
Chapter 5

Exact Controllability of Nonlinear 

Impulsive System

Contents
5.1 Introduction .............................................................................. 59

5.2 Main Result.............................................................................   61

5.3 Summary.....................................................................................69

In this chapter we study the exact controllability of a nonlinear impulsive control 
system governed by the integro-differential equation of the form

x'(t) = Ax(t) + f(t,x(t),Tx(t),Sx(t)) + Bu(t), 0 <t<T, t^tk 

z(0) = xo,

Ax(tk) - Ik(x(tk))

in a Banach space X, where / € C'f[0,T]xlxXxl,l), 0 < t\ < h < ■■■ < tm < T 
and Ik € C(X, X). k = 1,2, Under Lipschitz condition on the nonlinear 
function /, we obtain the controllability results using fixed point theorem. In Section 
5.1, we discuss the problem considered. Section 5.2 deals with the main results. 
Summary is given in Section 5.3.
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5.1 Introduction

In the dynamics of many practical systems, there are an abrupt change in the states 
such as impulse or shock experienced in a short duration of time. Such systems 
are modeled in terms of impulsive differential equations ([52],[39]). The theory of 
impulsive differential equations is a new and important branch of differential equa­
tion theory, which has an extensive physical background and realistic mathematical 
model and hence has been emerging as an important area of investigation in recent 
years (refer, Lakshmikantham et. al[52]).

The existence of solution to impulsive integro-differential equations in Banach spaces 
has been studied by several authors([37],[40],[56] - [59],[72]). However, the control­
lability properties of such systems are yet to be investigated.

In [54], Leela studied the controllability aspect of a linear finite dimensional time 
invariant impulsive system. George et. al. [32] generalized the controllability result 
to nonlinear system with impulses. Recently Boukhamla and Mazouzi [13], obtained 
the controllability result for impulsive linear systems in infinite dimensional settings.

In this chapter, we investigate the controllability property of a impulsive control 
system governed by the nonlinear integro-differential equation:

in a Banach space X,

where, / € C({0, T] x X x X x X, X), A is infinitesimal generator of a Co semigroup 
{G(t)|t>0} with impulsive condition (refer Pazy, [64]) and B(t) is a bounded linear 
operator from U to X and the control function u(-) is in L2([0,T]; U), U is another 
Banach space. T and S are operators defined by

x'(t) = Ax(t) + /(£, x(t), Tx(t), Sx(t)) -1- B(t)u(t), 0 < t < T, t^tk 
a;(0) = xq,
Ax{tk) = Ik(x(tk)), k = 1,2, ...,m.

Sx(t) = H(t, s)x(s)ds, H € C[Dq, R+]
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where
D = {(t,s) € R2 : 0 < s < t < T}

Do — {(£, s) E R2 : 0 <t,s < T}

xo € X is the initial condition. 0 < t\ < t% < £3 < ... < tm < T, Ik : X —* X is an 
impulsive function, k — 1,2,..., m. Ax(tk) denotes the jump of x(t') at t — tk, that

is,
Ax(tk) = x(t^) - x(tk)

where x(t^) and x(t^) represent the right and left limits of x(t) at t = tk respectively.

Anguraj and Arjunan [3] obtained existence and uniqueness of the solution of the 
impulsive evolution system(5.1.1) without control term. The purpose of this chapter 
is to investigate the controllability property of system(5.1.1) under suitable assump­
tion on the nonlinear function /.

Let [0,T] be the time interval and be m time points on [0,T]. Let
PC'([0, T], X) = {a; : [0,T] —» X such that x(t) is continuous at t ^ tk and left
continuous at t = tk and the right limit x(f£) exists for k — 1,2,......,m}.
Evidently, PC([0,T],X) is a Banach space with norm (refer Guo and Liu [40])

IMIpc = sup ||a:(t)||.
. te[o,r]

A function s(-) € PC([0, T],X) is a mild solution of equations (5.1.1) if it satisfies 

x(t) = G(t)x0 + f G(t — s)f(s,x(s),Tx(s),Sx(s))ds+
Jo

Y, G(t - tk)Ik(x(tk)) + f G(t - s)B(s)u(s)ds, 0 < t < T (5.1.2) 

o <tk<t J°

Definition 5.1.1. Controllability
We say that the system (5.1.1) is exactly controllable in an interval [0, T], if for every 
initial state x0 G X and final state x% € X, there is a control u(-) E L2([0,T];U), 
for which the solution x(-) satisfies x(0) = x0 and x(T) = X\.

