
Chapter 2

LEP Constraints on Unified 
Theories

2.1 Prelude
Since 1989 LEP has been producing electron positron collisions at various center of mass 
energies centered around the peak of the resonance production of the Zq bosons. The four 
experiments ALEPH, DELPHI, OPAL and L3 has till now collected about five million events. 
The analysis of this data on most varied subjects have been performed. The two most 
publicized results are the very precise measurements of the number of light neutrino and the 
absence of the standard neutral Higgs bosons in the energy range upto 63 GeV.

Recent interest in Grand Unified Theories has been motivated by the precision data that 
has emerged from LEP in the past years [1]. The measurements of the Z mass and width 
and also the jet cross sections and energy-energy correlations provide very accurate values 
of sin2 Ow and as at the scale Mz- These precision values of sin2 9w and a,, when evolved 
using the renormalization group equations, can be used to put strong constraints on unified 
theories [2], [3], [4], [5].

In particular, in the analysis of Refs.[2],[4], it has been shown that using the recent experi
mental values

sin2 8w - 0.2333 ± 0.0008
a, = 0.113 ± 0.005 (2.1)

a unique intersection point of the SU(3)c, SU(2)l and U(l)y couplings is not obtained in 
the standard model with one Higgs doublet (See Figure 1). Further in Ref.[2], it is shown 
that the criterion of unique intersection of the couplings at the unification scale is satisfied 
in the minimal supersymmetric extension of the standard model, and an unification scale of 
around 1016 GeV is obtained with the supersymmetry scale around 1 TeV (See Figure 2).

There are other ways of modifying the minimal standard model in order to get consistency 
with the data and the solutions that immediately suggest themselves are the inclusion of 
the effects of additional fermion generations or Higgs particles. However, the addition of 
new fermion generations changes the slopes of all the three couplings equally because the 
fermions contribute the same amount to the beta function coefficients of the SU(3)c, 51/(2)/, 
and U(l)y groups. As for the Higgs, it has been shown [2] that, in the non-supersymmetric
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case, with six or more Higgs doublets it is possible to obtain a unique intersection point 
for the couplings, but the value of the unification scale is too low and is ruled out by the 
measured value of the proton lifetime, rp = 5.5 X 1032 years[6].

The failure of these attempts seems to indicate that the possibility of any unification group 
breaking in one step to the minimal non-supersymmetric standard model is, indeed, ruled 
out by present experimental data. Non-minimal (but non-supersymmetric) extensions of 
the standard model have also been studied [10] where it has been shown that either the 
introduction of a pair of leptoquarks at a scale of around 100 GeV or of a split 45 dimensional 
multiplet can also satisfy the unification constraints. The consensus seems to be that if we 
demand coupling constant unification, then there must be some new physics between the 
electroweak scale and the unification scale. The possibility of a desert between presently 
available energies and the unification scale seems to be ruled out. However the minimal left- 
right symmetric GUTs are consistent with the LEP results. We will see in this chapter that 
the LEP results put strong lower bounds on the right handed breaking scales of the left-right 
symmetric GUTS.

2.2 Effects of Higher Dimensional Operators
In this section, we show that this is not a necessary conclusion x. This we do by considering the 
presence of higher dimensional operators in the SU(b) invariant Lagrangian. Such operators, 
scaled by powers of the Planck mass, arise due to quantum gravity effects [11] or due to 
spontaneous compactification of the extra spatial dimensions in Kaluza-Klein theories [12]. 
Such non-renormalizable terms involving fermion and Higgs fields have been used to show that 
the predictions of the minimal 51/(5) model for the fermion masses can be made consistent 
with observations [13]. Similar terms in the gauge part of the Lagrangian involving the gauge 
and Higgs scalar fields imply modifications in the gauge coupling constants at the unification 
scale [11], [14], [15]. We present, in the following, an analysis of the modification of the 
coupling constants at the unification scale due to the presence of five- and six-dimensional 
operators in the Lagrangian. We then check whether there is a consistent choice of couplings 
of the higher dimensional operators which yield sin20vy, the unification scale, My, and the 
517(5) coupling constant ay such that the experimental constraints from LEP and those 
coming from the measurement of the proton lifetime are simultaneously satisfied.

