefilename1,"w"); 
 for(i=0;i<26;i++) 
  for(j=0;j<26;j++) 
   if(double_str[i][j] !=0 ) 
    fprintf(ptr,"%c%c  
%ld\n",i+97,j+97,double_str[i][j]);  
 fclose(ptr); 
 
 ptr = fopen(tripplefilename1,"w"); 
 for(i=0;i<26;i++) 
  for(j=0;j<26;j++) 
   for(k=0;k<26;k++) 
    if(tripple_str[i][j][k] > 3 ) 
     fprintf(ptr,"%c%c%c  
%ld\n",i+97,j+97,k+97,tripple_str[i][j][k]);  
 fclose(ptr); 
 
 ptr = fopen(quadfilename1,"w"); 
 for(i=0;i<26;i++) 
  for(j=0;j<26;j++) 
   for(k=0;k<26;k++) 
    for(l=0;l<26;l++) 
     if(quad_str[i][j][k][l] > 2 ) 
      fprintf(ptr,"%c%c%c%c  
%ld\n",i+97,j+97,k+97,l+97,quad_str[i][j][k][l]);  
 fclose(ptr); 
} 
 
void assign_filename() 
{ 
 len = strlen(sfilename); 
 
 for(i=0;i<len;i++) 
 { 
  if(sfilename[i]=='.') 
   break; 
  singlefilename1[i] = sfilename[i]; 
 } 
 if(i>3) 
  singlefilename1[4] ='\0'; 
 else 
  singlefilename1[i] ='\0'; 
 strcpy(tfilename,singlefilename1); 
 strcat(tfilename,"cbtcb.usb"); 
  
 strcpy(doublefilename1,singlefilename1); 
 strcpy(tripplefilename1,singlefilename1); 
 strcpy(quadfilename1,singlefilename1); 
 
 strcpy(doublefilename2,singlefilename1); 
 strcpy(tripplefilename2,singlefilename1); 
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 strcpy(quadfilename2,singlefilename1); 
 
 strcat(singlefilename1,"_single.dat"); 
 strcat(doublefilename1,"_double.dat"); 
 strcat(tripplefilename1,"_tripple.dat"); 
 strcat(quadfilename1,"_quad.dat"); 
 
 strcat(singlefilename2,"_single.txt"); 
 strcat(doublefilename2,"cbtcbd.txt"); 
 strcat(tripplefilename2," cbtcbt.txt"); 
 strcat(quadfilename2," cbtcbq.txt"); 
}  
 
int ascii4char(char c1,char c2,char c3,char c4) 
{ 
 if((c1>='a' && c1<='z') && (c2>='a' && c2<='z') && (c3>='a' && 
c3<='z') && (c4>='a' && c4<='z')) 
  return 1; 
 else 
  return 0; 
} 
 
int ascii3char(char c1,char c2,char c3) 
{ 
 if((c1>='a' && c1<='z') && (c2>='a' && c2<='z') && (c3>='a' && 
c3<='z')) 
  return 1; 
 else 
  return 0; 
} 
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// Program for Decompression 
 
// Including header files 
 
#include<iostream.h> 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<ctype.h> 
#include<time.h> 
#include<dos.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
 
long double_count = 0; 
long tripple_count = 0; 
long quad_count = 0; 
 
void readstatistics(); 
void sort_char_arrays(); 
void assign_filename(); 
 
 
 
char double_char[500][3]; 
char tripple_char[5000][4]; 
char quad_char[50000][5]; 
 
long int double_char_count; 
long int tripple_char_count; 
long int quad_char_count; 
 
char sfilename[25]; 
char doublefilename2[50]; 
char tripplefilename2[50]; 
char quadfilename2[50]; 
char tfilename[25]; 
char singlefilename1[25]; 
 
FILE *ptr,*fptr; 
BIT_FILE *fin; 
long i,j,k,l; 
int len; 
int iflower = 0; 
int readbits; 
unsigned long read; 
unsigned long anotherread; 
void main() 
{ 
 printf("Enter file name to decompress : "); 
 scanf("%s",sfilename); 
// Assigning name for target file 
 
 assign_filename(); 
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// Reading the character groups dictionaries 
 readstatistics();   
  
// Decompression begins here 
 ptr = fopen(tfilename,"wb"); 
 fptr = fopen(sfilename,"rb"); 
 
 readbits = 8; 
 int r; 
 int ch; 
 while(1) 
 { 
  read = getc(fptr); 
  if(read == EOF) 
   break; 
// If normal ascii character then store as it is in the decompressed 
file 
  if(read < 128) 
  { 
   ch = (int)read; 
   if(ch == 10) 
    fprintf(ptr,"\n"); 
   else 
    fprintf(ptr,"%c",ch);  
   continue; 
  } 
// if code is from 2-character group store those 2-characters 
// from 2-character group dictionary 
 
  if(read >=128 && read <=159) 
  { 
   read -= 128; 
   ch = double_char[read][0]; 
   fprintf(ptr,"%c",ch);  
   ch = double_char[read][1]; 
   fprintf(ptr,"%c",ch);  
   continue; 
  } 
// if code is from 3-character group store those 2-characters 
// from 3-character group dictionary 
 
  anotherread = getc(fptr); 
  read = read << readbits; 
  read = read | anotherread; 
  if(read >= 40960 && read <= 49151) 
  { 
   read -= 40960; 
   ch = tripple_char[read][0]; 
   fprintf(ptr,"%c",ch);  
   ch = tripple_char[read][1]; 
   fprintf(ptr,"%c",ch);  
   ch = tripple_char[read][2]; 
   fprintf(ptr,"%c",ch);  
   continue; 
  } 
// if code is from 4-character group store those 2-characters 
// from 4-character group dictionary 
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  read -= 49152; 
  ch = quad_char[read][0]; 
  fprintf(ptr,"%c",ch);  
  ch = quad_char[read][1]; 
  fprintf(ptr,"%c",ch);  
  ch = quad_char[read][2]; 
  fprintf(ptr,"%c",ch);  
  ch = quad_char[read][3]; 
  fprintf(ptr,"%c",ch);  
 
 } 
 fclose(fptr); 
 fclose(ptr); 
 
} 
 
void readstatistics() 
{ 
 long int i=0; 
 printf("\nDOuble dictionary :\n"); 
 ptr = fopen(doublefilename2,"r"); 
 i=0; 
 fscanf(ptr,"%c%c", &double_char[i][0],&double_char[i][1]); 
 double_char[i][2]='\0'; 
 while(!feof(ptr)) 
 { 
  i++; 
  fscanf(ptr,"%c%c",&double_char[i][0],&double_char[i][1]); 
  double_char[i][2]='\0'; 
 } 
 fclose(ptr); 
 double_count = i; 
 printf("\nTripple DIctionary : \n"); 
 ptr = fopen(tripplefilename2,"r"); 
 i=0; 
 fscanf(ptr,"%c%c%c", 
&tripple_char[i][0],&tripple_char[i][1],&tripple_char[i][2]); 
 tripple_char[i][3]='\0'; 
 while(!feof(ptr)) 
 { 
  i++; 
  fscanf(ptr,"%c%c%c", 
&tripple_char[i][0],&tripple_char[i][1],&tripple_char[i][2]); 
  tripple_char[i][3]='\0'; 
 } 
 fclose(ptr); 
 tripple_count = i; 
 printf("\nQuad DIctionary : \n"); 
 ptr = fopen(quadfilename2,"r"); 
 i=0; 
 fscanf(ptr,"%c%c%c%c", 
&quad_char[i][0],&quad_char[i][1],&quad_char[i][2],&quad_char[i][3]); 
 quad_char[i][4]='\0'; 
 while(!feof(ptr)) 
 { 
  i++; 
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  fscanf(ptr,"%c%c%c%c", 
&quad_char[i][0],&quad_char[i][1],&quad_char[i][2],&quad_char[i][3]); 
  quad_char[i][4]='\0'; 
 } 
 fclose(ptr); 
 quad_count = i; 
} 
 
void assign_filename() 
{ 
 len = strlen(sfilename); 
 char tempfile[50]; 
 for(i=0;i<len;i++) 
 { 
  if(sfilename[i]=='.') 
   break; 
  singlefilename1[i] = sfilename[i]; 
 } 
 singlefilename1[i] ='\0'; 
 strcpy(tfilename,singlefilename1); 
 strcat(tfilename,".out"); 
  
 
 
 strcpy(doublefilename2,singlefilename1); 
 strcpy(tripplefilename2,singlefilename1); 
 strcpy(quadfilename2,singlefilename1); 
 
 
 strcat(doublefilename2,"d.txt"); 
 strcat(tripplefilename2,"t.txt"); 
 strcat(quadfilename2,"q.txt"); 
} 
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APPENDIX B – Coding of WBTC-A 
 
// Source code for Method WBTC-A 
// Program for Compression 
 
// Including header files 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaring constants 
 
#define MAXPREFIX 5000 
#define MAXSUFFIX 5000 
#define MAX 65536 
#define DICTCONST 32768 
#define PRECONST 56768  
#define SUFCONST 60768 
 
// Declaration of functions 
 
void assign_filename(); 
void sort(); 
void createprefix(); 
void createsuffix(); 
void addword(); 
void writeseparator(); 
void writeword(); 
int ascii(unsigned long); 
long int searchstr(char*); 
long int searchstrfromdict(char*); 
int searchprefixstr(char*); 
int searchsuffixstr(char*); 
 