Now, we obtain the controllability result using fixed point theorem, under the fol­
lowing hypotheses:
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(El) A is a general unbounded operator, which generates a strongly continuous 
semigroup G(-).

(H2)For each t G [0, T] B(t) is a bounded linear operator with

b — sup ||J5(t)|| < oo 
*€[0,1]

(H3)/ :[0,T]xIxIxI^I and Ik : X —*■ X, k = 1,2,...., m are continuous 
mapping and there exist constants L1; Ly, L3 > 0, hk > 0,k = 1,2,3, ...,m 
such that

\\f(t,x1,X2,x3) - f(t,yi,y2,y3)\\ < Lil^ - yi\\ + L2\\x2 - yiW + L3\\x3 - y3\\

for t G [0,T], xi,x2}xs,yi,y2,y3 G X, and

|4(z) - Jfc(y)|| < hk\\x-y\\, x,y e X

Let M = max f|G(i)||B(x) = max ||G*(t)l|B(x), L = max{Lu L2, L3}
t6[0,Tl v '' te[0,T] v '

K*= sup t \K(s,t)\dt < oo, H*= fT\H(s,t)\dt < 
te[o,r] Jo Jo oo

5.2 Main Result

For obtaining the controllability result of (5.1.1), we assume that the corresponding 
linear system:

x'(t) = Ax(t) + B(t)u(t), 0 < t < T, t ^tk 
x(0) = no,
A x(tk) = Ik(x(tk))

is controllable and hence the controllability Grammian W(0, T) defined by:

(5.2.1)

W(Q,T) = f G(T-s)B(s)B(s)*G*(T-s)ds (5.2.2)Jo

is invertible.
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The nonlinear impulsive system (5.1.1) is controllable on [0,T] if and only if there 
exists a control u which steers a given initial state Xq of the system to a desired final 
state X\. That is, there exists control function u such that

T
G(T — s)f(s, x(s), Tx(s), Sx(s))ds+

J2 G(T-tk)Ik(x(tk))+ (T G(T — s)B(s)u(s)ds

0 <th<T x'°

Let us define a control u(t) by

xx x(T) = G(T)x0 + / 
Jo

u(t) = B*(t)G*(T - t)W-l{0,T)[Xl - G(T)x0—

F G(T-s)f(s,x(s),Tx(s),Sx(s))ds- J2 G(T - tk)Ik(x(tk))] (5.2.3)

0 <tk<T

where x(-) satisfies the nonlinear system (5.1.2). Now substituting the control u(t) 
as defined in (5.2.3) into the nonlinear integral equation (5.1.2), we get

x
(t) = G(t)xo + f G(t — s)f(s, x(s), Tx(s), Sx(s))ds+

Jo

£ G(t - tk)Ik(x(tk)) + r G(t — s)B(s)B*(s)G*(T - s)W~1(0,T)[x1 - G(T)xQ~ 

/ G(T - r)f(r,x(r),Tx(r),Sx(r))dr - G(T - tk)Ik(x(tk))]ds (5.2.4)
■'Q nw.0 <tk<T

If the equation (5.2.4) is solvable then x(t) satisfies s(0) = xq and x(T) = xx. This 
implies that the system (5.1.2) is controllable with control u as given by (5.2.3). 
Hence the controllability of the nonlinear impulsive system (5.1.1) is equivalent to 
the solvability of the equation (5.2.4).

We now obtain the controllability result by invoking Banach contraction principle 
to establish solvability of (5.2.4).

Theorem 5.2.1. Suppose that

(i) The assumptions (HI) — (H3) are satisfied.

(ii) The linear system is exactly controllable and w = ||W-1(0,T)[
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(in) M( 1 + M2b2wT)(LT(l + K* + H*) + J2 h) < 1.

