
CHAPTER 5
RATES OF CONVERGENCE IN LOCAL LIMIT THEOREM FOR 

INDEPENDENT SUMMANDS-I

5.1 INTRODUCTION:
Let {Xn} be a sequence of mutually independent r.v.s 

with corresponding sequence of absolutely continuous 
d.f.s {Gn}. Suppose, for each n, Gn e {F^, F2, Fm};

m being a fixed positive integer.
For each n, let xj = Xj (n) be the number of r.v.s 

among X^, ..., Xn which have Fj as their d.f., j = 1, 2,
m

..., m. Note that £ Xj = n.
j=l '

Suppose that each Fj belongs to the domain of normal 
attraction of the stable law F0 with index a, Q< a< 2. By 
Theorem 3.1 of Sreehari (1970), Sn, properly normalized, 
converges in distribution to a stable r.v. with d.f. F0. 
Kruglov (1968) proved that if the d.f. Fj, j = 1, 2, ...,
m are absolutely continuous with p.d.f. v^, j = 1, 2,
..., m, then

sup Jvn(x)- v0(x) | =o(l) as n -> 00,

vn(x) being the p.d.f. of Sn, properly normalized, and, 

vQ being the p.d.f of F0. Kruglov did not make any 
assumptions about parent distribution's^membership of any 
particular stable laws' domains of attraction. Also he 
assumed that the limit distribution of normalized sums Sn
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exists through the necessary and sufficient conditions 
given by Zinger (1965), and it was not important what the 
limit distribution is. IBasu et al. (1979), under certain
regularity conditions, obtained a non-uniform rate of 
convergence in a local limit theorem concerning 
i.i.d.r.v.s in the domain of normal attraction of a 
stable law (they assumed the limit law to be strictly 
stable in the case 0< a si). The rate was found to be of 
the order n1-(Ial+1)* o< a< 2, r - l/a. In this chapter, 
we obtain uniform as well as non-uniform rates of 
convergence of the density vn to vQ for the above set up. 
This improves Kruglov's result and generalizes work of 
Basu et al. (1979) from i.i.d. set up to non-identical 
set up.

We state our theorems first:

Theorem 5.1.1: Under the assumptions [A1]-[A5], stated 
below

supx 6 R|vn(x)-v0(x)| = 0(n1_<ta5+1)3r).

Theorem 5.1.2: Under the assumptions [A1]-[A5], stated

below

sup (l+|x|a) |vn(x) -vQ(x) | = 0(n1”aal+1)*}.
x <6 R v-'
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We prove the theorems for special values of m in 
Section 5.4. We introduce the notations and assumptions 
in Section 5.2. In Section 5.3, we mention some lemmas 

which will be needed in Section 5.4. These lemmas can be 
proved on the lines of corresponding results of Section 
2.3 of Chapter 2. We shall mention only necessary 
changes, wherever required, in the proofs of their 
counterpart-results of Chapter 2. The outline of the 
proof for the general case is given in Section 5.5.

5.2 NOTATIONS AND ASSUMPTIONS:
Let Y0 denote a stable or a strictly stable r.v. 

with index a, according as 1< a* 2 or 0< a< 1,
respectively, having the d.f. F0 with EY0 = 0, whenever 
it exists and let wD denote its c.f. We assume EXn = 0, 
whenever it exists.

It is known that Zn = Sn/Bn converges in
a m adistribution to r.v. Y with Bn = £ d^ x^ (see: Sreehari

i=l
(1970), Theorem 3.1), where d^ is an appropriate constant 
depending only on d.f. F^. For the sake of simplicity, we 
shall take Bn = ny, y = 1/a, without loss of generality.

mWe write #n(t) = E [exp (itZn)] = jj {w^ (tn-*) }Ti,
i=i

where w^ is the c.f. corresponding to the d.f. F-^.

Note that we have from the canonical representation 
of c.f. wQ(t) that for all t

mW0(t) = fi {w0 (tn“*) }Ti . ...(5.2.1)
1 = 1
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Then, in view of discussion in Section 5.1,

lim,, „ <£n(t) = wQ(t) for all t.

