NOMENCLATURES

 A_1 = Impeller inlet area $A_2 =$ Impeller outlet area AF = Airfoil backward curved $A_s = Area of shroud$ $A_v =$ Area of volute throat BC = Backward curved BI = Backward inclined b_1 = Impeller inlet blade width b_{1max} = Maximum width at impeller inlet b_2 = Impeller outlet blade width $b_3 =$ Volute width C_D = Discharge coefficient ≈ 0.5 cfm = Flow rate in cubic feet per minute d_1 = Blade inside diameter $d_{1\min}$ = Minimum impeller inlet diameter d_2 = Impeller outside diameter or wheel diameter d_3 = Volute tongue diameter $d_{eye} = d_S = Eye$ or shroud diameter FC = Forward curved FRP = Fiberglass reinforced plastic. $f = Friction factor \approx 0.005$ g = Gravitational constant HVAC = Heating Ventilating and Air Conditioning Applications H_{ideal} = Ideal head according to Euler equation H = Equivalent head $K_i = Loss factor \approx 0.5$ to $0.8 \approx 0.15$ to 0.25 $K_{ii} = Loss \text{ factor} \approx 0.2-0.3 \text{ (for BC, BI design)}$ $K_{iii} = Loss factor \approx 0.4$ (at design point) N_{S} = Specific speed N = blower speed in RPM P_{S} = Static pressure ΔP_{entry} = Pressure loss at impeller entry $\Delta P_{\text{passage}}$ = Pressure loss in impeller blade passages ΔP_{casing} = Pressure loss in casing due to turbulence and friction $p = P_{St} = Fan$ total pressure P_r = Pressure ratio ΔP_{total} = Total pressure loss P_{disc} = Power loss due to disc friction P = Power required to run the blowerQ = Volume flow rate Q_L = Leakage across impeller inlet and casing Q_v = Volute exit flow rate RT = Radial tipped

RB = Radial blade $r_2 =$ Impeller outlet radius $r_3 =$ Volute tongue radius r_{θ} = Volute radius at various angles from tongue RPM = Revolutions per minute R = Gas constant = 287T = Temperature U_1 = Blade peripheral velocity at inlet U_2 = Outlet blade velocity V_1 = Absolute velocity at impeller inlet V_2 = Absolute velocity at impeller outlet V_2 = Actual absolute exit velocity V_3 = Average volute velocity V_{eve} = Velocity at impeller eye $V_{m1} = V_{r1}$ = Meridional velocity component at inlet $V_{m2} = V_{r2}$ = Meridional velocity component at outlet V_{r2} = Radial component of outlet velocity V_{u2} = Tangential component of outlet velocity V_{u2} ' = Actual exit velocity peripheral component due to slip WC = Head of water column W_1 = Relative velocity at impeller inlet W_2 = Relative velocity at impeller outlet W_2 = Actual relative velocity Z = Number of blades α_2 = Actual air exit angle β_1 = Blade angle at impeller inlet β_2 = Blade angle at impeller outlet β_2 = Actual blade exit angle 2δ = Volute taper angle δ = Radial clearance between impeller inlet and casing $\rho = Air density$ τ = Torque due to disk friction $\omega = Rotational velocity$ $\mu =$ Slip factor η_t = Total efficiency η_v = Volumetric efficiency η_h = Hydraulic efficiency ϕ = Flow coefficient ψ = Head coefficient ε = Diameter ratio C_{limit} = Limiting diameter ratio γ = Ratio of specific heats = 1.4