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In this chapter, we study the controllability of finite dimensional matrix second order 
systems. A necessary and sufficient condition for the controllability of the matrix 
second order linear (MSOL) system has been proved in (Hughes and Skelton[42]). 
They converted the second order system into first order system and obtained con­
trollability result. However, no computational scheme for the steering control was
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proposed. Here, we prove the controllability result, without reducing it to first order 
state space form and analyse the original form itself. Here we are interested in the 
steering of the states from given initial state to a desired final state, but velocity 
vector is not considered. That is, we deal with state controllability only. We take a 
trigonometric matrix approach to provide a computational algorithm for the actual 
computation of controlled state and steering control. We use matrix Sine and Cosine 
operators to find the solution of the matrix second order system. We employ pdde 
approximation for the computation of Sine and Cosine matrices. We also invoke 
tools of nonlinear functional analysis like fixed point theorem to obtain controllabil­
ity result for the nonlinear system. We provide numerical example to substantiate 
our results. Section 3.1 provides introduction to the problem and Section 3.2 deals 
with the solution of MSOL system and Matrix second order nonlinear(MSON) sys­
tem. In section 3.3, we prove controllability results for MSOL, and controllability 
result of MSON is provided in Section 3.4. Section 3.5 deals with the computational 
algorithm for Sine and Cosine matrices and steering control for linear and nonlinear 
systems. Examples are provided to illustrate the results. Summary of the work 
presented in this chapter is given in section 3.6.

3.1 Introduction

Matrix second order systems capture the dynamic behavior of many natural phe­
nomena and have found applications in many fields such as vibration and structural 
analysis, space craft control and robotics control and hence have attracted much 
attention(Balas[10], Diwaker and Yedavalli[24], Hughes and Skelton[42], Laub and 
Arnold [53], Demetriou[23]). Also distributed parameters systems, very often, dis­
cretized to second order systems. Generally, second order systems are transformed 
to first order state-space representation for studying its controllability. But, recent 
work of (Skelton[70], Diwakar and Yedavalli [24],[25]) showed that there are several 
problems associated with such transformations as, the second order system losses 
its physical insight when they are transformed to first order state space form. It 
become computationally less efficient as the dimension of the system is higher than 
the second order system. Sparsity and many other special nature of the original 
matrices are not preserved. So, we do not reduce the system into first order and 
analyse the original second order form itself. We use matrix Sine and Cosine matri-

30



Jaita P Sharma 3.1. INTRODUCTION

ces to find the solution of the MSOL system and MSON system. We employ Pade 
approximation for the computation of matrix Sine and Cosine matrices.

Here we investigate the controllability property of the system governed by a Matrix 
Second Order Nonlinear (MSON) differential equation:

^l + A2x(t) = Bu(t) + f(t,x(t)) 

s(0) = s0, ®'(0) = No­

where, the state x(t) is in Rn and the control u(t) is in Rrn, A2 is a constant matrix 
of order n x n and B is a constant matrix of order n x m and f : [0, T] x Rn —» Rn 
is a nonlinear function satisfying Caratheodory conditions, that is, / is measurable 
with respect to t for all s and continuous with respect to x for almost all t € [0, Tj. 
The initial states x0 and ya are in Rn. The corresponding Matrix Second Order 
Linear (MSOL) system is :

^ + AMt) = Bu(t) 1
s(0) = s0, s'(0) = yQ. J

(3.1.1)

Definition 3.1.1. The system (3.1.1) is said to be controllable on [0,T] if for each 
pair so, sx € Rn, there exists a control u(-) € L2([0,T};Rm) such that the corre­
sponding solution of (3.1.1) together with s(0) = sq also satisfies x(T) = x\.

As we know the matrix exponential y(t) = eAty0 provides the solution to the first 
order differential equation

^ = Ay, y(0) = y0.