For each positive integer n and real number x, 

for k = 0, 1, . . ., m,

ak T (t,x) = X eitudFk(u),
' k IuNixlxk*

0k,Tk{t,x) = wk(t)-akjTk(t,x),

Ak,xk(t,x) = {ak,Tk(tn-^,x)}Tk,

Bk t, (t,x) = {wk(tn-^)}Tk-{a^ T (tn-*,x)}Tk
? \r ^ lr

=E
h=l

fck
h

{«k,T, (tn-y,x)}Tk~h{/3k T (tn *,x)}h. 
' k ' k

... (5.2.2) 

we define

...(5.2.3)

...(5.2.4) 

...(5.2.5)

...(5.2.6)

Note that for

vn(u) = (2ir)~l X°Vn(t)e-itudt, ...(5.2.7)
~C0

the inversion integral on right hand side is absolutely 

convergent. The absolutely convergent integral provides 

the continuous p.d.f. that we shall use in our theorems.

Let H = {(t, n, x) : |t|> enr, ns nQ, |x|s 1}, where e

will be same as in Lemma 5.3.1, and nQ is a large

positive integer.
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We now make the following assumptions:

[Al] All the d.f.s Fj, j = 1, 2, m are absolutely

continuous.

[A2] Fj belongs to the domain of normal attraction of the 
stable law F0 with index a, a<2. In case 0< a si, fq is 
strictly stable. Further let {wj (tn *) }n -» wQ(t), the 

c.f. of F0, as n -» oo.

[A3] 1 im z-\/n = t-;>0, j = 1, 2, . . . , m.n-»oo J J

[A4] For some integer pal, J°°|wj (t) |pdt< oo, j = 1, 2,
“03 J

..., m.

[A5] /“lul ^+1|v-j (u)-v0 (u) |du< oo, j = l, 2, ..., m.

Remark 5.2.1: From the proof it will be clear that it is 
sufficient if we assume that 0< liminf x^/n for all
j instead of [A4] .

5.3 PRELIMINARY RESULTS:
Now we mention some preliminary lemmas required to 

prove the theorems of Section 5.1.

Lemma 5.3.1: Under the assumptions [Al], [A2] and [A3],
there exists positive constants e, c and C such that for
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k » o, l , m,

I A, (t,x)|s Cexp{-c|t|a} ...(5.3.1) |

for all t in the range |t|s enr, all x with Ixl^l and all 

large n.

Throughout the rest of the chapter c is taken as 

same as in the Lemma 5.3.1.

Lemma 5.3.2: Under the assumptions [Al], [A2], [A3] and
[A5], there exists a polynomial (.) such that for large 

n, the relation

holds, for all (t, n, x) e S and is j< r^, k = 1, ..., m;

where E is defined at p. 106.

Remark 5.3.1: This is a modified version of Lemma 1 in 

Banys (1977) for i.i.d. case. The proof of Lemma 5.3.2 is 

along the lines of proof of Lemma 2.3.3.

Now we define two functions, similar to (2.3.18) and 

(2.3.19), which will be useful in proving the theorems 

and some of the lemmas. For j =1, 2, ... , m, let

dTj (t,x)

...(5.3.2)

=xj (tn *<*) Mao.-c/tn^x) ' ... (5.3.3)

STj(t,x)

...(5.3.4)
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Properties of the function d^t,*)
Lemma 5.3.3: Under the assumptions [Al], [A2], [A3] and
[A5], for all values of t, all x with
n, we have for k = 1, 2, ... , m,
(i) whenever 0< a< 1,

|x|il and all large

\d (t,X) |S T, 1_rP. ( |t I ) ,
xk k r .. . (5.3.5)

1 dj.111, x) |S ex,1"*,
L i. i\

(ii) whenever is a< 2,

... (5.3.6)

Id^ (t,x) |s xk1_2rP2 (111) , ...(5.3.7)

|d^tt,x) is Tk1-2yP3(|t|) , ...(5.3.8)

|d^.2)(t,x) |s c1'ck~2?- ... (5.3.9)

