CHAPTER TIII

THE_ORDER_OF MAGNTTUDE OF COEFFICIENTS
OF_THE_LACUNARY FOURIER SERIES, ITS
ABSOLUTE CONVERGENCE AND ITS AIMOST
EVERYWEERE_CONVERGENCE

1 In the present chapter we obtain . some
estimates reéarding the behaviour of the Fouriler
coefficients of a lacunary Fourier series and with the
help of these estimates, we’study the behaviour of the
series in respect of its absolute convergence and
almost everywhere convergence.

1)

Noble™’ prot¥ed that if the series (L)

satisfies the lacunarity condition

N.

(1) Tim = k = @, agk—> 0w,
log Ny

where .
M = min qmo-mg s gy - o)

and if the function f satisfies the Lipschitz condition

of order € , 6 < ¢ < 1, in a subinterval
I:{x:[x-xo}_{6} of {J-m, m\ , then

1) Noble [11}
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(2) am, = O @/n),
by, = O (/).

Subsequently Kennedyl) improved this
result by showing that the conclusion (2) holds

ﬁnder the weaker lacunarity condition that nk+l - Dy —) 0,

The same authorz), in agother paper showed that even
when the subinterval I is replaced by a set E of
positive measure, the conclusion (2) of the theorem
holds, provided that nk+l - qk-_e o 1is replaced by
a more stringent condition. More precisely the author
has proved that if the sequence {nk& satisfies the

Hadamard lacunarity condition

(3) D+l
! ‘n >%>l,
k
and if,
(4) FELip«(B) , 0<«<1,

where E 1s a set of positive measure, then (2) holds.

Tomiéa), while retaining the Hadamard

lacunarity condition, and replacing the set of posiﬁive

H
{

measure by a single point, studied the behaviour of
E

1) Xennedy (61
2) Kennedy p73
3) Tomié 11973
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the Fourier coefficients. He proved the following
theorem.
THEOREM A (Tomié)

If the series (L) is the Fourier series of
f(x) satisfying the Hadamard lacunarity condition (3),
and

« s _ oc
(8) Wz, , h) = o iugé <n [£(x t.8) - £(x,)] = O,

— —

o< «< 1, then.

(6) o, = OC/E)
b, = ()(l/ni) 3
o

where B= 5% °

We shall now examine the behaviour of the
Fourier coefficlents for the sequence {m,Y given by
(7) below.

First , we prove the following theoren.
THEOREM _5:

If the series (L) is the Fourier series.
of a function f(x) satisfying the condition (5), and

the sequence {nk?sis given by

7) - nx:[akrl,a>1,ando<r <r<l,

1
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then,

(8) o = 0 0Ty
by = O a2, ‘ni) ,

where B = 5=

If r =1 , then our theorem gives the result

(6) of Tomié.

PROOF OF THEOREM 5:
There is no loss of gemerality in taking x, = o.
In virtue of the lacunarity of the Fourier
series, we have,
.
ALy EE AT E

- 1
(9) 8y, - £(x) = O P (x,t) prscIg, at,

and hence

w ¢
) et \r»(-'“"‘) -
(10) [£(x) - Sy (x)] ¢ —2=— ( + ( +
k I S R
' ° T T )
g
“'f(’}{,‘t )' i/?ﬂ:'*:-%k-\-llit*})(\?:n“ "}.t] ot

’ *
é\.\\?—'—',l—:t



=Lt + I,

where h =hln) =m0, and § (x,5) = £lxet) + £lx-t)-22(x)

The reason why h(ny) is chosen in this way will be
clear later.
Let A denote an absolute constant which may

be different at different occurrences.

Now,
¢ A su :
g —& | £Cx+t)+£(x—b)-26(x) |
1 Myeyq = Py IX <£h
lt] < e S
= My — ™M

T

WKk 1\

Ly . A
| A0w Ny TE —Aoemed b

at.
At
o

Using (11) of chapter II, where the sequence
{pk} is the same as in (7) above, we find that

Y e

et
1 ' ] fai’»&"‘k-u'}_t—éhz"wé’c-‘

Tpe1 ~ Tk Al Lt

o]

dt

= O(log k). .
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Hence
(11) I, £ AW(o , 2h) log k.
Iz < . S sup
"™ ™ x| &n | £zt )+ (x-1)-28(x) |
™ y
WMoy ~ My < “;‘ Lh
th Ou<d
1
dt .
£2
%
ks
AW(o , 2h)

Moy =B R T

(12) < AW(o , 2n).

Also < A .
13 < i
i l-r -
(13) ¢ 2K .
n, h (nk)

Collecting (11), (12) and (13), we get,
AT

(14) ff(x)-Snk(x)! < ad(o , Zh)log k + m .
k k
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Now, it can be seen that

-
= 1 A .
(15) o T ( f(x) - Bpy_q) Py~ 1 COS mX ax ,
-
-
= & i
by = F (( f(x) - Snk-l)PNk"l sin n,x dx ,

1

where
Me = min fo = m g gy "y
and NK...\
P = 2 (x) =1+2 (1 - BYeos px .
LA i - 1 Ny P
k=1
Also

Py 1(x) has the following obvious properties’
k

(Fejer Xernal)

(16) (i) PNk~l (x) >0 , for all x ,
k 2

18
(ii) | \(,PNK _1(8das] < 7 , for all N
[e]

‘s = 1
(1i1) n EE?X{ X ‘PNK - l(X)[ = (O( ﬁ;*gg”).
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Hence
NG - (7 —
(17) lan, | % (f +§ N J
B OO

]f(x)—Sﬁk_lllPNk - 1{x)]lcos nkxf ax

=J‘1+3'2+J'3 y Say.
Using (14) and the property (16 (ii) of PNk_l ,

we obtain,

‘ AT
(18) Iy < AW(o , 2n) log k + I-l---qw .
k h (nk)
Now, it is knownl) that
uil
(19) 3:; /@ in - £f(x)| dx = o(1) ,
<

where Yw. denotes the (¢ , 1) means of the general
Fourier series without any lacunarity condition.

