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50 I ntroduction

Textile materials are known by the distinct hierarchy of structureviz. fibre, yarn
and fabric and garment. Though anumber of investigations have taken place on
these materials and many theoretical models exist for different textile structure,

amodel representing textile composite structure is minimum.

Analytical/numerical textile modeling techniques (using a small representative
piece of material, called unit cell (UC), which repeats over and over) completely
describing the whole fabric have been described in Chapter 2.

In this chapter, numerical ssimulation of the mechanical properties in terms of
tensile strength has been done with help of the Finite Element Method (FEM).
Finite Element Anaysis (FEA) software mostly uses two dimensional elements
with layer capabilities to simulate fibre reinforced composite materials. These
elements require average material properties of fibre and matrix material, such
as average Young's modulus, shear modulus and Poisson’s ratio. Experiments

on the real materia are used to obtain these required properties.
5.1  Fabric Compositesand it’s Properties

The analyzed materia is a woven carbon fabric((C12xCek) p With a uniform
number of warp and filling threads (Figure 5.1) used for textile polymer textile
composite laminate (TPCL). An epoxy resin is used as matrix. The material
dimensions and properties are shown in (Table 5.1). In order to simplify the
problem, a linear Young's modulus behavior is chosen for the epoxy resin,
although the stress-strain behavior of such a materia is nonlinear in reality as
described by Merlin et a., 2009 [136].

Table5.1: Properties of the Analyzed Material

Material | Young Poisson’sratio | Cross Tensile strength
Modulus section
N/mm? - mm? N/mm?

Fibre 230000 0.3 0.115 3500

Resin 3000 0.3 - 80
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Figure5.1: Detail of schematic diagram showing detail of CC1

The fabric composite (material), TPCL is as shown in Figure 5.2 is in three
dimension and it is with different layers which includes five resin layers and four
fabric layers.
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Figure5.2: Diagram representing different fabric layersand resin layers.
(a- Fabriclayerswith resin layers; b- expanded view of a)

52  FEM Implementation

FEM application in textile composites can be visualized as assemblages of
representative volume elements (RVES) or unit cells, interconnected at discrete

numbers of nodal points.
5.2.1 Mesh Formation

Now, discretization of the domain into finite elements using software Solid
works. Here, the finite element has been considered as rectangular elements.

Composite laminate (Figure 5.3 @) with rectangular mesh isshown in Figure 5.3

(b).

Figure 5.4 shows dialog box in software representing the number of nodes and
number of elements. This materia is discretized in to 76800 hexahedral

elements as shown in Figure 5.4. Hence, this structure has 343297 nodes.
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Figure 5.3: Diagram representing different fabric layersand resin layers
with mesh formation.
(a- expanded view of Composite; b- composite with rectangular mesh)

Mesh Statisclics

_ HNodes 1343297
Elements 176800

Figure5.4: Dialog box representing the number of nodes and elements.
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5.2.2 Stiffness Matrix and System of Equations

The geometry generated by Solid Works is initialy saved in (.prt) file format
which in turn exported in ANSY S/FLUENT environment.

Further the generation of material definition and boundary conditions are
incorporated by certain operations. Here, force value has been given as loading
condition. The boundary condition is the nodal displacement in the axia
direction. That is, noda displacement in axia direction is free (in Ansys
software there are two pre-defined conditions, one is fixed and other is free)
Based on our problem definition, it has been given free boundary conditions.
The automated modeling approach with implicit FE scheme was carried for
static smulations in the present investigation. (The details of FE modeling
approach can be seen asin Chapter 2)

Equations for each element have been developed. After applying boundary
conditions, initial conditions and loading, the global stiffness matrix has been
constructed. Therefore, at every node it becomes the system of equations as

shown in equation
Kd=f (5.1)

Where,
K is stiffness matrix,
d is displacement vector (deformation vector),

f isforce

K isamatrix 343297x343297
disamatrix 343297x1
f isamatrix 343297x1

Later on, a set of linear or nonlinear algebraic equations have been solved
simultaneously to obtain nodal displacement results. Using displacements, the

strain value was found. Using Poison’ sratio in Ansys stress had been evaluated.
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5.3 Results and Discussion

Inthiswork, the textile polymer composite laminates using 12K Carbon aswarp
and 6K Carbon as weft were prepared at different skew angles. These
composites were used for the analysis and modeling. These composites were
tested in both, longitudinal and transverse directions. Therefore, result and

discussion are divided into two sections namely:

1) Longitudinal direction
) Transverse direction.