Remark 5,3.2: The proof of this lemma
of proof of Lemma 2.3.4.

is along the lines

Properties of the function a. (t,x)K,Tk
Lemma 5.3.4: Under the assumptions [Al], [A2] and [A3],
for each fixed n, x and k = 0, 1, • , m, ot, (tn'?,x

h,xk
is differentiable any number of times under the integral
sign. For all values of t, all x with
n, we have for k = 1, 2, ... , m,
(i) whenever 0< a< 1,

|x|2sl and all large

. (i) -y . ,i-a f-i|ak r (tn ,x) |s C|x| xk" ;
’ k

. . . (5.3.10)
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(ii) whenever 1< a< 2,

(tn“r,x) |s rj<,f"1Pk( |t|)
’ k

.(5.3.11)

* |x|2"atky_1PkC|tI) , .(5.3.12)

la <2,(tn-^x)|s CJx^V1- 
k, X IK

,.(5.3.13)
k

(iii) Also for all x*0, 0< a< 2 and every sufficiently 
large but fixed integer s, there exists a constant c such 
that

X“|a (t,x)|Tkdt = 0(t *),
-oo k,T Kk

..(5.3.14)

.00, , . , ,2S ,,X la, (t,x) | dt^ C,
“03 k. X k

..(5.3.15)

_roX°°iPk (t,x) |2Sdt=s C.
’ k

..(5.3.16)

Remark 5.3.3: The proof of this lemma is along
of proof of Lemma 2.3.5.

the lines

Properties of the function S (t,x)rk
Lemma 5.3.5: Under the assumptions [Al], [A2] and [A3],
for all (t, n, x) e E and large xk, k = 1, 2,
have
(i) whenever 0< a< 1

... , m we

IS (t,x) N Cexp{-c|t|a},
‘•k . . (5.3.17)

ls‘Mt,x)|s CI x 11_aexp { - c 111a} ; 
xk

(ii) whenever is a< 2,

. . (5.3.18)

IS (t,x)|s Cexp{-c|t |a},
Tk ..(5.3.19)
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IS*1 *(t,x) |s |x|2_0£exp{-c| t |a}P- (111) , ...{5.3.20)
Tk x

IS*2>(t, x) |s |x|2"°*exp{-c|t|°*}P„ (Itl) . ...(5.3.21)
xk ^

Remark 5.3.4: The proof of this lemma is along the lines 

of proof of Lemma 2.3.6.

Lemma 5.3.6: Under the assumptions [Al], [A2], [A3] and
[ A5 ], there exist polynomials Pi(.) and ?2(-) such that, 

for all (t, n, x) e E, we have the following:

(i) whenever 0< a< 1,

IA (t,x)-A (t,x)|K,Xk 0,Tk

s P (111) exp{-c| t l°*}x^”y, ...(5.3.22)

I A*11 (t,x)-A*1’ (t,x) |
K, U» Ljj

£ |x|1-0*P2 (|tI)exp{-cItIa}T]c1~3r; ...(5.3.23)

(ii) whenever is oc< 2, 

IA (t,x)-A (t,x) |

aii -2Ts P (It I)exp{-c|t| }Tk

I A*11 (t,x) -A* 11 (t,x) |
k, o,
IX12 °*Pi ( |t|)exp{-c|t|tt}x^'a i i -22r

(5.3.24)

(5.3.25)

i = 1, 2; k = 1, 2, ... , m.

Remark 5.3.5: The proof of this lemma is along the lines 

of proof of Lemma 2.3.7.
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Lemma 5.3.7: Under the assumptions [Al], [A2] and [A3},
there exist polynomials P^ (.) and P2(•5 such that for all 

(t, n, x) e E, we have,
(i) whenever 0< a< 1,

IA'1’ (t,x) |s Clx|1_aexp{-c|tf“} ; ...(5.3.26)
k, Ck

(ii) whenever is a< 2,

IA*1* (t,x) |s P (111) exp { - c 111 “} ...(5.3.27)
k,Tk 1

s 1l ^^P^ (111) exp{-c|t|a} ; ...(5.3.28)

(A*2’ (t,x) |s |x|2_aP (tti) exp { - c 111a} . ...(5.3.29)

Remark 5.3.6: The proof of this lemma is along the lines 

of proof of Lemma 2.3.8.

