LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.1	Welding Technology (a) Friction stir welding (FSW) process (b) Metal inert gas welding	2
1.2	Capability of Friction Stir Welding, TWI	3
1.3	Illustration of tool types in FSW. (a) Single sided shoulder – CFSW, (b) Double sided shoulder- BFSW.	5
1.4	Relationships among commonly used alloys in the 6xxx series (Al-Mg-Si)	7
2.1	FSW setup (a) The illustration of FSW process,	9
	(b) Schematic Diagram of Material Constraints	
2.2	Friction Stir Welding process steps	10
2.3	Typical exit holes and run-outs produced when the Tool is removed from the Material	11
2.4	Bobbin Tools. (a) Fixed gap, (b) Floating, (c) AdAPT	12
2.5	Cause and effect diagram for FSW process	14
2.6	Weld quality as function of feed ratio. FSW of AA6061, thickness of 8 mm	15
2.7	Setting the Al plates in Universal Milling Machine	16
2.8	Clamping of plates using workshop clamps	17
2.9	Fabrication of fixture using welding technique	17
2.10	Fixture with horizontal movement restricted in X-direction and vertical clamping at edge	17
2.11	FSW tool for CFSW (a) Threaded tapered pin with a concave shoulder (b) Threaded, tapered with three flutes pin and scrolled shoulder	18
2.12	Three incompressible flow fields: (a) rigid body rotation, (b) uniform translation, c) ring vortex, d) combination of the three flow fields	21

2.13	Metallurgical processing zones developed during friction stir joining	22
2.14	Shoulder feature cross sections (a) Flat (b) Concave (c) Convex.	23
2.15	Convex scroll shoulder	24
2.16	Different design of shoulder features (a) scrolls (b) knurling (c) ridges (d) groove (e) concentric	25
2.17	Fillet and Chamfered tool shoulder.	25
2.18	Commonly used tool pin designs (a) round bottom, (b) flat bottom, (c) truncated cone	27
2.19	Image of CFSW tools (a) Tapered thread cylindrical pin(b) Straight Cylinder (c) Threaded cylindrical pin(d) Tapered cylindrical pin	29
2.20	Dimensions of the tool pin profiles: straight cylindrical (STC), taper cylindrical (TAC), straight threaded cylindrical (THC) and taper threaded cylindrical (TTC)	30
2.21	FSW tools with regular and round spiral threads	31
2.22	CFSW pin tool (a) Straight cylinder (b) Threaded cylinder (c) Tapered cylinder (d) Square (e) Triangle	31
2.23	Tools with different amount of flat faces	33
2.24	The tool pin shapes and their main features for CFSW	34
2.25	Ratio of pin and shoulder diameter: (a) Pin (Probe) diameter versus Shoulder diameter, (b) thickness versus shoulder and pin diameters.	35
2.26	BFSW tool used by Threadgill et al.to weld 25 mm thick, AA6082-T6 Aluminium Alloy.	38
2.27	FSW macrostructural cross section of 6082-T6Alluminium alloy in butt joint welded form, (a) CFSW (b) BFSW	40
2.28	Variations in BFSW weld nugget zone as the tool rotation is increased, (a) curve form (b) flatten form (c) nugget bulge	41
2.29	Temperature distribution adjacent to a CFSW in 7075Al- T651	42
2.30	Grain size distribution for CFSW in various location of	42