For the understanding of phenomenon, the Carbon-Carbon composites were

taken in al the five layering sequences as follows:

CCL1 (0/0/0/0)

CC3 (0/+30/-30/0)
CC2 (0/+45/-45/0)
CC3 (0/+60/-60/0)
CC4 (0/+90/-90/0)

a c W N E

The details about the stacking sequence of Carbon- Carbon textile polymer
composite laminates (TPCL) mentioned above are depicted in Table 3.3.

5.3.1 Longitudinal Results

In Figure 5.5a, deformation (2.25 mm) is observed in longitudina simulation
by considering al layers at 0/0/0/0 position. In Figure 5.5b, stress value (206.05
Mpa) isobserved in longitudinal simulation by considering all layers at 0/0/0/0

position.

In Figure 5.6a, deformation (1.85 mm) is observed in longitudina simulation
by considering all layers at 0/+30/-30/0 position. In Figure 5.6b, stress value
(261.58 Mpa) is observed as per shown above in longitudina simulation by
considering al layers at 0/+30/-30/0 position.
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Figure 5.5a: Deformation of CC1in longitudinal direction
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Figure5.5b: Stressof CC1in longitudinal direction
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Figure5.6a: Strain distribution of CC2 in longitudinal direction
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Figure 5.6b: Stressdistribution of CC2in longitudinal direction

In Figure 5.6c, stress 160.17 MPa is observed as per shown above in
longitudina simulation on 1% layer by considering al layers at 0/+30/-30/0
position. In Figure 5.6d, stress 250.93Mpa is observed as per shown above in

longitudinal simulation on 2" layer by considering al layers at 0/+30/-30/0
position.
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Figure5.6c: Stressdistribution of CC2in longitudinal direction on the
first layer
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Figure5.6d: Stressdistribution of CC2in longitudinal direction on the
second layer

In Figure 5.6e, stress 251.86 Mpa is observed as per shown above in
longitudinal simulation on 3 layer by considering al layers at 0/+30/-30/0
position. In Figure 5.6f, stress 161.14 MPa is observed as per shown abovein
longitudinal simulation on 4" layer by considering al layers at 0/+30/-30/0
position.
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Figureb5.6e: Stressdistribution of CC2 in longitudinal direction on the
third layer
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Figure5.6f: Stressdistribution of CC2 in longitudinal direction on the
fourth layer

In Figure 5.7a, deformation 1.5134 mm is observed in longitudinal simulation
by considering all layers at 0/+45/-45/0 position. In Figure 5.7b, Stress value
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291.92 is observed as per shown above in longitudina simulation by
considering al layers at 0/+45/-45/0 position.
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Figureb5.7a: Strain distribution of CC3in longitudinal direction
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Figure5.7b: Stressdistribution of CC3in longitudinal direction

In Figure 5.7c, stress 129.64 MPa is observed as per shown above in
longitudina simulation on 1% layer by considering al layers at 0/+45/-45/0
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position. In Figure 5.7d, stress 281.33 Mpa is observed as per shown above in
longitudinal simulation on 2" layer by considering all layers at 0/+45/-45/0
position.
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Figure5.7c: Stressdistribution of CC3in longitudinal direction on the
first layer
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Figure5.7d: Stressdistribution of CC3in longitudinal direction on the
second layer
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In Figure 5.7e, stress 281.44 MPa is observed as per shown above in
longitudinal simulation on 3 layer by considering all layers at 0/+45/-45/0
position. In Figure 5.7f, stress 129.85 MPa is observed as per shown abovein
longitudinal simulation on 4" layer by considering al layers at 0/+45/-45/0

position.
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Figure5.7e: Stressdistribution of CC3in longitudinal direction on the
third layer
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Figure5.7f: Stressdistribution of CC3in longitudinal direction on the
fourth layer

183



Chapter 5: Numerical Simulation of Woven Composites using FEM

In Figure 5.8a, deformation 1.3098 mm is observed in longitudinal simulation
by considering all layers at 0/+60/-60/0 position. In Figure 5.8b, stress behavior
is observed as per shown above in longitudinal simulation by considering all
layers at 0/+60/-60/0 position.
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Figure 5.8a: Strain distribution of CC4 in longitudinal direction
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Figure5.8b: Stressdistribution of CC4 in longitudinal direction
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In Figure 5.8c, stress 109.95 MPa is observed as per shown above in
longitudina simulation on 1% layer by considering al layers at 0/+60/-60/0
position. In Figure 5.8d, stress 302.32 Mpa s observed as per shown abovein
longitudinal simulation on 2" layer by considering al layers at 0/+60/-60/0

position.
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Figure5.8c: Stressdistribution of CC4 in longitudinal direction on the
first layer
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Figure 5.8d: Stressdistribution of CC4 in longitudinal direction on the
second layer