Lemma 5.3.8: Assume that [Al] and [A2] hold. Let e>0 and 
integer nD be fixed and let 
for k = 1, 2, ... , m,

'\o,krS§Pl“o,T,,(t'X)l' ...(5.3.30)

...(5.3.31)

where © = { (t,n,x) I It I > e, na nQ, |x|£ 1} .

Then, Os u <1 and Os'4 .<1.(0,k> (k, k)

Remark 5.3.7: The proof of this lemma is along the lines 
of proof of Lemma 2.3.9.
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Set fi = max (n
lSkSm (O, k) ' (k, k)

) .

Lemma 5.3.9: Assume that [Al], [A2], [A3] and [A5] hold.
Let g(t,x) be a complex-valued continuous function such
that |g(t,x)|s max(l, c|x|’a) for all x with |x|stl and

for all t. Then, for k = 1, 2, ... , m, as n -» <»,
I X°°(B, (t,x) -B (t,x) )g(t,x)exp(-itx)dt I
-00 k,Tk 0,Tk
= |xr“o{Tk1“(tal+1)2r5 ...(5.3.32)

Remark 5.3.8: The proof of this lemma is along the lines 

of proof of Lemma 2.3.10.

Lemma 5.3.10: Under the assumptions [Al] and [A2], for 

all th.e values of t and all x with |x|tl and n large, we 

have

!Bk,Tk (t/X) I- clxra, ...(5.3.33)

k = 0, 1, ... , m.

Remark 5.3.9: The proof of this lemma is along the lines 

of proof of Lemma 2.3.11.

We shall now prove a result which is an extension of 

Lemma 2.3.12 to non-identically distributed case under 

consideration.
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Lemma 5.3.11: Under the assumptions [Al], [A2], [A3] and
[A5], there exists a constant c>o such that, for all (t,
n, x) e S, we have
Id (t) -w (t) I n o
s n1"U0£1+1!irP1(|t|)exp{-c|t|0£} . .(5.3.34)

Here <pn(t) = E [exp (itSn/Bn) ] .
Proof: Using the definition of 0n(t), the equation
(5.2.1) and by adding and subtracting the terms
fj {wi (tn"*) }T‘ {wo(tn_y) }Tk for j = 1, 2, ... , m-1,

1 = 1 k=i+ 1
we get on simplification 

I0n(t)-wQ(t)I

* I l{w.(tn-y)}T*-{w (tn'y)}TM 
1=1

s n1-u«]+i)'ypi (t)exp{-c|tla}, using Lemma 2.3.12.o

5.4 PROOFS OF THE THEOREMS:
Proof of Theorem 5.1.1:

We shall prove the theorem for m = 2. In case of m>2 
but fixed, the proof involves similar steps.

We shall prove the relation
sup Jvn(x)-vD(x) I = 0(n1_( [o£] +l)2r) . ...(5.4.1)

The inversion formula for continuous density gives that 

27T|vn(x)-vQ(x) \£ Iin+I2n+I3n< ...(5.4.2)
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where

Iln = J" |0n (t) -w0 (t) |dt,
|t|;serr

x2n = S 10n(t)Idt111>err
* X Iw^tn"*) |Tl|w2(tn'1f5 lT2dt 

111>err
and I3n = X |w0 (tn~y) |ndt,

It | >en?
e>0 being as in Lemma 5.3.1.

