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Synopsis 

Modelling Tools for Efficient Design of Mechanical Properties of Ferritic Steel Welds 

Introduction: 

Steels are used in the construction and fabrication of engineering structures, with service temperatures 

ranging from subzero to about 600°C over long periods of time. The vast majority of iron alloys are 

ferritic because they are cheap and it is easy to modify their microstructures to obtain an impressive 

range of desirable properties. 

      The fabrication of steels unavoidably involves welding, a complex process incorporating numerous 

metallurgical phenomena. It is not surprising therefore, that the final microstructure both inside the 

weld metal and in all adjacent regions affected by welding heat, is remarkably varied. Many of the 

important features of weld microstructure can now be calculated using a combination of 

thermodynamics and kinetic theory [1]. Such calculations are now being performed routinely in industry 

during the course of alloy design or when investigating customer quaries. 

    Naturally, it is the mechanical properties of the weld which enter the final design procedures. There 

has been some progress in estimating the yield strength from the microstructure using combinations of 

solution strengthening, grain size effects, precipitation hardening and dislocation strengthening [1]. The 

ultimate tensile strength can in a limited number of cases be calculated empirically from the yield 

strength [2]. However, there has been no progress at all in creating models for vital properties such as 

ductility, toughness, creep and fatigue strength [3]. 

Ferritic Steels 

Heat Resistant Steels 

Steels are used widely in the construction of power plant. They have to resist creep deformation, 
oxidation and corrosion. The superheater pipes carrying steam from boilers to high pressure(HP) 

turbines typically experience steam at 565°C under 15.8 MPa pressure and are made of  low-alloy steels. 

In HP turbines the rotor is fabricated as a single forging of 1Cr-MoV steel. Tempering at 700°C leads to 
the formation of stable carbides which are distributed uniformly in the ferrite matrix. These carbides 
improve the creep resistance at the service temperature [4]. Turbine blades experience both erosion 
and high tensile forces. High strength and corrosion resistant 12CrMoV steel is used in  fabrication of 

turbine blades [5]. The 3½Ni-Cr-Mo-V alloy has good hardenability combined with high strength of 

about 1100 MPa and good toughness. These steels are air cooled  from 870°C and tempered at 650°C. 
Due to their strength  and toughness these materials are used to fabricate the low pressure turbine 
rotor, which is nearer to the generator. Thegenerator rotor is also fabricated with this material [6]. 

    Table 1.Chemical composition of some steels have been used  Power Plant [7], all units are in wt%. 

Steel C Si Mn Mo Cr V 

2¼Cr-1Mo 0.15 0.50 0.45 1.0 2.25 --- 

12Cr-1Mo 0.15 0.40 0.6 1.0 12 --- 

3½Ni-Cr-Mo-V 0.15 0.30 0.70 0.10 1.5 0.11 
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Cr-Mo Steels 
 
These materials are resistant to corrosion by sulphur products and hence were used first in the 

petroleum industry. Once their oxidation resistance and high temperature strength were appreciated, 

they began to be applied in the steam power generating industry. More recently, these steels have been 

used in fabricating thick pressure vessels. The oxidation resistance and high temperature strength 

depends on the amount of chromium and molybdenum present in that alloy. Excellent high-

temperature (565°C) strength is obtained in 2¼Cr-1Mo steels (Table.1), which are generally used in the 

bainitic condition. A tempering heat-treatment gives the required alloy carbides; the most important are 

M2C, M7C3 and M23C6, where M represents a metallic element, where M represents a metallic element. 

Structural steels 
 

Steels for structural applications are used at ambient temperatures and the main property requirements 

are strength, ductility and toughness. The vast majority of these steels have a yield strength in the range 

300-550 MPa with a mixed microstructure of ferrite and pearlite. These are used in critical applications, 

such as bridges, buildings or ship construction and may undergo sophisticated themomechanical 

processing to refine the microstructure and greatly improve the toughness. Such alloys may contain 

quantities of fine bainite or even martensite when the overall concentration is small.  

