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INTRODUCTION

1.1 Introduction

In the study of system dynamics and design, controllability analysis plays a vital 
role in most of the practical engineering systems. In controllability analysis, one is 
concerned about proving the existence of a control which will steer the system from a 
given initial state to a desired final state in a prescribed time. This basic property of 
control systems was first introduced by Kalman [80] in 1960’s for finite dimensional 
linear systems and subsequently extended to nonlinear systems (refer Klamka [84], 
Joshi and George [79]) and to infinite dimensional systems (Triggiani [135], Lasiecka 
and Triggani [91]) by many researchers. They derived various types of controllabil
ity concepts both weak and strong such as approximate controllability (Zhou [144], 
George [62], McKibben [100]), exact controllability (Zuazua [145]-[147]), partial ex
act controllability (Nandakumaran and George [107], [108]), trajectory controllabil
ity (George [62]), stochastic controllability (Araposthathis, George and Ghosh [5]) 
etc. Although controllability problem concerning the linear systems has been widely 
studied with contributions by Kalman [80], Silverman and Meadows [125], there is 
relatively a modest attempt towards the analysis of nonlinear systems. The most 
notable ones being Mirza and Womak [102], Klamka [84] and Quinn and Carmichael 
[117] etc. For linear systems numerous necessary and sufficient conditions for con
trollability were established for finite and infinite dimensional systems. However, the 
nonlinear systems need to be analysed for various types of controllability, although 
there are many controllability results proved by many authors for nonlinear systems
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with some restricted nonlineaxities, refer Dauer and Mahmudov [51].

The main objective of this thesis is to investigate controllability properties of systems 
described by differential equations, integro-differential equations, singular differential 
equations and differential inclusions by using the tools of functional analysis. For some 
time now, functional analysis has been firmly established as one of the basic disciplines 
of pure as well as applied mathematics. Its ideas and methods have transformed large 
parts of analysis almost beyond recognition. It has also greatly stimulated the growth 
of linear control theory. Our attention throughout this thesis is based on this area of 
mathematical theory of control. Though there has been a considerable development 
in the theory of nonlinear functional analysis, not much of it has percolated down 
as an application to control system theory. The main aim of our thesis is to study 
tne basic properties of control systems using the techniques of nonlinear functional 
analysis.

We begin with the study of exact controllability of a dispersion system described by 
the third order nonlinear partial differential equation:

dw(x,t) ' dhu(x,t)
(Gu)(x,t) + f(t,w(x,t))

dt dx3

on the domain t > 0, 0 < x < 2ir; with periodic boundary condition

dkw(0,i) dkw(2ir,t)

(1.1.1)

and initial condition 

where,

dxk dxk ’

w(x, 0) = 0

& = 0,1,2

rzn
(Gu)(x, t) = g(x){u(t, x) - g{s)u(s, t)ds}

«U

where g(x) is a piecewise continuous non-negative function on [0, 2tt] such that

/ g{x)dx = 1 
Jom

and / : [0, oo] x R —> R is a nonlinear function.

This work extends the work of Russell and Zhang [121], in which authors considered a 
linear dispersion system. We obtain controllability result using two types of nonlinear
ities, namely, Lipschitzian and monotone. Also, exact controllability of the same sys
tem has been studied through the approach of integral contractors.(refer Altman [3]), 
see [66]. Further, we study the exact controllability of a more general system having a 
memory term. Here we replace f(t, w(x, t)) in (1) by /(t, w(x, t), Jq g\(t, s, w(x, s))ds)
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and obtain the controllability result using fixed point theorem, where gi is a nonlinear 
function.

If a system is exactly controllable, it is possible to steer any initial state Xq to any 
arbitrary final state xj. But it does not give any idea about the path along which 
the system moves. Practically it is always desirable to steer the system from initial 
state xq to a final state xy along a prescribed trajectory. It may minimize certain cost 
involved in steering the system, depending upon the path chosen. It may safeguard 
the system also. This motivates to study the concept of trajectory controllability. 
Trajectory controllability is a stronger controllability notion.