By Lemma 5.3.11 it now follows that

Iln = 0{n1_<[Q:1+1)r) . ...(5.4.3)

By [Al], the d.f.s F0, F]_ and F3 are absolutely

continuous. We have from the canonical representation of 

a stable law, wQ(t) = {w0 (tn-?r) }Tl {wQ (tn-^) }Xz. Also note 
that there exists, for any e> 0, a c (e)> 0 such that 

|wj_(t)|s exp(-c(e5), It|> e, for i = 0, 1, 2. Therefore,

l2n- 1 exp{-c (e) (n-2p) } |w^ (t) |p|w2 (t) |pdt
11 | >E

^ n*exp{-c (e) (n~2p)} X Iw^(t)|pdt
111 =>e

s cn*exp{-c(e)(n-2p)}

0(ni-([ai)+i)r) .'..(5.4.4)

and

T Hum+Dy,I3n = 0(n ) . ...(5.4.5)

Thus equation (5.4.1) follows from the relations (5.4.2] 

through (5.4.5).
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Proof of Theorem 5.1.2:
We shall prove the theorem for the case 0< a< 1 and 

ra = 3. The case 1^ a< 2 can be handled similarly. Also 
the case m = 2 can be worked out exactly on the similar 
lines. In case m> 3 but fixed, the proof will be exactly 
similar to the case presented here. Modifications 
necessary for the general case are discussed in Section 

5.5.
Note that in view of Theorem 5.1.1, it is sufficient 

for us to prove

sup |x|“|vn(x)-v0(x) I =0(n1-y). ...(5.4.6)
| X I ^1

Consider, for |x|al,
|x|a|vn (x) -vD (x) |

s |xla|_ojJ'“exp(-itx) [{w^ (tn_y) }Tl{w2 (tn”y) }Ta{w3 (tn"y) }T3 

-{w0(tn_3r) }Tl{w0(tn'7) }T2{wd (tn-3r) }T3] dt| 

s sup |x|a| /“expi-itx) {w! (tn”y) }Tl{w2 (tn"3") }T2
| x | 2:1 -c0

[{w3(tn-3r)}T3_{wo(tn-T)}x3]dt|

+ sup |x|ai j“exp (-itx) {wt (tn-3f) }Tl {w0 (tn-3f) }x3
| x I 2:1 u _

[{w2 (tn-3r) }T2-{wQ (tn"r) }X2]dt|

+ ^sup |x|011 ^J^exp (-itx) {wQ (tn-3") }Ta{w0 (tn-3”) }X3 

t {wi (tn-3f) }Tl- {wQ (tn~3) }Tl] dt |
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= ^12 W^3 + W23 * . (5.4.7)

In order to prove (5.4.6) it is sufficient to prove
that

W12 = OCn1'*) , ... (5.4.8)

W13 = 0(n1-'3r) , ... (5.4.9)

W23 = 0 (n1*^) . ... (5.4.10)

We shall prove equation (5.4.8) only. Equation 
(5.4.9) and (5.4.10) can be proved similarly.

Observe that using (5.2.5) and (5.2.6), we can write
^/“exp (-itx) {w]_ (tn-y) }Tl {w2 (tn-*) }x2 

[ {W3 (tn~r) }X3-{w0(tn"y) }T3]dt

= ^“exp (-itx) ^Ai<Xl (t ,x) A2>X2 (t ,x) +A^iXl (t,x)B2<X2(t,x) 

+Bi#Tl(t,x)A2fT2(t,x)+Bij.Cl(t,x)B2,-C2(t,x5 \

fA3,r3 (t,x) -A0#T3 (t,x)]dt 

+ ro/"exp (- itx) {w^ (tn“y) }Xl{w2 (tn~y) }x2

[B3#T3(t,x!-B0/X3(t,x)]dt

= I (AxA2) +1 (A]_B2) +1 (B!A2) +1 (B1B2) +1 (B) , say. ...(5.4.11)

Estimate of I(AjA2): We shall prove that
|I(A1A2)| = |xra0(n1_T) . ...(5.4.12)
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First of all we consider the integral

_mj'“exp(~itx)A1>ri (t,x) A2#x2 (t,x)A3#X3 (t,x)dt.