        All structural steels have to be welded. For this reason and to minimize the cost, the total alloy 

concentration is generally less than 5wt%. The weld metals used for joining structural steels also range 

in yield strength between 350 and 550 MPa, but can be much stronger (900MPa) for special steels used 

in the construction of submarines. The preferred weld microstructures contain large quantities of 

acicular ferrite which, because of its scale and chaotic arrangement, gives good toughness. However, 

quantities of allotriomorphic ferrite, Widmanstetten ferrite, martensite and retained austenite may also 

be present. 

In present work, various neural network methods are applied on large data of input variables( weld 

compositions, Welding process variables) and output variables (Mechanical properties of welds) of 

ferritic welds to understand the complex relations between them. The relations are presented in various 

graphs shows the new trends between the variables. 

      

Scope of the work 

Previous Weld Mechanical Property Models: 

Weld metal models can in general be categorized into two classes, those which are empirical and others 

founded on physical metallurgy. The latter are more meaningful, but as will be seen later, they are 

generally over-simplified and deal only with simple properties rather than the range of properties 

important in engineering design. 
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1. Regression Models 
There have been numerous attempts to model weld metal mechanical properties by using linear 

regression analysis. 

 

 Table.2: Yield and Ultimate tensile strength (MPa) regression models of weld metals [2]. The alloying 

element concentrations are expressed in wt%. 

 

Carbon-Manganese YS = 335 + 439C + 60Mn +361 ( C.Mn ) 

UTS = 379 + 754C + 63Mn +337 ( C.Mn ) 

Silicon-Manganese YS = 293 + 91Mn +228Si – 122Si² 

UTS = 365 + 89Mn + 169Si – 44Si² 

Chromium-Manganese YS = 320 + 113Mn + 64Cr + 42 ( Mn.Cr ) 

UTS = 395 + 107Mn + 63Cr +36 ( Mn.Cr ) 

Nickel-Manganese YS = 332 + 99Mn + 9Ni +21 (Mn.Ni ) 

UTS = 401 + 102Mn + 16Cr 15 ( Mn.Ni ) 

 

 

The strength of weld metal is frequently modeled as a function of chemical composition of weld metal, 

for cases where all the remaining variables associated with welding approximately constant. Equations 

like these are useful within the context of the experiments they represent. Naturally, the firm of the 

relationships used may not necessarily be justified in detail. 

2. The Sugden-Bhadeshia Model 
Sugden and Bhadeshia tried to predict the strength of the as-deposited weld as a function of the 

chemical composition and microstructure [8]. The model is based on the assumption that the 

strength can be factorised into components; strength of pure iron, solid solution strengthening 

and strength due to microstructure, equation 1. The chosen microstructural constituents are 

allotriomorphic ferrite (α), Widmanstatten ferrite (αw), and acicular ferrite (αa) with the 

following assumptions: 

            2.1 The total strength (σy) of as-welded deposit is assumed to be a linear combination of 

individual components: 

                                           

                      σy = σFe + ∑ σss1i+  σMicro     …….(1) 
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  where  σFe  is the strength of fully annealed pure iron as a  function of temperature and strain rate, σss1i  is 

the solid  solution strengthening due to alloying element i and σMicr is strengthening due to weld 

microstructure. 

 

 The weld microstructure consists of allotriomorphic Ferrite (α ), Wimanstetten ferrite (αw) and 
acciular ferrite (αa ). The variation in grain sizes of α, αw,  and αa are not taken  in to account: 
 

                              σMicro = σαVα + σaVa + σwVw …(2) 

 where  σα, σa and σw denote the contributions from  100% allotriomorphic ferrite, Widmanstetten 

ferrite an  accicular ferrite respectively, and  Vα, Va and Vw  are their corresponding  volume fraction. 

                    

Figure.1 The weld microstructure consists of allotriomorphic ferrite (α ),Wimanstetten ferrite 

(αw) and acciular ferrite (αa ). 