We start with a 5/7(5) invariant Lagrangian which breaks at a scale Mu into SU(3)c X 

SU(2)l x U(l)y due to a scalar Higgs field, <j>, which transforms under the 24-dimensional 
adjoint representation of SU{5). This Lagrangian in the domain of energies My < E < Mpi 
(where Mpi denotes the Planck mass) is given as a combination of the usual four dimensional 
terms and the new higher dimensional terms which have been induced by the physics beyond 
the Planck scale (or compactification scale). In principle, such non-renormalizable operators 
can be induced even due to the presence of a group G' which breaks to SU(5) at a scale 
above the unification scale. We note here that the compactification scale can be even two 
orders of magnitude below the Planck scale in Kaluza-Klein theories [16]. The Lagrangian 
can be written as

L = L0 + L(n) (2.2)
71=1

’This section follows Ref [9]
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where £o = -faFv'F*') (2-3)

and the sum in Eq. 2.2 runs over all possible higher dimensional operators. We write down 
the five- and six-dimensional operators explicitly as

/■* \

jr(D - (2.4)
2 M pi

X(2) 1 1 r?i2){Tr(F^2F^) + Tr(FM1^F^)} +

j?|2)Tr(^2)Tr(FM„F#“') + nfht{F^ ^>)Ti{F^<f>) (2.5)

where,
Ffiu — 9^Ay di/Ap ig^Ap, A (2-6)

A — A* —■n-fi — -tip g (2.7)

with,
Tr(A,.A,) = ±6t, (2.8)

In the above equations specify the couplings of the higher dimensional operators. Since

Tr(F^2FH = T'r(F^4>FfiU<p) (2.9)

we have used the same coupling r/i2hor both these operators in Eq. 2.5.

At the unification scale Mu, the Higgs field acquires the vacuum expectation value

<*) = ^=A,diag(l,l,l,-f,-|) (2-10)

The 517(5) symmetry breaks at this scale because of the non-invariance of the Higgs vacuum 
expectation value under the 517(5) symmetry. The magnitude of (<j>) is itself proportional to 
the unification scale, Mu, and, hence, one can replace the Higgs field appearing in Eq.2.5 by 
its vacuum expectation value (ignoring the small fluctuations of the Higgs field around 
With this replacement one obtains the following 517(3) X 517(2) x 17(1) invariant Lagrangian:

-|(1 + ecYlXF^F^) - 1(1 + eL)Tr(F$FW^)
-1(1 + CK)Tr(Fj!,)F(1b“') (2.11)

Thus, even in the presence of the higher dimensional operators that we have considered above, 
we obtain the usual 517(3) X SU(2) X €7(1) invariant Lagrangian merely scaled by constant 
factors (1 + et) * = C, L,Y. Defining the physical gauge fields below the unification scale to 
be

K = A,(l + c,)5 (2.12)
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we recover the usual SU(3) X SU(2) X U{ 1) invariant Lagrangian with modified coupling 

constants

gl(Mu) = + «c) 1

gftMu) =g22(Mu)(i + eLr1
gl{Mu) - gl(Mu)(l + ey)-1 (2.13)

The couplings gt are the couplings that would have appeared in the absence of the higher 
dimensional operators, whereas the gi are the physical couplings which are evolved down to 
lower scales.
It is expedient to introduce the parameter associated with a given operator of dimension 

n + 4 in the following way:
<r(n) =

The vacuum expectation value 4>o is related to Mu by

<Po r?(n) (2.14)

<f>o = (2.15)

where ao = 5o/4?r is the GUT coupling. We then have

e(n) — (2.16)

The change in the coupling constants are then related to the e^s through the following 

equations.

f-c

zl

e(U + e(2) + ye|2) + ...

_£€U) + £€(2) + M€(j)
2 +4“ + 2 6
1,(i) , 7J2) , 1£,(2)

"2 + 4e“ + T 6

+ ...
+ le(2)
+ 8C + ... (2.17)

The ellipsis in the above equations denote the contribution of operators with dimension 
greater than six.

As shown above, the effect of the higher dimensional operators is to modify the gauge coupling 
constants The unification scale, Mu, is defined, as usual, through the boundary condition

-2 -2 -2 2 
£3 = £2 = 91 = 9o (2.18)

In the presence of the higher dimensional operators, the couplings g, are not the physical 
couplings g, but are related to them via the relations in Eq. 2.13. The result is that the 
following modified boundary condition is required to be satisfied at the unification scale

gt(1 + ec) = gl(l + = 5j(i + <t) = gl (2.19)

