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5.1 Introduction

The concept of controllability (introduced by Kalman-1960) leads to some very impor­
tant conclusions regarding the behaviour of linear and nonlinear dynamical systems. 
Most of the practical systems are nonlinear in nature and hence the study of nonlinear 
systems is important. There are various notions of controllability such as complete 
controllability [52], approximate controllability [61], exact controllability ([65],[96]), 
partial exact controllability [107], null controllability, local controllability, etc. A 
new notion of controllability, namely, Trajectory controllability ( T-controllability) 
is introduced here for some abstract nonlinear integro-differential systems. In T- 
controllability problems, we look for a control which steers the system along a pre­
scribed trajectory rather than a control steering a given initial state to a desired final 
state. Thus, this is a stronger notion of controllability. Under suitable conditions, the
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T-eontrollability of nonlinear system in finite dimensional case has been established 
in Section 5.2. Then the result is extended to infinite dimensional case in Section 
5.3. We use the tools of monotone operator theory and set-valued analysis. We also 
use Lipschitzian and monotone nonlinearities with coercivity property in Section 5.3. 
Examples axe provided to illustrate our results.

5.2 T-controllability of Finite-dimensional Systems

for all 0 < t < T < oo. Here, a(t.) is an L1 function defined on J = [0,T] and 
b : J x IR (-> IR. For t E J, the state x(t) and the control u(t.) belong to IR. Further, 
/:JxIRxIRi—►IRisa nonlinear function satisfying the caratheodory conditions, 
i.e. / is measurable with respect to first argument and continuous with respect to 
second argument. Also, g : A x IR i~> IR is a nonlinear function which also satisfies 
the caratheodory conditions, where A = {(£,s) J x J; 0 < s <t < T}.

It may be noted that according to the definition of completely controllable system 
(refer Chapter 2), there is no constraint imposed on the control or on the trajectory.

Let T be the. set of all functions z(-) defined on J = [0, T] such that 2(0) = x0, z{t) = 
.Ti and z is differentiable almost everywhere.

Here we refer the. Definition 2.1.4 and Definition 2.1.5.

In the system (5.2.1), both control u(.) and state s;(.) appear nonlinearly. First let 
us look at the following system where the control appears linearly.

Consider the nonlinear scalar system

(5.2.1)

(5.2.2)

Assumptions [Al]

(i) The functions n(t) and b(i) are continuous on J.
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(ii) b(.) do not vanish on J.

(iii) / is Lipschitz continuous with respect to second and third argument, i.e, there 
exist ci\,a2 such that

l/(*,®i, Vi) “ /(*»*2,2/2)1 < aij®i - *2| + a2\yi ~ J/2I

for all xux2,yi,y2 e R,t e J.

(iv) g is Ll - Lipschitz continuous with respect to the third argument in the following 
sense.

/ |g(t, s, x(a)) - g(t, s,y(s))\ < j8|x(t) - y(t)\] x,yeT, (t, s) G A. 
Jo

Under the above assumptions, one can easily construct the control explicitly to prove 
the T- controllability of the nonlinear system (5.2.2). To see this, we proceed as 
follows:

For each control u G L2(J), the existence and uniqueness of the solution for the 
system (5.2.2) follow from Assumptions [Al] by using the standard arguments.

Let z(t.) be a given trajectory in T. We define a control function u(t) by

z'(t) - a(t)z{t) ~ /(t z(t), J$ g(t, s, z(s))ds)

=-----------------------------m-----------------------------
With this control, (5.2.2) becomes,

x'(t) = a(t)x(t.) + z'(t) - a(t)z(t) - / (t, z(t), g{t, s, z(s))ds)

+f(t,x(i),Jig(t,s,x(*)ds) 
x(Q) = x0.

Setting w(t) = x(t) — z(t), we have

w'(t) = a{t)w{t) + f(t, x{t), /04 g(t, s, x(s))ds) - f(t, z(t), /0‘ g(t, s, z(s))ds) \

w(0) = 0. J
(5.2.3)

By using the transition function (j)(t, s) — ef* a^ds for the ordinary differential equar 
tion y'(t) = a(t)y(t), (5.2.3) can be rewritten as
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w(t) = [Q Hf^s)[f{s,x{s), 5(s,r,.T(r))dr) - f(s,z(s),j^ g(s,T,z(T))dr)]ds.

Thus

M*)l < Jo I<K^ s)l[a'i \x(s) ~ 2(s)! + aa| Jo <KS> T x(r))dr - J0* g(s, r, z{r))dr\]ds 

< Jo l<KA s)|[aiK-s) - z(«)| + aa/S\x(s) - z(«)|]d*.