Then the nonlinear impulsive system (5.1.1) is controllable on [0, T], □

Proof. Defining an operator F on PC([Q,T}: X) by

(Fx)(t) — G(t)xo + [ G(t — s)f(s, x(s), Tx(s), Sx(s))ds+
Jo

J2 G(t - tk)Ik(x(tk)) + f G(t - s)B(s)B(s)*G*(T - s)W~1(0, T)[Xl - G(T)x0- 

o <tk<t J°

f G(T ~r)f(r,x(r),Tx(r),Sx(r))dr - Y] G{T - tk)Ik{x{tk))]ds (5.2.5)In /in i
** 0 nw. ^•rr0 <tk<T

It is clear that F : PC([0,T]:X) PC([0,T\;X). Now we show that F is a con­
traction. For any x,y G PC([0, T]; X)

\\(Fx)(t)-(FV)(t)\\

< [ \\G(t-s)\\'\\f{t)X(s),Tx(s),Sx(s))-f(t,y(s),Ty(s),Sy(s))\\ds +
Jo
£ ||G(t-(,)lllli(i(*»))-A(»W)ll+ f\W-°)\\PMIIIIS-WII

0 <tk<t Jo

||G-(T - .)|| ||H'-1(0.r)||[ fr ||£J(T-r)||||/(t,z(r),2Mr),,Sz(r)) -
Jo

f(t,y(r),Ty(r),Sy(r))\\dr + \\G{T-tk)\\ \\Ik(x(tk)) - Ik(y(tk))\\]ds
0 <tk<T

< M [t(Ll\\x-v\\+L2\\Tx-Ty\\ + L3\\Sx-Sy\\)d8 + M\\x-y\\Tlhk
Jo

+M2b2w [ [f MilaWx-yW + LiWTx-TyW + LsWSx-SylDdr 
Jo Jo

+M\\x-y\\Y^hk]ds

< MT(L1 + L2K* + L3H^)\\x--y\\ + M\\X--y\\(J2hk + M2b2w)

f(MT(Ii + L2K* + L3H*)\\x - y|| + M\\x - y|| £>)ds 
Jo
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< MT{Li + UK* + LsH*)\\x ~y\\+ M\\x - y||(]T hk + M3b2) 

WT2{LX + UK* + UH*)\\x - y|| + M3b2w\\x -y\\Yhk 

= M(1 + M^WTH-LT^l + K* + II*) + J2 hk}\\x - y\\

Now using the assumption (in), we have

|j(Fa;)(t) — (Fy)(t)|| < Q!||a; — y\\, Vx,y G PC([0,T];X), where a < 1

Therefore, F is a contraction on PC([0, T], X). Hence by the Banach contraction 
principle, F has a unique fixed point in X. Let x be the fixed point in X. Therefore,

x(t) = G(t)x0 4- [ G(t — s)f(s,x(s),Tx(s),Sx(s))ds+

Jo

Y G(t-tk)Ik(x(tk)) + [tG(t--s)B(s)B*(s)G*(T-s)W~1(0,T)[x1-G(T)xo-
o <tk<t i'°

/ G(T — r)/(r, x(r),Tx(r), Sx(r))dr Y G(T -tk)Ik(x(tk))]ds
0 <tk<T

Obviously, x(0) = x0 and x(T) = xx. Hence the impulsive system (5.1.1) is control- 
lable. □

Corollary 5.2.1. In case of Iks are constant, we have hk = 0, k = 1,2, ...,m. So 
the condition (Hi) in the Theorem 3.1 becomes

M( 1 + M2b2wT)LT(l +K* + H*)< 1

and thus the nonlinear impulsive system (5.1.1) is controllable.

Further, an algorithm for the computation of steering control and trajectory is given 
by the following corollary:

Corollary 5.2.2. A computational algorithm for the computation of steering control 
and trajectory is given by:

un(t) = B*(t)G*(T - t)W~l(D, T)[xx - G(T)x0- 

[TG(T-~s) f(s,xn(s),Txn(s),Sxn(s))ds- Y °{T - tk)Ik{xn{tk))}

•*° 0<tk<T
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%n+i(t) = G(t)x0 + f G(t-s)f(s,xn(s),Txn(s),Sxn(s))ds+
Jo

J2 G(t - tk)Ik(xn(tk)) + f* G(t - s)B(s)B*(s)G*(T - s) Wl(0, T)[xx - G(T)x0-

o<tk<t •'°

rTJ^ G(T -r)f(r,xn(r)tTxn{r),Sxn(r))dr - ^ G(T - tk)Ikxn(tk)]ds 

for n = 0,1,2,... with arbitrary xq(t).
0<tk<T

In case, the nonlinear function / is uniformly bounded, we can relax the inequality 
constraint (iii) in Theorem 5.2.1.

