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1.1 Introduction

Controllability is one of the basic properties of control systems appearing in var
ious engineering disciplines. A system is said to be controllable if we can find 
a controller, which will steer the system from any initial state to a desired final 
state in a given finite time interval (refer Russel[68]). Kalman (refer [49]) intro
duced the concept of controllability of finite dimensional linear system in 1960’s 
and subsequently this concept was extended to nonlinear systems (refer Mirza and 
Womaek[61], Vidyasagar[77], Balachandran et.al. [8], [9], Joshi and George[46], 
Klamka[50j, Shiv Prasad and Mukherjee[69]). The classical theory of controllability 
in finite dimensional space was extended for linear abstract systems defined on infi
nite dimensional spaces by Triggianni (refer [75]). Further, Quinn and Carmichael 
[65], Louis and Wexler[60], George[31], Zuazua[83] and many other authors obtained 
controllability results for nonlinear systems in infinite dimensional spaces.

Various notions of controllability such as exact controllability (refer Zuazua [83]), 
approximate controllability (refer Zhou[81], Geroge[31], Sukavanam[71]) , partial 
controllability( Nandakumaran and George[62],[63]), stochastic controllability (Ara-
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postathis, George and Ghosh[5]) etc. were introduced in the literature.

The controllability theory of linear systems is almost saturated in the literature. 
Though there has been many results available for the nonlinear systems, many 
problems are still open for nonlinear systems. Furthermore, the computational al
gorithm for the steering control is important for engineering systems, which is not 
easily available in the literature. Development of powerful tools in differential equa
tions, linear algebra and functional analysis resulted in the enrichment of control 
theory considerably.

In the present thesis, we investigate controllability of nonlinear systems by using 
some tools from analysis such as fixed point theory, spectral theory etc. Along with 
controllability results, we made an attempt to obtain a computational procedure 
for the actual computation of steering control. Second order systems often come in 
applications for which a linear controllability result has been obtained by Hughes and 
Skelton[42]. We study controllability of n-dimensional second order linear systems, 
and provide a controllability result for nonlinear second order systems using Banach’s 
contraction principle. Our results here are computational in nature. In recent years, 
the field of impulsive dynamical systems attracted the attention of many researchers 
(Lakshmikantham and Bainov[52], George, Nandakumaran and Arapostathis[32], 
Liu[56]). Boukhamla and Mazouzi [13] obtained the controllability results for linear 
type system in Hilbert space settings. Anguraj and Arjunan[3] studied the existence 
and uniqueness of the solution of nonlinear impulsive evolution equations. We study 
the controllability of the same systems by employing fixed point theory. We also 
obtain computational controllability results for both linear and nonlinear systems 
by using spectral analysis of Grammian matrix. Finally, we take up a system whose 
dynamics is described by an integral inclusion. The controllability result here is 
established by using Bohnenblust-Karlin extension of Kakutani’s fixed point theorem 
for set-valued mappings. The following section briefly discusses the problems dealt 
with and the results obtained as a part of this research work.

I. Controllability of Second Order Systems: Trigonometric 
Matrix Approach

Here we investigate the controllability of the system governed by a matrix second
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order nonlinear (MSON) differential equation:

+ A2x(t) - Bu(t) + f(t, x(t)) 
x(Q) - xo, x'(0) = y0.

where,-the state x(t) G Rn and the control u(t) G Rm, A2 is a constant matrix of 
order n x n and B is a constant matrix of order n x m and / : [0, T] x Rn —> Rn is 
a nonlinear function satisfying Caratheodory conditions (refer Joshi and Bose [47]). 
The initial states xq and yo are in Rn. The corresponding Matrix Second Order 
Linear (MSOL) system is :

(l.u)

+ AMt) = Bu(t) 1
a:(0) = x0) x'(0) = yo. J

The system (1.1.2) has been studied by many researchers (refer Diwakar and Ya- 
davalli [24], Hughes and Skelton [42], Wu and Duan [79]). This type of equations can 
model the dynamics of many natural phenomena to a significantly large extent (refer 
Hughes and Skelton [42], Fitzgibbon [27]). For example, Fitzgibbon [27] used the 
second order abstract differential equations for establishing the boundedness of the 
solutions of the equation governing the transverse motion of an extensible beam. A 
necessary and sufficient condition for the controllability of the matrix second order 
linear (MSOL) system has been proved in Hughes and Skelton [42]. They converted 
the second order system into first order system and obtained controllability result. 
However, no computational scheme for the steering control was proposed. Here, 
we prove another equivalent controllability result for the linear system(1.1.2) which 
also provides a computational algorithm for the actual computation of controlled 
state and steering control.. Furthermore, we prove a controllability result for the 
nonlinear system(l.l.l) with a controllable linear part. To prove the controllability 
result, we assume that the nonlinearity / is Lipschitz continuous. We do not reduce 
the system into first order and analyse the original form itself. Since, in many cases, 
it is advantageous to treat the second-order differential equations directly than con
verting them to first order systems. In our analysis, we invoke the tools of nonlinear 
functional analysis like fixed point theorem to obtain the controllability result for 
the nonlinear system.

