LIST OF FIGURES

Chapter

No.	Figure No.	Title
1.	1.1	Interrupting process of circuit-breaker: basic time intervals
2.	2.1	Circuit arrangement for direct testing
	2.2	Basic circuit for testing Circuit-breaker
	2.3	Voltage waveforms across test Circuit-breaker
	2.4	Schematic diagram of a parallel current injection method synthetic test
	2.5	circuit Relationship between primary current and injected current in a synthetic test parallel current injection scheme
	2.6	Expanded view of the parallel current injection near current zero
	2.7	Simplified circuit diagram of a current injection circuit with the voltage circuit connected in parallel with the test circuit-breaker as per IEC 62271-101
	2.8	An example of injection timing
	2.9	Schematic diagram of a series current injection method synthetic test circuit
	2.10	Relationship between primary current and injected current in a synthetic test series current injection scheme
	2.11	Expanded view of the series current injection near current zero
	2.12	Simplified circuit diagram of a current injection circuit with the voltage circuit connected in parallel with the auxiliary circuit-breaker as per IEC 62271-101
	2.13	An example of injection timing
	2.14	Simplified diagram of a voltage injection circuit with the voltage circuit connected in parallel with the auxiliary circuit-breaker
3.	3.1	Fault on a feeder near circuit- breaker
	3.2	Electrical equivalent circuit for the analysis of restriking voltage
	3.3	Double frequency restriking transient
	3.4	Method of evaluation for single frequency curves
	3.5	Conditions representing terminal fault
	3.6	Conditions representing short-line fault
	3.7	Out-of-phase switching
	3.8	Representation by two parameters (u_c and t_3) of a prospective transient recovery
	3.9	voltage of a circuit Representation by four parameters (u_1 and t_1 , u_c and t_2) of a prospective transient recovery voltage of a circuit: Case I
	3.10	Representation by four parameters $(u_1 \text{ and } t_1, u_c \text{ and } t_2)$ of a prospective transient recovery voltage of a circuit: Case II
4.	4.1	2-Parameters TRV synthetic test circuit

- 4.2 Flow chart for design of 2-parameters TRV synthetic test circuit
- 4.3 Terminal fault TRV envelope for 36kV rating circuit-breaker by using MATLAB (TRV envelope represented in Fig.3.8 as per IEC)
- 4.4 Expanded view of Terminal fault TRV envelope for 36kV rating circuit-breaker by using MATLAB (TRV envelope represented in Fig.3.8 as per IEC)
- 4.5 Short line fault TRV envelope for 36kV rating circuit-breaker by using MATLAB (TRV envelope represented in Fig.3.8 as per IEC)
- 4.6 Expanded view of short line fault TRV envelope for 36kV rating circuit-breaker by using MATLAB (TRV envelope represented in Fig.3.8 as per IEC)
- 4.7 Terminal fault TRV envelope for 36kV rating circuit-breaker by using PSIM simulator (TRV envelope represented in Fig.3.8 as per IEC)
- 4.8 Expanded view of Terminal fault TRV envelope for 36kV rating circuit-breaker by using PSIM simulator (TRV envelope represented in Fig.3.8 as per IEC)
- 4.9 Short line fault TRV envelope for 36kV rating circuit-breaker by using PSIM simulator (TRV envelope represented in Fig.3.8 as per IEC)
- 4.10 Expanded view of short line fault TRV envelope for 36kV rating circuit-breaker by using PSIM simulator (TRV envelope represented in Fig.3.8 as per IEC)
- 5.1 Multi frequency TRV synthetic test circuit
 - 5.2 High frequency circuit
 - 5.3 Low frequency circuit
 - 5.4 Flowchart for finding optimized circuit components
 - 6.1 4 –Parameters TRV parallel current injection synthetic testing circuit (control circuit-I, Weil Dobke type)
 - 6.2 Algorithm for the design and simulation of synthetic testing circuits for High Voltage circuit- breakers using PSIM Simulator
 - 6.3 Terminal fault TRV for 245 kV circuit breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC)
 - 6.4 Terminal fault TRV curve and Voltage across each capacitor bank for 245 kV CB as per case-I (Fig.3.9)
 - 6.5 Terminal fault TRV for 245 kV circuit breaker as per case-II (TRV curve represented in Fig.3.10 as per IEC)
 - 6.6 Terminal fault TRV curve and Voltage across each capacitor bank for 245 kV CB as per case-II (Fig.3.10)
 - 6.7 Short-line fault TRV for 245 kV circuit breaker as per case-I (TRV curve represented in Fig. 3.9 as per IEC)
 - 6.8 Terminal fault TRV for 420 kV circuit breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC)
 - 6.9 Terminal fault TRV curve and Voltage across each capacitor bank for 420 kV CB as per case-I (Fig.3.9)
 - 6.10 Terminal fault TRV for 420 kV circuit breaker as per case-II (TRV curve represented in Fig.3.10 as per IEC)
 - 6.11 Terminal fault TRV curve and Voltage across each capacitor bank for 420 kV CB as per case-II (Fig.3.10)
 - 6.12 Short-line fault TRV for 420 kV circuit breaker as per case-I (TRV curve represented in Fig. 3.9)
 - 6.13 Short-line fault TRV for 420 kV circuit breaker as per case-II (TRV curve represented in Fig.3.10)
 - 6.14 Terminal fault TRV for 800 kV circuit breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC)
 - 6.15 Terminal fault TRV curve and Voltage across each capacitor bank for 800 kV CB as per case-I(Fig.3.9)