7050 Aluminium

2.31	Effect of the FSW on the aluminium matrix grain size: (a) base material and (b) nugget in the FSW zone.	43
2.32	Longitudinal residual stress distribution in FSW 6013Al-T4 welds determined by different measurement methods	44
2.33	Hardness profile in 6056 Aluminium Alloy as welded condition, (a) T8 (b) T6 (c) T4	47
2.34	Hardness along the mid-thickness of the joints at different rotational speed	49
2.35	Macrostructures identification of defects in FSW	50
2.36	Backing plate contamination	51
2.37	E-pH corrosion (Pourbaix) diagram of aluminium in the presence of water at 25°C, showing regions of immunity, passivation and corrosion	55
2.38	Mechanism of pitting corrosion of aluminium alloys	56
2.39	Cross section of pitting attack on AA6082 aluminium alloy after exposure to marine atmosphere for 6 months. The dark spots are intermetallic particles	57
2.40	An example of severe pitting attack in HAZ of FSW AA7075-T651, with attack at the precipitate-free zone following immersion testing in 3.5 wt.% NaCl solution	57
2.41	Schematic diagram showing the role of the copper depleted zone in IGC	58
2.42	Initial stages of IGC in the HAZ of FSW AA7075-T651, with attack at the precipitate-free zone	59
2.43	An example of exfoliation corrosion on the surface of an Al-Li alloy following an immersion test of 96h in EXCO solution	60
2.44	Corrosion attack on CFSW of 7075Al-T651 Al [109] (a) 1 day. (b) 2 days (c) 3 days.	63
2.45	The infrared bands in the electromagnetic spectrum	64
2.46	Herschel's first experiment: A, B – the small stand, 1, 2, 3 – the thermometers upon it, C, D – the prism at the window, E – the spectrum thrown upon the table, so as to bring the last quarter of an inch of the red colour upon the stand. Inside	65

	Sir Frederick William Herschel (1738–1822) measures infrared light from the sun	
2.47	Simulated thermographic image during FSW	68
2.48	Thermal field at FSW, seen on the infrared image	68
2.49	Temperature chart for Cu 99, 5mm thickness	69
2.50	Cause and effect diagram for proposed work	71
3.1	Analysis of AA 6101 T6 Alloy (a) EDS Curve for AA 6101 T6 Alloy (b) Image for Base metal	77
3.2	Analysis of AA 6082 T6 Alloy (a) EDS Curve for AA 6082 T6 Alloy (b) Image for Base metal	77
3.3	Different types of vice used in conventional machining process.	79
3.4	(a) Plates without clamping, (b) Clamping in the vice	80
3.5	Clamping the plates from top for FSW	81
3.6	Photograph of Fixture with top clamping	81
3.7	Opening of the Butt groove	82
3.8	Clamping of plates from top and side with backing bar	82
3.9	Isometric view of complete fixture assembly	83
3.10	2-D view of Jig type Fixture assembly	84
3.11	Fixture clamp support-1	86
3.12	Fixture clamp support-2	87
3.13	Fixture top clamping plate	88
3.14	Fixture side clamping plate	88
3.15	Fixture assembly for BFSW	89
3.16	3D view of Jig type fixture for Bobbin FSW	90
3.17	Tool features adopted for CFSW	93
3.18	The EDS (Energy Dispersive Spectroscopy) analysis	96
3.19	Tool geometry used for the friction stir welding of AA 6101 T6 alloy Hexagonal pin profile with concave shoulder (C1)	98
3.20	Tool geometry used for the friction stir welding of AA 6101 T6 alloy - Square pin profile with flat shoulder (C2)	99

3.21	Tool square pin and shoulder with semicircular ring at the edge (C3)	100
3.22	Tool geometry used for the friction stir welding of AA 6082 T6 alloy square pin and concave shoulder (C4)	101
3.23	Tool features adopted for BFSW	103
3.24	Fixed gap bobbin tool with square pin, concave-convex shoulder	104
3.25	Fixed gap bobbin tool having square pin, both convex shoulder	105
3.26	Experimental set up developed in-house for experiment	106
3.27	Bobbin Friction Stir Welding setup	106
3.28	Tensile test (a) U.T.S. Machine (b) Dimension of the tensile test specimen	114
3.29	Experimental set up for the Bend test (a) Before Bend test (b) After Bend test	115
3.30	Hardness tester	115
3.31	Figure showing the schematic view of indenter & indentation.	116
3.32	Digital Electrical Conductivity meter.	117
3.33	Belt Grinding machine for initial grinding of samples	118
3.34	Polishing machines (a) Alumina polishing (b) Diamond paste polishing	118
3.35	Scanning Electron Microscope (model: JEOL JSM 5610 LV)	119
3.36	Negative hysteresis	120
3.37	Positive hysteresis	120
3.38	Flow sheet of cyclic polarization test procedure.	122
3.39	Test set up used in cyclic polarization test	122
3.40	Cell used in cyclic polarization test	123
3.41	Schematic diagram of cell used in cyclic polarization	123
3.42	Infrared Thermal Imager Used For Thermography (NEC, Japan)	126