By trajectory controllability we mean if any z 6 T (T is a set of functions z(.) defined 
on J = [0,T] such that z(t0) = xo, z{t{) = xj and z is differentiable.), there exists 
a control u £ L2(J) such that the corresponding solution x(.) of the system also 
satisfies x(t) = z(t) a.e. George [62] studied Trajectory controllability (also known as 
T- controllability) of nonlinear systems and obtained sufficient conditions for it. In 
this thesis we obtain T-controllability results for nonlinear systems with memory.

We investigate the trajectory controllability of an integro-differential system (refer 
[44]) :

ft = Ax(t) + Bu(t) + /(/,, x(t), J,] g{t, s, x(s))ds); 

x(to) = x0; t £ J = [0,T]
(1.1.2)

where, the state x(t) and the control u(t) lie in some Hilbert space H with the norm 
||.|| ; for each t £ J, A : H —* H is & linear operator not necessarily bounded, 
B : H -* H is a linear operator, g : A x H —*• H and f:JxHxH—*H are 
nonlinear functions; here A = {(f, s)eJ2:0<s<£<T}.

There are various sufficient conditions for exact controllability of nonlinear systems 
governed by integral equations. Balachandran [9], and Balachandran and Sakthivel 
([25], [26]) obtained some sufficient conditions for the exact controllability of Volterra 
type system under the restrictive assumptions on the system components. We study 
the exact controllability of the generalized Hammerstein integral equation of Volterra 
type, given by (refer [64])

x(t) = [ hit, s)u(s)ds + f k(t,s,x)f(s,x(s))ds] 0 < t < T < oo (1.1.3) 
Jo Jo

where the state of the system x(t) lies in a Hilbert space X for each time t € J = [0, T). 
The control function u(.) is from U = L2([0, T)\ V), V is assumed to be a Hilbert space. 
The kernel h(t, s) is an operator mapping V to X, while the kernel k(t,s,x) maps
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from X to X] both are. bounded linear operators, f ; J x X —> I is a nonlinear 
operator for each t,s 6 J. From system (1.1.3) it is clear that the initial state of 
(1.1.3) is zero, that is, .i:(0) = 0 € X.

Most authors who studied the controllability of nonlinear systems, employed fixed 
point theory. Here, our approach is via monotone operator theory for the generalized 
Hammerstein type integral equation.

One can reduce nonlinear evolution systems with internal control in the above frame 
work to study the exact controllability. It is also possible to use the above sys
tem to study the exact controllability problems associated with the partial differen
tial equations with boundary controls. This will be discussed as applications of the 
system(l.l,3)(refer to Lasiecka and Triggiani [91] and Yanzoo and Max [141]).

In continuation with controllability analysis, we consider the n-dimensional second 
order singular system of the form (refer [42]):

- (“ - 1 + + (a - l)An(i) = 0 I

.i:(0) = 0; lim,t^0T{a)t}-aftx(t) = u ,
(1.1.4)

where, 0 < a < 1, t > 0,x(t.) e Rn for each t and A is a constant n x n matrix, u is 
considered as a control applied to the system at initial time. The controllability of the 
system (1.1.4) is studied by using a-times integrated cosine function, a is fractional 
order. The existence and uniqueness of solution of fractional order singular systems 
were, studied by Yang [140] and Kochubei [88]. Such type of systems are very relevant 
in the applied fields (see Yang [137],[138]). We obtain controllability results for (1.1.4) 
via operator theory.

We shall also deal with second order singular integro-differential system of the form 
(refer [63]):

~ i1 ~ a')f “ tAc(*) ~ C1 “ a)A Jo *(r)d(r) = 0

x(0) = 0; limt^0r(a)t1-'a^x(t) = u
(1.1.5)

where, 0 < a < l,u e Rn,x(t)\E Rn for all t, A is a constant n x n matrix.