// Declaration of variables 
 
long int found; 
char dictionary[MAX][50]; 
char prefixdictionary[MAXPREFIX][20]; 
char suffixdictionary[MAXSUFFIX][20]; 
long int dictionarycount[MAX]; 
long int prefixcount[MAXPREFIX]; 
long int suffixcount[MAXSUFFIX]; 
unsigned int trackdictionary; 
unsigned int trackprefix; 
unsigned int tracksuffix; 
unsigned int tracknonword; 
int suffixposition; 
int startofonelengthword; 
int position; 
int pstr; 
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char str[100]; 
char sfilename[50],tfilename[50],wordfilename[50]; 
char prefixfilename[50],suffixfilename[50]; 
FILE *fptr; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
 
void main() 
{ 
 int i,j,c;  
 unsigned long value; 
 printf("\nEnter File Name : "); 
 scanf("%s",sfilename); 
// Assigning name for target file 
 
 assign_filename();  
 
// Finding the size of the source file 
 
 fptr = fopen(sfilename,"rb"); 
 fseek(fptr,0L,2); 
 long lenoffile = ftell(fptr); 
 fclose(fptr); 
 printf("\nLen of file = %ld",lenoffile); 
 
// Creation of semi-dynamic dictionary begins 
 
 bfin = OpenInputBitFile(sfilename); 
 pstr = 0; trackdictionary = 0; trackprefix = 0; tracksuffix = 0; 
tracknonword = 0; 
 for(c=0;c<lenoffile;c++) 
 { 
  value = InputBits(bfin,8); 
// Forming the words by checking the read characters are ascii or not 
 
  if(ascii(value)) 
  { 
   str[pstr++]=value; 
   continue; 
  } 
// Adding the word to the dictionary 
 
  addword(); 
  if(trackdictionary>=MAX) 
  { 
   printf("Dictionary Full "); 
   break; 
  } 
 } 
// Add the last word to the dictionary 
 
 addword(); 
// Sort the words in the dictionary according to their counts 
 
 sort(); 
// Check for the first occurrence of the word whose frequency is  
// one and store that value in startofonelengthword 



 223

// and storing the dictionary in the file. 
 
 fptr = fopen(wordfilename,"w"); 
 for(i=0;i<trackdictionary;i++) 
 { 
  if( (dictionarycount[i]==1) || (i == DICTCONST) ) 
   break; 
  fprintf(fptr,"%s\n",dictionary[i]);  
 } 
 fclose(fptr); 
 startofonelengthword = i;     
// Creation of Prefix sub-word dictionary and storing it in the file 
  
 createprefix(); 
 fptr = fopen(prefixfilename,"w"); 
 for(i=0;i<trackprefix;i++) 
  fprintf(fptr,"%s\n",prefixdictionary[i]); 
 fclose(fptr); 
// Creation of Suffix sub-word dictionary and storing it in the file 
  
 createsuffix(); 
 fptr = fopen(suffixfilename,"w"); 
 for(i=0;i<tracksuffix;i++) 
  fprintf(fptr,"%s\n",suffixdictionary[i]); 
 fclose(fptr);  
 
// Compression begins here 
 
 pstr = 0;  
 bfin = OpenInputBitFile(sfilename); 
 bfout = OpenOutputBitFile(tfilename); 
 while(1) 
 { 
  value = InputBits(bfin,8); 
  if(value == 0xffff) 
   break; 
// Forming the words by checking the read characters are ascii or not 
 
  if(ascii(value)) 
  { 
   str[pstr++]=value; 
   continue; 
  } 
// Terminating the word 
 
  str[pstr]='\0'; 
// If length of word > 2 then processing for compression   
  if(pstr > 1) 
  { 
   writeword(); 
   pstr = 0; 
  } 
// Else writing the word as it is in the compressed file. 
 
  else if(pstr == 1) 
  { 
   OutputBits(bfout,str[0],8); 
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   pstr = 0; 
  } 
// Writing the non-ascii character in the compressed file. 
 
  OutputBits(bfout,value,8);  
 
  pstr = 0; 
 } 
// Compressing the remaining words or characters left 
 
 str[pstr]='\0'; 
 if(pstr > 1) 
 { 
  writeword(); 
  pstr = 0; 
 } 
 else if(pstr == 1) 
 { 
  OutputBits(bfout,str[0],8); 
  pstr = 0; 
 } 
 
} 
void writeword() 
{ 
 int maxmatch; 
 int slen; 
 int i,j,remainingchar; 
 char remstr[100]; 
 slen = strlen(str); 
// Searching the word in the semi-dynamic dictionary 
 
 found = searchstrfromdict(str); 
// If found then writing the index value in the compressed file 
 
 if(found) 
 { 
  found--; 
  OutputBits(bfout,found+DICTCONST,16); 
 } 
 else 
// Else search for the prefix and suffix sub-word in the dictionary 
 { 
  maxmatch = searchprefixstr(str); //Call search prefix if 
match write index value in function itself 
  if(maxmatch) 
  { 
   j=0; 
   for(i=maxmatch;i<slen;i++) 
    remstr[j++] = str[i]; 
   remstr[j]='\0'; 
   strcpy(str,remstr); 
   slen = strlen(str); 
  } 
  maxmatch = searchsuffixstr(str); 
  if(maxmatch) 
  { 
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   if(slen>=maxmatch) 
   { 
    remainingchar = slen - maxmatch; 
    for(j=0;j<remainingchar;j++) 
     OutputBits(bfout,str[j],8); 
   } 
   OutputBits(bfout,suffixposition+SUFCONST,16); 
  } 
// If word not found in the dictionary, then write it as it is in the 
// compressed file. 
 
  else 
  { 
   for(j=0;j<slen;j++) 
    OutputBits(bfout,str[j],8); 
  } 
 } 
} 
 
// Adding the word to the  
void addword() 
{ 
 str[pstr]='\0'; 
 if(pstr > 1) 
 { 
  found = searchstr(str); 
  if(found) 
  { 
   found--; 
   dictionarycount[found]++; 
  } 
  else 
  { 
   strcpy(dictionary[trackdictionary],str); 
   dictionarycount[trackdictionary]++; 
   trackdictionary++; 
  } 
 } 
 pstr = 0; 
} 
 
void createprefix() 
{ 
 int i,j,k,maxmatch,position; 
 trackprefix = 0; 
 char tempprefix[20]; 
 for(i=trackdictionary-1; i >= startofonelengthword;i--) 
 { 
  maxmatch = 0; 
  for(j=startofonelengthword;j<i;j++) 
  { 
   for(k=0;k<strlen(dictionary[i]);k++) 
   { 
    if(dictionary[j][k] != dictionary[i][k]) 
     break; 
   } 
   if(k>2 && k>maxmatch) 
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   { 
    maxmatch = k; 
    position = j; 
   } 
  } 
  if(maxmatch) 
  { 
   for(k=0;k<maxmatch;k++) 
    tempprefix[k] = dictionary[j][k]; 
   tempprefix[k] ='\0'; 
   for(k=0;k<trackprefix;k++) 
    if(strcmp(prefixdictionary[k],tempprefix) == 0) 
     break; 
   if(k==trackprefix) 
   
 strcpy(prefixdictionary[trackprefix++],tempprefix); 
   if(trackprefix>=MAXPREFIX) 
   { 
    printf("\nPrefix dictionary full "); 
    return; 
   } 
  } 
 } 
} 
void createsuffix() 
{ 
 int i,j,k,l,m,maxmatch,position,lensrc,lendest,minlen; 
 tracksuffix = 0; 
 char tempsuffix[20]; 
 for(i=trackdictionary-1; i >= startofonelengthword;i--) 
 { 
  maxmatch = 0; 
  for(j=startofonelengthword;j<i;j++) 
  { 
   lensrc = strlen(dictionary[i]); 
   lendest = strlen(dictionary[j]); 
   if(lensrc<lendest)minlen = lensrc; else minlen = 
lendest; 
   for(k=0;k<minlen;k++) 
   { 
    if(dictionary[j][lendest-1] != 
dictionary[i][lensrc-1]) 
     break; 
    lendest--;lensrc--; 
   } 
   if(k>2 && k>maxmatch) 
   { 
    maxmatch = k; 
    position = j; 
   } 
  } 
  if(maxmatch) 
  { 
   l = strlen(dictionary[position]); 
   m=0; 
   for(k=l-maxmatch;k<l;k++) 
    tempsuffix[m++] = dictionary[position][k]; 
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   tempsuffix[m]='\0'; 
   for(k=0;k<tracksuffix;k++) 
    if(strcmp(suffixdictionary[k],tempsuffix) == 0) 
     break; 
   if(k==tracksuffix) 
   
 strcpy(suffixdictionary[tracksuffix++],tempsuffix); 
   if(tracksuffix>=MAXSUFFIX) 
   { 
    printf("\nSuffix dictionary full "); 
    return; 
   } 
  } 
 } 
} 
 