Trigonometric matrix functions play a similar role in matrix second order differential 
equation

elf'll
+ Ay = 0, 1/(0) = So, y\0) = yo,

That is, the solution of the above second order system, using Sine and Cosine ma­
trices, is given by(refer Hargreaves and Higham [41])

y(t) = cos(\/At)xo -f (V^?)-1 sin (■s/At)y0■

where cos(\/At) and sin(\/At) are matrix Sine and matrix Cosine as defined in 
(3.1.3) and (3.1.4).
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The complex exponential of a matrix is defined as the series, (refer Chen [17])

eiM = j + iM + oiAtf , (iAtf , (iAtf , (iAtf , (iAtf , (iAtf ,
H-----x;----- 1----- 7i----- 1----- it;----- b ■ ~zr,----- 1-----zi b2! 3!

. _ AH2 * AH4 * A6t6
(I------------------------- + ---------- ----------------------— 4.

2! 4! 6!

4! ' 5! 6! ‘ 7!
AS-f-S 4^/7

x . / * . «f* u /l v Ax v v)+<At “ —+ -gj-------AT +...... )•3! 7!

Convergence of the above series has been well established, (refer Brockett [14]). We 
define Cosine and Sine matrix of A as the real and imaginary part of the above 
series. That is,

cos (At) 

sin(At)

+ (Aty
4!
(Atf

5!

(Atf
6!
{Atf 

7! ’

(3.1.3)

(3.1.4)

Since exponential matrix series converges, the sub-series defined in (3.1.3) and (3.1.4) 
also converge. Further,

elAt — cos (At) + isin(At)

and
e lAt — cos(At) — isin(At)

Using the above identities, we have the following representation of Cosine and Sine 
matrices in terms of matrix exponentials:

cos(At)
&iAt e~iAt

and sin(At)
giAt  g—iAt

2 N ' 2 i

Properties: The Sine and Cosine matrices satisfy following properties:

(i) cos(O) = I.

(ii) sm(0) = 0.

(iii) —cos(At) = —Asin(At).

(iv) jtsin(At) = Acos(At).

(v) cos(At) is non-singular matrix, if A is nonsingular.

(vi) sin(A(t — s)) — sin(At)cos(As) — cos(At)sin(As) for all t.

(vii) A~1cos(At) = cos(At)A~1.
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3.2 Solution Using Cosine and Sine Matrices

We use Sine and Cosine matrices to reduce the system (3.1.1) into an integral 
equation. It can be shown easily that the matrices Xi(t) = cos(At) and X2(t) = 
A~lsin(At) satisfy the homogeneous linear matrix differential equation

d2X{t) 
dt2

+ A2X(t) = 0 (3.2.1)

Here, if A is a singular matrix, then X2 is expanded as the power series, (refer 
Hargreaves and Higham [41])

X2 = It -
AH3 AH5
ir+ir

AH7

7!

General solution of the homogeneous system

is given by

*$>+A*x(t)= 0

x(t) = X1(t)C1+X2(t)C2 

x(t) = cos(At)Ci + A~lsin(At)C2

(3.2.2)

where, C\ and C2 are arbitrary vectors in Rn. Now using the method of variation 
of parameter, a particular integral(P.I) for the nonhomogeneous system (3.1.2) is 
given by

P.I = -Xx{t) f W-1(s)X2(s)Bu(s)ds + X2(t) f W~1(s)X1(s)Bu(s)ds Jo Jo
where, the Wronskian

W Xi X2 
X[ X'2

cos(At) A~lsin(At) 
—Asin(At) A~lAcos{At)
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P.I -cos(
ft

i(At) f A 1 sin(As)Bu(s)ds + A 1sin{At) f cos(As)Bu(s)ds Jo Jo
I A~l(—cos(At)sin(As) + sin(Ai)cos(As))Bu(s)ds

Jo
= j A~lsin(A(t — s))Bu(s)ds, (using property (vi)).

