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In this chapter, a necessary and sufficient condition is given for controllability of 
discrete time linear Volterra system. Local controllability result for a semi-linear 
.discrete Volterra system is also proved. Numerical examples are provided to illus­
trate the results.
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t
x(t + 1) = ^ A(i)x(t — i) f Bu.(t), t € No

i=0

by a method based on the representation of the Volterra operator generated by the 
equation in the ring of formal power series. In this paper we study controllability of 
a non-autonomous linear system of the form :

t
El : x(t + 1) = - i) + B(t)u{t), t € N0 (4.1.1)

i=0

and local controllability of a semi-linear discrete Volterra system of the form :

t
E,y : x(t, + 1) = ^ A(i)x(l — i) f B(t)u(t) + f(x(t),u(t)), t € N0 (4.1.2)

i=0

using a different approach and in much more straightforward manner. Here, (A(t))tl=N0 
and (B(t))teN0 are sequences of real n x n and n x rri - matrices, respectively, and 
(x(t))t.eN0 and (u(t))teN0 are sequences of state vectors in R" and control vectors in 
R"'. respectively. /(.,.) : /?" x R"‘ —> R" is a nonlinear function of state and control 
variables. It follows easily that for a given control sequence {u(t)}teN0 and initial 
state x(to) = xo, there exists a unique solution to the linear system El- We make 
the following definitions to obtain solution of E^. Define the set of linear operators 
Qt : Rn ->/?", t e N0 by

t
Qo = /, Qt+1 t € N0 (4.1.3)

i-0

Using these operators, the solution of (4.1.1) is given by

t-1
x(t) - Qtx o + ^2QiB(t ~~ i - 1 )u(t -i- 1) (4.1.4)

i 0

We first obtain the controllability results of the linear system E
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Definition 4.1.1. (Global controllability )(see Elaydi [8]) Let x0,xx G Rn be 
given arbitrarily. The system Sl is controllable if we can find a sequence of control 
vectors {u(t) G Rm, t G N0} such that for some N £ N0 the solution (x(t))teN0 of 
equation (4.1.1) with x(0) = aro satisfies the desired final state

x(N) — x\ (4.1.5)

In view of (4.1.4), we are looking for a control sequence (u(t))teN0 satisfying

N-1

Xx - Qnx0 = - 1 - 1)<N - * - 1)

i=0

Xx - Qnx0 = ]T Qi-iB(N - i)u(N - i) (4.1.6)
i=l

This is a linear system for the unknowns {'«(()), ...,u(N — 1)} G RmN. Define

[7 = {u = (u(0),u(l), ...,u(N — 1)) G RmN}

Equation (4.1,6) shows that there will be an input u G U that will transfer a given 
arbitrary state xq to a desired final state x\ in N time steps if and only if the linear 
map I, : RmN -* Rn defined by

N
L:u-^Q<_1.B(iV-t)u(W-i) (4.1.7)

i—1

is onto. Prom (4.1.7), we see that LL* : Rn - > Kn has a square matrix representation, 
where the adjoint operator L* is defined as follows :

52



Trupti P Shah 4.1. INTRODUCTION

For v 6 Rn, ueU,

N
<Lu,v> = < y^ Qj-iB(N — i)u(N — i),v>

i=1 
N

= Y, < Qi-1B(N - i)u(N -i),v>

N
J2<B(N-i)u(N-i),QUv>
i=l 

JV
J2 < u{N - - i)Q*_jv >
i= 1
< u, (.B*Q*)v >

i.e. <u,L*v> = <u,(B*Q*)v>

i.e. L*v = (B*{N-1)Q*ov,B*(N-2)Q*1v,...,B*(0)Q*n_1v)
N

i.e. LL*v =

Now define the controllability Grammian for the linear Volterra system (4.1.1) by

In Section 4.2, we give two different conditions, for the global controllability of
(4.1.1) , namely

(i) condition using controllability Grammian and

(ii) Kalman type rank condition.

In Section 4.3, we prove a local controllability theorem for the semi-linear system
(4.1.2) and numerical examples illustrating the results are included in Section 4.4.

N

(4.1.8)
i— 1
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4.2 Controllability of Linear Volterra system

4.2.1 Controllability using Controllability Grammian

In this section we prove necessary and sufficient condition for the controllability of 
the linear Volterra system using controllability Grammian.

Theorem 4.2.1. Let (A(t))te^0 and (B(t))teN0 be sequences of real nxn and nxm 
- matrices, respectively and let L be the operator defined as in (4-1.7). Then the 
following statements are equivalent.

1. The non-autonomous Volterra system (4-1.1) is controllable on [0, N]

2. range(L) = Rn.

3. range(LL*) — RT.

4■ detW(0, N) -7^ 0, where W is the Controllability Grammian defined by (4-1.8). 