With our lacunarity condition, we have,

—
(20) [Snk - gl ax = —11—__3; fl(nk-t-l + 1)(emy 4-1(x))

() (oRy - £(x))|ax

J zﬁw( T2} W‘r‘r)
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1

-
<A kl’rﬁrnkﬂ - f(x)|dx + & kl“rﬁ R, ~f(x)|dx
-

-

(21) = = ok"T) .

From the property 16(iii) of PNk _ 1s and (21),
and using the fact that

1, ART
w L TR
k
we obtain,
kz(l-r),.‘
(22) J‘2 =0 ( =g .

It can be shown similarly that

x2(1-r)

(23) Jg =0 ( m)).

Collecting (18) , (22) and (23), we obtain,

kz(l—r)

)

A W) : kT
(24) lankj <AW(, 2h) log k + A o hz(nk)

since W(o , 2n) = O(hcc(nk)) and h(nk) = nl-;1/2+cc )

we get from (24),



2(1-r)
L Ak
<Ah logk + ——mg—
| ankl = & . hz(nk)
_ Alogk A 2(1-r)
Lol /D4 /24 ’
Oy Dy
and hence,
2(1-1)
- K o
2 = -_— -
(25) o, = O 7 Yo BEg—m— .

Similarly; we obtain,

bnk\: ()(EEE%:EZ )
Pk
COROLLARY:

Under the conditions of theorem 5, the
series (L) is absolutely convergent.
PROOF:

Tt can be seen that for the sequence {pk}
as in (7), we have, for all sufficiently large Xk,
and for any posgitive number m,

(26) n >k
Hence, using the estimates in (8), we have, for all

sufficiently large k,

49
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ank = ()(l/ks)'a
- g8y .
by = O/K%) 5
where s > 1 .
Consequently

S o] + Tom D

. K=y
is convergent.

2 In this seétion, we shall apply the estimates
of an, and bnk obtained above in examining the questions
of absolute convergence and the almost everywhere

convergence of “the lacunary.Fourier series (L).

Zygmundl) proved the following theorem.
THEOREM _ B: (Zygmund)

If f(x) is of bounded variation and

(27) Wz ,h) < A 1og"2'n( Thl-r);(‘fw oy =T X x < 7,

then the Fourier series of f(x) converges absolutely.
This theorem does not require any lacunarity
condition. Salemz) has proved that this theorem is best

possible in the sense that Yt cannot be replaced by zero.

1) Zygmund 21}
2) Salem 133



In view of sSalem's result the queéé;og
naturally arises as to whether W\,can be replaé%déégf
zero in (27) by imposing certain lacunarity conditions.
In this connection we shall neéd the foliowing theoren

of Szidonl).

THEOREM _C:(Szidon) _

If (L) is a Fourier series of a bounded
function and satisfies the Hadamard lacunarity condition (3),
then, it converges abéolutely.

It is clear from theorem C that we have to
look for a weaker condition than Hadamard's lacunarity
condition (3). In the following theorem 6 we study this
problem and show that for a sequence {nﬁﬁ of the type
defined in (7), the conclusion of theorem B will hold

!

when YL= o and even more is true.

THEOREM _&: ,
Let the sequence{nk'ﬁ be as in (7).
Let

(28) W(x, ;1) = Qlog H™, n >0, 1< <2

Then, the series (L) is absolutely convergent provided that

(29 %<r;<_1.

— S — — —

1) szidon ( [153 [163 )
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PROOF OF THEOREM 6:

Without loss of generality we choose xj = O.

Using (24), we have,

(3D) |ank|- < {ng( S GLIPINN A(kZ(l;f.)_ ,
nye h%(my )
Let
h =h(n) = n;z,/zw , €>0 , we get,
from (30) ,
(31)  fap | < ﬁ%ﬁ + %%;E) .

Similarly, we have,

A-log & g 12(1-T)
Tony | £

Now
o o3
‘ log k

rp ’
K=\ k

is convergent for rp > 1 i.e. for r > % s and

by using (26), we have,

oo kQ( l“'r)

E/oE
w1 Tk
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convergent for »r >0 4, € > 0 .

Hence the convergence of

o0
ST an 1+ ] 3 1)
follows for % <rX1l.

In the theorem g, we have to consider p > 1,
otherwise the range % < r <1 has no meaning. In the
following theorem we consider p < 1 and examine the
almost everywhere'convergence of the series (L).

' In this connecti&n, we prove the following
theorem.
THEOREM 7:
Let the sequence {m %} be as in (7).
Let the condition (28) be satisfied for

% < p £ 1. Then the Fourier series (L) converges

almost everywhere for E%— <r <1l
1Y

PROOF:
From (31), we have,

= log k
. a =
o log ¥ _



and hence .
oo
S(a2 F o)
e T Oy
K=\
1 1
is convergent for rp > 5~ i.e. forr > e
- P

Therefore f € I, [-r , 1 and by Carlesont) theorem
the Fourier series (L) converges almost everywhere.
This proves the theorem.

In the above theorem, we cannot take
1 1
p £ 5 » because then the range 5y <r <1 has

no meaning.

i 4o " o o Y o Do S ST gy P Hhig Bt e W A S A T St PO SR i Y S i el o R B W kG W S A G S S ot SO W B

1) Carleson [4])