Jo

Hence the solution of (3.1.2) is given by

x(t) = cos{At)C\ + A~lsin(At)G2 + f A~1sin(A(t — s))Bu(s)ds.Jo

Applying the initial conditions x(0) — xq and x'(0) = y0, the solution becomes

x(t) = cos(At)xo + A~lsin(At)yo + [ A^'1sm(A(t — s))Bu(s)ds. (3.2.3)
Jo

Following the same approach .the solution of the nonlinear system (3.1.1) can be 
written as

x(t) = cos(At)xo + A"1 sin(At)yQ + f A~lsin{A{t — s))Bu(s)ds+Jo

f A 1sin(A(t — s))f(s,x(s))ds Jo
(3.2.4)

We remark that the above form of solution valid even if the matrix A is singular, in 
that case A~lsin{Ab) is to be taken as in (3.2.2).

3.3 Controllability: Linear System

In this section we obtain necessary and sufficient conditions for the controllability 
of the linear system (3.1.2). We make use of the following lemmas to prove the 
controllability result.

Lemma 3.3.1. (Chen/!?/) Let f%, for i = 1,2,...., n, be 1 x p complex vector valued 
continuous functions defined on \ti,t^. Let F be the n x p matrix with fi as its ith 
row. Define

W(tut2)= r F{t)F\t)dt 
Jtl
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Then ...... , fn are linearly independent on \t\, t2] if and only if the nxn constant
matrix W(ti, t2) is nonsingular.

Lemma 3.3.2. (Chen [17] ) Assume that for each i, fi is analytic on [t-\, tf\ ■ Let 
F be the nxp matrix with fi as its ith row, and let be the kth derivative of F. 
Let t0 be any fixed point in [t\, t2] . Then the fi are linearly independent on if 
and only if

Rank[F(tQ) : F(1)(t0) :....... : (to) :.....] = n

The necessary and sufficient condition for the controllability of the linear system 
(3.1.2) is given in the following theorem.

Theorem 3.3.1. The following statements regarding the linear system (3.1.2) are 
equivalent:

(a) The linear system (3.1.2) is controllable on [0,T].

(b) The rows of A 1sin(At)B are linearly independent.

(c) The controllability Grammian,

W(0,T) = I* A-1 sin{A(T - s))BS*(A“1sm(A(T - s)))*ds (3.3.1)

Jo
is nonsingular.

(d)
Rank[B : A2B : {A2fB :........ : (A2)n~~lB] = n. (3.3.2)

□

Proof First we shall prove the implication (a) => (b) by contradiction. Suppose 
that the system (3.1.2) is controllable but the rows of A1 sin{At)B are linearly 
dependent functions on [0,T]. Then there exists a nonzero constant 1 x n row vector 
a such that

aA~lsin(At)B = 0 V t € [0, T] (3.3.3)

Let us choose x(0) = xq = 0, 3/(0) = y0 = 0. Therefore the solution (3.2.3)
becomes

x(t) = / A~lsin(A(t — s))Bu(s)ds 
Jo
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Since the system (3.1.2) is controllable on [0,T], taking x(T) = a*, where a* is the 
conjugate transpose of a.

fTx(T) — a* = I A 1sin(A(T — s))Bu(s)ds 
Jo

Now premultiplying both sides by a, we have

rT

aa
f aA 1sin(A(T — s))Bu(s)ds. 

Jo

From equation (3.3.3)
aa* = 0 and hence a = 0

Hence it contradicts our assumption that a is non-zero. This implies that rows of 
A~lsin{At)B are linearly independent on [0,T].

Now we prove the implication (b) =¥■ (a).

Suppose that the rows of A '1 sin{At)B are linearly independent on [0,T]. Therefore 
by Lemma 3.3.1, the n xn constant matrix

T
A^siniAiT - s))BB*(A~1sin(A(T - s)))*ds

is nonsingular.

