LIST OF FIGURES

Figure	Title	Page
2.1	ype of waste generates in steel plant	12
2.2	Types of solid wastes generated in an integrated steel plan	13
2.3	TGA () and DTG (), of carbonization of coal and coal/iron oxide mixtures, A - coal; B - Coal + $Fe_3O_4(30 \text{ wt} \text{ pct})$; C - Coal + $Fe_2O_3(30 \text{ wt pct})$.	44
2.4	Block diagram of various steelmaking process routes	56
3.1	Vertical Sieve Shaker	62
3.2	Laboratory Ball Mill	63
3.3	XRF- 800	64
3.4	Laboratory Air Classifier	66
3.5	Schematic of Hydraulic Classifier	67
3.6	Laboratory Hydro-cyclone	67
3.7	Laboratory Wilfley Table	68
3.8	Actions in Flowing Particles	69
3.9	SEM micrographs of JSW Dust, JSW Sludge and VIZAG Sludge sample	72
3.10	XRD Analysis of JSW Dust (Original Sample)	74
3.11	XRD Analysis of JSW Sludge (Original Sample)	75
3.11A	Schematic diagram of single stage beneficiation	77
3.12	Results of various beneficiation processes for JSW Dust	81
3.13	Results of various beneficiation processes for JSW Sludge	81
3.14	Results of various beneficiation processes for VIZAG Sludge	81
3.15	Fe(T)% after various beneficiation processes for JSW Dust	82

3.16	Fe(T)% after various beneficiation processes for JSW Sludge	82
3.17	Fe(T)% after various beneficiation processes for VIZAG Sludge	83
3.18	Flow diagram two stage beneficiation for upgradation of dust/sludge	84
3.19	Fe(T)% after two stage beneficiation for all the waste	86
4.1	Cause-effect diagram for the pellet strength and shatter index	97
4.2	Individual plot for briquette strength	102
4.3	Individual plot for shatter index	103
4.4(a)	Interaction plot for briquette strength due to molasses	103
4.4(b)	Interaction plot for briquette strength due to starch	104
4.5(a)	Interaction plot for shatter index due to molasses	105
4.5(b)	Interaction plot for shatter index due to starch	105
4.6	Individual plot of signal to noise ratio for strength	106
4.7	Individual plot of Signal to Noise for shatter index	107
4.8	Interaction plot of Signal to Noise ratio for briquette strength	108
4.9	Interaction plot of Signal to Noiseratio for shatter index	108
4.10	Interaction plot for strength	111
4.11	Interaction plot for shatter Index	112
4.12	corn starch, waste concentrate and coal particles	114
4.13	Bonding mechanism of corn starch	114
4.14	Corn starch-molasses bonding. a) concentrate particle and coal particle coated with molasses, b) corn starch thoroughly spade on the particles, and c) solid bridge formation connecting particles	115

4.15	Flow diagram of composite pellet making	118
4.16	Experimental set-up for isothermal reduction of composite pellets	120
4.17	Ceramic boat for samples of reducibility studies	121
4.18	Reduction curve for JSW Dust at 950°C	123
4.19	Reduction curve for JSW Dust at 1000 ⁰ C	124
4.20	Reduction curve for JSW Dust at 1050 ⁰ C	125
4.21	Reduction curves at various temperatures for JSW Dust composite	126
4.22	Arrhenius plot for JSW Dust composite	126
4.23	Reduction curve for JSW Sludge composite at 950° C	127
4.24	Reduction curve for JSW Sludge composite at 1000^0 C	128
4.25	Reduction curve for JSW Sludge composite at 1050^0 C	129
4.26	Reduction curves at various temperatures for JSW Sludge composite	130
4.27	Arrhenius plot for JSW Sludge composite	131
4.28	Reduction curve for VIZAG Sludge composite at 950^0 C	132
4.29	Reduction curve for VIZAG Sludge composite at 1000^0 C	133
4.30	Reduction curve for VIZAG Sludge composite at 1050^0 C	134
4.31	Reduction curves at various temperatures for VIZAG Sludge composite	134
4.32	Arrhenius plot for VIZAG Sludge composite	135
4.33	XRD of reduced JSW Dust composite at 1050°C for 1200 s	137

4.34	SEM micrographs of reduced (a) JSW Dust and (b) VIZAG Sludge composite samples at 1050 ^o C for 1200 s (5000X)	138
5.1	Laboratory Induction Furnace	145
5.2	Carbon (in product) variation with addition of JSW Dust composite pellet	151
5.3	Iron yield variation with addition of JSW Dust composite pellet	151
5.4	Carbon (in product) variation with addition of JSW Sludge composite pellet	153
5.5	Iron yield variation with addition of JSW Sludge composite pellet	153
5.6	Carbon (in product) variation with addition of Vizag Sludge composite pellet	155
5.7	Iron yield variation with addition of Vizag Sludge composite pellet	155
5.8	Variation of carbon (in product) with addition of composite pellets	156
5.9	Variation of iron yield with addition of composite pellets	156
5.10	Microstructure of product by addition of JSW Dust composite pellet to the melt at (a) 5.26 pct, (b) 24.93 pct (100X)	157
5.11	Microstructure of product by addition of JSW Sludge composite pellet to the melt at 11.33 pct (100X)	157
5.12	: Microstructure of product by addition of Vizag Sludge composite pellet to the melt at 17.66 pct (100X)	158