That is,
Ix{t) - z(t)| < (aj + a20) f |<f>(t, s)||*(s) - z{8)\ds.

Jo

Hence, by GrownwalPs inequality, it follows that

||.r(i) - z(t)|| = 0.

This proves T-eontrollability of the system (5.2.2). ■

As remarked earlier, in the above nonlinear system (5.2.2), the control u(t) is appear­
ing linearly. Let us now consider the case in which control as well as the state appear 
nonlinearly as in (5.2.1). We have the following theorem.

THEOREM 5.2.1 Suppose that

(i) b(t,u) is continuous.

(ii) b(t.,u) is coercive in the second variable, i.e.

b(t, u) —► ±oo as u —► ±oo

(Hi) The function f is Lipschitz continuous in the second and third variable, uni­
formly in t, i.e. there exist an > 0 and a2 > 0 such that

\f(t,xi,Vi) -*2| + aa|l/i -I/2I, Vxi,®2,Vi,ife e IH,t e J.

(iv) The function g is Lipschitz in the third variable uniformly in (t,s) € A, i.e., 
there exists 0 > 0 such that

\g(t, s, x) - g(t., s,y)\< 0\x - y| V®, y e 1R, (t, s) e A.



Chapter 5 54

Then the nonlinear system. (5.2.1) is T-controllable.

Proof: For each fixed u, the. existence and uniqueness of the solution of the system 
(5.2.1) follow from the Lipsehitz continuity of the functions / and g. Moreover, this 
solution satisfies the integral equation

x(t) = 0)®o + Jo <j>(t, s)b(s, u(s))ds

+ Jo «)/(«. x(s), Jo g(s, r, x(T))dr)ds.

Let 2 € T be the prescribed trajectory with 2(0) = .To. We want to find a control u 
satisfying

z(t) — 0)tq + <f)(t, s)b(s, u(s))ds + (f>(t., s)f(s, z(s), g(s, r, z(r))drjds.

The above equation can be written as

z(t) - 0).to - f c/)(t,s)f(s,z(s), f g(s,T,z(T))dr\ds = f (j)(t,s)b(s,u(s))ds.
J0 JO Jo

Differentiating with respect to t, we get

z'{t) - a(t)(j){t, 0).r0- jf <*(«)#>«)/(«. g(s,T,z(T))dr)ds

-/(*.«(*)» JQ g(t,s,z(s))ds)
= / a(t)<t>(t,s)b(s,u(s))ds + b(t,u(t)). (5.2.5)

JO

The equation (5.2.5) can be written as

w(t)=[ k(t,s)w(s)ds + wo(t), (5.2.6)
Jo

where w(t) = b(t, k(t, s) = —a.(t,)<f)(t, s) and wq(t) is the left hand side of (5.2.5).

The equation (5.2.6) is a linear Volterra integral equation of the second kind and 
it has a unique solution w(t) for each given Wq(t) (refer [95]). Hence, it suffices to 
extract u(t) from the solution w(t). To extract u(t.), we use the technique of Deimling 
([53], [54]).

Consider the multi-valued set function G: [0,T] —> 251 defined by G(t) — {u G IR : 
b(t,u) = w(t)}. Since &(-, •) and w(-) are continuous, by hypothesis (ii) G(t) is
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nonempty for all t and upper semi-continuous. That is, tn —*■ 0 implies G(tn) C 
G(0) + Be(0), Vn > n(s, 0). Further, G has compact values. Hence G is Lebesgue 
measurable and therefore, has a measurable selection «(•).

This function u is the required control which steers the nonlinear system along the 
prescribed trajectory z(-). Hence the proof. ■

REMARK 5.2.2 (%) The control u obtained in Theorem. 5.2.1 is measurable, may
not. be continuous. But, if we require control u to be continuous, we have to 
assume mere stronger condition on b(t,u).

(ii) If the nonlinear function b(t,u) is invertible, then. u(t) can be computed directly 
from. w(t) = b(t,u(t)). For example, ifb(t,u) is strongly monotone, i.e., there 
exists f3 > 0 such that

then there exists a unique u such that b(t.,u) ~ w. Note that the strong m,ono- 
tonicity implies coercivity.

(Hi) Ifb(t.,u) is coercive and monotonically increasing with respect to u, then it can 
be seen that b(t., IR) = IR and b(t, u) = w(t) is solvable.