 Nitrogen is assumed to be in solid solution and any Strain ageing effects in the as-welded 
microstructure are assumed to be negligible.The solid solution strengthening (σss) is expressed as  
the sum of the contributions from each solute: 

 

           σss = a Mn wt% + b Si wt%+ …  ..(3)      
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where the coefficients a, b, .. are functions of temperature, defining the role of the respective alloying 

elements. The values for these coefficients are taken from the published experimental data which are 

based on studies in which solid solution strengthening is studied in isolation. 

 An alloying element naturally influences more than just solid solution effect. However, the other 

consequences are included in the analysis via incorporation of microstructure. The authors were able to 

estimate the strength of individual microstructures  (σα, σa and σw ) by studying three welds which are 

made with identical welding conditions [8]. The chemical compositions were adjusted to give different 

fractions of microstructure in order to deduce the strengthening due to each microstructure (α, αa  and 

αw ). The final form of developed equation is: 

 

      σy = σFe + σss + 27Vα + 402Va + 480Vw (MPa)  …(4) 

       where  σFe  and σss can be obtained from referred published  literature [8]. 

               Although the Sugden-Bhadeshia model has more physical meaning when compared with the 

empirical equation  presented in Table.1.,the model still has linear approximations which are not 

justified in detail. It is resticted to structural  steel  welds which have simple, untempered 

microstructures bainite and martensite are excluded from the analysis,as is precipitation hardening. 

Young and Bhadeshia have developed  the work for microstructures which are mixtures of bainite and 

martensite but this model has yet to be applied to weld metal microsructures. The model is nevertheless 

discussed below because it is interesting. 

3. The Young-Bhadeshia Model 
The Young-Bhadeshia strength model for high-strength steels [4] considered microstructures 

which are mixtures of martensite  and bainite; 

 

            σ = σFe + ∑ σss1i + σc + KL (L)-1+KDρD
0.5+Kp∆-1 ….(5) 

 where KL, KD and Kp are constants, σc is the solid solution  strengthening due to carbon, L is a 

measure of the ferrite plate width, ρD is the dislocation density and ∆ is the distance between any 

carbide particles. The other terms have their usual meanings. 

            The Young and Bhadeshia model can be applied to estimate the strength of bainite and 

martensite welds by using  rule of mixtures. Even though the model had considered the  microstructural 

influence the model still built on the some of the assumptions made in Sugden and Bhadeshia model like  

linear summation effect of solid solution strengthening. 
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It appears from the literature reviewed that the failure of the previous work [2,9,10] to create models 

with wide applicability comes largely from constraints due to the linear or pseudo-linear regression 

methods used, with poor error assessments and  most importantly from very limited variables and data 

considered in the analysis. 

 

 Modelling Work and  Results: 

Database for Modelling: 

All of the data collected are from weld deposits in which the joint is designed to 

minimize dilution from the base metal, to enable specifically the measurement of all`weld metal 

properties. Furthermore, they all represent electric arc welds made using one of the following 

processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas 

(TIG). The welding process itself was represented only by the level of heat input. This is because 

a large number of published papers did not specify welding parameters in sufficient detail to 

enable the creation of a dataset without missing values. Missing values cannot be tolerated 

in the method used here. If the effect of a welding process is not properly represented by the 

heat input and chemical composition, then neglect of any important parameters will make the 

predictions more ‘noisy'. As discussed below, the noise in the output was found to be acceptable; 

a greater uncertainty arises from the lack of a uniform coverage of the input space. The data 

were collected from a large number of sources.  

The aim of the neural network analysis was to predict the M e c h a n i c a l  P r o p e r t i e s  

as a function of a large number of variables, including the chemical composition, the welding 

heat input and any heat treatment. 