Proof. The solution of the system (4.1.1) is given by

i-1

x{t) = Qtx0 + QiB(t - i - 1 )u{t -i - 1)
t=0

We now prove (1) 44- (2).
The system (4.1.1) is controllable on [0, N] if and only if for every Xi and xQ € Rn 
there exists a control sequence u 6 U satisfying

N-l
Xi = QnXq + ^ QiB(N — i~ 1 )u(N — i~ 1)

i—0

or N

xi - Qnx0 = - VU(N - *)

Thus the system (4.1.1) is controllable if and only if the operator L : RmN —> Rn 
defined by (4.1.7) is surjective. Thus statement (1) is equivalent, as noted above to 
the surjectivity of L, which is equivalent to range(L) = RT.
(2) 4* (3)
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Let range(L) = RP.
44 range(LL*) = R1.
(3) 44 (4)
From (4.1.8), it follows that LL* = W is a square matrix and hence 
range(LL*) = Rn,
44 W(0, N) is invertible.
44 det(W(0, N)) ^ 0. Hence the proof. □

4.2.2 Controllability using Kalman type Rank Condition

Let us define the controllability matrix by

Wc = [B(N - 1) | QxB(N - 2) | ... | QN-iB(0)} (4.2.1)

and assume that

rank(Wc) = rank([B(N - 1) ] QiB{N - 2) j ... | Q^BfO)]) = n (4.2.2)

Theorem 4.2.2. If the rank condition (4-2.2) is satisfied for some N e N0, then 
for every pair Xo-Xi e Mn there exists a control sequence {■«} steering xo to x\ in N 
time steps.

Proof. Let us assume that for some N € No, it is true that rank Wc = n. Then the 
system

N

a?i - QnXo = - i)<N ~ *) (4-2.3)
i= 1

has a solution u(Q), ...,u(N — 1) € Rrn for every choice of Xq, X\ € Rn. If the rank 
condition (4.2.2) is satisfied, the system (4.2.3) has infinitely many solutions. Now 
pick up a special one which is defined uniquely. For that purpose we define for every 
k = 1,..., N an n x m matrix Gk by

Ck = Qk-iB(N - k) for k = 1,2,3,..., N

The condition (4.2.2), then implies the existence of n linearly independent columns 

in matrix Wc.
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We define a n x n matrix C by these linearly independent columns,

\

C

\
Now define a control sequence u € Rn by

/

U =

/ ujki(h-l) \

\ Ujkn (kn 1) )

and make
Uj{k - 1) = 0 for k^k, j ^ jkl, l = 1 

then we obtain from equation (4.2.3)

xi = Qnx o + Cu

Since C is invertible we have

u — G - Qnxo) (4.2.4)

Obviously this control steers the system from xq to X\ in N time steps. □

4.2.3 Another Steering Control for Linear Volterra System

We now provide another steering control using controllability Grammian.

Theorem 4.2.3. If the system is controllable, in N time steps thenVx 0}xi € Rn, 
3 a control sequence u : N0 —> Rm defined by

{«(t-i)}ti :={B*(t~i)Qt1W-1(0,N)(x1-QNXo)}U1,t = l,2,3,...,N (4.2.5)
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steers the initial state x0 to the desired final state xi in N time steps.

Proof. Since the linear system (4.1.1) is controllable, we have by Theorem 4.2.1, 
detW{0, N) ^ 0, where W(0, N) is given by (4.1.8). To prove that control given by 
(4.2.5) steers the state xq to Xi, we substitute this control in (4.1.6) to obtain :

t
x(t) - Qtxo + ~ i)u(t ~ *)

1

t
x(t) = Qtxo + - *)£*(* - ~ Qnxo)

i=1
It can be easily verified that at t = 0, x(0) = x0 and at t = IV, x{N) — x\. Hence 
the proof. □

Remark 4.2.1. It can be shown that the control obtained in above theorem is a 
minimum norm control.

4.3 Controllability of Semi-linear System

Also to prove local controllability of the semi-linear system (4.1.2), we use the notion 
of higher order functions, inverse function theorem and implicit function theorem 
(see Section 2.6). For the nonlinear system E^r, represented by (4.1.2), the following 
definition of local controllability is relevant.

Definition 4.3.1. (Local controllability) A system is locally controllable if there 
exists a neighborhood flof the origin such that, for any xq,xi € Q there is a sequence 
of inputs u = (w(0), w(l), ...,u(N — 1)) that steers the system from xq to x\.

Now we prove the following result for the local controllability of (4.1.2) under the 
assumption that Ex, is controllable and the nonlinear function / is of ’’higher order”.

Theorem 4.3.1. If the linear system El is controllable and f € H, then the semi- 
linear system Ejv is locally controllable.