// Sorting the words in the dictionary according to their counts 
void sort() 
{ 
 unsigned long l,m; 
 unsigned long t; 
 char str[50]; 
 for(l=0;l<trackdictionary-1;l++) 
 { 
  for(m=l+1;m<trackdictionary;m++) 
  { 
   if(dictionarycount[l]<dictionarycount[m]) 
   { 
    t = dictionarycount[l]; 
    dictionarycount[l] = dictionarycount[m]; 
    dictionarycount[m] = t; 
    strcpy(str,dictionary[l]); 
    strcpy(dictionary[l],dictionary[m]); 
    strcpy(dictionary[m],str); 
   } 
  } 
 } 
} 
// Function for searching the string in the semi-dynamic dictionary 
// Return 0 if not found, else return position of the word in  
// the dictionary. 
long int searchstr(char *str) 
{ 
 long int i,track = 0; 
 for(i=0;i<trackdictionary;i++) 
  if(strcmp(str,dictionary[i]) == 0) 
   break; 
 if(i != trackdictionary) 
  return i+1; 
 else  
  return 0; 
 
} 
 
long int searchstrfromdict(char *str) 
{ 
 long int i,track = 0; 
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 for(i=0;i<startofonelengthword;i++) 
  if(strcmp(str,dictionary[i]) == 0) 
   break; 
 if(i != startofonelengthword) 
  return i+1; 
 else  
  return 0; 
 
} 
// Checking the character is ascii or not. 
int ascii(unsigned long value) 
{ 
 if((value >='a' && value <='z') || (value >='A' && value <='Z')) 
  return 1; 
 else  
  return 0; 
} 
 
// Searching the sub-word from the prefix dictionary 
int searchprefixstr(char *prestr) 
{ 
 int plen,slen,maxmatch=0,position; 
 slen = strlen(prestr); 
 int i,j; 
 for(i=0;i<trackprefix;i++) 
 { 
  plen = strlen(prefixdictionary[i]); 
  if(slen >= plen) 
  { 
   for(j=0;j<plen;j++) 
    if(prestr[j] != prefixdictionary[i][j]) 
     break; 
   if(j==plen) 
   { 
    if(j>maxmatch) 
    { 
     maxmatch = j; 
     position = i; 
    } 
   } 
  } 
 } 
 if(maxmatch) 
 { 
  OutputBits(bfout,position+PRECONST,16); 
  return maxmatch; 
 } 
 return 0; 
} 
 
// Searching the sub-word from the suffix dictionary 
int searchsuffixstr(char *sufstr) 
{ 
 int plen,slen,maxmatch=0,sufptr; 
 slen = strlen(sufstr); 
 int i,j; 
 for(i=0;i<tracksuffix;i++) 
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 { 
  plen = strlen(suffixdictionary[i]); 
  if(slen >= plen) 
  { 
   sufptr = slen-1; 
   for(j=plen-1;j>=0;j--) 
    if(sufstr[j] != suffixdictionary[i][sufptr--]) 
     break; 
   if(j<0) 
   { 
    if(plen>maxmatch) 
    { 
     maxmatch = plen; 
     suffixposition = i; 
    } 
   } 
  } 
 } 
 return maxmatch; 
} 
 
void assign_filename() 
{ 
 int len,i; 
 len = strlen(sfilename); 
 char tempfilename[50]; 
 for(i=0;i<len;i++) 
 { 
  if(sfilename[i]=='.') 
   break; 
  tempfilename[i] = sfilename[i]; 
 } 
 tempfilename[i] ='\0'; 
 strcpy(tfilename,tempfilename); 
 strcpy(prefixfilename,tempfilename); 
 strcpy(suffixfilename,tempfilename); 
 strcpy(wordfilename,tempfilename); 
 strcat(tfilename,"wbtca.usb"); 
 strcat(prefixfilename,".pre"); 
 strcat(suffixfilename,".suf"); 
 strcat(wordfilename,".wrd"); 
} 
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// Program for Decompression 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
 
 
#define MAXPREFIX 5000 
#define MAXSUFFIX 5000 
#define MAX 65536 
#define DICTCONST 32768 
#define PRECONST 56768  
#define SUFCONST 60768 
 
 
void assign_filename(); 
 
char dictionary[MAX][50]; 
char prefixdictionary[MAXPREFIX][20]; 
char suffixdictionary[MAXSUFFIX][20]; 
unsigned int trackdictionary; 
unsigned int trackprefix; 
unsigned int tracksuffix; 
 
char sfilename[50],tfilename[50],wordfilename[50]; 
char prefixfilename[50],suffixfilename[50]; 
 
FILE *fptr; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
 
void main() 
{ 
  
 int i;   
 unsigned long value,anothervalue; 
 printf("\nEnter File Name for Decompressing : "); 
 scanf("%s",sfilename); 
// Assigning name for target file 
 
 assign_filename();  
// Finding the size of the compressed file 
 
 fptr = fopen(sfilename,"rb"); 
 fseek(fptr,0L,2); 
 long lenoffile = ftell(fptr); 
 fclose(fptr); 
 printf("\nLen of file = %ld",lenoffile); 
 
// Reading dictionaries for words and sub-words (Prefix and Suffix) 
 
 trackdictionary = 0; 
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 trackprefix = 0; 
 tracksuffix = 0; 
 fptr = fopen(wordfilename,"r"); 
 fscanf(fptr,"%s",dictionary[trackdictionary++]); 
 while (!feof(fptr)) 
  fscanf(fptr,"%s",dictionary[trackdictionary++]); 
 trackdictionary--; 
 fclose(fptr); 
 
 fptr = fopen(prefixfilename,"r"); 
 fscanf(fptr,"%s",prefixdictionary[trackprefix++]); 
 while (!feof(fptr)) 
  fscanf(fptr,"%s",prefixdictionary[trackprefix++]); 
 trackprefix--; 
 fclose(fptr); 
 
 fptr = fopen(suffixfilename,"r"); 
 fscanf(fptr,"%s",suffixdictionary[tracksuffix++]); 
 while (!feof(fptr)) 
  fscanf(fptr,"%s",suffixdictionary[tracksuffix++]); 
 tracksuffix--; 
 fclose(fptr); 
 
  
// Decompression begins here 
 
  
 bfin = OpenInputBitFile(sfilename); 
 bfout = OpenOutputBitFile(tfilename); 
 while(1) 
 { 
  value = InputBits(bfin,8); 
  if(value == 0xffff) 
   break; 
// If normal ascii character then write as it is in the  
// decompressed file. 
  if(value<128) 
  { 
   OutputBits(bfout,value,8); 
  } 
// Else if the read is an index value of suffix, prefix or word 
dictionary 
// then write the corresponding word from the respective dictionary 
 
  else 
  { 
   anothervalue = InputBits(bfin,8); 
   value = value << 8; 
   value = value | anothervalue; 
   if(value>=SUFCONST) 
   { 
    value = value-SUFCONST; 
    for(i=0;i<strlen(suffixdictionary[value]);i++) 
    
 OutputBits(bfout,suffixdictionary[value][i],8); 
   } 
   else if(value>=PRECONST) 



 232

   { 
    value-=PRECONST; 
    for(i=0;i<strlen(prefixdictionary[value]);i++) 
    
 OutputBits(bfout,prefixdictionary[value][i],8);    
   } 
   else if(value>=DICTCONST) 
   { 
    value-=DICTCONST; 
    for(i=0;i<strlen(dictionary[value]);i++) 
     OutputBits(bfout,dictionary[value][i],8); 
   } 
     
  } 
 } 
 CloseOutputBitFile(bfout); 
} 
 
 
void assign_filename() 
{ 
 int len,i; 
 len = strlen(sfilename); 
 char tempfilename[50]; 
 for(i=0;i<len;i++) 
 { 
  if(sfilename[i]=='.') 
   break; 
  tempfilename[i] = sfilename[i]; 
 } 
 tempfilename[i-3] ='\0'; 
  
 strcpy(tfilename,tempfilename); 
 strcpy(prefixfilename,tempfilename); 
 strcpy(suffixfilename,tempfilename); 
 strcpy(wordfilename,tempfilename); 
 strcat(tfilename,".out"); 
 strcat(prefixfilename,".pre"); 
 strcat(suffixfilename,".suf"); 
 strcat(wordfilename,".wrd"); 
} 
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APPENDIX C – Coding of WBTC-B 
 
// Source code for Method WBTC-B 
// Program for Compression 
 
// Including header files 
 
#include<iostream.h> 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<ctype.h> 
#include<time.h> 
#include<dos.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaring constant 
 
#define MAX 600000 
 
// Declaration of functions 
 
void assign_filename(); 
long int search_str(char*,int); 
 
// Declaration of variables 
 
char dictionary[MAX]; 
long int noofwords; 
long int track=0; 
char sfilename[50],tfilename[50],dictfilename[50]; 
FILE *fptr,*dptr; 
BIT_FILE *fout; 
BIT_FILE *fin; 
void main() 
{ 
    char ch1; 
    char str[80]; 
    long int found; 
    printf("Enter source file name : "); 
    scanf("%s",sfilename); 
// Assigning name for target file 
 
    assign_filename(); 
// Finding the size of the source file 
 
    fptr = fopen(sfilename,"rb"); 
    long lenoffile; 
    fseek(fptr,0L,2); 
    lenoffile = ftell(fptr); 
    fclose(fptr); 
     