. As a consequence, the yield strength database consists of 2121 separate experiments with 17 

input variables, % e l o n g a t i o n  d a t a b a s e  c o n s i s t s  o f  1 8 2 7 e x p e r i m e n t w i t h  

1 8 i n p u t  v a r i a b l e s , c h a r p y  t o u g h n e s s  d a t a b a s e  c o n s i s t s  o f  3 4 4 9  

e x p e r i m e n t s  w i t h  2 0  i n p u t  v a r i a b l e s  whereas the UTS database is slightly smaller 

at 2091 experiments with 18 input variables.  Neural network method used in this work cannot 

cope with missing values of any of the variables. In some cases the sulphur and phosphorus 

concentrations were not available. Since these impurities might be important, it would not be 

satisfactory to set them to zero. Missing values of sulphur and phosphorus were therefore set at 

the average of the database. See Scatter data plots of Charpy Toughness.(Page.No.7a,7b,7c ) 
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Neural network Methods: 

In present work neural network methods are used like Generalised Regression work, Bayesian feed 

forword neural network, Multilayer perceptron, Radial basis function [11]  

 

Fig.2 Three layers neural network  

This figure above is a schematic representative of a simple three layers neural network. The raw data that 

are contained in the x input or independent variables need to be transformed to a range of values that can 

be used in the neural network. In neural networks, separate conversion or pre-processing layer that is a 

part of the network architecture performs the transformation. In case of continuous input variables 

employed in this example network, the raw values simply need to be rescaled. The transformed values are 

fed to the input layer of neurons (also referred to as nodes or units). The input layer contains one unit for 

each of the input variables. Each unit in the input layer is connected to each unit in the hidden layer. The 

hidden layer is the layer that controls the amount of complexity that can be represented in the relationship 

between input and output variables. The larger number of units in the hidden layer, the more 

complex/nonlinear is the relationship that can be represented. If no hidden layer were present, then the 

neural network would describe a linear relationship between the input and output variables. Some 

network types used to model extremely complex relationship may contain two hidden layers. In turn, each 

unit the hidden layer is connected to each unit in the output layer. The output layer in this instance 

contains one unit for dependent variable.  

Gereralized Regression networks have exactly four layers input, a layer of radial centers, a layer of 

regression units, and output. Bayesian feed forword neural networks have three layers input, a layer of 

hidden units, and output. Multilayer perceptron neural networks have three layers input, , a layer of 

hidden units, and output. Radial basis function neural networks have an input layer, a hidden layer of 

radial units and output of linear units.[11] 
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 The hundred and thousand of models were trained with various neural network methods. The training 

errors and testing errors of training data set and testing data set of all properties were compared. The 

lowest errors models were selected because they are best for practical applications. Table. 1 shows the 

comparison of neural network methods. GRNN is the best method as a single model. BNN is used in 

present work as a committee model (more than one models present in a committee). 
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Table.1 :  Models Selected for final Results on the basis of their lowest errors  

Elongation T:\PhD-SNN-ModellingWork-14082014\Elongation\MLP\mlp-m13-140814-

3layers-tr-0.056 

SR 

No. 
MLP Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 MLP 18:18-15-10-5-1:1 
(Model:No.11) 

0.056027 
 

0.071757 
 

BP100,CG462b 
 

3 H layers 

  T:\PhD-SNN-Modelling Work-1-15092013\M Elongation-Models\MLP-EL-

Models\MLP-160913-EL-15m32H 

1 MLP 18:18-29-1:1 
(Model:No.11) 

0.05845 
 

0.076457 
 

BP100,CG498b 
 

1 H layer 

  T:\PhD-SNN-Modelling Work-1-15092013\M Elongation-Models\MLP-EL-

Models\MLP-240913-EL-46m-6T-Algo 

1 MLP 18:18-8-1:1 
(Model:No.43) 

0.056123 
 

0.191787 
 

DD100,LM187b 
 

1 H layer 

  T:\PhD-SNN-ModellingWork-14082014\Elongation\MLP\mlp-m18-2Lsum-

260814 

1 MLP 18:18-11-7-1:1 
(Model:No.15) 

0.061902 
 

0.077359 
 

BP100,CG475b 
 

2 H layer 

 

 

     

Elongation T:\PhD-SNN-Modelling Work-1-15092013\M Elongation-Models\RBF-EL-

Models\RBF-180913-EL-51m 

SR 

No. 
RBF Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 RBF 18:18-193-1:1 
(Model:No.46) 

0.0787 
 

0.1125 
 

SS,EX,PI 
 

1 H layer 

      