In our analysis for systems (1.1.4) and (1.1.5) we make use of a-times integrated 
semigroup and cosine functions, respectively. To study controllability properties of 
(1.1.4) and (1.1.5), we first reduce the systems into operator equations by using a 
-times integrated semi-group and a -times integrated cosine function and results are 
obtained by analyzing the operator equation.
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The controllability of first and second-order differential and integro-differential inclu
sions with nonlocal conditions are quite important. It is always advantageous to treat 
the second-order abstract system directly rather than to convert them to first-order 
system by using the notion of sine and cosine operators. For example, Fitzgibbon [59] 
used the second-order system for establishing the boundedness of the solutions of the 
equation governing the transverse motion of an extensible beam. Lastly, in Chapter 
8 we study the controllability on infinite time horizon for second-order semi-linear 
neutral functional differential inclusions of the form:

€ Ax(t) + Bu(t) + F(t,zt,x'(t)), te[Q,oo)l ,n6) 
,t0 = ^,t/(0)=to J ' ' ;

Here, the state x(t) takes the values in the real Banach space X with norm |.| and 
the control u(.) is given in L2(J,U), a Banach space of all admissible control function 
with U as a Banach space, B is a bounded linear operator from U to X, A is a 
linear infinitesimal generator of a strongly continuous cosine family {C{t) : t 6 R} in 
X, F : J x C x X -4 2*, / : J x C X, <f> € C, where C = C([-r, 0], X). To study 
the controllability of the systems (1.1.6) , we invoke the fixed point theorem due to 
Ma [98], set-valued analysis ([53],[74]) and cosine operator theory ([132],[133]).

The basic methodology in our approach is to reduce the controllability problem into a 
solvability problem of an operator equation in suitable function space. Subsequently, 
we prove solvability results for the operator equations, which in turn imply the con
ditions for controllability of the system. In proving solvability results we invoke the 
theory of monotone operators, fixed point theory etc.

In this thesis we give an integrated functional analytic approach for investigating the 
following problems:

• Exact controllability of nonlinear third order dispersion system (1.1.1),

• Controllability of nonlinear integro-differential third order dispersion system of
(l-l-l),

• Trajectory controllability of nonlinear integro-differential system (1.1.2),.

• Exact controllability of generalized Hammerstein type integral equations (1.1.3) 
and its applications.

• Controllability of singular systems (1.1.4) and (1.1.5), using a-times integrated 
semigroups and cosine functions, respectively, and

• Controllability of system (1.1.6) described by second-order neutral functional 
differential inclusions with nonlocal condition on infinite time horizon.



Chapter 1 6

The thesis will consist of eight chapters. The out-line of the thesis with brief contents 
is as follows:

After introducing various problems in Chapter 1, we have given necessary concepts 
of control systems theory and nonlinear functional analysis in Chapter 2.

In Chapter 3, we study the exact controllability of a nonlinear dispersion system. 
This work extends the work of Russell and Zhang [121], in which the authors con
sidered a linear dispersion system. We obtain controllability result using two types 
of nonlinearities, namely, Lipschitzian and monotone [78]. In the later part of this 
chapter we use a weaker condition on the nonlinearity, called the integral contractor 
condition, to study the exact controllability of system(l.l.l). We enlarge our scope 
of investigation by considering integro-differential dispersion system and study the 
controllability by using Schaefer’s fixed point theorem in Chapter 4.

In Chapter 5, we investigate the Trajectory controllability (T-controllability) of non
linear integro-differential system (1.1.2). Here, first we study the T-controllability 
of nonlinear system in finite dimensional set up. For this, we use the tools of mono
tone operator theory [78] and set valued analysis [53]. We also use Lipschitzian and 
monotone nonlinearities with coercive property.

In Chapter 6, we focus ourselves in examining the exact controllability of a general
ized nonlinear Hammerstein system (1.1.3) with noncompact linear part, see [135], 
To study this we use the monotone operator theory. The controllability problem is 
reduced to solvability problem in appropriate spaces and prove our main result on 
exact controllability of system (1.1.3). We also give iterative scheme for the compu
tation of control u(t) and trajectory x(t). To substantiate our theoretical study we 
give various useful applications and some important systems which can be put in the 
framework of (1.1.3).

Chapter 7 deals with controllability of the singular system (1.1.4) and we obtain 
results using a-times integrated semigroups. Also, in this chapter we study the con
trollability of the integro-differential singular system (1.1.5) using a-times integrated 
cosine function.

Chapter 8 concludes with sufficient conditions for controllability for second-order 
neutral functional differential inclusion system (1.1.6). We rely on the fixed point 
theorem due to Ma and multi-valued analysis to study the controllability of the system 
(1.1.6). Example is given to illustrate the. theory.