185



Chapter 5: Numerical Simulation of Woven Composites using FEM

In Figure 5.8e, stress 301.62 Mpa is observed as per shown above in
longitudinal simulation on 3 layer by considering all layers at 0/+60/-60/0
position. In Figure 5.8f, stress 107.85 MPa is observed as per shown abovein
longitudinal simulation on 4" layer by considering al layers at 0/+60/-60/0

position.
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Figure5.8e: Stressdistribution of CC4 in longitudinal direction on the
third layer
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Figure5.8f: Stressdistribution of CC4 in longitudinal direction on the
fourth layer
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In Figure 5.9a, deformation 1.265 mm is observed in longitudinal simulation by
considering al layers at 0/+90/-90/0 position. In Figure 5.9b, stress behavior is
observed as per shown above in longitudinal simulation by considering all

layers at 0/+90/-90/0 position.

Deformation (mm)

Figure5.9a: Strain distribution of CC5 in longitudinal direction
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Figure5.9b: Stressdistribution of CC5in longitudinal direction

In Figure 5.9c, stress 111.66 MPa is observed as per shown above in
longitudina simulation on 1% layer by considering al layers at 0/+90/-90/0
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position. In Figure 5.9d, stress 322.81 Mpa is observed as per shown above in
longitudinal simulation on 2" layer by considering al layers at 0/+90/-90/0

position.
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Figure5.9c: Stressdistribution of CC5in longitudinal direction on the
first layer
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Figure5.9d: Stressdistribution of CC5in longitudinal direction on the
second layer
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In Figure 5.9e, stress 322.54 Mpa is observed as per shown above in
longitudinal simulation on 3 layer by considering all layers at 0/+90/-90/0
position. In Figure 5.9f, stress 95.024 MPa is observed as per shown abovein
longitudinal simulation on 4" layer by considering al layers at 0/+90/-90/0
position.
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Figure5.9e: Stressdistribution of CC5 in longitudinal direction on the
third layer
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Figure5.9f: Stressdistribution of CC5in longitudinal direction on the
fourth layer
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5.3.2 Transverse Results

In Figure 5.10a, deformation 0.871 mm is observed in transverse simulation by
considering all layers at 0/0/0/0 position. In Figure 5.10b, stress 205 MPa is

observed in Transverse simulation by considering all layers at 0/0/0/0 position.
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Figure5.10a: Strain distribution of CC1 in transverse direction
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Figure 5.10b: Stressdistribution of CC1in transversedirection
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In Figure 5.11a, deformation 0.94586 mm is observed in Transverse simulation
by considering all layers at 0/+30/-30/0 position. In Figure 5.11b stress behavior
is observed as per shown above in Transverse simulation by considering al
layers at 0/+30/-30/0 position.
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Figure5.11a: Strain distribution of CC2 in transversedirection
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Figure5.11b: Stressdistribution of CC2 in transversedirection
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In Figure 5.11c, stress 220.74 MPa is observed as per shown above in
Transverse simulation on 1% layer by considering al layers at 0/+30/-30/0
position. In Figure 5.11d, stress 190.13 Mpais observed as per shown abovein
Transverse simulation on 2" layer by considering al layers at 0/+30/-30/0
position.
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Figure5.11c: Stressdistribution of CC2in transversedirection on the
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Figure5.11d: Stressdistribution of CC2 in transversedirection on the
second layer
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In Figure 5.11e, stress 190.11 Mpa is observed as per shown above in
Transverse simulation on 3 layer by considering all layers at 0/+30/-30/0
position. In Figure 5.11f, stress 229.52 MPa is observed as per shown abovein
Transverse simulation on 4™ layer by considering all layers at 0/+30/-30/0