We make use of matrix Sine and Cosine operators to express the solutions of (1.1.1) 
and (1.1.2). We employ an algorithm proposed by Hargreaves and Higham [41] for
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computing the Cosine and Sine of the matrix A £ Rnxn. The algorithm uses the 
Pdde approximations of Sine and Cosine of the matrix A.

We provide numerical examples for the computation of steering control for both 
linear and nonlinear systems.

II. Controllability of Second Order Systems: A General Op
erator Approach

Here we consider the control system described by the matrix second order nonlinear 
differential equation

where, the state x(t) € Rn ,the control u(t) £ Rm, A is matrix of order n x n, B is a 
matrix of order nxm and / : [0, T] x RJ1 —> Rn is a nonlinear function. The initial 
states x0, yo are in Rn.

We prove controllability result of (1.1.3) by introducing two special types of matrices 
$ and $ instead of Sine and Cosine matrices.

III. Exact Controllability of Impulsive Systems

In the dynamics of many practical systems, there is an abrupt change in the state 
such as impulse or shock experienced in a short duration of time. Such systems 
are modeled in terms of impulsive differential equations (refer Lakshmikantham and 
Bainov[52], Nandakumaran and Arapostathis[32]). In Leela [54], the controllability 
aspect of a linear finite dimensional impulsive systems was investigated. George, 
Nandakumaran and Arapostathis [32] generalized the controllability result to non
linear systems with impulse. Recently, Boukhamla and Mazouzi [13] obtained the 
controllability result for linear systems in infinite dimensional settings. We study 
the controllability of the impulsive evolution systems of the form:

(1.1.3)

x'(t) — Ax(t) + f(t,x(t),Tx(t), Sx(t)) + Bu(t), 0 < t < T, 
aj(0) = x0,
&x(tfc) — Ij~x(tk)i 1> 2,3,...,p

\

(1.1.4)

5



Jaita P Sharma 1.1. INTRODUCTION

in a Banach space X, where/ € C([0,T]xXxXx.X', X), A is infinitesimal generator 
of Co semigroup with impulsive condition and B is a bounded linear operator from 
X to X and the control function u(-) is in L2([0, T]; X).

Tx(£) = f* K(t,s)x(s)ds, K<=C[D,R+}
Jo

fT
Sx(t) = / H(t,s)x{a)ds, HeC[D0,R+]

Jo
where D = {(£, s)€i?2:0<s<t< T}, Dq = {(£, s) G R2 : 0 < t, s < T} and 
0 < tx < t2 < t3 < ... < tp < T

■ A®(*k) =*(**) ~x(tk)

where x(£/) and x(t%) represent the right and left limits of x(t) at t = tk respectively 
and / is a nonlinear function satisfying Lipschitz condition. Anguraj and Arjunan[3] 
has proved the existence and uniqueness of the solution of the above impulsive 
evolution equation without control. We obtain controllability results using fixed 
point theory.

IV. Controllability and Steering Control By Spectral Method.

Consider the following nonlinear n-dimensional first order system:

= A(t)x(t) + B(t)u(t) + f(t, x(t)) 
x(t0) = Xq,

where the state x(t) € Rr\ the control u(t) e Rm, A(t) and B(t) are matrices of 
order n x n and m x n respectively. The vector Xq G Rn is the initial state and 
f(t,x(t)) is a nonlinear function. The main objective is to obtain controllability 
result and develop a computational algorithm for the steering control. Here our 
result depend upon the spectral properties of the controllability Grammian. First 
we obtain the spectral controllability result for the linear system:

- — A(t)x(t) + B{t)u(t) 
x(td) - x0.

(1.1.6)

(1.1.5)
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The solution of (1.1.6) can be written as:

x(t) = #(t,to)®o + [ $(t,s)B(s)u(s)ds (1.1.7)
Jt0

where $(t, s) is the state transition matrix of the linear system.

Controllability Grammian matrix of the system (1.1.6) is given by

fTW(t0,T) — / $(T,s)B(s)B*(s)$*(T,s)ds (1.1.8)
Jta

The system (1.1.6) is controllable if and only if 0 is not an eigen value of the Con
trollability Grammian W(t0,T). Here, the steering control is defined using the eigen 
values Xi and eigenvectors vt of the controllability Grammian matrix as follows:

u(t) = B*(tmT,t)J^~ (1-1.9)
i Ai

where {vn} is the orthonormal basis of Rn generated by eigenvectors corresponding 
to {Ai}, the eigenvalues of the matrix W(io,T) and c-s are the coordinates of the 
vector {xi — <h(T, t0)x0} with respect to the orthonormal basis {vn}.

In this approach we do not compute the inverse of the controllability Grammian and 
hence the computation of steering control is comparatively easy. The same approach 
has been applied to nonlinear system (1.1.5), with Lipschitz continuous nonlinear 
function /. We provide examples to illustrate this approach. There are many 
powerful mathematical packages like MATLAB /Maple /Octave /Mathematica to 
find eigenvectors and eigenvalues of a matrix. The steering control can be easily 
computed making use of these packages.