Theorem 5.2.2. Let the nonlinear Junction f is Lipschitz and uniformly bounded. 
That is, \{f(t,x,y,z)\\ < K V x,y,z € X. Then the nonlinear impulsive system 
(5.1.1) is exactly controllable on X under the assumption (Hi) — (ff3). □

Proof. Let us consider the Banach space PC([0,T];X). Defining an operator F : 
PC([0,T}]X)-+PC([0,T\->X)by

(Fx)(t) = G(t)xo+ [ G(t — s)f(s,x(s),Tx(s),Sx(s))ds+
Jo

J] G(t-tk)Ik(x(tk))+ fG(t-s)B(s)B(sYG*(T-s)W-1(0,T)[xi-G(T)xo-

o <tk<t

rT/ G(T-r)f(r,x(r),Tx(r),Sx(r))dr- G(T - tk)Ikx(tk)\ds (5.2.6)
«/0 nw. -^•'T0 <tk<T

Since / is uniformly bounded, we have

< is +
|G(t)|| ||x0|| + [ \\G(t — s)|| ||/(s,a:(s),Ta;(s),Sa:(s))||d6 

Jo
X llG(‘“«H P*M<0)ll+ /‘llG(*~»)ll POOHIIB-WI!

)<tk<T

\G*(T - s)||||W~1(0,T)|| OKU - ||G(T)|| IJrroll - F |jG(T - r)[jJo
\f(r,x(r),Tx(r),Sx(r))\\dr - \\G(T - ifc)|| ||Jfej| ||®(ifc)l|]<&

0<tk<T
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pt pi pT
< M\\x0\\ + MK / ds + Mj2hk + M2b2w / (\\xi\\ + Mx0 + MK / dr 

+MY^hk)ds

' < M\\xo\\ + MKT + M^2hk + Adaytw(\\x1\\ + M\\xo\\ + MKT + M'^/hh)T 

= M{\\xQ\\+KT + Y^hk)+ M3b2w(|\x0\\+KT + Y1 hk)T 4- M2b2w\\xx\\

= (M + Mzb2w) (| |£o| | + KT + J2hk) + M2b2w\\x1\\

‘ = P (say)

This implies F maps the whole space into the sphere of radius p. Let, E = {x € 
PC([0,T]; X)] [|z|j < p} and Q = {Fx : x € E}. We observe that Q is uniformly 
bounded. Using the uniform continuity of G(t), we have

||(J?*)(t1)-(F*)(ta)||

< ||(G(*i) ~ G!(i2))*oll + II f G(ti-s)f(s,x(s),Tx(s),Sx(s))dsJo
4- [ G(t2 — s)f(s,x(s),Tx(s),Sx(s))ds\\

Jo
+11 53 ~ i&kixih)) ~ 53 G(t2-’tk)h(x(tk))\\

0<tk<tl 0<tfc<t2
4-11 r G(ti - s)B(s)B*(s)G*(T - sjW^iO/T)^ - G(T)x0 - 

Jo
f G(T — r)f(r,x(r),Tx(r), Sx(r))dr — 53 G(T-tk)Ikx(tk)\ds

0 <tfc<T

- f2 G(t2 - s)B(s)B*(s)G*(T - sJW-^O, T)\xt - G(T)x 0 
Jo

-f G(T — r)f(r,x(r),Tx(r),Sx(r))dr — 53 G(T - tk)Ikx(tk))ds\\

0 <tk<T
< \\G(ti) - G<fe)|| llacoll 4- f1 ||G(ti -s)- G(t2 - «)||

Jo-

||/(s,ar(s),T2r(s),5,a:(s))||ds4- f ||G(t2-s)|| \\f(s\x(s),Tx(s),Sx(s))\\dsJti
+ 53 11^1-^)-^2-4)11 ||Jfc(s(tfc))l|4- 53 llG(*2-*ft)ll ll^b(*(^))ll