Because A^^ {t,x) , A^^(t,x) and Ao^^(t,x)

are absolutely integrable, simple techniques involving

integration by parts give us

^J^exp{-itx)A1>Xl(t,x)A2jX2(t,x)A3 fT3(t,x)dt

3 3
=ix_1 t _wX“exp(-itx) jj Aj f x. (t ,x) A^Xk (t,x) dt. .(5.4.13)k=l j=l J

Evaluating

^/“exp(-itx)AljXl(t,x)A2jX2(t,x)Aq>X3(t,x)dt 

on the lines of (5.4.13), we have then

|I(A1A2)1 = I_o(/Dexp(-itx) A1>Xl (t,x) A2f X2 (t,x)

[A3<X3(t,x)-Aq(X3(t,x)]idt

S |xl_1[ S + S ] Ia{JXi (t,x) | 1A2(X2 (t,x) i 
|t|=senr |t|>eny

Ia3,t3(t,x)-ao,t3(t,x)Idt

+ txf1[ S + S 1 lAlfXl(t,x) I IA2JX2 (t,x) I
Itl^en* |t|>eny

Ia3,r3<t,x)-AofT3(t,x)Idt

+ lx| 1 [ S + S ] IAi/X]l (t,x) 1 |A2(X2 (t,x) I
Itl^en* |t|>en*

|A3^X3(t,x)-Aq ^ x 3(t,x)Idt

= Mi(x) +...+ Mg (x), say. (5 4.14)
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Observe that (5.3.22) and (5.3.26) together with 

Lemma 5.3.1 imply that,

|Mi(x)| = |xr“o(n1_2f) , for i = 1, 3; ...(5.4.15)

whereas Lemma 5.3.1 and (5.3.23) imply that,

|M5 (x) | = |x|~a0 (n1-^) . ...(5.4.16)

Finally, as a consequence of equation (5.3.10), the 
assumption [A2] and Lemma 5.3.8, we get for i = 2, 4, 6,

I Mi (x) | = |xl~ao (n1_y) . ...(5.4.17)

Thus from equation (5.4.14) to (5.4.17) it follows that,

IKA^JI = lx|-aO (n1-y) ...(5.4.18)

which is same as (5.4.12).
Estimate of I(A1B2): Write I(A1B2) as

I (A;j_B2) = ( S + S )exp(-itx) A]_ <Tl (t,x)B2 To (t,x) 
|t|seny |t|>Eny

{a3,t3 (t,x) -AojX3 (t,x) }dt

= I2(A1B2)+I2(A1B2), say. ...(5.4.19)

Now, |I1(A1B2)| = |x|~aO (n1-?r) , ...(5.4.20)

is evident from Lemmas 5.3.1 and 5.3.10 and (5.3.22); 

whereas, using Lemmas 5.3.8 and 5.3.10, we get

112 (A1B2) |s c|xfa S IAX T. (t,x) |dt

s cIxranT{iTrP X |a1/Tl (t,x) lpdt 
It I >e
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Therefore, it follows that,

|I2(AiB2) I = lxi'0£0(n1_r) . . ...{5.4.21}

Thus, IKA-LB2)! = |x|"“o (n1^) , ..(5.4.22)

follows from (5.4.19), (5.4.20) and (5.4.21). On similar

lines we can prove

|I(B1A2)I = Ix|_a0 (n1-^) . ...(5.4.23)

Observing the fact that (t ,x) max(l, c|xi a)

for k = 1, 2, 3, and once again using the techniques used 

to get estimate of I(Aib2) we get

|I(B1B2)I = |xf“ 0(n1_3r) . ...(5.4.24)

Estimate of 1(B): we have
1(B) = ^“exp (-itx) {w]_ (tn_y) }Xl{w2 (tn~y) }T2 

[B3,t3(t,x)-B0/T3(t,x)]dt.