V. Controllability of Urysohn Type Integral Inclusion System

In recent years a number of papers appeared in the literature concerning integral 
inclusions, in particular inclusions of Hammerstein type and Urysohn type (refer 
Rangimkhannov [66], Gaidarov[29], Angel [1]). This type of inclusions have been 
used to model many thermostatic devices (refer Glashoff and Spreckels [33], [34]). 
We consider a controlled nonlinear Urysohn delay integral inclusion of Volterra type
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given by:

g(t, s,xa)F(s, xs)ds+ / K(t,s)u(s)ds. , (1.1.10) 
Jo

where, for each t € [0, T] the state x(t) is in Rn and the control u{t) G Rm.
For any given real number 0 < r <T and for any function x € C([—r,T]; Rn) and 
s G [0,T], we define an element xs G C{[—r, 0]; Rn) by

xs(9) = x(s + 9), — r < 9 < 0.

x(t) G (Hx)(t) +
Jo

The initial conditions are given by

x(9) = <fi(9),—r <9< 0, (1.1.11)

for a fixed, <f> G C[—r, 0].
Here, H : L°°(.[—r,T]-,Rn) —> (7([0,T];i?n) is the Urysohn operator defined by

fT(Hx)(t) = <p(0) + / h(t,s,xa)ds 
Jo

where, h : [0,T] x [0,T] x L°°([—r,0};Rn) —> Rn is a nonlinear function, g : [0.T] x 
[0,T] x L°°([—r, 0];i2") —»■ Mnxn is also a nonlinear function, where Mnxn is a 
space of n x n matrices. For (t, s) G [0,T] x [0, T], K(t,s) isnxn matrix, F : 
[0, T] x L°°([—r, 0]; Rn) —> 2R is a set-valued mapping. Choung[20] studied a general 
Urysohn inclusion of Volterra type, without delay and control. The existence result 
for such systems was established under much stronger hypothesis on the set-valued 
mappings. The existence of the solution of (l.l.lO)-(l.l.ll) without control was 
established by Angel [1].

Here, we convert the controllability problem into a fixed point problem for set
valued mapping. We prove controllability result for the inclusion (l.l.lO)-(l.l.ll) 
by using Bohnenblust-Karlin extension of Kakutani’s fixed point theorem for set
valued mappings. We impose sufficient conditions on the nonlinear functions g, h 
and F to guarantee the existence of a fixed point for a set-valued mapping. We 
provide example to illustrate the theory.
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1.2 Layout of the thesis

The thesis is organized as follows:

Chapter 1 deals with general introduction of the thesis.

Chapter 2 focuses on the necessary concepts of control theory and analysis which 
will be used subsequently in the thesis.

In Chapter 3, we study the controllability of Matrix Second Order Linear and Non
linear Systems in finite dimensional space. Here we make use of Sine and Cosine 
matrices to obtain the solutions of the second order systems. An algorithm based on 
pade approximation to compute Sine and Cosine of a matrix is given. Here we also 
provide an algorithm for the actual computation of steering control of the MSOL. A 
sufficient condition of controllability of second order nonlinear systems is proved by 
invoking the fixed point theorem. For both linear and nonlinear systems, we present 
numerical experiments which show the applicability of the theory developed in this 
chapter.

Chapter 4 deals with the study of controllability of a class of second order systems. 
We prove similar kind of controllability results for both MSOL and MSON in finite 
dinemsional space by using general matrices $ and 4/. Matrices $ and \k, have 
similar properties as Sine and Cosine matrices.

In Chapter 5, we discuss the exact controllability of nonlinear impulsive systems. 
Here, we obtain the controllability of a nonlinear impulsive evolution systems. An- 
guraj and Arjunan[3] has proved the existence and uniqueness of the solution of the 
same impulsive evolution equations without control. We prove the controllability 
result by reducing the system into solvability problem and apply the fixed point 
theorem on this problem by imposing sufficient conditions on the nonlinear function 
/. The Banach contraction principle is used in our analysis.

In the Chapter 6, we have developed an algorithm for the computation of steering 
control using spectral analysis. The chapter begins with the controllability result 
of the linear first order system and the computational algorithm for the steering 
control of linear system is provided. Then we prove the controllability result for 
nonlinear system and develop a computational algorithm for steering control. The
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chapter concludes with the numerical examples for both the linear and nonlinear 
systems.

Chapter 7 deals with the controllability of a system described by an integral in
clusion of Urysohn type with delay. To obtain, the controllability result we employ 
Bohnenblust-Karlin extension of Kakutani’s fixed point theorem for set-valued map
pings. We prove the controllability result by reducing the controllability problem 
into solvability problem and applying the fixed point theorem on this problem. We 
conclude the chapter by giving numerical example to illustrate the result obtained 
here.
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