Elongation T:\PhD-SNN-Modelling Work-1-15092013\M Elongation-Models\GRNN-

EL-Models\GRNN-290913-EL-21m 

SR 

No. 
GRNN Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 GRNN 18:18-915-2-1:1 
(Model:No.02) 

0.027363 
 

0.128123 
 

SS 
 

2 H layer 

      

Yield Strength T:\PhD-SNN-Modelling Work-1-15092013\M YS –Models\MLP-021013-

YS-10m 

SR 

No. 
MLP Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 MLP 17:17-10-1:1 
(Model:No.05) 

0.062442 
 

0.078690 
 

BP100,CG20,CG18b 
 

1 H layer 

  T:\PhD-SNN-Modelling Work-1-15092013\M YS -Models\MLP-YS-

Models\MLP-021013-YS-25m 

2 MLP 17:17-13-6-1:1 
(Model:No.25) 

0.058963 
 

0.067180 
 

BP100,CG20,CG59b 
 

2 H layers 

  T:\PhD-SNN-ModellingWork-14082014\Yield Strength\MLP\ 

mlp-3L4L-ys-18m-250814 
 

3 MLP 17:17-6-8-13-1:1 0.058458 0.065638 BP100,CG396b 3 H layers 
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(Model:No.14)    

4 

 

MLP 17:17-14-9-1:1 
(Model:No.07) 

0.036248 
 

0.063303 
 

BP100,CG458b 
 

2 H layers 

5 MLP 17:17-9-14-1:1 
(Model:No.10) 

0.047847 
 

0.058474 
 

BP100,CG492b 
 

2 H layers 

6 MLP 17:17-6-7-1:1 
(Model:No.18) 

0.054954 
 

0.065891 
 

BP100,CG353b 
 

2 H layers 

Yield Strength T:\PhD-SNN-Modelling Work-1-15092013\M YS -Models\RBF-YS-

Models\RBF-021013-YS-50m 

SR 

No. 
RBF Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 RBF 17:17-530-1:1 
(Model:No.10) 

0.001791 
 

0.002782 
 

SS,KN,PI 
 

1 H layer 

      

Yield Strength T:\PhD-SNN-Modelling Work-1-15092013\M YS -Models\GRNN-YS-

Models\GRNN-290913-YS-30m 

SR 

No. 
GRNN Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 GRNN 17:17-1061-2-1:1 
(Model:No.21) 

0.000668 
 

0.004186 
 

SS 
 

2 H layer 

      

Ultimate Tensile Strength T:\PhD-SNN-ModellingWork-14082014\Ultimate Tensile 

Strength\MLP\mlp-uts-9m-160814 

SR 

No. 
MLP Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 MLP 18:18-12-1:1 
(Model:No.3) 

0.035736 
 

0.044758 
 

BP100,CG481b 
 

1 H layer 

  T:\PhD-SNN-ModellingWork-14082014\Ultimate Tensile Strength\MLP\ 

mlp-4L-uts-12m-180814 

2 MLP 18:18-13-7-1:1 
(Model:No.8) 

0.039741 
 

0.060027 
 

BP100,CG454b 
 

2 H layer 

  T:\PhD-SNN-ModellingWork-14082014\Ultimate Tensile 

Strength\MLP\mlp-2L3L-uts-7m-260814 

3 MLP 18:18-13-8-10-1:1 
(Model:No.6) 

0.039139 
 

0.046157 
 

BP100,CG478b 
 

3 H layer 

      

Ultimate Tensile Strength T:\PhD-SNN-ModellingWork-14082014\Ultimate Tensile Strength\RBF\rbf-
uts-22m-180814 

SR 

No. 
RBF Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 RBF 18:18-81-1:1 
(Model:No.18) 

0.002626 
 

0.003150 
 

SS,EX,PI 
 

1 H layer 

      

Ultimate Tensile Strength T:\PhD-SNN-Modelling Work-1-15092013\M UTS-Models\GRNN-UTS-

Models\GRNN-290913-UTS-30m 

SR 

No. 
GRNN Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 GRNN 18:18-1047-2-1:1 
(Model:No.1) 