position.
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Figureb5.11e: Stressdistribution of CC2in transverse direction on the
third layer
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Figure5.11f: Stressdistribution of CC2 in transverse direction on the
fourth layer
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In Figure 5.12a, deformation 1.0577 mm is observed in Transverse simulation
by considering all layers at 0/+45/-45/0 position. In Figure 5.12b, stress
behavior is observed as per shown above in Transverse simulation by
considering al layers at 0/+45/-45/0 position.
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Figure5.12a: Strain distribution of CC3in transversedirection
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Figure5.12b: Stressdistribution of CC3in transversedirection
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In Figure 5.12c, stress 241.44 MPa is observed as per shown above in
Transverse simulation on 1% layer by considering al layers at 0/+45/-45/0
position. In Figure 5.12d, stress 169.39 Mpais observed as per shown abovein
Transverse simulation on 2" layer by considering al layers at 0/+45/-45/0
position.
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In Figure 5.12e, stress 169.58 MPa is observed as per shown above in
Transverse simulation on 3 layer by considering all layers at 0/+45/-45/0
position. In Figure 5.12f, stress 241.96 MPa s observed as per shown abovein
Transverse simulation on 4™ layer by considering al layers at 0/+45/-45/0
position.
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Figure 5.12f: Stressdistribution of CC3in transverse direction on the
fourth layer
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In Figure 5.13a, deformation 1.1832 mm is observed in Transverse simulation
by considering all layers at 0/+60/-60/0 position. In Figure 5.13b, stress
behavior is observed as per shown above in Transverse simulation by
considering al layers at 0/+60/-60/0 position.
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Figure5.13a: Strain distribution of CC4 in transversedirection
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Figure 5.13b: Stressdistribution of CC4 in transversedirection
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In Figure 5.13c, stress 268.57 MPa is observed as per shown above in
Transverse simulation on 1% layer by considering al layers at 0/+60/-60/0
position. In Figure 5.13d, stress 133.34 Mpais observed as per shown abovein
Transverse simulation on 2" layer by considering all layers at 0/+60/-60/0
position.
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Figure 5.13c: Stressdistribution of CC4 in transversedirection on the
first layer
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Figure 5.13d: Stressdistribution of CC4 in transversedirection on the
second layer
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In Figure 5.13e, stress 143.93 Mpa is observed as per shown above in
Transverse simulation on 3 layer by considering all layers at 0/+60/-60/0
position. In Figure 5.13f, stress 268.28 MPais observed as per shown abovein
Transverse simulation on 4™ layer by considering al layers at 0/+60/-60/0
position.
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Figure5.13e: Stressdistribution of CC4 in transversedirection on the
third layer
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Figure 5.13f: Stressdistribution of CC4 in transverse direction on the
fourth layer
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In Figure 5.14a, deformation 1.29 mm is observed in Transverse simulation by
considering all layers at 0/+90/-90/0 position. In Figure 5.14b, stress behavior
is observed as per shown above in Transverse simulation by considering al
layers at 0/+90/-90/0 position.
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Figure5.14a: Strain distribution of CC5 in transversedirection
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Figure 5.14b: Stressdistribution of CC5in transversedirection
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In Figure 5.14c, stress 298.91 Mpa is observed as per shown above in
Transverse simulation on 1% layer by considering al layers at 0/+90/-90/0
position. In Figure 5.14d, stress 111.93Mpais observed as per shown above in
Transverse simulation on 2" layer by considering all layers at 0/+90/-90/0

position.
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Figure5.14c: Stressdistribution of CC5in transversedirection on the
first layer
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Figure5.14d: Stressdistribution of CC5in transversedirection on the
second layer
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In Figure 5.14e, stress 113.2Mpais observed as per shown above in Transverse
simulation on 3 layer by considering all layers at 0/+90/-90/0 position. In
Figure 5.14f, stress 298.89 Mpa is observed as per shown above in Transverse

simulation on 4" layer by considering all layers at 0/+90/-90/0 position.
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Figure5.14e: Stressdistribution of CC5in transversedirection on the
third layer
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Figure 5.14f: Stressdistribution of CC5in transverse direction on the
fourth layer
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54  Summary and statistical significance

Numerical simulation to discuss the mechanical properties particularly,
tensile strength has been done using Finite Element Analysis (FEA) software
which uses three dimensiona elements with layer capabilities to simulate
fibre reinforced composite materials. The analyzed materia is a woven
carbon fabric((C12x Cesk) p with a uniform number of warp and filling threads

used for textile polymer textile composite laminate

After simulation in Ansys (post processing) the data had been modelled
related to parameters displacement, stress and strain. These data are
processed through MS excel to get the comparison between experimental
results and modelling results. Table 5.2 depicts the comparison between

experimental and modelling results.