The crucial point is that the physical couplings at the unification scale are gl, g% and g\ 
and these are the quantities that are evolved down to lower energy scales. The condition of
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equality in Eq.2.19 is, however, not on these physical couplings but on the ’’bare” couplings 
_|_ fi). The mismatch of the physical couplings at the unification scale can, therefore, be 

interpreted as due to the higher dimensional operators. With this in mind, one may use the 
standard one-loop renormalization group equations[7]

a, 1(MZ) = a, X{MV) +

with the beta function coefficients given by

4161 = 10’
bo = 19

6 ’
6, = -7

where we have taken Nj — 3 and IVniggs = 1- Solving the RG equations yield 

.My 6 1 rf, 8a| f 5cy + 3c£, a 1

——*.n
19

67a D

sin2 Bw = sin2 B-5^
Jw rCc +134 ' 67

J_ _ II
aa 67 D

41 a } 95 a
21 4- —— -f 7777—cy

1 f 41 a \ 
)7\21+ 2 aS 402 a.
11 7

3a, ^ a

D = 1 -f —(lice 4" 21 €jj 4- 35cy) 
o7

where sin2 #[y is the usual minimal SU(5) prediction

23 H 
134 + 201 o

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

With the above equations at hand, we now consider whether it is possible to obtain a consis
tent choice of the parameters cp, c/y and cy such that we can satisfy the constraints on sin2 Bw 
and Mu from present experiments. First we restrict ourselves to five- dimensional operators 
only and try to see whether these operators alone can provide the required numerical values 
for sin2 Bw and Mu. The restriction to five-dimensional operators implies from Eq.2.17 the 
following relations:

c c = A*h CL
= -?€<*>:

cy =
1 ■W (2.27)

We use the values of sin2 Bw and derived from LEP data, given in Eq.2.1, and a = 1/127.9. 
Since ec, cl and cy are all determined in terms of a single parameter eW, specifying the value 
of sin2 Bw in Eq.2.23 at the scale Mz fixes up these parameters uniquely. For the central 
value of sin2 Bw (= 0.2333), we obtain the solution = -0.0441, which from Eq.2.22 gives 
Mu = 3.8 X 1013 GeV. The corresponding value of aa = 0.0245. Using

Tp
±K
aG Mp

(2.28)

(where Mp is the proton mass), we find that the value of Mu is too low to be consistent with 
the experimental limits on proton lifetime. We also find that by varying sin2 Bw over the 
allowed range, the values of Mu and <xg do not change appreciably. Thus, we find that it is 
not possible to obtain a consistent solution with five-dimensional operators alone.
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We would now like to check whether it is possible to obtain a consistent solution if we admit 
both five- and six-dimensional operators. Then, from Eq.2.17, we see that ec, eL and cy are 
now independent parameters. By feeding in the value of sin20w, we obtain one constraint 
on these three parameters. The other constraint that these parameters need to satisfy is, 
of course, the proton lifetime constraint. From Eq.2.28, we see that the proton lifetime 
is controlled by both Mu and aG- There is a further constraint that we impose on the 
parameters. If we require that successive terms in the sum in Eq.2.17 be scaled by inverse 
powers of Mpi, then this can be ensured by requiring that |»7^iC| < |j?^| and with rjW not 
too large. Restricting ourselves to the space of parameters that satisfy these constraints, we 
present some sample values of the parameters in Table 2.1.

€c ey {Mu )min aG
-0.85 -0.86 - -0.845 -0.893 - -0.864 1017 10“3
-0.90 -0.913 - -0.905 -0.926 - -0.897 1017 10~3
-0 95 -0 956 - -0.953 -0.963 - -0.949 1016 l0-4

-0 99 -0.9913 - -0.9906 -0.9926 - -0.9897 1016 l0-4

Table 2.1: The ranges of the various parameters obtained with the central value of sin2 9w = 
0.2333

We thus find that if we include both five- and six-dimensional operators, then there are a 
whole range of parameters that are consistent with the values of sin2 9w and Mu that are 
required for agreement with experiment. In earlier papers [11], [14], where the effect of only 
five-dimensional operators was considered, the value of sin2 9w obtained is too small to be in 
conformity with the latest values. The effect of six-dimensional operators was also included in 
Ref.[15]. Our work goes beyond the analysis presented in Ref.[15] in that we have included a 
more general set of six-dimensional operators. The effect of the extra operators that we have 
considered cannot a priori be neglected. Even if we restrict ourselves to the TrFt“/) 
operator, as in Ref.[15], we have checked that for the range of parameters chosen in Table. II 
of Ref.[15], the values of sin2 9w obtained are not in conformity with the LEP results.

Our analysis thus shows that by including the effects of higher dimensional operators aris
ing due to quantum gravity or spontaneous compactification of extra spatial dimensions in 
Kaluza-Klein theories, it is possible to show that the predictions of a minimal 51/(5) GUT is 
in conformity with the latest LEP values of sin20*y and and also with the experimental 
constraints on proton lifetime.

2.3 Constraints on Left-Right Symmetric GUTs

An important class of GUTs are the left-right symmetric models where the Standard Model 
comes from a larger group with a SU(2)l X SU(2)r symmetry 2. One interesting possibility 
is that the left-right symmetry survives to relatively low energies, and would therefore have 
testable consequences at current experiments or in experiments planned in the near future.
Earlier phenomenological studies [17] [18] [19] have indicated that it is indeed possible to 
have a low value for the left-right symmetry breaking scale, Mr, in various grand unified

2 This section follows Ref. [5]
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theories with intermediate mass scales and in partially unified theories. In these analyses, 
however, values of sin2#vv from as low as 0.21 to as high as 0.28 were considered.