// Compression begins here and simultaneously the  
// semi-dynamic dictionary is created. 
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    fin = OpenInputBitFile(sfilename); 
    fout = OpenOutputBitFile(tfilename); 
    track = 0; 
    dptr = fopen(dictfilename,"w"); 
    int pstr = 0; 
    dictionary[track++] = '#'; 
    dictionary[track] = '\0'; 
    noofwords = 0; 
    unsigned long value; 
    while(1) 
    { 
        value = InputBits(fin,8); 
        if(value == 0xffff) 
            break; 
        ch1 = value; 
// Forming the words by checking the read characters are ascii or not 
 
        if((ch1 >= 'a'  && ch1 <= 'z') || (ch1 >= 'A'  && ch1 <= 'Z') ) 
        { 
            str[pstr] = ch1; 
            pstr++; 
            continue; 
        } 
// Terminating the word 
 
        str[pstr]='\0'; 
// If the length of the word > 1 then compress the word 
 
        if(pstr>1) 
        { 
// If word is found in the dictionary then store the index 
// value of the word in the compressed file 
// Else write the word in the dictionary and then store 
// the index value in the compressed file. 
 
            found = search_str(str,pstr); 
            if(!found) 
            { 
                fprintf(dptr,"#"); 
                fprintf(dptr,"%s",str); 
                strcat(dictionary,str); 
                track = strlen(dictionary); 
                dictionary[track++]='#'; 
                dictionary[track]='\0'; 
                noofwords++; 
                OutputBits(fout,noofwords+32768,16);     
            } 
            else 
                OutputBits(fout,found+32768,16); 
        } 
        else if(pstr == 1) 
            OutputBits(fout,str[0],8);           
        OutputBits(fout,ch1,8); 
        pstr = 0; 
    } 
    fclose(fptr); 
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    CloseOutputBitFile(fout); 
    fclose(dptr); 
} 
 
// Function for searching the string in the  
// semi-dynamic dictionary. return 0 if not found 
// else return the index value. 
 
long int search_str(char *string, int len) 
{ 
    long int hash = 0; 
    int i; 
    long int dtrack = 0; 
    while(dtrack < track ) 
    { 
        if(dictionary[dtrack++] == '#') 
        { 
            hash++; 
            for(i=0;i<len;i++) 
            { 
                if(dictionary[dtrack] != string[i]) 
                    break; 
                dtrack++; 
            } 
            if(i==len) 
            { 
                if(dictionary[dtrack] == '#') 
                    return hash; 
            } 
        } 
    } 
    return 0; 
} 
 
void assign_filename() 
{ 
    int len = strlen(sfilename); 
 
    for(int i=0;i<len;i++) 
    { 
        if(sfilename[i]=='.') 
            break; 
        tfilename[i] = sfilename[i]; 
    } 
    tfilename[i] ='\0'; 
    strcpy(dictfilename,tfilename); 
    strcat(tfilename,"wbtcb.usb"); 
     
    strcat(dictfilename,"wbtcbdict.txt"); 
 
} 
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// Program for Decompression 
 
// Including header files 
 
#include<iostream.h> 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<ctype.h> 
#include<time.h> 
#include<dos.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaring constant 
 
#define MAX 600000 
 
// Declaration of functions 
 
void assign_filename(); 
 
// Declaration of variables 
 
char dictionary[MAX]; 
char str[50]; 
long i,j,k,l; 
long sizeofdict; 
unsigned long hash;  
unsigned long read; 
unsigned long anotherread; 
char sfilename[50],tfilename[50],dictfilename[50]; 
FILE *ptr,*fptr; 
BIT_FILE *fin; 
void main() 
{ 
 printf("Enter file name to decompress : "); 
 scanf("%s",sfilename); 
// Assigning name for target file. 
 
 assign_filename(); 
// Finding the size of the compressed file 
  
 fptr = fopen(sfilename,"rb"); 
 long lenoffile; 
 fseek(fptr,0L,2); 
 lenoffile = ftell(fptr); 
 printf("Length of file = %ld",lenoffile); 
 fclose(fptr); 
 
// Reading the dictionary  
  
 ptr = fopen(dictfilename,"r"); 
 fscanf(ptr,"%s", dictionary); 
 sizeofdict = strlen(dictionary); 
 fclose(ptr); 
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// Decompression begins here 
 
 ptr = fopen(tfilename,"w"); 
 fptr = fopen(sfilename,"rb"); 
 
 int ch; 
 for(j=0;j<lenoffile;j++) 
 { 
  read = getc(fptr); 
// If normal ascii character then store as it is in the decompressed 
file 
 
  if(read < 128) 
  {  
   ch = (int)read; 
   if(ch == 10) 
    putc(ch,ptr); 
   else 
    fprintf(ptr,"%c",ch);  
   continue; 
  } 
// Else read the value of index position of encoded word 
// and retrieve it from the dictionary 
 
  anotherread = getc(fptr);j++; 
  read = read << 8; 
  read = read | anotherread; 
  read -= 32768; 
  hash = 0; 
  for(i=0;i<sizeofdict;i++) 
  { 
   if(dictionary[i]=='#') 
    hash++; 
   if(hash == read) 
   { 
    while(1) 
    { 
     i++; 
     if(i==sizeofdict) 
      break; 
     ch = dictionary[i]; 
     if(ch == '#') 
      break; 
     fprintf(ptr,"%c",ch); 
    } 
    break; 
   } 
  } 
 } 
 fclose(fptr); 
 fclose(ptr); 
} 
 
 
void assign_filename() 
{ 
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 int len = strlen(sfilename); 
 
 for(int i=0;i<len;i++) 
 { 
  if(sfilename[i]=='.') 
   break; 
  tfilename[i] = sfilename[i]; 
 } 
 tfilename[i] ='\0'; 
 strcpy(dictfilename,tfilename); 
 strcat(tfilename,".out"); 
  
 strcat(dictfilename,"dict.txt"); 
 
} 
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APPENDIX D – Coding of WBTC-C 
 
// Source code for Method WBTC-C 
// Program for Compression 
 
// Including header files 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaraing constants 
 
#define MAX 65536 
#define MAXSIZE 16447  
 
// Declaration of functions 
 
void assign_filename(); 
void sort(); 
void addword(); 
void writeword(); 
int ascii(unsigned long); 
 
// Declaration of variables 
 
long int found; 
long int searchstr(char*); 
char dictionary[MAX][50]; 
long int dictionarycount[MAX]; 
unsigned int trackdictionary; 
int startofonelengthword; 
char substr[20]; 
int position; 
int pstr;  
char str[100]; 
FILE *fptr,*tptr;; 
int currentrow,newrow,column; 
char sfilename[50],tfilename[50],wordfilename[50]; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
 
void main() 
{ 
     
    int i,j,c;  //pointer to string 
    long int value; 
    printf("\nEnter File Name : "); 
    scanf("%s",sfilename); 
// Assigning name for target file 
 
    assign_filename();  
// Finding the size of the source file 
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    fptr = fopen(sfilename,"rb"); 
    fseek(fptr,0L,2); 
    long lenoffile = ftell(fptr); 
    fclose(fptr); 
    printf("\nLen of file = %ld",lenoffile); 
 
// Creating the semi-dynamic dictionary in first pass 
 
    bfin = OpenInputBitFile(sfilename); 
    pstr = 0; trackdictionary = 0;  
    while(1) 
    { 
        value = InputBits(bfin,8); 
        if(value == 0xffff) 
            break; 
// Forming the words by checking the read characters are ascii or not 
        if(ascii(value)) 
        { 
            str[pstr++]=value; 
            continue; 
        } 
// Adding the word to the dictionary 
        addword(); 
        if(trackdictionary>=MAX) 
        { 
            printf("Dictionary Full "); 
            break; 
        } 
 
    } 
// Add the last word to the dictionary 
 
    addword(); 
// Sort the words in the dictionary according to their counts 
 
    sort(); 
 
// Check for the first occurrence of the word whose frequency is  
// one and store that value in startofonelengthword 
 
    for(i=0;i<trackdictionary;i++) 
        if(dictionarycount[i]==1) 
            break; 
    startofonelengthword = i;     
    if(startofonelengthword < MAXSIZE) 
        trackdictionary = startofonelengthword; 
    else     
        trackdictionary = MAXSIZE; 
// Write the dictionary in the file 
 
    fptr = fopen(wordfilename,"w");  
    for(i=0;i<trackdictionary;i++) 
            fprintf(fptr,"%s\n",dictionary[i]);  
    fclose(fptr); 
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// Compression begins here 
     
    currentrow = 0; 
    pstr = 0;  
    bfin = OpenInputBitFile(sfilename); 
    bfout = OpenOutputBitFile(tfilename); 
    while(1) 
    { 
        value = InputBits(bfin,8); 
        if(value == 0xffff) 
            break; 
// Forming the words by checking the read characters are ascii or not 
 
        if(ascii(value)) 
        { 
            str[pstr++]=value; 
            continue; 
        } 
// Terminating the word 
 
        str[pstr]='\0'; 
// If length of word > 2 then processing for compression         
        if(pstr > 2) 
        { 
            writeword(); 
            pstr = 0; 
        } 
// Else writing the word as it is in the compressed file. 
 
        else if(pstr == 1) 
        { 
            OutputBits(bfout,str[0],8); 
            pstr = 0; 
        } 
        else if(pstr == 2) 
        { 
            OutputBits(bfout,str[0],8); 
            OutputBits(bfout,str[1],8); 
            pstr = 0; 
        } 
// Writing the non-ascii character in the compressed file. 
 