EXAMPLE 5.2.3 Consider the nonlinear integro-differential system with the control 
term b(t, u) = u\u\

The control term b(t.,u) is continuous and coercive. One can now verify f and g as 
in Theorem. 5.2.1 to get the T-controllability of the above system.

5.3 T-controllability of Infinite-dimensional Sys­
tems

|6(t,u) - b(t, u)| > fi\u — v

■

In this section we consider a nonlinear integro-differential system defined in infinite 
dimensional space and generalize the results of Section 5.2. Let H and U be Hilbert
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spaces and consider the following nonlinear integro-differential system.

w'(t) = Aw(t) + B(t, u(t)) + F(t, w(t), Jq G(t, s, w(s)ds), t E J = [0, T] 
w(Q) = w0,

where the state w(t) E H and the control u(t) E U, for each t E J. The operator 
A : if i-> H is a linear operator not necessarily bounded. The maps B : J xU H, 
G : A x H H and F:JxHxHt-*H are nonlinear operators, where A = 
{(t, s) E J x J : 0 < s < t < T}.

We make the following assumptions on (5.3.1).

Assumptions [I]

(i) Let A be an infinitesimal generator of a strongly continuous Co-semigroup of 
bounded linear operators S(t),t > 0. So, there exist constants Mi > 0 and 
w € R+ such that

(ii) B and G satisfy caratheodory conditions, i.e.,
B(t, ■) : U t-4 H is continuous for t € J and B(-,x) : J i-> H is measurable for 
x E U and G(t, s, •) : H i-> H is continuous V(t, s) E A and G(-, •, a:) : A tH 
is measurable Va: E H.

(iii) F satisfies caratheodory conditions like G.

(iv) B, G, F satisfy the growth conditions:

Under Assumptions [I], a mild solution of the system (5.3.1) satisfies the Volterra 
integral equation

i| S{t) || < Miemt; t > 0

and also let

||B(t,«)||n < b0(t) + 6j||«||{/ Vu E U, tEJ.

||G(^, s, .t)|| < qQ(£) + qi\\x.\\H V t E J, x E H, 

< aoW + ^IxUH + aallyllH-
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Let T be the set of all functions 2 € L2(J, if) which are differentiable and z(0) = uiq. 
We say that the system (5.3.1) is T-controllable if for any 2 € T, there exists an 
L2-function u : J if such that the corresponding solution w of (5.3.1) satisfies 
«)(•) = z(-) a.e.

We malm the following additional assumptions on F and B.

Assumptions [II]

(i) F{t,, x, y) is Lipschitz continuous with respect to x and y\ i.e., there exist constants
alsa2 > 0 such that

\\F(t,xi,yi) - F(t,x2,y2)\\ < ailNi - ®2|| + oi2\\yi - y2|| 

for all xux2,yuy2 £ H,t. e J.

(ii) G{t,s,x) is Lipschitz eontimious with respect to x; i.e,, there exists a constant 
/? > 0 such that

We now prove the T-controllability result for the system (5.3.1).

THEOREM 5.3.1 Under Assumptions /// and [II], the nonlinear system, (5.3.1) is 
T-controllable.

Proof: Let z be any trajectory in T. Following the proof of the Theorem 5.2.1, we 
look for a control u satisfying

(iii) B satisfies monotonicity and coercivity conditions, i.e.,

(B{t, u) - B(t.,v),u - v) > 0, Vu, v € U,t. € J

and
(B{t,u),u) 

lim -—V-n1—- 

H->oo 11^11

0
S(t — s)B{s, u(s))ds.

Q
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Differentiating with respect to t, we get

|z'(t) - AS(i)w0 — j AS(t. — s)F(s, 2(s), J G(s,t, z(r))drjds
G(M,z(s))ds)]

= t AS(t-s)B(s,u(s))ds + B(t,u(i))- (5-3-3)
Jo

Equation (5.3,3) can be rewritten in the form

2/00 — f k(t,s)y(s)ds + y0(t), (5.3.4)
Jo

where y(t,) — B(t, u(t.)}, k(t, s) = —AS(t — s) and yo(t) is the left hand side of (5.3.3) 

Define an operator K: L2(J, H) -» L2(J, H) by

{Ky)(t) = j k(t, s)y(s)ds (5.3.5)
Jo

Assumption [I(i)] assures that K is a bounded linear operator [42]. Also, it can 
be easily proved that Kn is a contraction for sufficiently large n (refer [54],[107]). 
Hence by generalized Banach contraction principle, there exists a unique solution y 
for (5.3.4) for given yo € L2(J,H), Therefore, T-controllability follows if we can 
extract u(t) from the relation

