LIST OF FIGURES

Fiş	gure	Page
1.1.	Conceptual representation of the process of conventional free-radical polymerisation, where I denotes the initiating species, M, monomer, and the arrows a reaction	3
1.2.	An exponential distribution of chain sizes, as typically obtained from conventional free-radical polymerization carried out over constant conditions, and a Poisson distribution of chain sizes, as obtained from ideal living polymerization.	4
1.3.	Conceptual representation of the process of (ideal) living polymerization where I denotes the initiating species, M, monomer, and the arrows a reaction	on, 5
1.4.	Typical initiators for (copper-based) ATRP	11
1.5.	A selection of ligands that have been used for copper-based ATRP	13
1.6.	Evolution of the number-average degree of polymerization $(\overline{DP}_n, \text{ broken line})$ and polydispersity index (PDI, solid line) with fraction conversion of monomer (x) for ideal living polymerisation in which $[M]_0/[I]_0 = 100$	16
1.7.	Classical three-stage concept for the emulsion polymerization process	22
2.1.	Different types of interactions can occur between an electronbeam and a specimen.	51
2.2.	Geometry of SEM	54
2.3.	Transmission electron microscope with all of its components	56
2.4.	Polymer molecular weight versus retention volume in three chromatographic separation modes: size exclusion chromatography (SEC), liquid chromatography at critical condition (LCCC) and interaction chromatography (IC)	60
2.5.	Vacuum line	65
2.6.	Apparatus for monomer distillation	68

.

2.7.	Appartus for monomer dilution	69
2.8.	Titration apparatus (A, B: cutting point, C: main reactor, D: n-octyl alcholol E: initiator, F: washing solution, G: receiver for washing solution)	70
2.9.	Apparatus for polymerization (A, B: cutting point, C: main reactor, D: receiver for washing solution, E: initiator, F: washing solution G: monomer, H: ligand	72
3.1.	GPC chromatograms of (Br-PS-Br) macroinitiator, BAB1, and CBABC tri- and pentablock copolymers	84
3.2.	Evolution of molecular weight, (M_n) and molecular weight distribution, (M_w/M_n) with monomer conversion for the ATRP of n-butyl methacrylate (BAB2)	86
3.3.	Evolution of the GPC chromatograms with conversion and time for the ATRP of n-butyl methacrylate (BAB2)	87
3.4.	 (a) ¹H NMR of BAB1, triblock and (b) CBABC pentablock copolymers 	.87
3.5.	(a) TGA of BAB1, triblock and CBABC pentablock copolymer(b) DSC of BAB1 and CBABC block copolymers	89
3.6.	TEM micrographs in toluene (3mg/ml) (a) BAB1 triblock copolymer (b) CBABC pentablock copolymer(c) and (d) Inverse Fast Fourier Transform (IFFT) images of the selected area (marked by arrows) showing clearly the phase separation between the two phases.	91
4.1.	¹ H NMR spectra of HEBI in CDCl ₃	101
4.2.	SEC traces of MMA polymerization in emulsion by varying time interval for monomer addition(EP1; one shot), (EP2; 120 min) and (EP3;60 min)	106
4.3.	SEC traces of MMA polymerization in emulsion showing the increase in molecular weight as a function of time for EP5	107
4.4.	Scaning electron microscopy (SEM) images monodisperse Poly(methyl methacrylate) produced by emulsion ATRP using mixed	

.

	ligand system at room temperature for (A)EP3,(B) EP2 and (C) EP5	108
	(A)1H NMR spectrum of the sample EP5 in CDCl ₃ and	
((B) FT-IR spectrum of EP5	109
5.1.	¹ H NMR spectra of MTEE in CDCl ₃	117
5.2.	SEC chromatograms for (a) PSt (1) and (b) P2VP (2)	
	showing the Evolution of molecular weight with time	124
5.3.	SEC chromatograms for PS, P2VP macropromoters and PS-b-P2VP,	
	(3) P2VP-b-PS (4) block copolymers	
	showing the evolution of molecular weight with time	126
5.4.	¹ H NMR spectrum of PS- <i>b</i> -P2VP (3a and 3b) and	
	P2VP-b-PS (4) in CDCl ₃	128
5.5.	FT-IR spectra of the parent P2VP-b-PS and quaternized Q-P2VP-b-PS	129
5.6 .	TEM images of Q-PS-b-P2VP nanoparticles:	
	(a) without TiO_2 (b) with TiO_2 ,	
	also accompanied by the corresponding HRTEM image and histogram	
	showing the lattice spacing of 0.377 nm acquired from this sample	131
5.7.	SEM images of nanoporous titania layer prepared by removing template	
	of Q-PS-b-P2VP nanoparticles: (a) surface (b) 30° tilted cross-section	
	nanoporous titania layers prepared by sintering at 600 °C for 4 hrs	
	(c) surface view of nanoporous titania layers prepared by sintering	
	at 600 °C for 4 hrs, and (d) Surface view of nanoporous titania layers	
	prepared by oxygen plasma etching for 5 min	132
5.8.	Energy-dispersive X-Ray (EDX) spectra of as synthesized	
	nanoporous titania layer prepared by removing	
	template of Q- P2VP-b-PS nanoparticles after sintering	133
6.1.	(a) Size-exclusion chromatography (SEC) curves of three sets	
	of polymers obtained from C1 to C3. (b) Temperature gradient	
	interaction chromatography (TGIC) curves of the various block	
	copolymers, F1–F4 showing the fractionation (dotted lines) of C3.	
•	(c) SEC curves of four TGIC fractions (F1–F4)	1.40
	after fractionation of C3	146

.

.