Such a large variation in sin20iy was expected from the existence of a extra neutral gauge 
boson, Z', coming from either a U(1)r or SU(2)r symmetry. Due to the mixing of the Z 
with the Z' the usual p parameter, defined as

_ Af
^ M|cos2^iy

changes by a positive quantity, ApM, given as [20]

A pM = sin2f
Ml

(2.29)

(2.30)

where £ is the mixing angle. From the definitions of sin2#w and p one «. an see that

sin^vpcos2#^£(sin 2Qw)
cos2 Bw -A Pm (2.31)

The quantity A pm is determined entirely by the measured value of Mw/Mz, as can be seen 
clearly from Eq. 2.30. The results of a recent fit [20] to the LEP data [1] yield the following 
bound:

rmt(GeVy\2Apm < 0.010 - 0.003 100
(2.32)

where the dependence on the top mass, m(, comes through the radiative corrections. Using 
this value of A pM we get <5(sin2<?w) ss 3.32 X 10~3 which is well within the quoted errors on 
sin2#**'- It is with this very stringently bound value of sin20w that we wish to study whether 
a low value for the left-right symmetry breaking scale, Mr, is allowed.
In this section, we will first assume the existence of precisely such a mass scale and study 
the evolution of the couplings via the renormalization group (RG) equations at the one-loop 
level. To keep matters simple at first, we consider a symmetry breaking scheme without any 
other intermediate mass scale other than Mr and neither do we specify the GUT group, G. 
We take Mr ~ 1 TeV and try to determine if there is any unification point below the Planck 
scale (s» 1019 GeV). The central values for the couplings at the scale Mz(= 91.176 GeV), 
obtained from as, s\n2 9w and a [2] [3]

ai(Mz) = 0.016887; a2(Mz) = 0.03322; a3(Mz) = 0.11 (2.33)

are evolved to the scale Mr. Using the matching conditions of the coupling constants at Mr

<*iy(Mr)

Q2l{Mr) = <*ir(Mr) (2.34)

the evolution equations become

a\(fl-LJ^) ~ 5 32 ®iy(^^) 2a2L^Mz^ —

bbiyMRz + ^lMrz - 261(fi_£,)MgH
°2£/l(?) = a2l(Mz) - 262lMrZ - 2b2MqR

a^}(Mz) - 2b3cMRZ - 2bzcMqR (2.35)
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(2.36)

where Mt) = 4xln(M,/MJ) and the beta function coefficients, 6,’s are given as:

,4 1 10. _____7_
1 “ (47T)2 ’ 2 ~ (4x)23’ 3 (4tt)2

Here we have taken the number of fermion families, n/ = 3. In Fig. A we have plotted the 
gauge coupling constants ot~*B_Ly a^,R and as a function of energy, taking Mr = 1 TeV. 
We see from the Figure 3 that as a result of choosing a low value for Mr, there is no unification 
point even when we evolve upto a scale as high as 1019 GeV.. The 5(7(3)c and 5(7(2)/,,* do 
intersect at about 1017 GeV, but the U( 1) scale remains much too high for any possibility 
of unification to exist. We stress that the discrepancy is of such a large magnitude that the 
inclusion of the experimental errors on the input values of the coupling constants at Mz will 
not redeem the situation and therefore this analysis using the central values should suffice to 
illustrate the point.

The above illustrative exercise certainly indicates that a low value of Mr is inconsistent with 
grand unification with no intermediate scales. To investigate this more thoroughly and to 
consider, in particular, the effect of introducing intermediate mass scales we will study various 
unification schemes with left-right symmetry, in detail. The traditional model of left-right 
symmetry is based on 50(10), [17] E$ [21] or 517(16) [22] unification groups. Recently a 
very interesting proposal for unification starting from a 5(7(15) group has been made [23]. 
Since baryon number is a local symmetry in this model, it is possible to suppress proton 
decay and allow unification at very low scales (as 109 GeV). This model is not left-right 
symmetric but a simple extension of this model which uses a 5(7(16) unification group [24] 
is left-right symmetric. In this work, we consider the 50(10), Eq and SU(16) based-models. 
Other than these we also consider partially unified models, which are left-right symmetric 
[17], where one starts from the semi-simple group 5(7(4)c X 5(7(2)/, X SU(2)r instead of a 
simple group. These models are constrained by the value of sin2#w but not by the value of 
as and consequently there is more freedom in these models than in the grand unified models.

