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In this chapter, optimal control problem described by discrete-time linear Volterra 
system is studied by the conventional minimization method of Lagrange multipliers.
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6.1 Introduction

The problem of optimal control for discrete Volterra system have received a great 
deal of attention and have attracted many researchers. Gaishun and Dymkov [11] 
studied linear-quadratic optimization and feedback control problems for linear dis­
crete Volterra system using operator approach. Belbas and Schmidt [48] studied an 
optimal control problem for a system governed by a Volterra integral equation with 
impulsive terms. Here we adapt independent approach of classical minimization 
technique called method of Lagrangian multipliers to find the optimal control of the 
following linear Volterra system.

t
x(t + 1) = A(i)x(t — i) + Bu(t), t G No (6.1.1)

i= 0

where A(i)'s, i = 0,1. ...t are nxn nonsingular matrices and B is n x m matrix. We 
consider a quadratic performance index for the finite time process (0 < t < N) as

1 1 JV“1
j = -x*(N)Sx(N) + - V [x*(t)Qx(t) + u*(t)Ru(t)\ (6.1.2)

fc=o

where S, Q are nxn positive definite or positive semidefinite Hermitian matrices 
(or real symmetric matrices). R is an m x m positive definite Hermitian or real 
symmetric matrix.

We find a controller which minimizes J as given by equation (6.1.2), when it is 
subjected to the constraint equation specified by (6.1.1) and when initial condition 
on state vector is specified as

cc(0) = c. (6.1.3)
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6.2 Solution by the Classical Minimization Method 
using Lagrange Multipliers

We minimize J defined by

1 1
J = ~x*(N)Sx(N) + [®*(*)Qs(*) + u*(t)Ru(t)}

2 2 t=o

subjected to the constraint equation

t
x(t +1) = ^2 A&tt — i) + Bu(t), te N0

i=0 '

where t — 0,1,2,..., N — 1, and when initial condition on state vector is specified as

s(0) = c

Now by using a set of Lagrange multipliers A(l), A(2), ...A (IV), A (i)'s € Rn. for % — 
1,2,..., N, we define a new performance index L as follows.

1 1 iV"1 2
L = -x*(N)Sx(N) + ~y]{[x*(t)Qx(t)+u*(t)Ru(t)]

2 2 t=o

t
+A* (t + DIE Aix(t — i) + Bu(t) — x(t + 1)]

i=0 
t

+ [^ — i) + Bu{t) — x(t + l)]*A(t + 1)} (6.2.1)
*=o

Obviously L = L*.
To minimize the functional L, we differentiate L with respect to each component of 
vectors x(t),u(t) and A(t) and set the results equal to zero. i.e.

dL 
dx(t) 
dL 

du(t) 
dL 

d\(t)

- 0, i = 1,2, ...,1V

= 0, t = 0,l,2,...,lV-l

= 0, t = 1,2,...,1V

85



6.2. SOLUTION BY THE CLASSICAL MINIMIZATION METHOD USING LAGRANGE 
Trupti P Shah MULTIPLIERS

Using the following equalities (refer Ogata [16], page 670),

d
-q-x*Ax — 2Ax, if A = A*,

and

tAAv=Av
we obtain the following partial derivatives

dL
dx(t) ~ °

This implies that

AT-i-1
Qx(t) + ^ A*{i)X{t -t- i + 1) — X(t) = 0 ,t = 1,2, ...,1V— 1

i=0

(6.2.2)

Now

implies

dL
dx(N) 0

Sx{N) - X{N) = 0 (6.2.3)

Similarly
dL

du(t) ~ °

Ru(t) + B*X(t + 1) = 0 (6.2.4)

dL
dX(t) ~0

=4
t-l

A{i)x(t — i — 1) + Bu(t — 1) — x(t) = 0 (6.2.5)
i=0

Equation (6.2.5) is simply the system state equation. Equation (6.2.3) specifies the 
final value of the Lagrange multiplier.
Now we shall simplify the equations just obtained. From Equation (6.2.2), we have

N-t-l

X(t) = Qx(t) + A*(i)X(t + i + 1), £ = 1,2,..., JV—1 (6.2.6)
i=0

86



Trupti P Shah 6.3. SUMMARY

with the final condition A(N) = Sx(N).
By solving (6.2.4) for u(t) and noting that f?-1 exists, we obtain,

u(t) = —R~1B*X(t + 1), t = 0,1,..., N - 1 (6.2.7)

Equation (6.2.5) can be rewritten as

t

x(t + 1) = ^2 A(i)x(t — i) + Bu(t),t = 0,1,..., N — 1 (6.2.8)
i~0

This is the state equation. Substitution of (6.2.7) into (6.2.8) results in

t
a:(t + 1) = A{t)x(t - *) - BR~1B*X(t + 1), t = 0,1,..., N - 1 (6.2.9)

i=0

with the initial condition x(0) = c.

To obtain the solution to the minimization problem, we need to solve (6.2.6) and 
(6.2.9) simultaneously. Note that for the system (6.2.9),the initial condition x(0) 
is specified, while for the Lagrange multiplier equation (6.2.6), the final condition 
X(N) is specified. Thus,

u(t) — —R 1B*X(t + l),t = 0,1,..., N — 1

where A(i) is solution of boundary value problem. Hence we proved the following 
theorem.

Theorem 6.2.1. The minimization problem for (6.1.1), (6.1.2) has a optimal solu­
tion given by

u(t) = —R~1B*X{t + 1 ),t = 0,1,..., N - 1 

where X(t) is the solution of the boundary value problem (6.2.6), (6.2.9).

6.3 Summary

Optimal control problem of discrete-time linear Volterra system is studied using 
classical technique of Lagrange multipliers.
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