3.43	IR Thermal imaging camera (FLIR make)	127
4.1	Sample welded with first fixture	130
4.2	Bottom surface of the plates welded	131
4.3	Plates welded with new jig type fixture	132
4.4	Welding of plates using workshop clamping through BFSW	133
4.5	Fixture for bobbin friction stir welding (BFSW fixture)	134
4.6	Image of sample welded with convex shoulder square pin bobbin tool with new BFSW fixture	134
4.7	The Tensile test specimen after test - welded by hexagonal tool pin profile	137
4.8	The Tensile test specimen after test - welded by square tool pin profile	137
4.9	Face Bend test specimen welded by hexagonal tool pin profile after Testing.	138
4.10	Face Bend test specimen welded by square tool pin profile after Testing	139
4.11	Brinell hardness profile	140
to		to
4.23		152
4.24	Failure of cylindrical bobbin tool during welding	154
4.25	Top and bottom surface of sample, welded at 800 rpm and 600 rpm tool rotational speed and 48mm/min traversing speed with bobbin tool BT1	154
4.26	Plates welded with convex shoulder, square pin bobbin tool BT2 at 1000 rpm rotational speed and 24 mm/min	155
	traversing speed.	
4.27	traversing speed. Plates welded with convex shoulder, square pin bobbin tool BT2 at 800rpm rotational speed and 24mm/min traversing speed.	156
4.27 4.28 to 4.66	Plates welded with convex shoulder, square pin bobbin tool BT2 at 800rpm rotational speed and 24mm/min traversing	156 157 to 207

4.70		213
4.71	Electrical conductivity test of samples welded by Hexagonal pin tool	215
4.72	Electrical conductivity test of samples welded by Square pin tool	215
4.73	Cyclic polarization curve for base metal in 3.5% NaCl.	217
4.74	Effect of welding speed on corrosion at rotational speed of 545 rpm at TMAZ	218
4.75	Effect of welding speed on corrosion at rotational speed of 765 rpm at TMAZ	219
4.76	Effect of welding speed on corrosion at rotational speed of 1070 rpm at TMAZ	220
4.77	Effect of welding speed on corrosion at rotational speed of 545 rpm at HAZ	221
4.78	Effect of welding speed on corrosion at rotational speed of 765 rpm at HAZ	222
4.79	Effect of welding speed on corrosion at rotational speed of 1070 rpm at HAZ	223
4.80	Effect of rotational speed on corrosion at 50mm/min welding speed at TMAZ	224
4.81	Effect of rotational speed on corrosion at 78mm/min welding speed at TMAZ	224
4.82	Effect of rotational speed on corrosion at 120mm/min welding speed at TMAZ	225
4.83	Effect of rotational speed on corrosion at 50mm/min welding speed at HAZ	226
4.84	Effect of rotational speed on corrosion at 78mm/min welding speed at HAZ	227
4.85	Effect of rotational speed on corrosion at 120mm/min welding speed at HAZ	227
4.86	Microstructure of AA 6082 T6 alloy welded with fixed gap bobbin tool BT2 at 1000 rpm spindle speed and 24 mm/min traversing speed (At 100X magnification at different zones)	229
4.87	Microstructure of AA 6082 T6 alloy welded with fixed gap	229

	bobbin tool BT2 at 800 rpm spindle speed and 24 mm/min traversing speed (At 100X (upper) and 200X (lower) magnification)	
4.88	Image of sample welded by BFSW at 1000rpm and 24mm/min (as polished)	230
4.89	Image of sample welded by BFSW at 800rpm and 24mm/min (as polished)	230
4.90	IR image for welding AA6082 T6 alloy with spindle speed 600 rpm and welding speed 48mm/min, (BT1)	231
4.91	IR image for welding AA6082 T6 alloy with spindle speed 800 rpm and welding speed 24 mm/min, (BT2)	232
4.92	IR image for BFSW of AA6082 T6 alloy with spindle speed 1000 rpm and welding speed 24 mm/min, (BT2)	233
4.93	IR image for CFSW of AA6082 T6 alloy with spindle speed 1000 rpm and welding speed 48 mm/min, (C4)	234