The detailed breaking chain that gives a intermediate left-right symmetry starting from a 
50(10) model is as follows [10]:

50( 10) ^ 5(7(4) x 5(7(2)/, x SU(2)r

^5(7(3)c x SU(2)l x 5(7(2)* x U(1)(B,L) 
^SU(3)cxSU(2)LxU(l)y 

M_ZSU(3)cxU(l)em

The matching conditions at Mr are precisely the same as those given in Eq. 2.34. The weak 
breaking scale, Mw, is taken to be 250 GeV in our computations. The renormalization group 
equations for this breaking chain imply the following relations between the standard model 
coupling constants and the unification coupling constants:

6 4
o1y(Mw) = a5O(10)(-^i/) + + ^b4)Mui -f

6 4(g^2R + -h{B-L))M\R + 2biyMRW 

a2i(Mw) = aso(\o}(Mu) + 2b2iMui + 2biLM\R + 2b2iMRW 

a3c(Mw) = g5o(io)(^7(/) + 2b4Mui + 2b3cMlR + 2b3cMRw (2.37)
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FIGURE 3



The analysis for the ^-based theories is very similar to that of the 50(lO)-based theories. 
In the Eq case, however, there are two independent routes which lead to the Standard Model 
group. In one of these, the Ee group goes to the Standard Model group via SU(4)c xSU(2)i X 
SU(2)r (exactly as in the .90(10) case). The other possibility, which is of our interest, is

E6^SU(3)e x SU(Z)L x 5(7(3)*

^SU(3)c x SU(2)l x 517(2)* x V{\\b-l)

M^SU(Z)cxSU(2)lxU(1)y

^5P(3)CXP( l)em

The renormali/.ation group equations for this case are

olxy(Mw)

<*3c(Mw)

8 2= ai](^t/) + (-&3R + -^>Zl)Mui +

6 4R + gh(B-L))M\R + 26j yMrw

= a#’ (Mu) + 263z,Me/i + 2b2LMiR + 2b2iMnw 

- asl(Mv) + ^hcMm + 2b3cMjR + 2hcMnw

The M,/s are as defined earlier and the beta function coefficients are

h = 0; &2 = 1 22 
(4rr)2 3 ’

1 1 44W?lV'bi “ -(C?T

(2.38)

(2.39)

Note that the fermionic contribution to the beta functions have not been written down in 
the above equations since our intention is to use these in the equations for sin2^ and aa, 
where the fermionic contributions cancel exactly. The linear combinations of the couplings 
that yield sin2#w and as are the following:

. 2/s ^ 5 / —1 —1 \sin 6W = g - ga(«iy - a2L)

8 a . _■> 5 8 _i.
- -— = a a,r + -a,y - -a,,3 as v 2L ^ 3 ir 3 3^ (2.40)

Using the experimental numbers, sin20jy = 0.236 and as = 0.11 [2][3], the above relations 
reduce to the following:

Qix ~ a21 = 29.097 (2-41)

and
a2L + - §«£ = 104-755 (2.42)

Substituting the expressions for the couplings from Eq. 2.37 and in Eq. 2.38 and solving we 
get the same solutions for both the 50(10) and Ee cases

3
mm = -26.1741 + -ttirw

mi2 = 88.5009 - 4m*ty (2.43)

26



where m,3 = MtJj4x. Using the fact that mu\ is positive, one can readily see that the 
minimum value of rriRw is 17.4494 i.e.

MR\min = Mwexp(mnw) (2-44)

which means that Mr cannot be lower than 109 GeV, in both the 50(10) and Ee models.

Now consider left-right symmetry coming from 517(16) as the Grand unification group. 
517(16) can break to the left-right symmetric group via a number of chains. But all the 
symmetry breaking chains which proceed via the 517(4) X SU(2)l x SO (2)r group will give 
a lower bound on Mr, similar to what happens in the case of 50(10) or E& models. We 
will, therefore, not discuss the chains which have an intermediate 517(4) X 51/(2)/, X 51/(2)* 
group.
It was noticed in the 517(15) GUT that if 51/(3)£X51/(2)}x5£/(3)hX1/(1)bx51/(2)}x1/(1), 
group breaks at the un-unification scale M\, then the condition for low energy unification is 
that Mi has also to be lowered. This idea can be extended to the 517(16) GUT and it can be 
seen that lowering the un-unification scale one can achieve low energy unification. We shall 
now try to explore this scenario and see if we can have low-energy left-right symmetry in 
51/(16) GUT with low energy unification. We shall assume that the Higgs structure is such 
that proton decay is suppressed. The detailed breaking chain we consider is the following:

51/(16) ^5t/(3)L x SU{2)qL x 517(3)* x SU{2)qR x 17(1)* x 
SU{2)lL x 517(2)}, X £7(1),