0.000290 
 

0.003402 
 

SS 
 

2 H layer 
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Charpy Toughness T:\PhD-SNN-ModellingWork-14082014\CharpyToughness\MLP\ 

mlp-3L-CT-9m-180814 

SR 

No. 
MLP Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 MLP 20:20-11-1:1 
(Model:No.7) 

0.090335 
 

0.096968 
 

BP100,CG289b 
 

1 H layer 

  T:\PhD-SNN-ModellingWork-14082014\CharpyToughness\MLP\ 

mlp-4L-CT-10m-180814 

2 MLP 20:20-14-8-1:1 
(Model:No.8) 

0.085442 
 

0.093736 
 

BP100,CG488b 
 

2 H layer 

  T:\PhD-SNN-ModellingWork-14082014\CharpyToughness\MLP\ 

mlp-2HL-CT-4m-270814 

3 MLP 20:20-14-8-10-1:1 
(Model:No.3) 

0.080723 
 

0.091685 
 

BP100,CG499b 
 

3 H layer 

Charpy Toughness T:\PhD-SNN-Modelling Work-1-15092013\M Charpy Toughness-

Models\RBF-CT-Models\RBF-021013-CT-20m 

SR 

No. 
RBF Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 RBF 20:20-862-1:1 
(Model:No.5) 

0.07513 
 

0.013794 
 

SS,KN,PI 
 

1 H layer 

      

      

Charpy Toughness T:\PhD-SNN-Modelling Work-1-15092013\M Charpy Toughness-

Models\GRNN-CT-Models\GRNN-290913-CT-20m 

SR 

No. 
GRNN Train 

Error 
 

Test Error 
 

Training/Members 
 

Remarks 

1 GRNN 20:20-1725-2-1:1 
(Model:No.) 

0.011310 
 

0.017288 
 

SS 
 

2 H layer 

2 GRNN 20:20-1725-2-1:1 
(Model:No.16) 

0.011953 
 

0.018632 
 

SS 
 

2 H layer 

3 GRNN 20:20-1725-2-1:1 
(Model:No.7) 

0.011404 
 

0.018669 
 

SS 
 

2 H layer 
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Trends of Charpy Toughness Model (BNN) 
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Figure.3 Predicted Charpy Toughness/J and 20 input variables 

Figure.3 shows the predicted Charpy Toughness trends with 20 input variables. Charpy Toughness values 

are negative when large error bars present.( more data required in these input spaces and more research 

required in input spaces).These graphs are useful to know the trends of both variables and useful in design 

of welds and understand the character of each input variable with output variable. 
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3D Contour Plot (CT-GRNN-07-TrainPred1725data.sta 25v*1725c)

Charpy-Toughness/J.7 = 74.1273+5.4048*x+4.43*y-4.6559*x*x-2.35*x*y-0.6034*y*y
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Figure.4  3D Contour Plot of Charpy Toughness, Nickel  and Manganese (GRNN) 

3D contour Plot gives the relations between the two input variables and one output variable. Figure.4 

shows the relations between Nickel, Manganese and Charpy Toughness by GRNN. Graph gives the 

information about how these two Nickel and Manganese control the Charpy Toughness from 10J to 80J. 

Traditionally in alloy design it is known that increase the Nickel increase the Toughness. In Figure.4, it is 

very critical to maintain the toughness with Nickel and Manganese. To achieve a 80J and more, the 

compositions of Nickel must be maintained in range of 1.9 to 5.6 wt% and Manganese must be 

maintained maximum 0.4 wt%. In literature, these values are  6 to 8 wt% Nickel and 0.8 wt% 

Manganese.(BNN was used) 
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3D Contour Plot (CT-GRNN-07-TrainPred1725data.sta 25v*1725c)

Charpy-Toughness/J.7 = 71.2426+9.0122*x+1.1538*y-1.0758*x*x-2.4079*x*y-0.3068*y*y
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          Figure.5  3D Contour Plot of Charpy Toughness, Nickel  and Chromium (GRNN) 

3D contour Plot gives the relations between the two input variables and one output variable. Figure.5 

shows the relations between Nickel, Chromium and Charpy Toughness by GRNN. Graph gives the 

information about how these two Nickel and Chromium control the Charpy Toughness from 10J to 80J. 