5.

6.

- 6.16 Terminal fault TRV for 800 kV circuit breaker as per case-II (TRV curve represented in Fig.3.10 as per IEC)
- 6.17 Terminal fault TRV curve and Voltage across each capacitor bank for 800 kV CB as per case-II(Fig.3.10)
- 6.18 Short-line fault TRV for 800 kV circuit breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC)
- 6.19 4 –Parameters TRV parallel current injection synthetic testing circuit (TRV control circuit-II)
- 6.20 4 –Parameters TRV parallel current injection synthetic testing circuit (TRV control circuit-III)
- 6.21 Terminal fault TRV for 245kV circuit-breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC) with control circuit-II
- 6.22 Terminal fault TRV for 245kV circuit-breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC) with control circuit-III
- 6.23 Terminal fault TRV for 245kV circuit-breaker as per case-II (TRV curve represented in Fig.3.10 as per IEC) with control circuit-III
- 6.24 Terminal fault TRV for 420 kV circuit-breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC) with control circuit-II
- 6.25 Terminal fault TRV for 420 kV circuit-breaker as per case-I (TRV curve represented in Fig.3.9 as per IEC) with control circuit-III
- 6.26 Terminal fault TRV for 420kV circuit-breaker as per case-II (TRV curve represented in Fig.3.10 as per IEC) with control circuit-III
- 7.1 Schematic diagram of a developed 4-parameters TRV parallel current injection synthetic test circuit for terminal fault test duty as per case-I for 420 kV CBs
- 7.2 Schematic diagram of a developed 4-parameters TRV parallel current injection synthetic test circuit for short-line fault test duty as per case-I for 420kV CBs
- 7.3 Complete hardware set up of 4-Parameters TRV synthetic test circuits
- 7.4 Terminal fault TRV for 420 kV circuit breaker as per case-I (TRV envelope represented in Fig.3.9) by laboratory model
- 7.5 Terminal fault TRV for 420 kV circuit breaker as per case-II (TRV envelope represented in Fig.3.10) by laboratory model
- 7.6 Terminal fault TRV for 420 kV circuit breaker as per case-II (TRV envelope represented in Fig.3.10) by laboratory model, with different scale
- 7.7 Short-line fault TRV for 420 kV circuit breaker as per case-I (TRV envelope represented in Fig. 3.9) by laboratory model
- 7.8 Schematic diagram of parallel current injection method synthetic test circuit with trigger circuit
- 7.9 Functional block diagram of automatic controller
- 7.10 Waveforms of each block of automatic control circuit
- 7.11 Detailed circuit diagram of automatic controller for the automatic closing and opening operation of circuit breakers and to fire triggered spark gap at the desired moment
- 7.12 Connection diagram of LA50-P current transducer
- 7.13 Current to Voltage Converter
- 7.14 Zero crossing detector
- 7.15 Control Flip-flop (RS)
- 7.16 Schematic diagram of trigger circuit
- 7.17 Detailed circuit diagram of trigger circuit

7.

- 7.18 Flowchart for the automatic sequence of operation of developed CB synthetic test circuit
- 7.19 Time scale for the automatic sequence of operation of developed CB synthetic test circuit
- 7.20 Schematic diagram of a developed circuit for testing controller
- 7.21 Complete hardware set up of automatic controller for circuit-breaker synthetic test circuit
- 7.22 Oscillograph record of input and output waveforms of zero crossing detector
- 7.23 Oscillograph record of output of differentiator circuit (Negative spike output for interrupting the Micro-controller)
- 7.24 Oscillograph record of a generated pulse for denergization of MB and TB (Test-breaker)
- 7.25 Oscillograph record of a generated pulse for firing Triggered spark gap
- 7.26 Oscillographs recorded for both the generated pulses by the Micro-controller one for denergization of MB and TB and second for firing Triggered spark gap

÷