^5t/(3)c X SU{2)l+l x 51/(2)*+' x U(l)(j3—l) 

a^SU(3)cxSU(2)lxU(1)y 

M_ZSU{Z)C X £7(l)em

In the above breaking chain, 1/(1)* is proportional to the baryon number and 1/(1),ep is 
proportional to lepton number both properly normalized. The matching conditions at Mr 
are again those given in Eq. 2.34 with appropriate modifications to account for the quark- 
lepton un-unification group while those at the scale Mx for the 1/(1) groups can be easily 
seen to be

ai(B-L)(Mi) = + (2-45)

From the fermion transformation properties at different levels, we can check that 51/(3)/, 
and 51/(3)* are normalized to 1, SU(2)qL and 51/(2)} are normalized to 3/2, and 51/(2)}, 
and 51/(2)} are normalized to 1/2. All other groups are normalized to 2. The beta function 
coefficients properly normalized are

b\(B-L) = 0; hy - 0; biR = 0; 6j,ep = 0

1 88 Ll u 1 88 , 1 22 *2£, - *2R ~ -(4^-9 ! b2L ~ b2R -5 ~

bz — (4x):
rll; hL =

(4;r) ,22; b3R =
(4rr): -22 (2.46)
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The values of the beta function coefficients given above are, as before, without the fermionic 
contributions since these cancel exactly in the expressions for sin2^ and as. The evolution 
equations for the 51/(16) case are as follows:

9 3 16
a~y(MW) = «5y(!6)(^) + + Yq&2H + + jQ^liep)

6 4
Mu i + (gi>2 + + 2biyMRW

a;l(Mw) = o^u{ls){Mv) + {h\L + \bl2L)Mvl + 2b2MlR 

+2b2Mjiw

a3c(Mw) = asu(ie)(Mu) + (&3£ + b;in)Mui + 2b3(MiR + MRW) (2.47)

As :n the 50(10) case, we use Eqs. 2 41 and 2.42 and solve for the ratios of the mass scales. 
The resulting equations are

ttirw - 17.4494
mi# = 18.7031 - 2myi (2.48)

In this case, therefore, we see that we get a fixed value of ttirw — 17.4494, which is precisely
the value of the minimum of ttirw in the 50(10) case. This implies a value of « 109 for the
left-right symmetry breaking scale, Mr.
Finally, we investigate the possibility of left-right symmetry from a partially unified model 
[17]. The detailed breaking chain is as follows:

517(4) X SU(2)l X SU(2)*^ <&’

SU(3)c x SU(2)l x SU{2)r x U{1\B_L)
M^SU(3)cxSU(2)lxU(1)y

^SU(3)cxU(l)em

The matching condition at Mr is the same as in the preceding examples. The evolution 
equations in this case read as follows:

= |a2-1(Mi) + |a4-1(M1) +

6 4(g&2 R + -^h{B-L))M\R + 2b\YMRW 

a^liMw) = ot21(Mi) + 2b2LMiR + 2b2LMRw 
a3c(Mw) = 04 l(Mi)2b3cMiR -f 2b3cMRw (2.49)

In writing the above equations we have used the fact that, due to the left-right symmetry 
beyond the scale Mr, ct2l = cx2r = a2. The beta function coefficients remain the same as 
before. Note that the important difference in this case is that the single coupling at the 
unification scale which appeared in the unified models, is now replaced by the disparate 
coupling strengths at the scale of partial unification. To express the couplings at the scale 
Mw m terms of sh\20w and a, an appropriate linear combination needs to be constructed
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such that the different couplings at the partial unification scale are exactly canceled. The 
resulting equation is

2 22(b2R - b2L + 2&i(fi~L) - |b3)MiR

+2(|&ik - b2i - -h)MRw (2.50)

Using the experimental values of sin20jy and a,, we get

53.74 — 2m rw = m2r (2.51)

To get the minimum of Mr in this case, we also use the constraint that M2 should be less than (or equal to!) the Planck scale, 1019 GeV i.e.

turw + m2r < 38.23 (2.52)

From these equations, we get mnw > 15.51 which implies a lower bound on Mr equal to 
« 109 GeV.

We now consider the effect of including the Higgs contribution in the renormalization group 
equations. The specific Higgs representations under different symmetry groups are given in 
Table (2.2).

1
4w

(l-2sin2#w/) 2
a 3a,

SU(3)c x SU(2)l x SU(2)r x tf(l)(B_w SU(3)c x SU(2)l X U(1)Y
1,1,0

1,2,2,0

1,2,2,0
1,3,1,-v/f 1,3,-VI

Table 2.2: The explicit Higgs representations under the left-right symmetric group and the 
electroweak group.