        OutputBits(bfout,value,8); 
        pstr = 0; 
    } 
// Compressing the remaining words or characters left 
    str[pstr]='\0'; 
    if(pstr > 1) 
    { 
        writeword(); 
        pstr = 0; 
    } 
    else if(pstr == 1) 
    { 
        OutputBits(bfout,str[0],8); 
        pstr = 0; 
    } 
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    fclose(tptr); 
} 
 
 
void writeword() 
{ 
    int maxmatch; 
    int slen; 
    int changeincolumn = 15; 
    int i,j,remainingchar; 
    char remstr[100]; 
    slen = strlen(str); 
// Searching the word in the static dictionary 
 
    found = searchstr(str); 
// If found then writing the index value in the compressed file 
 
    if(found) 
    { 
        found--; 
// If word is found in first 63 positions i.e. words repeated in  
// each row write the position of the column in the compressed file. 
 
        if(found<63) 
        { 
            column = found; 
            OutputBits(bfout,column+128,8); 
        } 
// Check whether the word found is in the same row as that of previous  
// row 
 
        else 
        { 
            newrow = (found - 63) / 64; 
            column = (found - 63) % 64 ; 
// If yes then write the position of the column in the compressed file. 
 
            if(newrow == currentrow) 
                OutputBits(bfout,column+128+63,8); 
// Else write the escape symbol for change in row i.e. 255 (0xFF) 
// and write the new row number followed by the position of the column 
in 
// the compressed file. 
 
            else 
            { 
                OutputBits(bfout,255,8); 
                OutputBits(bfout,newrow+128,8); 
                OutputBits(bfout,column+128,8); 
                currentrow = newrow; 
            } 
        } 
    } 
// If word not found in the dictionary, then write it as it is in the 
// compressed file. 
 
    else 
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        for(j=0;j<slen;j++) 
            OutputBits(bfout,str[j],8); 
     
} 
 
// Adding the word to the semi-dynamic dictionary 
void addword() 
{ 
    str[pstr]='\0'; 
    if(pstr > 2) 
    { 
        found = searchstr(str); 
        if(found) 
        { 
            found--; 
            dictionarycount[found]++; 
        } 
        else 
        { 
            strcpy(dictionary[trackdictionary],str); 
            dictionarycount[trackdictionary]++; 
            trackdictionary++; 
             
        } 
    } 
    pstr = 0; 
} 
 
// Sorting the words in the dictionary according to their counts 
void sort() 
{ 
    unsigned long l,m; 
    unsigned long t; 
    char str[50]; 
    for(l=0;l<trackdictionary-1;l++) 
    { 
        for(m=l+1;m<trackdictionary;m++) 
        { 
            if(dictionarycount[l]<dictionarycount[m]) 
            { 
                t = dictionarycount[l]; 
                dictionarycount[l] = dictionarycount[m]; 
                dictionarycount[m] = t; 
                strcpy(str,dictionary[l]); 
                strcpy(dictionary[l],dictionary[m]); 
                strcpy(dictionary[m],str); 
            } 
        } 
    } 
} 
 
// Function for searching the string in the static dictionary 
// Return 0 if not found, else return position of the word in  
// the dictionary. 
long int searchstr(char *str) 
{ 
    long int i,track = 0; 
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    for(i=0;i<trackdictionary;i++) 
        if(strcmp(str,dictionary[i]) == 0) 
            break; 
    if(i != trackdictionary) 
        return i+1; 
    else  
        return 0; 
 
} 
 
// Checking the character is ascii or not. 
 
int ascii(unsigned long value) 
{ 
    if((value >='a' && value <='z') || (value >='A' && value <='Z')) 
        return 1; 
    else  
        return 0; 
} 
 
// Assigning default file names for target file name 
void assign_filename() 
{ 
    int len,i; 
    len = strlen(sfilename); 
    char tempfilename[50]; 
    for(i=0;i<len;i++) 
    { 
        if(sfilename[i]=='.') 
            break; 
        tempfilename[i] = sfilename[i]; 
    } 
    tempfilename[i] ='\0'; 
    strcpy(tfilename,tempfilename); 
    strcpy(wordfilename,tempfilename); 
    strcat(tfilename,"_wbtcc.usb"); 
    strcat(wordfilename,"wbtccwrd.wrd"); 
} 
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// Program for Decompression 
 
// Including header files 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include<time.h> 
#include<ctype.h> 
#include<dos.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaring constants 
 
#define MAX 65536 
#define MAXSIZE 16447   
 
// Declaration of functions 
 
void assign_filename(); 
 
// Declaration of variables 
 
long int found; 
char dictionary[MAX][50]; 
long int dictionarycount[MAX]; 
unsigned int trackdictionary; 
int position; 
int row,column,index; 
long int track; 
char sfilename[50],tfilename[50],wordfilename[50]; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
void main() 
{ 
    FILE *fptr; 
    int i;  //pointer to string 
    long int value; 
    printf("\nEnter File Name : "); 
    scanf("%s",sfilename); 
// Assigning name for target file 
 
    assign_filename();  
  
// Finding the size of the compressed file 
 
    fptr = fopen(sfilename,"rb"); 
    fseek(fptr,0L,2); 
    long lenoffile = ftell(fptr); 
    fclose(fptr); 
 
    trackdictionary=0; 
    fptr = fopen(wordfilename,"r"); 
    fscanf(fptr,"%s",dictionary[trackdictionary++]); 
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    while (!feof(fptr)) 
        fscanf(fptr,"%s",dictionary[trackdictionary++]); 
    trackdictionary--; 
    fclose(fptr); 
 
// Compression begins here 
 
    bfin = OpenInputBitFile(sfilename); 
    bfout = OpenOutputBitFile(tfilename); 
    row = 0; 
    track = 0; 
    while(track<lenoffile ) 
    { 
        value = InputBits(bfin,8); 
        track++; 
// If normal ascii character then write as it is in the  
// decompressed file. 
 
        if(value<128) 
        { 
            OutputBits(bfout,value,8); 
        } 
// If change in row then read the new row number and  
// column number and compute the position of the word in the  
// dictionary and retrieve the word from the dictionary. 
 
        else 
        {    
            if(value == 255) 
            {  
                row = InputBits(bfin,8); 
                row-=128; 
                value = InputBits(bfin,8); 
                value -= 128; 
                position = (row * 64) +63+ value ; 
                for(i=0;i<strlen(dictionary[position]);i++) 
                    OutputBits(bfout,dictionary[position][i],8);                 
                track+=2; 
            } 
            else 
            { 
                value -= 128; 
                if(value < 63) 
                { 
                    for(i=0;i<strlen(dictionary[value]);i++) 
                        OutputBits(bfout,dictionary[value][i],8); 
                } 
                else 
                { 
                    value -= 63; 
                    position = (row * 64) +63+ value ; 
                    for(i=0;i<strlen(dictionary[position]);i++) 
                        OutputBits(bfout,dictionary[position][i],8); 
                } 
            } 
 
        } 
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    } 
    CloseInputBitFile(bfin); 
    CloseOutputBitFile(bfout); 
} 
 
 
void assign_filename() 
{ 
    int len,i; 
    len = strlen(sfilename); 
    char tempfilename[50]; 
    for(i=0;i<len;i++) 
    { 
        if(sfilename[i]=='.') 
            break; 
        tempfilename[i] = sfilename[i]; 
    } 
    tempfilename[i-3] ='\0'; 
    strcpy(tfilename,tempfilename); 
    strcpy(wordfilename,tempfilename); 
    strcat(tfilename,".out"); 
    strcat(wordfilename,".wrd"); 
} 
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APPENDIX E – Coding of WBTC-D 
 
// Source code for Method WBTC-D 
// Program for Compression 
 
// Including header files 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaring constant 
 
#define MAX 65536  
 
// Declaration of functions 
void assign_filename(); 
int ascii(unsigned long); 
long int searchstr(char*); 
 
// Declarations of variables 
 
long int found; 
char dictionary[MAX][50]; 
unsigned int trackdictionary; 
char sfilename[50],tfilename[50]; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
 
void main() 
{ 
    char str[100]; 
    int pstr,i;   
    unsigned long value; 
    printf("\nEnter File Name : "); 
    scanf("%s",sfilename); 
// Assigning name for target file 
 
    assign_filename();  
 
// Compression begins here 
 
    bfin  = OpenInputBitFile(sfilename); 
    bfout = OpenOutputBitFile(tfilename); 
    pstr = 0; trackdictionary = 0; 
    while(1) 
    { 
        value = InputBits(bfin,8); 
        if(value == 0xffff) 
            break; 
// Forming the words by checking the read characters are ascii or not 
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        if(ascii(value)) 
        { 
            str[pstr++]=value; 
            continue; 
        } 
// Terminating the word 
 
        str[pstr]='\0'; 
// If length of word > 1 then processing for compression 
 
        if(pstr > 1) 
        { 
// Search the word in the dynamic dictionary 
 
            found = searchstr(str); 
// If found then writing the index value in the compressed file 
 
            if(found) 
            { 
                found--; 
                OutputBits(bfout,found+32768,16); 
            } 
// Else write the word as it is in the compressed file 
// and add the word to the dynamic dictionary 
 
            else 
            { 
                for(i=0;i<pstr;i++) 
                    OutputBits(bfout,str[i],8); 
                strcpy(dictionary[trackdictionary++],str); 
            } 
            pstr = 0; 
// Writing the non-ascii character in the compressed file. 
 