Traditionally in alloy design it is known that increase the Nickel increase the Toughness. In Figure.5, it is 

very critical to maintain the toughness with Nickel and Chromium. To achieve a 80J and more, the 

compositions of Nickel must be maintained maximum 1.6 wt% and Chromium must be maintained in 

range of 1.6 to 7.0 wt%. 
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3D Contour Plot (CT-GRNN-07-TrainPred1725data.sta 25v*1725c)

Charpy-Toughness/J.7 = 88.6251-594.3482*x+25.8342*y+1275.7817*x*x+204.9875*x*y
-18.7459*y*y
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Figure.6  3D Contour Plot of Charpy Toughness, Manganese and Carbon (GRNN) 

3D contour Plot gives the relations between the two input variables and one output variable. Figure.6 

shows the relations between , Manganese, Carbon and Charpy Toughness by GRNN. Graph gives the 

information about how these two Manganese and Carbon control the Charpy Toughness from 30J to 90J. 

Traditionally in alloy design it is known that increase the Manganese decrease the Toughness. In Figure.6, 

it is very critical to maintain the toughness with Manganese and Carbon. To achieve a 90J and more, the 

compositions of Manganese must be maintained in range of 0.1 to 1.3 wt% and  Carbon must be 

maintained less than 0.02 wt%. 
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Testing_temperature_for_Charpy_toughness(K): > 213
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Figure.7  3D Contour Plot of Charpy Toughness, Nickel Manganese and Testing Temperaturecfor Charpy 

toughness > 213K (-60C)  (GRNN)  

3D contour Plot gives the relations between the three input variables and one output variable. Figure.7 

shows the relations between Nickel, Manganese and Testing Temperaturecfor Charpy toughness > 213K 

(-60C)  and Charpy Toughness by GRNN. Graph gives the information about how these three Nickel, 

Manganese and Testing Temperaturecfor Charpy toughness > 213K control the Charpy Toughness from 

10J to 80J. Traditionally in alloy design it is known that increase the Nickel increase the Toughness. In 

Figure.7, it is very critical to maintain the toughness with Nickel, Manganese and Testing 

Temperaturecfor Charpy toughness > 213K . To achieve a 80J and more, the compositions of Nickel must 

be maintained in range of 3.5 to 5.8 wt% and Manganese must be maintained maximum 0.9 wt%. In 

literature, to these values are  6 to 10.8 wt% Nickel and 0.6 wt% Manganese.(BNN) 
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Figure.8  3D Contour Plot of Charpy Toughness, Nickel Manganese and Testing Temperaturec for 

Charpy toughness > 233K (-40C)  (GRNN)  

3D contour Plot gives the relations between the three input variables and one output variable. Figure.8 

shows the relations between Nickel, Manganese and Testing Temperaturec for Charpy toughness > 233K 

(-40C)  and Charpy Toughness by GRNN. Graph gives the information about how these three Nickel, 

Manganese and Testing Temperaturecfor Charpy toughness > 233K control the Charpy Toughness from 

10J to 80J. Traditionally in alloy design it is known that increase the Nickel increase the Toughness. In 

Figure.8, it is very critical to maintain the toughness with Nickel, Manganese and Testing Temperaturec 

for Charpy toughness > 233K . To achieve a 75J and more, the compositions of Nickel must be 

maintained less than 5.8 wt% and Manganese must be maintained in range of 0.7 to 2.1 wt%. In literature, 

to these values are  6 to 8 wt% Nickel and 0.8 wt% Manganese.(BNN) 
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Heat_input(kJ.mm-1): <= 2.1
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Figure.9  Ternary Categorized Graph of Chromium, Manganese, Nickel, Heat Input and Charpy 

Toughness (See Page.No.23a, 23b for Scale 0 to 1 conversion into wt%) 
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Table 4 The normalized scale of Ternary Plot 0 to 1 First row red colour converted to Actualscale of 

variables 
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Heat_input(kJ.mm-1): (3.6,5.1]
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Figure.10  Ternary Categorized Graph of Chromium, Manganese, Nickel, Heat Input and Charpy 

Toughness 

Ternary Categorized Graph gives the relations between the four input variables and one output variable. 