Using these representations, the beta function coefficients are given as

bMS-L) (47r)22;

Solving as before, we find that with 
to «s 1011 GeV.

b\y 1 2
(4jr)2 5 

41

; b2t = b2R =
1 20 

"(4tt)2 3 ’

bn = — ■ r 11(4x)2 6 ’ (4?r)2ii ^2*53^

the Higgs contribution the lower bound of Mr increases

We have also studied the effect on Mr of including supersymmetry. The essential difference 
in the analysis is that the beta function coefficients are modified. Taking into account these 

modifications, we find that in the supersymmetric case the lower bound on Mr is ss 10n GeV.
In conclusion, the most recent experimental data provide very strong constraints on left-right 
symmetric models. We have shown that if a left-right symmetric group coming from either a
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grand unified or partially unified group breaks at an intermediate mass scale, Mr, then the 
tightly constrained values of sm29\y and a„ can be used to put a lower bound on the value 
of Mr. This lower bound is « 109 GeV, irrespective of the unification group. Grand unified 
theories and partially unified theories, therefore, completely rule out the possibility of seeing 
the right handed partners of VT± at the energies available in current experiments or those 
planned m the near future. Conversely, the discovery of these particles at such energies can be 
used to refute unification models. It is of importance to note, however, that our analysis puts 
no constraints whatsoever on the existence of extra Z at low energies, as an extra U(1)r can 
survive down to electroweak breaking scales. The inclusion of the Higgs or supersymmetry 
increases the lower bound on Mr.

2.4 Contraints on Non-Perturbative Unification
The compatibility of the simple supersymmetric GUT with no intermediate breaking scales 
and the couplings determined from LEP is remarkable. Nonetheless, it is important to study 
other models, which are alternatives to grand unification, and see whether they are viable in 
the light of the available experimental information on couplings 3.

An interesting alternative to GUTs was proposed by Maiani, Parisi and Petronzio [26] several 
years ago. In this scheme, the couplings enter a non-perturbative phase at a high energy scale, 
i.e. the theory is asymptotically divergent. Starting from the renormalization group equation 
for a coupling a,

§=«“>• (2-54)

where 0(a) is the beta function and t = In(Q2/fj.2), p, being some reference scale, we obtain

y^tQ2) dah(n) 0(a)'

For 0(a) > 0 (asymptotically divergent theory) there is a value of t, given by

(2.55)

-L da
GO 0(<*)

< oo, (2.56)

for which a —* oo. If perturbation theory is to be valid at all energy scales, we require 
a(n) — 0, so that tc = oo, a(fi) = 0 is the infra-red fixed point. But ifa(/i) yf 0 but small, 
i.e. it is sufficiently close to the infra-red fixed point, then there is a finite cut-off in energy 
beyond which the theory is non-perturbative.

In Ref. [26], it was assumed that the standard SU(3)xSU(2)xU(l) theory, due to new fermion 
generations that get switched on around the weak scale Ap = 250 GeV, is asymptotically 
divergent beyond Ap. The couplings aii2l3 are sufficiently close to zero at Af but not quite 
zero. As a consequence, the theory is cut off at a scale A. At this scale, the most interesting 
situation is that not just one but all three couplings are large, i.e. of 0(1). In fact, it has been 
shown [27] that such a non-perturbative scenario exhibits a ’’trapping” mechanism, whereby 
if one of the couplings grows large, the other couplings will also increase. This effect, by 
means of which all three couplings are large and of the same order of magnitude at A, leads 
to what is called non-perturbative unification. In Ref. [26] the cut-off scale A was assumed

3This section follows Ref [25]
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to be the Planck scale, however, in subsequent studies [28, 29], A was determined to be of 
the order of 1015 -1017 GeV. Since the low-energy couplings are close to the infra-red fixed 
point, they are insensitive to the values of the couplings at the scale A.
One natural extension of the above scenario is the inclusion of supersymmetry. This was first 
considered in Ref. [28], and was later discussed in Refs. [29, 30]. Other than solving the hier
archy problem, the inclusion of supersymmetry is attractive because it provides a framework 
for the existence of new particles needed to make the theory asymptotically divergent. In the 
case of the simplest N = 1 supersymmetric extension of the scenario, it suffices to consider 
rtf — 5, where rtf is the number of fermion generations.
In this section, we use the recent LEP values to check whether any strong constraints on the 
non-perturbative unification scenario can be obtained. The values of sin2#iy and a, from LEP 
are very precise compared to that available from older experiments. One strong constraint 
is on the number of extra chiral generations. The present limit on the oblique parameters S, 
T and U allows only three chiral fermion generations, while the vectorial generations are not 
constrained. Thus in addition to the three chiral fermion generations we are allowed to have 
only an even number of generations.

