LIST OF SYMBOLS

- A pre-exponential factor (s^{-1})
- A₁ Percent of ash present in coal
- A₂ Percent of SiO₂ present in coal-ash
- A₃ Percent of MnO present in coal-ash
- A_4 Percent of P_2O_5 present in coal-ash
- A₅ Percent of CaO present in coal-ash
- A₆ Percent of Al₂O₃ present in coal-ash
- A₇ Percent of MgO present in coal-ash
- A₈ Percent of sulphur present in coal-ash
- A₉ Percent of Fe₂O₃ present in coal-ash
- C₁ Percent of coal present in composite pellets
- E activation energy $(kJmol^{-1})$
- F fraction of reduction
- F₁ Percent of iron ore present in composite pellets
- F₂ Percent of Fe₂O₃ present in iron ore
- F₃ Percent of total Fe present in Fe₂O₃
- F₄ Percent of Fe loss in slag w.r.t. total Fe-input
- F₅ Percent of SiO₂ present in iron ore of composite pellets
- F₆ Percent of MnO present in iron ore of composite pellets
- F₇ Percent of P₂O₅ present in iron ore of composite pellets
- F₈ Percent of Al₂O₃ present in iron ore of composite pellets
- F₉ Percent of fixed carbon present in coal
- F₁₀ Percent of total iron present in iron ore
- F₁₁ Percent of other oxides present in iron ore
- F₁₂ Percent of dextrose present in composite pellets
- F₁₃ Percent of volatile materials present in coal
- F₁₄ Percent of moisture present in coal

f frequency, Hz

- f_{coal} Fraction of coal present in composite pellet
- f_0 Fraction of oxygen present in Fe₂O₃
- $f_{\rm ore}$ Fraction of ore present in composite pellet
- $\rho_{\rm ore}$ Purity of iron oxide (Fe₂O₃)
- $f_{\rm p}$ factor of proportionality
- f_R fraction of reaction
- $f_{\rm vm}$ Fraction of volatile matters present in coal
- $f_{\rm vr}$ Fraction of volatiles released during reduction at a particular temperature
- f_{wl} Fractional weight loss = (weight loss of sample / initial weight of sample)
- I₁ Percent of Fe present in cast iron charged
- I₂ Percent of Fe present in cast iron produced
- I₃ Percent of Si present in cast iron charged
- I4 Percent of Si present in cast iron produced
- I₅ Percent of Mn present in cast iron charged

- I_6 Percent of Mn present in cast iron produced
- Percent of P present in cast iron charged I_7
- Percent of P present in cast iron produced I_8
- Percent of C present in cast iron charged I9
- $I_{10} \\$ Percent of C present in cast iron produced
- Percent of S present in cast iron charged I_{11}
- Percent of S present in cast iron produced I12
- Percent of Cr present in cast iron scrap charged I₁₃
- Percent of Cr present in cast iron produced I₁₄
- Percent of Cu present in cast iron scrap charged I15
- Percent of Cu present in cast iron produced I_{16}
- Percent of lime present in composite pellets L_1
- Percent of SiO₂ present in lime L_2
- Percent of CaO present in lime L_3
- Percent of Al₂O₃ present in lime L4
- Percent of MgO present in lime Ls
- rate constant (s⁻¹) k
- K Kelvin
- O_1 Weight of oxygen required for oxidation of iron, kg
- Weight of oxygen required for oxidation of silicon, kg O_2
- Weight of oxygen required for oxidation of manganese, kg O_3
- Weight of oxygen required for oxidation of phosphorous, kg O_4
- Weight of oxygen required for formation of CO gas, kg 05
- Weight of oxygen required for formation of CO2 gas, kg O_6
- Weight of oxygen coming from iron ore present in composite pellets, kg O_7
- Weight of oxygen require from atmosphere for oxidation of elements, kg **O**₈
- Weight of oxygen required for oxidation of Cr, kg O₉
- Weight of oxygen required for oxidation of Cu, kg O₁₀
- gas constant (kJmol⁻¹K⁻¹) R
- Т temperature in Kelvin scale
- tpa tonnes per annum
- tpd tonnes per day
- tonnes per hour tph
- VM volatile matters
- W Weight of Fe₂O₃ in iron ore, kg
- Weym amount of volatiles released during pyrolysis of coal
- Wi initial weight of a single pellet (g)
- Wf weight of pellet after reduction
- amount of volatiles released during TG-DTA of composite pellet W_{pvm}
- $\Delta \hat{W}_{o}$ ΔW_{o}^{H} weight of oxygen removed from iron oxide
- weight of oxygen loss during hydrogen reduction
- W_oⁱ Total weight of removable oxygen present in iron oxide
- W°. rate of oxygen loss, g/s
- weight loss during reduction (g) W_r

- W_t weight of pellet at time t during reduction (g)
- W1 Weight of cast iron charged, kg
- W₂ Weight of composite pellets charged, kg
- W₃ Weight of cast iron produced, kg
- W₄ Weight of Fe goes to slag, kg
- W₅ Weight of FeO goes to slag, kg
- W₆ Weight of SiO₂ goes to slag, kg
- W₇ Weight of MnO goes to slag, kg
- W₈ Weight of P₂O₅ goes to slag, kg
- W₉ Weight of CaO goes to slag, kg
- W₁₀ Weight of Al₂O₃ goes to slag, kg
- W₁₁ Weight of MgO goes to slag, kg
- W_C Weight of carbon converted into CO and CO₂ gases, kg
- W12 Weight of CO gas formed after smelting reduction of composite pellets, kg
- W13 Weight of CO2 gas formed after smelting reduction of composite pellets, kg
- W₁₄ Weight of sulphur goes to slag, kg
- W₁₅ Weight of CaS goes to slag, kg
- W₁₆ Weight of CaO converted into CaS that goes to slag, kg
- W₁₇ Weight of other oxides except SiO₂, MnO, FeO, Al₂O₃ and P₂O₅ from iron ore that goes to slag, kg
- W₁₈ Weight of FeO that goes to slag due to Fe₂O₃ present in coal ash, kg
- W₁₉ Weight of dextrose present in composite pellets, kg
- W20 Weight of volatile matters present in coal of composite pellets, kg
- W₂₁ Weight of moisture present in coal of composite pellets, kg
- W₂₂ Weight of slag produced, kg
- W₂₃ Weight of Cr₂O₃ goes to slag, kg
- W24 Weight of Cu2O goes to slag, kg
- W₀ Weight of iron ore present in composite pellets, kg
- W_{car} Weight of carbon stoichiometrically required for reduction of W₀ kg of iron ore, kg
- W_{coal} Weight of coal required for reduction of W₀ kg of iron ore present in composite pellets, kg
- Y_1 Weight of SiO₂ forms due to oxidation of Si, kg
- Y₂ Weight of MnO forms due to oxidation of Mn, kg
- Y_3 Weight of P_2O_5 forms due to oxidation of P, kg
- Z atomic number
- Σ foaming index of slag
- ρ density of slag
- ρ_a apparent density of pellet
- ρ_t true density of pellet
- α degree of reduction (pct)
- μ viscosity of slag
- γ surface tension of slag
- η_{pc} heat transfer efficiency (pct)