Now we claim that the control

W(0,T)= I

u(t) = B*(A~1sin(A(T - tWW^iO, T)(xt - cos(AT)x0 - A~lsin{AT)y0) (3.3.4)

transfers the initial state x0 to the final state X\ during [0,T]. Substituting (3.3.4) 
for u(t) in the solution (3.2.3), we obtain

x(t) = cos(At)xo + A~lsin{At)yQ 4- f A~1sin(A(t — s))BB*(A~lsin(A(T — s)))*Jo

W~1(0,T)(x1 — cos(AT)x o — A~x sin (AT) yQ) ds
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Jaita P Sharma 3.3. CONTROLLABILITY: LINEAR SYSTEM

At t=T, we have

x(T) = cos(AT)x0 + A-1sin(AT)y0+ f A-lsin{A{T - s))BB*
Jo

(A_1sm(A(T — s)))*W/_1(0,T)(a;i — cos(AT)x 0 — A~1sin(AT)yo)ds 
= cos(AT)x o + A~lsin{AT)y0 + W{ 0, T)W~l(0, T)

(xi — cos(AT)x o — A~~l sin(AT)yo)
= cos(AT)x0 + A"lsin(AT)yo + (xi — cos(AT)x0 — A"1 sin(AT)y0)
-

Hence the system is controllable.

The implications (b) => (c) and (c) => (b) follow directly from Lemma 3.3.1.

Now we shall obtain the implication (c) =4> (d).

Suppose that the controllability Grammian

fTW(0, T) = / A^siniAiT-s^BB^s^A^siniAiT-s)))*
Jo

is nonsingular. Hence by Lemma 3.3.1, the rows of A-1 sin{At)B are linearly inde­
pendent on [G,T]. Since the entries of A~lsin(At)B are analytic functions,, applying 
the Lemma 3.3.2, the rows of A~lsin{At)B are linearly independent on [0,T] if and 
only if

Rank[A~lsin{At)B : A-1 cos (At) AB : —A~1sin(At)A2B : —A~1cos(At)A3B :

A~1sin(At)A4B : A~1cos(At)A5B........] = n.

for any t € [0, T], Let t = 0, this reduces to

Rank[0 : B : 0 : A2B : 0 :........: (A2)n_1B :........ ] = n

Rank[B : A2B : (A2)2J5 :.... : (A2)n_1B :...... ] = n

Using Cayley-Hamilton theorem,

Rank[B : A2B : (A2)2B :.... : (A2)"_1B] = n
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Now to prove the implication (d) => (c), we assume that

Rcmk[B : A2B : (A2)2B :.... : (A2)n_1R] = n

Thus by Lemma 3.3.2, the rows of A xsin(At)B are linearly independent. Hence 
Lemma 3.3.1 implies

W(0,T) f A~xsin(A(T - s))BB*(s)(A-xsin(A(T - s)))*ds

is nonsingular.

Thus for the linear system(3.1.2) , the control u(t) defined by (3.3.4), steers the 
state from xq to x\ during [0,T]. Since xq and x\ are arbitrary, the system (3.1.2) 
is controllable. □

Remark 3.3.1. Hughes and Skelton[Jt2] obtained the condition (3.3.2) by converting 
the system into first order system. However, our approach is different and the result 
obtained is directly from the second order system and also it provides a method to 
compute the steering control.

3.4 Controllability: Nonlinear System

We now investigate the controllability of the nonlinear system (3.1.1). We assume 
that the corresponding linear system (3.1.2) is controllable and the control function 
u belongs to L2([0,T],i?m). We use the following definition.

Definition 3.4.1. Anmxn matrix function P(t) with entries in L2([0, T]) is said 
to be a steering function for (3.1.2) on [0,T] if

rT/ A~xsin(A(T - s))BP(s)ds = I,
Jo

I being the identity matrix on Rn.

The linear system (3.1.2) is controllable if and only if there exists a steering function 
P(t) for the system (3.1.2) (refer Russel [68]).
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Remark 3.4.1. If the controllability Grammian (3.3.1) is nonsingular then

P(t) = B*{A~lsin{AlT - i))*W_1(0, T) (3.4.1)

defines a steering function for the linear system (3.1.2).