Proof. We will show the existence of a control sequence u that transfers the state 
from xq to x\ in N time steps. The properties of higher order functions will be
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repeatedly used in the following derivations. 

x(l) = .<4(0);r(0) + i?(0)«(0) + f(x(0),u(0))

= Q1xo + B(0)u(0) + f(xoM0))
x(2) — (i4^(0) T- .d(l));ro T A(fi)B(Qi)u(Qi) T- 2?(l)tt(l)

+-d(0)/(xo,,u(0)) + f(A(0)xo + B(0)u(0) + f(xo,u(0)),u(l))

= Q2X0 + QiB(0)u(0) + B(l)u(l) + f2(xo,u(0),u(l)), taking
A(0)f(xo,u(O)) + f(A(0)x0 + B(0)u(0) + f(xo,u(0)),u(l)) = f2(x0, («(0),«(!)))

u(N — 1) 
u(N - 2)

x(N) == Qnx0 + [B(N - 1) | QiB{N - 2) | ... | QN-iB(0)]

d^fa(®o,(u(0),«(!),...,«(# - 1)))
«(0)

Since
Wc = [B(N - 1) | Q\B{N - 2) | ... | QiV-1B(0)]

and
u = [«(0),ii(l), ...,u(N — l)]r

we have
x(N) = QnXq + Wcu + fN(x0, u) 

Since we require x(N) = x1,

Xx = Qnx0 + Wcu + fn(x0, u)

where f2{.), •••, /jv(-) are all properly defined higher order functions. Let W* be the
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transpose of Wc and let u = W*v. Therefore, we have

x, = Qnx o + WeW;v + fN(x o, Wfv)

Since the linear system is controllable, Wc is of full rank and hence WCW* is an 
invertible matrix. By inverse function theorem and implicit function theorem (see 
Corollary 2.8.1), if xo,xi in a neighborhood 0 of the origin, there exist v given by

v = (WcW*)~l(xx - Qnxo) + g(x0,a?i), for some g(.) e H.

Thus the control sequence
u = Wfv

steers Xq to x\ for all xq.Xi in a neighborhood of origin. Hence the theorem. □

4.4 Numerical Examples

Example 4.4.1. Consider a 2-dimensional discrete linear Volterra system of the 
form

t
x(t + 1) = '^2 A(i)x{t — i) + B{t)u(t), t 6 No

i=0

with A(t)

initial state xq —

cos(t) sin(t)

1

. . and B(t) =| 2cos(t) j \ M

and the final state X\

. Let us take N = 5 and 

( —20 \ . Then using the
n -i j \ i

Matlah program P — 3 in Appendix, we compute the value of controllability matrix

Wc. 0.5000 0.5000 1.6116 2.5491 0.6294 
2.0000 3.0000 5.1806 6.2451 1.7621

This shows that rank ofWc is 2 and hence the given system is controllable by Theorem 
4-2-2. Hence we can compute the control that steers initial state Xq to desired final 
state xi- Computation of this control is done using the formula (4-2-4), where matrix 
C is computed as

( 0.5000 0.5000 
~ \ 2.0000 3.0000
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The matrix C is invertible and C 1 is given by

Also Qm is computed as

( 0.8969 25.4421

y 10.3115 53.9320

Hence using equation (4-2-4), we obtain control u —

/ -17.3487 \ 

26.4393 
0 
0

V o
Figure 4.1 shows the controlled trajectories using this control.

Controlled States

Figure 4.1: Controlled trajectories computed using control given by equation (4.2.4)

Example 4.4.2. In this example we take all the data similar to the previous Example 
4-4-1 and use the techniques of Theorems 4-2.1 and 4-2.3 to compute steering control. 
According to this, if detW(0, N) ^ 0 then the system £/, is controllable and the 
control sequence which steers the initial state to final state is given by equation 
(4-2.5).

For the same data, we get controllability Grammian matrix as

, ( 9.9913 27.8775
W 0. 5 =

\ 27.8775 81.9444
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Its determinant is | 1^(0,5) |= 41.5806 ^ 0.
Hence linear system is controllable. The control sequence computed using (4-2.5) is 
given by

u = (4.8698,12.5442, 5.9818, -5.4964, 0.3316)

Using this control, we see that xq — ^ i ^ *S s^eere<^ ^0 fina^ state a-! =

j m5 time steps, see Figure 4.2. Note that the control using the Grammian
matrix is a minimum, norm control. Note that for computation of the data we use 
program P — 4 given in the Appendix.

Controlled States

Figure 4.2: Controlled trajectories using controller given in equation (4.2.5)

Example 4.4.3. Consider the nonlinear discrete Volterra system

t
x(t + 1) = ^ A(i)x(t — i) + B(t)u(t) + f(x(t),u(t)) t <E N0

i=0

where A(t) and B(t) are as defined m Example 4-4-1 and

f(x{t),u(t)) X2{t)sin(xi(t))u(t) \ 
xi(t)(l - cos{x2{t)))u{t) )
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Since

/(0,0) = 0 and ?£• =

ox

x2(t)cos(xi{t))u(t) sin(xi(t))u(t)
(1 — cos(x2(t)))u(t) xi(t)sin(x2(t))u(t) )

obviously (§y)x=o = 0. Thus the nonlinear function f is of higher order. As discussed 

in Example 4-4.1, the linear system is controllable, hence by using Theorem 4-3.1, 
we conclude that the semi-linear system is also controllable in the neighborhood of 
the origin.

4.5 Summary

In this chapter, global controllability of linear discrete-time Volterra system is stud­
ied using controllability Grammian and Kalman type rank condition. Also using 
inverse function theorem and implicit function theorem, sufficient condition for the 
local controllability of semi-linear Volterra system is obtained. Numerical examples 
are also given to understand the concepts derived.
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