We shall first specify the supersymmetric non-perturbative unification scenario in detail. 
While discussing the results we shall also comment on the results of the non-supersymmetric 
case. We consider an SU(3)xSU(2)xU(l) supersymmetric gauge theory with the assumption 
that an N = 1 supersymmetry holds above the scale A«. We assume nj = 5 supersymmetric 
generations and two Higgs supermultiplets. In the discussion of the non-supersymmetric 
case we shall consider one Higgs scalar and rtf = 8 and 9. From the requirement that 
the Yukawa couplings do not become arbitrarily large, a bound on the fermion masses can 
be obtained [31, 32]. This bound is that fermion masses are, in general, smaller than 200- 
250 GeV. We assume that the extra fermion generations, which are required for the theory 
to be asymptotically divergent, are of the order of 250 GeV in mass.

Having specified the theory we can now address the question of the evolution of the three 
couplings. The two-loop renormalization group equations for the couplings are given by the 
following coupled differential equations:

^ dfi = h h++(sHw> (2.57)

where i, j, k = 1, 2, 3 and ip j k, and a, and btJ are the one- and two-loop beta function 
coefficients. In the range of energies between Mz and the supersymmetric threshold, M„ 
we use the non-supersymmetric beta functions to evolve the couplings, whereas from AT, 
onward the supersymmetric beta functions are effective. We retrieve the result for the non- 
supersymmetric scenario by taking Ms = Ampp and large nj.
In the non-supersymmetric case the one-loop beta function coefficients are [33]

i
b} = +nf + nh

while the two-loop beta functions are

-(!
\o

H] + «/ + »A 5

(2.58)

(2.59)
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In the supersymmetric case the one-loop beta functions take the form [33]

while the two-loop beta functions are

+ Tlf + nn (2.61)

In all these equations, nj and denote the number of fermion generations and the number 
of Higgs doublets respectively.
We integrate the coupled differential equations in Eq. (2.57) numerically, with the initial 
values of the three couplings c*i)2)3 taken to be of 0(1) at the unification scale A. What we 
do in practice is to evolve downwards using the renormalization group equations for several 
values of A, and check what the predicted values of the couplings at the scale Mz are. The 
extra fermion generations are assumed to contribute to the beta functions for all energies 
greater than 250 GeV.

We shall first comment on the non-supersymmetric scenario and then present our main result, 
namely the supersymmetric extension. In this case we find that for ny < 8, q2(Mz) remains 
too small, and that <*i,2{MZ) falls within the experimental bound for nj > 9. But for nj > 9 
the strong coupling constant evolves extremely fast and a3(Mz) becomes too large. Thus the 
precision LEP data rule out the non-supersymmetric scenario completely.

The results of the computation for the supersymmetric version are shown in Figure 4, where 
ai,2,3(Afz) are shown as a function of A. The solid, dashed and dotted curves are for M, = 
250 GeV, 1.2 TeV and 5 TeV, respectively. The horizontal lines in the Figure 4 show the 
upper and lower bounds on the couplings at Mz as determined by the LEP experiment. 
These are as follows [34]:

<*! = 0.0101322 ± 0.000024
a2 = 0.03322 ± 0.00025
e*3 = 0.120 ±0.006. (2.62)

It is clear from the Figure 4 that the non-perturbative unification scheme is certainly viable 
if we have M3 = 1.2 TeV and A close to 0.78 X 1017 GeV. We have checked that the range of 
values allowed is Ms = 1.2 ±0.2 TeV and A =(0.7-0.8) X1017 GeV. We have also checked that 
the couplings at Mz are not sensitive to the choice of the couplings at A. We have checked 
this by varying these from 0.75 to 10.

Let us now summarize our results of this section. We have studied the non-perturbative 
unification scenario first proposed by Maiani, Parisi and Petronzio. We point out that the 
non-supersymmetric version of this scenario is ruled out by LEP data. However, the su
persymmetric extension of this scenario remains a viable alternative to conventional grand 
unified theories and is capable of predicting the precision values of couplings determined from 
LEP. Our numerical results show that the non-perturbative scale, A, at which all couplings 
are large, is around 0.7-0.8X1017 GeV, with the supersymmetric threshold Ms around 1.0- 
1.4 TeV. If the scale Ms gets either larger or smaller it is then not possible to reproduce the
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values of the couplings at Mz- We should note that the agreement with the data is obtained 
only for a constrained range of parameters of this scenario. In principle, the effect of higher- 
order corrections could be large and this may ruin the agreement. It is also likely that more 
accurate measurements of the strong coupling 0:3 at low energies may be sufficient to either 
put strong constraints or completely rule out this scenario. It is nevertheless interesting that 
this scenario, at the two-loop level, is a possible alternative to conventional grand unification.
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