            OutputBits(bfout,value,8); 
        } 
// Else writing the character as it is in the compressed file. 
        else if(pstr == 1) 
        { 
            OutputBits(bfout,str[0],8); 
            pstr = 0; 
            OutputBits(bfout,value,8); 
        } 
// Writing the non-ascii character in the compressed file. 
        else 
            OutputBits(bfout,value,8); 
         
    } 
// Compressing the remaining words or characters left 
 
    str[pstr]='\0'; 
    if(pstr > 1) 
    { 
        found = searchstr(str); 
        if(found) 
        { 
            found--; 
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            OutputBits(bfout,found+32768,16); 
        } 
        else 
        { 
            for(i=0;i<pstr;i++) 
                OutputBits(bfout,str[i],8); 
            strcpy(dictionary[trackdictionary++],str); 
        } 
         
    } 
    else if(pstr == 1) 
        OutputBits(bfout,str[0],8); 
    printf("\nLength of dictionary = %ld",trackdictionary); 
} 
 
// Function for searching the string in the dynamic dictionary 
// Return 0 if not found, else return position of the word in  
// the dictionary. 
 
long int searchstr(char *str) 
{ 
    long int i,track = 0; 
    for(i=0;i<trackdictionary;i++) 
        if(strcmp(str,dictionary[i]) == 0) 
            break; 
    if(i!=trackdictionary) 
        return i+1; 
    else  
        return 0; 
 
} 
 
int ascii(unsigned long value) 
{ 
    if((value >='a' && value <='z') || (value >='A' && value <='Z')) 
        return 1; 
    else  
        return 0; 
} 
 
void assign_filename() 
{ 
    int len,i; 
    len = strlen(sfilename); 
    char tempfilename[50]; 
    for(i=0;i<len;i++) 
    { 
        if(sfilename[i]=='.') 
            break; 
        tempfilename[i] = sfilename[i]; 
    } 
    tempfilename[i] ='\0'; 
    strcpy(tfilename,tempfilename); 
    strcat(tfilename,"wbtcd.usb"); 
} 
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// Program for Decompression 
  
// Including header files 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaring constant 
 
#define MAX 65536 
 
// Declaration of functions 
 
void assign_filename(); 
int ascii(unsigned long); 
 
// Declaration of variables 
 
long int found; 
char dictionary[MAX][50]; 
unsigned int trackdictionary; 
char sfilename[50],tfilename[50]; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
 
void main() 
{ 
    char str[100]; 
    int pstr,i,len;    
    unsigned long value,anothervalue; 
    printf("\nEnter File Name : "); 
    scanf("%s",sfilename); 
// Assigning name for target file 
 
    assign_filename();  
 
// Decompression begins here 
 
    bfin  = OpenInputBitFile(sfilename); 
    bfout = OpenOutputBitFile(tfilename); 
    pstr = 0; trackdictionary = 0; 
    while(1) 
    { 
        value = InputBits(bfin,8); 
        if(value == 0xffff) 
            break; 
// Forming the words by checking the read characters are ascii or not 
 
        if(ascii(value)) 
        { 
            str[pstr++]=value; 
            continue; 
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        } 
        str[pstr]='\0'; 
// If length of the word is greater than 1, then adding 
// the word to the dynamic dictionary 
 
        if(pstr > 1) 
        { 
            for(i=0;i<pstr;i++) 
                OutputBits(bfout,str[i],8); 
            strcpy(dictionary[trackdictionary++],str); 
            pstr = 0; 
        } 
        else if(pstr == 1) 
        { 
            OutputBits(bfout,str[0],8); 
            pstr = 0; 
        } 
// If normal ascii character then write it as it is in the 
// compressed file. 
 
        if(value < 128) 
            OutputBits(bfout,value,8); 
        else 
        { 
// Read another byte to form 16-bit index value and retrieve 
// the word from that index position from the dictionary and  
// write it in the decompressed file. 
 
            anothervalue = InputBits(bfin,8); 
            value = value << 8; 
            value = value | anothervalue; 
            value -= 32768; 
            len = strlen(dictionary[value]); 
            for(i=0;i<len;i++) 
                OutputBits(bfout,dictionary[value][i],8); 
        } 
    } 
// Checking for last word any non-ascii symbol is not store at the end 
of file. 
    str[pstr]='\0'; 
    if(pstr > 1) 
    { 
        for(i=0;i<pstr;i++) 
            OutputBits(bfout,str[i],8); 
    } 
    else if(pstr == 1) 
        OutputBits(bfout,str[0],8); 
 
} 
 
// Checking the character is ascii or not. 
 
int ascii(unsigned long value) 
{ 
    if((value >='a' && value <='z') || (value >='A' && value <='Z')) 
        return 1; 
    else  
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        return 0; 
} 
 
// Assigning default file names for target file name 
void assign_filename() 
{ 
    int len,i; 
    len = strlen(sfilename); 
    char tempfilename[50]; 
    for(i=0;i<len;i++) 
    { 
        if(sfilename[i]=='.') 
            break; 
        tempfilename[i] = sfilename[i]; 
    } 
    tempfilename[i] ='\0'; 
    strcpy(tfilename,tempfilename); 
    strcat(tfilename,".out"); 
} 
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APPENDIX F – Coding of WBTC-E 
 
// Source code for Method WBTC-E 
// Program for Compression 
 
// Including header files 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
//Declaring constant 
 
#define MAX 200000 
 
//Declaration of functions 
 
void assign_filename(); 
void writeword(); 
int ascii(unsigned long); 
long int searchstr(char*); 
 
//Declaration of variables 
 
char dictionary[MAX][50];   
long count; 
long int trackdictionary; 
long int found; 
int maxlen; 
int pstr; 
char str[100]; 
int currentrow,newrow,column; 
char sfilename[50],tfilename[50]; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
 
void main(int argc, char *argv[]) 
{ 
 FILE *fptr; 
 long int value,i; 
 strcpy(sfilename,argv[1]); 
 
// Assigning name for target file 
  
 assign_filename();  
 
// Finding the size of the source file 
  
 fptr = fopen(sfilename,"rb"); 
 fseek(fptr,0L,2); 
 long lenoffile = ftell(fptr); 
 fclose(fptr); 
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//PROCESS FOR READING THE STATIC DICTIONARY 
 
 fptr = fopen("dictionary.dct","r"); 
 trackdictionary = 0; 
 fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count); 
 while(!feof(fptr)) 
 { 
  trackdictionary++; 
  fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count); 
 } 
 fclose(fptr); 
 
//Compression begins here 
 
 currentrow = 0; 
 pstr = 0;  
 bfin = OpenInputBitFile(sfilename); 
 bfout = OpenOutputBitFile(tfilename); 
 for(i=0;i<lenoffile;i++) 
 { 
  value = InputBits(bfin,8); 
// Forming the words by checking the read characters are ascii or not 
  
  if(ascii(value)) 
  { 
   str[pstr++]=value; 
   continue; 
  } 
// Terminating the word 
 
  str[pstr]='\0'; 
// If length of word > 2 then processing for compression 
 
  if(pstr > 2) 
  { 
   writeword(); 
   pstr = 0; 
  } 
// Else writing the word as it is in the compressed file. 
   
  else if(pstr == 1) 
  { 
   OutputBits(bfout,str[0],8); 
   pstr = 0; 
  } 
  else if(pstr == 2) 
  { 
   OutputBits(bfout,str[0],8); 
   OutputBits(bfout,str[1],8); 
   pstr = 0; 
  } 
// Writing the non-ascii character in the compressed file. 
 
  OutputBits(bfout,value,8); 
  pstr = 0; 
 } 
// Compressing the remaining words or characters left 
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 if(pstr > 2) 
 { 
  writeword(); 
  pstr = 0; 
 } 
 else if(pstr == 2) 
 { 
  OutputBits(bfout,str[0],8); 
  OutputBits(bfout,str[1],8); 
  pstr = 0; 
 } 
 else if(pstr == 1) 
 {   
  OutputBits(bfout,str[0],8); 
  pstr = 0; 
 } 
 CloseOutputBitFile(bfout); 
} 
 
void writeword() 
{ 
 
 int slen; 
 int j; 
 slen = strlen(str); 
// Searching the word in the static dictionary 
 
 found = searchstr(str); 
// If found then writing the index value in the compressed file 
  
 if(found) 
 { 
  found--; 
// If word is found in first 32000 positions i.e. words repeated in  
// each row write the position of the column in the compressed file. 
 
  if(found<32000) 
  { 
   column = found; 
   OutputBits(bfout,column+32768,16); 
  } 
// Check whether the word found is in the same row as that of previous  
// row 
 
  else 
  { 
   newrow = (found - 32000) / 511; 
   column = (found - 32000) % 511 ; 
// If yes then write the position of the column in the compressed file. 
 
   if(newrow == currentrow) 
    OutputBits(bfout,column+32768+32000,16); 
// Else write the escape symbol for change in row i.e. 255 (0xFF) 
// and write the new row number followed by the position of the column 
// in the compressed file. 
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   else 
   { 
    OutputBits(bfout,255,8); 
    OutputBits(bfout,newrow,8); 
    OutputBits(bfout,column+32768,16); 
    currentrow = newrow; 
   } 
  } 
 } 
// If word not found in the dictionary, then write it as it is in the 
// compressed file. 
 
 else 
 { 
  for(j=0;j<slen;j++) 
   OutputBits(bfout,str[j],8); 
 } 
} 
 
 
// Function for searching the string in the static dictionary 
// Return 0 if not found, else return position of the word in  
// the dictionary. 
 