Now the nonlinear system (3.1.1) is controllable on [0,T] if and only if for every 
given x\ and xo in Rn there exists a control u, such that

. Xi — x(T) = cos(AT)x0 + A~lsin{AT)y$ + f A~lsin(A(T — s))f(s, x(s))ds
Jo

fT+ I A lsin(A(T — s))Bu(s)ds
Jo

Consider the control u(t) defined by

rTu(t) — P(t){xi — cos(AT)xq — A 1sin(AT)ya— J A 1sin(A(T — s))f(s,x(s))ds}
Jo

(3.4.2)
where, P(t) is the steering function for the linear system (3.1.2). Now substituting 
this control u(t) into equation (3.2.4), we have

x(f) = cos(At)x0 + A~xsin{At)yo + f A~lsin(A(T — s))f(s, x(s))ds +Jo

f A~lsin(A(T - s))BP(s){xx - cos(AT)x0 - A-lsin(AT)y0 - Jo

f A~lsinA(T - r)/(r, x(r))dr}ds (3.4.3)Jo
If the equation (3.4.3) is solvable then x(t) satisfies x(0) = xo and x(T) = Xj. This 
implies that the system (3.1.1) is controllable with control u(t) given by (3.4.2). 
Hence, controllability of the system (3.1.1) is equivalent to the solvability of the 
equation (3.4.3). Now applying Banach contraction principle, we will prove the 
solvability of the equation (3.4.3).
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We define a mapping F : C([Q,T]; Rn) -* C([0, T]; Rn) by

(Fx)(t) = cos(At)xo + A 1sin(At)yo + / A lsin(A{t — s))f(s,x(s))ds
Jo

+ f A_1sin(.A(t — s))BP(s){xi — cos{AT)xo — A~1sin(AT)yo Jo
T

A~lsinA{T — r)/(r, x(r))dr}ds (3.4.4)

The following lemma proves that F is a contraction under some assumptions on the 
system components.

Lemma 3.4.1. Under the following assumptions the nonlinear operator F is a con­
traction:

(i) supt6[0 Tj ||A lsin(At)\\ = a < oo.

(ii) ||J5|| = b < oo.

(iii) suPte[o,T] 11^(011 =P<°o.

(iv) The nonlinear function f : [0,T] y. Rn —> Rn is Lipschitz continuous. That is, 
there exists a > 0 such that

\\f{t,x)-f(t,y)\\<a\\x-y\\yx,y£Rn,te[0,T}

(v) aaT(l + abpT) < 1.

Proof. From the definition of F, we have 

[\Fx~Fy\\

= sup IK*1®) CO -*€[0,71
ft= sup II [a lsin(A(T — s))(f(s,x(s)) — f(s,y(s))ds + [ A 1 

te[o,T] Jo Jo

rTsin(A(T — s))BP(s) / A 1sinA(T — r)(/(r, x{r)) — f(r, y{r)))dTds\ 
Jo

< sup (I f A~lsin(A(T - s))(f(s,x(s)) - f(s,y(s))ds\\+ sup || [ A~ 
te[o,r] Jo te(o,r] Jo
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< sup 
tefo,

in(A(T — s))BP(s) f A 1sinA(T — r)(/(r,x(r)) — f(r,y(T)))drds\\ 
Jo

P f — 6t))|l ||(/(s,a;(s)) —,T] JO

sup rp-1sm(A(T-s))||||S|[[|P(s)|| 
te[o,rj Jo
[ \\A~lsinA(T — r)j| \\{f(r,x(r)) -/(r,y(r)))||drds 

Jo

< sup a / t
a||a:(s) -y(s)[|ds + sup a2bpt

fT I 
/ a\ lyM) -- x(r)\\dT

te[o,r] Jo te[o,T] 10
ft „ fT

< aa sup / ll*(s)-y(«)II<fe + a2bpTa 1 sup llyfr)) -- x{r)\\dr
te[o,rj jh) Jo ie[0,T]

< aaT\\x — y\ \ + a2bpT2a\\x — y\ I

< aaT( 1 + abpT)\\x — y\\

Since aaT( 1 + abpT) < 1, we have F is a contraction. □

Now we have the following computational result for the controllability of the non­
linear system (3.1.1).