0<tfc<ti ti<th<t2
+ r WGih -8)- G(t2 - 8)11 11*0011 ||**(s)|| IIG\T - 8)|| j|W”1(0,T)|| ||[*x 

Jo
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-G(T)x o- f G(T-r)f(r,x(r),Tx(r),Sx(r))dr- E G(T - tk)Ikx(tk)]\\ds
0 <tk<T

+ [t2\\G(t2-s)\\ ||B(a)|| ||J3*(s)|| ||G*(r — s)|| ||W“1(0,r)|| ||[Sl-G(T)x0 

Jti
- f G(T-r)f(r,x(r),Tx(r),Sx(r))dr- £ G(T - tk)Ikx(tk)]\\ds

•'O nw.0<tk<T
< I\ + I2 + I3 + J4 + I5 + Iq + I7

where,

Now

h - ||G(ti) - G(t2)\\ Ikoll 
< /or |*i -*a| < $i

h = f1\\G{tl-s)-G{h-s)\\\\f{s,x{s),Tx{s),Sx{s))\\ds 
Jo

< = /°r I<1 - <2! < $2
h = f ||G(<4-s)|| ||/(s,x(s),rx(s),5,x(s»||ds

< MK(ti -12), for |*x - h\ < h
7MK

< -

_ ?
J4 _ E ||G(ti — tk) — G(t2 — <fc)j| j|ifc(x(£fc))|j

o<tk<tx 
e< j^hk 2hk» /or Itx ” *2I - ^

= /or |*i — *2! < At

/« = E P(i2-4)I!II4(^))||
tl<tk<t2

< M E hk
ti<th<t2

< ~ (By assuming E hk very smoM /or ]tx —t2j < £5)

||[xi-G(T)xq- f G(T-r)f(r,x(r),Tx(r),Sx(r))dr- E G(T-tfc)4x(£fc)]||ds
VO nw. ^■'n0 <tk<T
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< [||^i|| + ||G(T)|| ||x0|! + / \\G(T — r)|| ||/(r,x(r),Tx(r), Sx(r))\\dr
Jo

+ II^T- 4)11 il4s(4)IH
0 <th<T

< \\xx\\ + M\\xq\\ + MKT + M^^hk 

= D (say)

Therefore we have,

h

= r II G(h -s)- G(h - a)|| ||5(a) 11 ||5*(a)|| ||G*(T - a)|| ||W'-1(0,T)|| ||K 

Jo
—G(T)xo — f G(T — r)f(r,x(r),Tx(r),Sx(r))dr — T'' G(T - tk)Ikx(tk)]\\ds

o <th<T

~ h2MwDlVMwD = \ f0V “tz| “ 56 

Finally,

h

= [“\\G(t2 - s)\\ ||B(»)|| ||a*(s)|| ||G*(r-»)|| ||^1(0,r)ll ||[xi-G(r)io
Jt 1
- [ G(T - r)f(r,x(r),Tx(r),Sx(r))dr - V' G(T - tk)Ikx(ik)]\\ds

0<tk<T

< MttfwDfe-h) for \U~h\<87^y^wD

Now taking 8 = min{8\, 82,83,84,83,8e,S7}, we have

(Fx)(ti) - (Fo:)(t2)|| <j + j + -j + 7 + y + Tj + y

That is,
||(5s)<t1)-(F*)(t2)||<<:

It implies Q is equicontinuous. Therefore by Arzola-Ascoli theorem Q is relatively 
compact. From Theorem 5.2.1 we have proved that F is Lipschitz continuous and 
hence F is continuous from E onto E. Thus applying Schauder’s fixed point theorem
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F has a fixed point and thus, the equation (5.2.6) is solvable. And hence the 
nonlinear impulsive system (5.1.1) is exactly controllable. □

5.3 Summary

In this chapter, we have discussed the exact controllability of nonlinear impulsive 
system. Here, we have proved the controllability result of a nonlinear impulsive evo­
lution system by reducing the system into solvability problem. Fixed point theorem 
has been used for this purpose by imposing sufficient conditions on the nonlinear 
function /. Further, we have proved controllability results by using Schauder’s fixed 
point theorem, in case of the nonlinear function / is uniformly bounded.
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