long int searchstr(char *str) 
{ 
 long int i,track = 0; 
 for(i=0;i<trackdictionary;i++) 
  if(strcmp(str,dictionary[i]) == 0) 
   break; 
 if(i != trackdictionary) 
  return i+1; 
 else  
  return 0; 
 
} 
 
// Checking the character is ascii or not. 
 
int ascii(unsigned long value) 
{ 
 if((value >='a' && value <='z') || (value >='A' && value <='Z')) 
  return 1; 
 else  
  return 0; 
} 
 
// Assigning default file names for target file name 
 
void assign_filename() 
{ 
 int len,i; 
 len = strlen(sfilename); 
 char tempfilename[50]; 
 for(i=0;i<len;i++) 
 { 
  if(sfilename[i]=='.') 
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   break; 
  tempfilename[i] = sfilename[i]; 
 } 
 tempfilename[i] ='\0'; 
 strcpy(tfilename,tempfilename); 
 strcat(tfilename,"wbtce.usb"); 
} 
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// Source Code for Method WBTC-E 
// Program for Decompression 
 
// Including header files 
 
#include<stdio.h> 
#include<conio.h> 
#include<stdlib.h> 
#include<math.h> 
#include<string.h> 
#include"bitio.h" 
#include"bitio.c" 
 
// Declaring constant 
 
#define MAX 200000 
 
// Declaration of funciton 
 
void assign_filename(); 
 
// Declaration of variables 
 
long int found; 
char dictionary[MAX][50]; 
unsigned int trackdictionary; 
int position; 
int pstr; 
char str[100]; 
int row,column,index; 
long int count; 
char sfilename[50],tfilename[50]; 
BIT_FILE *bfin; 
BIT_FILE *bfout; 
 
void main() 
{ 
    FILE *fptr; 
    int i;   
    long int value,anothervalue,j; 
    printf("\nEnter File Name : "); 
    scanf("%s",sfilename); 
// Assigning name for target file 
 
    assign_filename();  
 
// Finding the size of the compressed file. 
     
    fptr = fopen(sfilename,"rb"); 
    fseek(fptr,0L,2); 
    long lenoffile = ftell(fptr); 
    fclose(fptr); 
 
// Reading the static dictionary 
 
    fptr = fopen("dictionary.dct","r"); 
    trackdictionary = 0; 
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    fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count); 
    while(!feof(fptr)) 
    { 
        trackdictionary++; 
        fscanf(fptr,"%s %ld",dictionary[trackdictionary],&count); 
    } 
    fclose(fptr); 
 
// Decompression begins here 
 
    bfin = OpenInputBitFile(sfilename); 
    bfout = OpenOutputBitFile(tfilename); 
    row = 0; 
    for(j=0;j<lenoffile;j++) 
    { 
        value = InputBits(bfin,8); 
// If normal ascii character then write as it is in the  
// decompressed file. 
        if(value<128) 
            OutputBits(bfout,value,8); 
        else 
        {    
// If change in row then read the new row number and  
// column number and compute the position of the word in the  
// dictionary and retrieve the word from the dictionary. 
            if(value == 255) 
            {  
                row = InputBits(bfin,8); 
                j++; 
                value = InputBits(bfin,16); 
                j+=2; 
                value -= 32768; 
                position = (row * 511) +32000+ value ; 
                for(i=0;i<strlen(dictionary[position]);i++) 
                    OutputBits(bfout,dictionary[position][i],8);                 
            } 
            else 
            { 
                anothervalue = InputBits(bfin,8); 
                j++; 
                value = value << 8; 
                value = value | anothervalue; 
                value -= 32768; 
                if(value < 32000) 
                    for(i=0;i<strlen(dictionary[value]);i++) 
                        OutputBits(bfout,dictionary[value][i],8); 
                else 
                { 
                    value -= 32000; 
                    position = (row * 511) + 32000 + value ; 
                    for(i=0;i<strlen(dictionary[position]);i++) 
                        OutputBits(bfout,dictionary[position][i],8); 
                } 
            } 
 
        } 
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    } 
    CloseOutputBitFile(bfout); 
    CloseInputBitFile(bfin); 
} 
 
void assign_filename() 
{ 
    int len,i; 
    len = strlen(sfilename); 
    char tempfilename[50]; 
    for(i=0;i<len;i++) 
    { 
        if(sfilename[i]=='.') 
            break; 
        tempfilename[i] = sfilename[i]; 
    } 
    tempfilename[i] ='\0'; 
    strcpy(tfilename,tempfilename); 
    strcat(tfilename,".out"); 
} 
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APPENDIX G – Coding of Searching Phrase 
 
//  Source code for Searching 
// Program for Searchin using KMP, K-R and B-F Algorithms 
 
// Including header files 
#include<stdio.h> 
#include<conio.h> 
#include<string.h> 
#include<time.h> 
#include<dos.h> 
 
#include "bitio.h" 
#include "bitio.c" 
 
// Declaring constants 
 
#define XSIZE 20000 // Knuth Morris Pratt   
#define REHASH(a,b,h) (((h-a*d)<<1)+b)   // Karp Rabin 
 
// Declaration of functions 
 
void prekmp(char *x, long int m, int next[]); // Knuth Morris Pratt 
int kmp(char*,char*,long int,long int); // Knuth Morris Pratt 
int bruteforce(char*,char*,long int,long int);  // Brute Force 
int kr(char*,char*,long int,long int); // Karp Rabin 
long int readNsourcefile(char*); 
long int readNpatternfile(char*); 
long int krmatch,kmpmatch,bfmatch; 
 
// Declaration of variables 
 
int count; 
char y[5000000]; 
char x[2000]; 
long int krnoofcomp,kmpnoofcomp,bfnoofcomp; 
 
void main() 
{ 
 long int xlen,found; 
 char sfile[50]; 
 char pfile[50]; 
 long int ylen; 
  FILE *fptr; 
 char che; 
 printf("\nEnter source file name :"); 
 scanf("%s",sfile); 
 printf("Enter pattern to be searched (file name) : "); 
 scanf("%s",pfile); 
 
// Read the source and the pattern file. 
 
 ylen = readNsourcefile(sfile); 
 xlen = readNpatternfile(pfile); 
 
 fptr = fopen("Statistics41.txt","a"); 
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// Searching using KR Algorithm 
 
 found = kr(x,y,xlen,ylen); 
 if(krmatch) 
  printf("\n KR Number of occurences  %d ",krmatch); 
 else 
  printf("\nKR String Not found "); 
 printf("\nNo of comparison : %ld",krnoofcomp); 
 
// Searching using KMP Algorithm 
 
 found = kmp(x,y,xlen,ylen); 
 if(kmpmatch) 
  printf("\n KMP Number of occurences  %d ",kmpmatch); 
 else 
  printf("\nKMP String Not found "); 
 printf("\nNo of comparison : %ld",kmpnoofcomp); 
 
// Searching using BF Algorithm 
 
 found = bruteforce(x,y,xlen,ylen); 
 if(bfmatch) 
  printf("\n BF Number of occurences  %d ",bfmatch); 
 else 
  printf("\nBF String Not found "); 
 printf("\nNo of comparison : %ld",bfnoofcomp); 
 
// Storing Statistics of searching in file 
  
 printf("\nStore statistics in file  Y/N ? : "); 
 che = getche(); 
 if(che =='y' || che == 'Y') 
 { 
  printf("\nSearching from Normal file ? (y/n) : "); 
  che = getche(); 
  
  if(che == 'y' || che == 'Y') 
  { 
   fprintf(fptr,"\n\nFILE NAME: %s and pattern to search 
: %s",sfile,x); 
   fprintf(fptr,"\nNormal Searching ............\n"); 
  } 
  else 
   fprintf(fptr,"\nCompressed Searching.........\n"); 
  if(krmatch) 
   fprintf(fptr,"\nKR Number of occurences  %d 
",krmatch); 
  else 
   fprintf(fptr,"\nKR Not Found "); 
  if(kmpmatch) 
   fprintf(fptr,"\nKMP Number of occurences  %d 
",kmpmatch); 
  else 
   fprintf(fptr,"\nKMP Not Found "); 
   if(bfmatch) 



 264

   fprintf(fptr,"\nBF Number of occurences  %d 
",bfmatch); 
  else 
   fprintf(fptr,"\nBF Not Found "); 
   fclose(fptr); 
 } 
} 
 
// Reading source file. 
long int readNsourcefile(char *sfile) 
{ 
 unsigned long int size=0; 
 BIT_FILE *fin; 
 fin = OpenInputBitFile(sfile); 
 unsigned long read; 
 int readbits = 8; 
 while(1) 
 { 
  read = InputBits(fin,readbits); 
  if(read==0xffff) 
   break; 
  y[size++] = read; 
 } 
 return size; 
} 
 
// Reading pattern file 
long int readNpatternfile(char *sfile) 
{ 
 unsigned long int size=0; 
 BIT_FILE *fin; 
 fin = OpenInputBitFile(sfile); 
 unsigned long read; 
 int readbits = 8; 
 while(1) 
 { 
  read = InputBits(fin,readbits); 
  if(read==0xffff) 
   break; 
  x[size++] = read; 
 } 
 return size; 
} 
 