Theorem 3.4.1. Under the assumptions of Lemma 3.4-1, the system (3.1.1) is 
controllable and the steering control and the controlled trajectories can be computed 
by the following iterative scheme:

un(t) = P(t){xi — cos(AT)xo — A~lsin(AT)y0 — f A~lsin(A{T — s))f(s, xn(s))dsJo
(3.4.5)

L(t) = cos{At)xo + A~xsin{At)yo + / A~lsin{A(b — s))f{s, xn(s))ds+
Jo

f A~lsin(A(t — s))Bun(s)ds (3.4.6)Jo

,71 +1/

x°(t) = xo, n = l,2,3,4,. □

Proof. In Lemma 3.4.1 we have proved that F, defined in the equation (3.4.4), is 
a contraction. Hence, from the Banach contraction principle, F has a fixed point. 
Thus the equation (3.4.3) is solvable, subsequently the system (3.1.1) is control­
lable. Further, Theorem 2.2.1 implies the convergence of the iterative scheme for
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the computation of control and controlled trajectory. □

3.5 Computational Algorithm

Here we compute Cosine and Sine of a matrix A € Rnxn, using the algorithm 
proposed by Higham and Hargreaves[41], The algorithm makes use of Pade approx­
imations of cos(A) and sin(A). We define C\ = cos(2‘l~mA) and 5, = sin(T~mA). 
The value of m is chosen in such a way that ||2~~mA|| is small enough, ensuring a good 
approximation of Co = cos(2~mA) and Sq = sm(2_mA) by Pade approximation. By 
applying the Cosine and Sine double angle formulae cos(2A) = 2cos2{A) - I and 
sin(2A) = 2sin(A)cos(A), we can compute Co and So) with the help of recurrence 
relations Ci+1 = 2Cf — I and Si+i = 2C;S'j. i = 0,1,......m — 1. The algorithm for
the computation of Sine and Cosine matrices is summarized as follows:

3.5.1 ALGORITHM: Given a matrix A € Rnxn.

Choose m such that 2_m||A|| is very small. »

Co = pade approximation to cos(2~TOA).

Sq= pade approximation to sm(2-TOA).

for i — 0........m — 1

Ci+1 = 2Cf-I.

Si+1 = 2C'iSi. 

end

Steering Control For The Linear System: The control which steers the initial 
state xq of the MSOL system (3.1.2) to a desired state si during [0,T] is given by

u(t) = B*{A~1sin{A^r — t)))*W~1{p^T){xi — cos{AT)xo — A~1sin{AT)yo} (3.5.1)

where, sin(At) and cos(At) are computed by the Fade approximation algorithm 
given in Algorithm 3.5.1 (Hargreaves and Higham [41]), and W“1(0,T) is com­
puted by using(3.3.1).
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Numerical Experiment For Matrix Second Order Linear System 

Example 3.5.1. Consider the Matrix Second Order Linear(MSOL) System

d2x(t)
dt2

with initial conditions

®(0)

+ A2x(t) — Bu(t), x(t) e R3

( 1 \ 

1
\-l /

where,

A2 =
/ 5 -4 2

-4 7 —2 I and B

^4—43

/o\
0

\ 1 /
and hence,

/ 1-2 0 
A- -2 1-1

V 0 -2 1

The controllability matrix is given by

Q = [B A2B (A2fB] =
/ 0 2 24

0 -2 -28 
V 1 3 25

and the rank(Q) = 3. Hence the system is controllable. The matrices Sin(At) and 
Cosine(At) for t = 1 are given by

-0.1512 -0.2810 -0.4965 \
sin (A) = -0.2810 -0.6478 -0.1405

\ -0.9931 -0.2810 0.3453 /

( -0.0972 0.4385 —0.3188 \
cos(A) — 0.4385 -0.4160 0.2192

\ -0.6375 0.4385 0.2215 /
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Steering Control For The Nonlinear System: The steering control and con­
trolled trajectories of the MSON system steering from x0 to X\ during [0, T] can be 
approximated from the following algorithm:

un(t) = P(t){x! - cos(AT)x0 - A~1sin(AT)y0 - [ A~lsin(A{T - s))f(s, xn{s))ds
Jo

xn+l(t) = cos(At)x0 + A~xsin(At)y0 + / A~lsin(A(t - s))f{s, xn(s))ds+
Jo

A A

The controllability Grammian matrix, W(0,T) is given by:

W =

/ 0.0733 -0.0406 -0.2130 \

-0.0406 0.0272 0.1255
\ -0.2130 0.1255 0.6915 /

taking T — 2. Now using the equation(3.5.1) along with Pride approximation for 
computing Sine and Cosine matrices, we compute the steering control u(t), steering

during the time interval [0,2].