Note that
{Ai fTl(t,x)A2fX2(t,x)+AlfXl(t,x)B2|T2(t,x)

+B1,n(t,x)A2,x2(t,x)+B1,Xi{t,x)B2,x2(t-x>}

is a complex valued function with absolute value of each 
summand (component) being less than or equal to max(l, 
c|x| } . Each component satisfies all the properties of 
the function g(t,x) introduced in Lemma 5.3.9. We 
therefore take each component gj(t,x), say,‘j = 1, 2, 3, 

4 as g(t,x) of Lemma 5.3.9 and apply Lemma 5.3.9.



Therefore,

II(B) 1

= |_roX”exp(-itx)-{AlfTl (t,x) A2/T2 (t,x) +AifXl (t, x) B2, X2 (t, x)

+Bi/Xl(t,x)A2fX2(t,x)+Bi(Xi(t,x)B2iT2(t,x)\

tB3,x3-B0fX3(t,x)]dt|

- E 1 ^“exp (- itx) g j (t,x) [B3jX3 (t,x) -B0;X3 (t,x) ]dt|
j=i

S E IxfW*)
J=1

s |xraO (n1*y) , using Lemma 5.3.9. ...(5.4.25)

Equation(5.4.8) now follows from (5.4.11), (5.4.18),
(5.4.22), (5.4.23), (5.4.24) and (5.4.25). In view of the
remarks following equations (5.4.10) the proof of Theorem 
5.1.2 is complete.o

5.5 GENERAL CASE:
Remark 5.5.1-. In the case m>3 (but fixed) in place of 
(5.4.7) we will have

sup Ixl^l l“exp(-itx)
Ix|*l

[fT {wk<tn-*)}Tk-n {wQ (tn-*) }T|C] dt I
If = 1 W = 1
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[{wra(tify) }Tm- {wD(tn *) }Tmdt |

m -1+ Z sup |x|a[ l“exp(-itx)
i i •» ~C0S=2|x|£l

n^wkttn^)}^ n{w0(tn-y)}Tj
k=l j=m-s+2

*y . ^m-s+l , _-y , ^•m-S+1
Hwm-s+l (tn * ) } - {wQ (tn ®5 } 3 dt I

+sup |x| I i exp(-itx) f[ {w0(tn~<f)} 
Ixlfcl k=2

3f, iTk

[{w1(tn"r)} *- {wQ (tn-3r) } hdtl

As in Theorem 5.1.2, we shall consider 1st term only. 
Proceeding as before, this can be expressed as sum of 
five terms say 1^, I2, I3, I4 and I5, similar to (5.4.11) 
where.1^ has in the integrand the product term involving 
Ai, ..., Am_ x with (Am-A0) , I2 is the sum of (m-1) 
integrals with each integral containing the product of 
one B^, is m-1 with (m-2) A^'s and (Am-A0), I3 is the sum 
of 2ra_1-(m+1) integrals with each integrand being the 
product of (m-1) terms with (Ajn-Ao) of which at least two 
are Bj/ s and at least one is A^; I4 is an integral whose 
integrand is the product of (m-1) B-[ with (Am-Ao) and I5 
is an integral whose integrand is the product

Proceeding as in equations (5.4.12) to (5.4.25) we get 
0(n1_2r) .
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Remark 5.5.2: It is well-known that the limit

distribution of normalized sums of independent r.v.s 
exists irrespective of the sampling scheme under 

consideration (see: Sreehari (1970)5 . We are unable to
prove the rate in the local theorem of this result in 
case r^/n -» 0 as n -> co for some i, mainly because of the 
failure of some of our estimates to hold in this case.

Remark 5.5.3: In the case m = 2, terms containing either 
one A factor or one B factor will appear. For m> 2, 
factors involving A's and B's simultaneously occur and it 
is more complex to handle. For this reason we have 
presented the case with m = 3.

CONCLUDING REMARKS:
In this chapter we have considered a situation 

wherein observation come from m population F^, F2, .
Fm, where each Fj belongs to the domain of normal 
attraction of a (single) stable law with a * 1, a * 2. In 
chapter 6, we relax the assumption that all Fj are in the 
domain of attraction of the same stable law and obtain 
uniform and non-uniform rates of convergence type 
results.

123