// KR Algorithm 
int kr(char *x,char *y,long int m,long int n) 
{ 
 long int hy,hx,d,i; 
 count = 0; 
 krnoofcomp = 0; 
 krmatch = 0; 
 d = 1; 
 for(i=1;i<m;i++) 
  d = (d<<1); 
 hx=hy=0; 
 for(i=0;i<m;i++) 
 { 
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  hx = ((hx<<1)+x[i]); 
  hy=((hy<<1)+y[i]); 
 } 
 i=m; 
 while (i < n) 
 { 
  krnoofcomp++; 
  if(hy == hx && strncmp(y+i-m,x,m) ==0) 
  { 
   krmatch++; 
   krnoofcomp+=2; 
  } 
  hy = REHASH(y[i-m],y[i],hy); 
  i++; 
  count++; 
 } 
 return 0; 
} 
 
 
 
//KMP Algorithm 
int kmp(char *x,char *y,long int m,long int n) 
{ 
 long int i,j; 
 kmpmatch=0; 
 int next[XSIZE]; 
 prekmp(x,m,next); 
 i=j=0; 
 count = 0; 
 kmpnoofcomp = 0; 
 while(i < n) 
 { 
  kmpnoofcomp++; 
  while(j > -1 && x[j] != y[i]) 
  { 
   j = next[j]; 
   kmpnoofcomp++; 
  } 
  i++; 
  j++; 
  if(j >= m) 
  { 
   j = next[m]; 
   kmpmatch++; 
   } 
  count++; 
 } 
 return 0; 
} 
 
void prekmp(char *x, long int m, int next[]) 
{ 
 long int i,j; 
 i=0;j=next[0] = -1; 
 while(i < m) 
 { 
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  while(j> -1 && x[i] != x[j]) j = next[j]; 
  i++;j++; 
  if(x[i] == x[j] ) 
   next[i] = next[j]; 
  else 
   next[i] = j; 
 } 
} 
 
// BF Algorithm 
int bruteforce(char *x,char *y,long int m,long int n) 
{ 
 long int i,j; 
 i=0; 
 count = 0; 
 bfnoofcomp = 0; 
 bfmatch = 0; 
 while (i <= n-m) 
 { 
  bfnoofcomp++; 
  j=0; 
  while(j < m && y[i+j] == x[j])  
  { 
   j++; 
   bfnoofcomp++; 
  } 
  if( j >= m)  
   bfmatch++; 
   //return i; 
  i++; 
  count++; 
 } 
 return 0; 
} 
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// Source code for Searching 
// Program for Searchin using BM and QS Algorithm 
 
// Including header files 
 
#include<stdio.h> 
#include<conio.h> 
#include<string.h> 
#include<time.h> 
#include<dos.h> 
#include "bitio.h" 
#include "bitio.c" 
 
// Declaring constants 
 
#define XSIZE 50000   // Boyer Moore 
#define ASIZE 50000         // Boyer Moore 
#define MAX(x,y) x>y?x:y   // Boyer Moore 
 
// Declaration of functions 
 
void prebc(unsigned long *x, int m, int bc[]); // Boyer Moore 
void pregs(unsigned long *x, int m, int gs[]); // Boyer Moore 
int bm(unsigned long*,unsigned long*,int,long int);          // Boyer 
Moore 
int qs(unsigned long *,unsigned long *,int,long int); // Quick Search  
long int readNsourcefile(char*); 
long int readNpatternfile(char*); 
 
// Declaration of variables 
 
int count; 
long int bmmatch,qsmatch; 
unsigned long  y[5000000]; 
unsigned long  x[2000]; 
long int bmnoofcomp,qsnoofcomp; 
 
void main() 
{ 
 long int xlen,found; 
 char sfile[50]; 
 char pfile[50]; 
 long int ylen; 
 double bmttime,qsttime; 
 FILE *fptr; 
 char che; 
 
 printf("\nEnter source file name :"); 
 scanf("%s",sfile); 
 printf("Enter pattern to be searched (file name) : "); 
 scanf("%s",pfile); 
 
// Read the source and the pattern file. 
 
 ylen = readNsourcefile(sfile); 
 xlen = readNpatternfile(pfile); 
 printf("\nLength of Y =%d",ylen); 
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 printf("\nLength of X = %d \n",xlen); 
 
 fptr = fopen("Statbmqs41.txt","a"); 
 
// Searching using Boyer-Moore Algorithm 
 found = bm(x,y,xlen,ylen); 
 if(bmmatch) 
  printf("\n BM Number of occurences  %d ",bmmatch); 
 else 
  printf("\nBM String Not found "); 
 printf("\nNo of comparison : %ld",bmnoofcomp); 
 
// Searching using Quick Search Algorithm 
 start = clock(); 
 found = qs(x,y,xlen,ylen); 
 end = clock(); 
 if(qsmatch) 
  printf("\n QS Number of occurences  %d ",qsmatch); 
 else 
  printf("\nQS String Not found "); 
 printf("\nNo of comparison : %ld",qsnoofcomp); 
 
// Storing Statistics of searching in file 
 
 printf("\nStore statistics in file  Y/N ? : "); 
 che = getche(); 
 if(che =='y' || che == 'Y') 
 { 
  printf("\nSearching from Normal file ? (y/n) : "); 
  che = getche(); 
  
  if(che == 'y' || che == 'Y') 
  { 
   fprintf(fptr,"\n\nFILE NAME: %s and pattern to search 
: %s",sfile,x); 
   fprintf(fptr,"\nNormal Searching ............\n"); 
  } 
  else 
   fprintf(fptr,"\n\nCompressed Searching.........\n"); 
  if(bmmatch) 
  { 
   fprintf(fptr,"\nBM Number of occurences  %d 
",bmmatch); 
   fprintf(fptr,"\nNo of comparison : %ld",bmnoofcomp); 
  } 
  else 
   fprintf(fptr,"\nBM Not Found "); 
  if(qsmatch) 
  { 
   fprintf(fptr,"\nQS Number of occurences  %d 
",qsmatch); 
   fprintf(fptr,"\nNo of comparison : %ld",qsnoofcomp); 
  } 
  else 
   fprintf(fptr,"\nQS Not Found "); 
  fclose(fptr); 
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 } 
} 
 
 
// Reading source file. 
long int readNsourcefile(char *sfile) 
{ 
 unsigned long int size=0; 
 BIT_FILE *fin; 
 fin = OpenInputBitFile(sfile); 
 unsigned long read; 
 int readbits = 8; 
 while(1) 
 { 
  read = InputBits(fin,readbits); 
  if(read==0xffff) 
   break; 
  y[size++] = read; 
 } 
 return size; 
} 
 
// Reading pattern file 
long int readNpatternfile(char *sfile) 
{ 
 unsigned long int size=0; 
 BIT_FILE *fin; 
 fin = OpenInputBitFile(sfile); 
 unsigned long read; 
 int readbits = 8; 
 while(1) 
 { 
  read = InputBits(fin,readbits); 
  if(read==0xffff) 
   break; 
  x[size++] = read; 
 } 
 return size; 
} 
 
// B-M Algorithm 
 
int bm(unsigned long *x,unsigned long *y,int m,long int n) 
{ 
 long int i,j; 
 int gs[XSIZE],bc[ASIZE]; 
 
 pregs(x,m,gs); 
 prebc(x,m,bc); 
 bmnoofcomp = 0; 
 bmmatch = 0; 
 i=0; 
 while(i <= n-m) 
 { 
  j = m-1; 
  bmnoofcomp++; 
  while (j>=0 && x[j] == y[i+j]) 
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  { 
   j--; 
   bmnoofcomp++; 
  } 
  if(j < 0) 
   bmmatch++; 
  i+=MAX(gs[j+1],bc[y[i+j]]-m+j+1); 
 } 
 return 0; 
} 
 
void prebc(unsigned long *x, int m, int bc[]) 
{ 
 int j; 
 for(j=0;j < ASIZE; j++) 
  bc[j] = m; 
 for(j=0;j< m-1; j++ ) 
  bc[x[j]] = m-j-1; 
 
} 
 
void pregs(unsigned long *x, int m, int gs[]) 
{ 
 int i,j,p,f[XSIZE]; 
 for(i=0;i<=m;i++) 
  gs[i] = 0; 
 f[m] = j = m+1; 
 for(i=m; i> 0; i--) 
 { 
  while(j <= m && x[i-1] != x[j-1]) 
  { 
   if(!gs[j]) gs[j] = j-i; 
   j = f[j]; 
  } 
  f[i-1] = --j; 
 } 
 p = f[0]; 
 for(j=0;j<=m;j++) 
 { 
  if(!gs[j]) gs[j] = p; 
  if( j == p) p = f[p]; 
 } 
} 
 
// Q-S Algorithm 
 
int qs(unsigned long *x,unsigned long  *y,int m,long int n) 
{ 
 long int i,j; 
 int bc[ASIZE]; 
 // Preprocessing 
 for(j=0;j<ASIZE;j++) bc[j] = m; 
 for(j=0;j< m ;j++) bc[x[j]] = m-j-1; 
 qsnoofcomp=0; 
 qsmatch = 0; 
 i=0; 
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 while (i <= n-m) 
 { 
  j=0; 
  qsnoofcomp++; 
  while(j < m && x[j] == y[i+j]) 
  { 
   j++; 
   qsnoofcomp++; 
  } 
  if(j>=m) 
   qsmatch++; 
  i+=bc[y[i+m]]+1; 
 } 
 return 0; 
} 
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