Furthermore, the controlled trajectory and steering control u are computed and are 
depicted in the following Figure.

( _1 ^ / 1 \
the state from xq = 1 to X\ = -1

l o ) l 2 )

S
TA

TE
 x(t

) 

i -* 
o -
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 c
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/ A 1sin(A(t — s))Bun(s)ds
Jo

(3.5.2)

with x°(t) = ®0> n = 1) 2,3,4,......, and P(t) being the steering function given in
equation (3.4.1).

Numerical Experiment For Matrix Second Order Nonlinear System

Example 3.5.2.
scribed by:

Consider the Matrix Second Order Nonlinear (MSON) system de- 

+ A2x{t) = Bu(t) + f(t, x(t))

where,

x(t) G R3 and f(t, x(t)) =
( fi(xi,x2,x3) \ 

f2(xuX2,X3)

\ fz{xi,x2,xz) )

with the initial conditions

(1 \
®(0) = 1 , z'(0) = 1

l 0 ) V -i /

and

and hence

( 14 -2 12 \ / 3. \

10 14 30 and B = 1 1

V 0 -12 16 } w

( ~2 2 3 \
A = 2 4 3

V 2 -2 4/

The controllability matrix is given by:

Q = [B A2B (A2fB} =
( 0 10 100 \

1 44 836
\1 4 -464 )

and the rank(Q) = 3. Hence the corresponding linear system is controllable. We 
have the following numerical estimate, for the parameters given in Lemma 3.4.1,
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taking T = 1.
a = sup ||A~1sm(.4f)|| = 1.0316 

te[o,T]

b = ||jB|| = 1.4142

p = sup ||P(t)|| = 52.1831 
te[o,r]

Let us take fi{xl,x2,x3) = sm(g2lW), f2{xi,x2,x3) = c°"(g,2(t)), and f3{xi,x2,x3) = 
^fjp. The nonlinear function f(t,x(t)) is Lipschitz continuous with Lipschitz con­

stant a — 1/80 and anT{ 1 + abpT) < 1. Hence, it satisfies all the assumption of 
the Theorem 3.4.1. Therefore, from the same theorem, the MSON system is con­
trollable. Now using the Algorithm 3.5.1 with Pade approximation to Sine and 
Cosine matrices, the controllability Grammian matrix, 1T(0, T) turns out to be:

w -
/ 0.0682 0.1128 0.0241 

0.1128 0.1998 0.0525 
\ 0.0241 0.0525 0.0994

Now using the equation (3.5.2) one can compute the steering control u(t), steering

the state from x0
/ -1 \ ( 0 ^

1 to X\ — -1
V o ) V 1 /

during the time interval [0, 1], The

controlled trajectory and the steering control u(t) are for this example are plotted 
in the following figure.

CONTROLLED TRAJECTORIES OF 'MSON’ SYSTEM

0.2 0.3 0.4 0.5 0.6 0.7
TIME I

THE GRAPH OF THE STEEERING CONTROL
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3.6 Summary

In this chapter we have studied the controllability of Matrix Second Order Linear 
and Nonlinear Systems in finite dimensional space. We made use of Sine and Cosine 
matrices to obtain the solutions of the second order systems. An algorithm based on 
pdde approximation to compute Sine and Cosine of a matrix is given. We have also 
provided an algorithm for the actual computation of steering control of the MSOL. 
A sufficient condition of controllability of second order nonlinear system has been 
proved by invoking the fixed point theorem. At the end we have presented numerical 
experiments for both linear and nonlinear systems.
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