Figure.9, Figure.10 and Figure.11 show the relations between Chromium, Manganese, Nickel, Heat Input 

and Charpy Toughness by GRNN. Graphs gives the information about how these four Chromium, 

Manganese, Nickel, and Heat Input control the Charpy Toughness from 25J to 325J. Figure.9, and 

Figure.10 indicate the criticality  to maintain the toughness with Chromium, Manganese, Nickel, and Heat 

Input. In Figure.9 and Figure.10 with Heat Input value <= 2.1 kJ mm-1,the toughness is achieved 25J and 

Heat Input 3.6 to 5.1 kJ mm-1 gives Toughness 25J to 275J. In Figure.10 shows that to increase the 

toughness increase Chromium, increase in Manganese and decrease in Nickel. There are number of 

combinations of alloying elements available for one value of Toughness. Figure.10 gives more flexibility 

for alloy design or weld design. 
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Heat_input(kJ.mm-1): > 5.1
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Figure.11  Ternary Categorized Graph of Chromium, Manganese, Nickel, Heat Input and Charpy 

Toughness 

Figure.11 show the relations between Chromium, Manganese, Nickel, Heat Input and Charpy Toughness 

by GRNN. Graphs gives the information about how these four Chromium, Manganese, Nickel, and Heat 

Input control the Charpy Toughness from 50J to 325J. At High Heat Input > 5.1 kJ mm-1 can give wide 

range of Toughness, 25J to 325J. The alloying elements require for higher toughness more than 275J, 

Manganese less than 0.14 wt%, Chromium 9.0 to 11.78 wt% and Nickel less than 1.35 wt%. Figure.11 

indicates more difficulty  for alloy design or weld design because very small region available for input 

variable selection. 
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Prediction of unseen data: 

Select input variables and give to the best neural network model for the prediction of output variable,  it 

will  calculate  Immediately. For the design of new alloys, these neural network models are very valuable 

tools. If the alloy design is carried out traditionally, it will takes months or years. It also requires material, 

manpower, characterization etc. Alloys design for welds is very flexible, easy, economical and accurate. 

The range of errors in prediction of Charpy Toughness is 0.43J to 20.13J by BNN method.(See Page. No. 

26a, 26b, 26c)        

  All mechanical properties can be studied with wide number of combinations of Neural Network 

Methods, and various type of Graphs. This study gives knowledge to understand the design of ferritc steel 

weld deposits. 
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Conclusions: 

The design of ferritic steel weld metals is very complex. There are wide variety of parameters each 

having their own individual effect or combined effect on the final mechanical properties. The  

nonlinear relationship between parameters involved in design of ferritic steel welds is solved by 

Neural Network Methods efficiently. 

For best result of Neural Network Modelling,  large data is required. 

GRNN is the best method with least error in prediction and give accurate trends between the  

inputs and output variables. 

BNN is the best with a committee model. It gives prediction as a group of models in a committee 

model. Compare to the past work in this field, the number of models are very less  in present work 

only 28 , in literature it was 68, in a committee model . This gives less errors, little computational 

time and accurate prediction. 

Large Error bars indicates that more data are required for accurate predictions in that region. 

All input variables are important with respect to their significance for output variables. The 

various graphs become a valuable tools to design ferritic steel welds. The Ternary Catogerial 

graphs give  informations about the relations of four input variables effect on one output variable 

which helps to solve some complex problems of ferritic steel welds. 

Traditionally in alloy design it is known that increase the Nickel increase the Toughness. Present 

work shows that Toughness increases with Chromium increase and Heat Input increase which is 

new finding for Design of Ferritic steel Welds. The new findings about the character of variables in 

ferritic welds exist in present work. 

  Design of Ferritic steel welds is very easy, simple and economical with the help of best trained 

neural network model. Best trained neural network model can be used for welding industries, 

research and development very effectively.  
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