Figure 5.15-5.24, shows the comparison of modelling values and
experimental values for longitudinal and transverse. The fabric orientation
considered is (0/0/0/0, 0/+30/0, 0/+45/0, 0/+60/0 and 0/+90/0).

In Regression analysis R? isameasure in statistics that will give information
about how best the goodness of fit of amodel. It aso givesinformation about
how well the regression predictions approximate the real data points.

An R? of 1 indicates that the regression predictions perfectly fit the data.

We have done the comparison of modelling values and experimental values
for longitudinal and transverse. The fabric orientation considered is (0/0/0/0,
0/+30/0, 0/+45/0, 0/+60/0 and 0/+90/0).

It is seen from the Figures 5.15-5.24 data that had been fitted are linear. It is
true also as the R? is closer to 1 or 1. Therefore, in our case linearity is the
best fitting. Experience on thisanalysissaysthat the other kind of datafitting
like quadratic, exponential and logarithmic does not work because the R?

valueisnot closer to 1 or 1.
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Figure 5.15: Comparison of Modelling Values and Experimental values
for longitudinal caseif the fabric orientation is0/0/0/0
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Figure 5.16: Comparison of Modelling Values and Experimental values
for Transverse caseif thefabric orientation is 0/0/0/0
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Figure 5.17: Comparison of Modelling Values and Experimental values
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for longitudinal caseif the fabric orientation is 0/30/30/0

& Exp.Values M Mod.Values Linear (Exp.Values) Linear (Mod.Values)

450

y = 74.394x + 0.6979
R?=0.9996

400

350

300

250

y = 84.25x - 2E-05

200 R? -1

150
100
50
0

0 1 2 3 4 5 6

-50
STRAIN(%)

Figure 5.18: Comparison of Modelling Values and Experimental values

for Transverse caseif thefabric orientation is 0/30/30/0
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Figure 5.19: Comparison of Modelling Values and Experimental values
for longitudinal caseif the fabric orientation is 0/45/45/0
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Figure 5.20: Comparison of Modelling Values and Experimental values
for Transverse caseif thefabric orientation is 0/45/45/0
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Figure 5.21: Comparison of Modelling Values and Experimental values
for longitudinal caseif the fabric orientation is 0/60/60/0
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Figure 5.22: Comparison of Modelling Values and Experimental values
for Transverse caseif thefabric orientation is 0/60/60/0
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Figure 5.23: Comparison of Modelling Values and Experimental values
for longitudinal caseif the fabric orientation is 0/90/90/0
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Figure 5.24: Comparison of Modelling Values and Experimental values
for Transverse caseif thefabric orientation is 0/90/90/0
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55 Conclusion

FEM techniques require first decomposition of textile composites and which
can be visuadized as assemblages of representative volume elements

interconnected at discrete numbers of nodal points.

Now, discretization or decomposition of the domain into finite elements was
done using software Solid works. Here, the finite element has been considered
as hexahedral mesh. Equations for each element have been developed. After
applying boundary conditions, initial conditions and loading, the global
stiffness matrix has been constructed. Later on, a set of linear or nonlinear
algebraic equations have been solved simultaneously to obtain nodal
displacement results. Using displacements, the strain value wasfound. Using

Poison’sratio in Ansys stress had been eval uated.

It is also observed that experimental and modelling results are matching
within £10% variation for longitudinal and transverse axis for zero degree.
There is no contact stiffness considered in anaysis between layers.
Experimental testing is based on axia behavior only and it is performed for
checking combine behavior for all four layersto find out axial strength only.
Thereisnot a scope to test bonding behavior of layersto find out layers shear
behavior and its contact stiffness. The linearity is best fitted to the data points

asthe R valueiscloserto 1 or 1.

In Simulation, contact stiffness of layers are considered infinite i.e. RBES
elements are considered between layer to layer contact. So, for the axial
testing, graphs variation is high by increasing angles and by increasing loads.
It can be concluded that experimental and simulated results are matching for

all angles at small value of loads.

Experimental and simulation data are matching up to acertain amount of load
application. By increasing load application, shear will come into picture
which plays a role to increase deformation more and it breaks the linearity
between load v/s deformation. So, the difference/error is high at more load

values.
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It is important to observe that the FEM evaluation can be done for any
composite (at every point) having multilayers and therefore no need to go for
experimental testing. The FEM simulation gives the strength and stress
distribution at entire fabric composite which cannot be expected from
experimental simulation. A higher thickness bonding material can be

attempted to achieve a good strength of material.
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