LIST OF FIGURES

Fig. No.	TITLE	PAGE NC
Fig 2.1:	Decomposition of Australian iron ore.	08
Fig 2.2:	Thermal curves of iron hydroxides.	10
Fig 2.3:	Differential thermal analysis of clays.	12
Fig 2.4:	Effect of porosity on crushing strength of pellet.	16
Fig 2.5:	Effect of porosity on thermal conductivity of coke.	17
Fig 2.6:	Set-up of laser flash method.	27
Fig 2.7:	Pellet configuration of laser flash method	28
Fig 2.8:	Effect on thermal diffusivity of ore with temperature	32
Fig 2.9:	Effect on thermal diffusivity of dried hematite pellet with temperatu	re 33
Fig 2.10:	(ke/Ks) Vs Porosity for different model equation.	35
Fig 2.11:	Microphotograph of coke samples with equal porosity value different pore size	e but 38
Fig 3.1:	Rigaku. D. Max,.X-ray diffractometer unit	43
Fig 3.2:	Sieko 5100-32, Thermal analysis unit	43
Fig 3.3:	Set-up for evolved gas testing.	45
Fig 3.4:	Set -up for thermal diffusivity measurement.	50
Fig 3.5:	Pellet configuration and location of thermocouples.	51
Fig 4.1:	Simultaneous analysis curve for one set. (Sample Iron Ore)	56

(۱۱۱۷)

.

•

	Fig 4.2:	Multiple plot of TG analysis for heating rates of 10°C/min to 30°C/min	57
* *	Fig 4.3:	Multiple plot of DTG analysis for heating rates of 10°C/min to 30 °C/min.	59
	Fig 4.4:	Multiple plot of DTA for heating rate 10°C/min to 30°C/min	60
	Fig 4.5	X-ray diffraction pattern of partially decomposed iron ore with original sample. (At 355°C & 650°C)	62
	Fig 4.6 To Fig 4.10:	Simultaneous plot (TG/DTA/DTG) for decomposition of iron ore at heating rate 10 ^o C/min to 30 ^o C/min	64.68
	Fig 4.11:	Multiple plot -TG second stage weight loss for different heating rates.	70
	Fig 4.12:	Broido's plot.	72
	Fig 4.13:	Kissinger method for calculation of activation energy.	74
	Fig 4.14:	Plot between B/T^{2}_{max} Vs (dX/dt) _{max} / (1-X _{max}) for evaluation of order of reaction.	• 7 7
	Fig 4.15:	Thermogravimetry (TG) of iron ore in different media.	81
	Fig 4.16:	Differential thermogravimetry (DTG) of iorn ore in different media.	82
	Fig 4.17:	X-ray analysis of iron ore decomposed in different media.	84
	Fig 4.18:	X-ray analysis of iron ore decomposed in different media.	85
	Fig 4.19:	TG, DTA upto 1260 ⁰ C shows melting of calcium ferrite.	88
	Fig 4.20:	Equilibrium diagram of CaO.Fe ₂ O ₃ System	89
	Fig 4.21:	Sodium Silicate melting and fluxing (Nitrogen flow - rate 150 ml/min)	91.
	Fig 4.22:	Sodium silicate melting and fluxing (Nitrogen flow - rate 300 ml/min)	92
	Fig 4.23	Equilibrium diagram of Na ₂ O-SiO ₂ system	93
	Fig 4.24	° TG/DTG of ore in nitrogen (Flow rate 150 ml/min)	95
	Fig 4.25	TG/DTG of ore in nitrogen (Flow rate 300 ml/min)	96

Fig 4.26	Change in true density of iron ore powder on heating	98
Fig 4.27 To Fig 4.38	Rise in surface, centre and average temperature of pelletized pellet with time.	100-111
Fig 4.39 To Fig 4.43	Rise in surface, centre and average temperature of hand rolled pellet with time (iron oxide).	112-116
Fig 4.44	Relationship between surface temperature (Ts) and centre temperature (Tc) for pelletized pellet	a-1 17
Fig 4.45	Validity of equation (4.12) in case of pelletized pellet.	119
Fig 4.46	Rise in surface, half-radial and centre temperature with time.	120
Fig 4.47	Calculation of parameter k and k'	121
Fig 4.48 To Fig 4.59	Change in temperature profile and movement of heat front with time (Pelletized pellets)	123 - 134
Fig 4.60 To Fig 4.64	Change in temperature profile and movement of heat front with time (Hand rolled pellets)	139-143
Fig 4.65	Effect of porosity on thermal conductivity and model fitting (Pelletized pellets)	164
Fig 4.66	Plot between thermal conductivity and volume ratio	166
Fig 4.67	Log-Log plot between thermal conductivity and volume ratio. (Pelletized pellet)	161
Fig 4.68 To Fig 4.83	Rise in surface centre and average temperature of pressed iron ore pellet with time.	169-184
Fig 4.84	Relationship between surface temperature (Ts) and centre temperature (Tc) for pressed pellet.	185
Fig 4.85	Validity of equation (4.12) in case of pressed pellet	186

Fig 4.86 TO Fig 4.101	Change in temperature profile and movement of heat front with time (Pressed pellets)	187-
Fig 4.102	Effect of porosity on thermal diffusivity of iron ore pressed pellets	220
Fig 4.103	Effect of porosity on thermal conductivity of iron ore pressed pellets	221
Fig 4.104	Effect of porosity on thermal conductivity of pressed and pelletized Pellets.	224

.

-

.

٠