B{t,u(t)) = y(t). (5.3.6)

To see this, define an operator N: L2(I, H) —> L2(J, H) by

(JSTu)(i) = i3(t,u(t)). (5.3.7)

Assumptions [I(ii),(iii),(iv)] imply that N is well-defined, continuous and bounded 
operator. Assumption [Il(iii)] shows that N is monotone and coercive. A hemi- 
continuous monotone mapping is of type (M) (see page 78 of [78]). Therefore, by 
Theorem 3.6.9 of Joshi and Bose [78], the nonlinear map N is onto. Hence there exists 
a control u satisfying (5.3.6). The measurability of u(t) follows as u is in L2(/, H). 
This proves T-controllability of the system (5.3.1). ■

COROLLARY 5.3.2 If F and G are Lipschitz continuous and B is strongly mono­
tone; that is, there exists 0 > 0 such that

< B(t,u) - B(t,v),u — v > > (3\\u - ?>||2 Vw, v € H, t, € J. (5.3.8)

Then the system. (5.3.1) is T-controllable.
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Proof: The proof follows from the fact that the condition (5.3.8) implies Assumption 
[Il(iii)].

REMARK 5.3.3 We have not directly used the Assumptions [II(i)J and [11(H)] of 
the Lipschitz continuity of f in the proof of the Theorem 5.3.1. Actually it is needed 
for the existence and uniqueness of the solution w(-) satisfying (5.3.2) for each control 
«(-). There are also other verifiable conditions for the uniqueness of the solution, in 
the literature, (see [65]). ■

EXAMPLE 5.3.4 Let ft be a bounded domain in IRn with a smooth boundary dft. 
Consider the system.

^| = Ay +'u(x,t) + i[sin2x(i) + siny(t)] in ft x (0,T) 

y(x, 0) = 0 in ft ’

y(x,t) — 0 in dfl x (0, T).

The above system can be put into the form of (5.3.1) by defining Aw(t) = Aw(t) for all 
w(t) £ T>{A), where T>(A) — Jf2(ft) nJJg(ft) is the domain of A and H = U — A2(ft). 
Here the control term B(t.,u(t)) = u(t) is linear. The above system is T-controllable 
under the assumptions on F and G as in the theorem.

In the one dimensional case, that is say, ft =. (0,1), one can explicitly write A : 
L2(0,1) —> L2(0,1) by Aw = w", where T>(A) = (w G H-.w,w' are absolutely 
continuous, «j(0) = w(l) = 0} and

OO

Aw — )T) n2(w, wn)wn.
n=l

Here wn(s) = >/2 sinns-, n — 1,2,3... is the orthogonal set of eigenfunctions of A and 
(w,wn) is the L2 inner product. Further, A generates an analytic compact semigroup 
S(t),t.>0'mH given by

OO

S(t)w = ^ exp(—n2t)(w,wn)wn, w € H.
n= 1

Here F{t,x(t),y(t.)) = ^[sin2x(t) + siny(t)] and G(t,s,y(s)) = |[cosy(s)], both are 
Lipschitz continuous. ■

We now specialize Theorem 5.3.1 for the case H = IRn. So we consider the following 
finite dimensional nonlinear system in IR".
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w'{t) = i4(i)to(i) + B(t, 11(f)) + F(t, w(t), Jq G(t, s, w(s))ds) 1 3 g%

w(0) = (ro0). J
where A,B,F and G are as in (5.3.1) with H replaced by Hn. Therefore Theorem 
5.3.1 can be specialized for the system. The following theorem can be proved as in 
Theorem 5.2.1.

THEOREM 5.3.5 Suppose that

(i) F is Lipschitz continuous with respect to x and y and G is Lipschitz continuous 
in x

(ii) B(t,u) satisfies

ita AMA||u||-»oo j|li|| = 00.

Then the nonlinear system. (5.3.9) is T- controllable by a measurable control u : J 
]Rn. ■

EXAMPLE 5.3.6 Consider the nonlinear 2-dimensional system.,

x[{t) = anxi + anx2 + sin(yi{t) + 3 J yi(s)da) + cos(y2{t.) + 3 J y2(s)ds) + uf, 

*i(0) = *oi-

®2(*) = a2ixi + 022*2 + cos(yi(t) + 3 J yx(s)ds) + sin{y2(t) + $J V2(s)ds) + u\, 

*2(0) = .^02

It can be easily verified that the above system satisfies the hypotheses of Theorem 
5.3.5, and hence it is T-controllable.


